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BAIRE CATEGORY AND THE WEAK BANG-BANG PROPERTY

FOR CONTINUOUS DIFFERENTIAL INCLUSIONS

F. S. DE BLASI AND G. PIANIGIANI

(Communicated by Yingfei Yi)

Abstract. For continuous differential inclusions the classical bang-bang prop-
erty is known to fail, yet a weak form of it is established here, in the case
where the right hand side is a multifunction whose values are closed convex
and bounded sets with nonempty interior contained in a reflexive and separable
Banach space. Our approach is based on the Baire category method.

1. Introduction

The bang-bang property for differential inclusions has been studied by many
authors from different points of view. For recent contributions see, among oth-
ers, Papageorgiou [14], Tolstonogov [18], Donchev, Farkhi, Mordukhovich [10]. A
comprehensive account on differential inclusions and additional references can be
found in the monographs by Aubin and Cellina [1], Hu and Papageorgiou [12], Mor-
dukhovich [13], and Tolstonogov [17]. Usually in the investigation of the bang-bang
property a crucial role is played by the assumption that the differential inclusion
satisfies a globally Lipschitz condition. Recently, it has been shown that the bang-
bang property remains valid even under a locally Lipschitz condition [9], while it is
known to be false under the mere assumption of continuity in view of an example of
Plis [16]. The aim of the present paper is to show that, under appropriate assump-
tions, a somewhat weaker form of the bang-bang property is valid for continuous
differential inclusions (Theorem 1). Our method of approach is based on the Baire
category as developed in [6]-[9]. To apply it we need some technical results, among
which is a suitable infinite dimensional version of the classical Carathéodory theo-
rem concerning compact convex sets in R

n (Proposition 4). For further details on
the Baire method, see [4], [12], [15].

Let (M,ρ) be a metric space. The interior and the closure of a set X ⊂ M
are denoted by intX and X. For a ∈ M and X ⊂ M, X �= ∅, we set d(a,X) =
infx∈X ρ(a,X).

Throughout the paper E is a reflexive and separable real Banach space with
norm ‖.‖ and B(E) (resp. C(E)) is the space of all subsets of E which are closed
convex bounded with nonempty interior (resp. closed convex bounded nonempty).
The spaces B(E), C(E) are equipped with the Pompeiu-Hausdorff metric

h(X,Y ) = max{sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)}.
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If X ⊂ E, then coX denotes the convex hull of X. If X ⊂ E is convex, then
extX denotes the set of all extreme points of X. For X ⊂ E, X �= ∅, we put
‖X‖ = sup{‖x‖ | x ∈ X}. Moreover B = {x ∈ E | ‖x‖ ≤ 1}.

As usual C(I,E), where I ⊂ R is a compact interval, denotes the space of all
continuous functions x : I → E with norm ‖x‖I = max{t ∈ I | ‖x(t)‖}.

Set I = [to, t1] , t0 < t1. A multifunction F : I × E → C(E) is said to satisfy
assumption (H) if :

(j) F is continuous on I × E ,
(jj) F is bounded, i.e. ‖F (t, x)‖ < M for every (t, x) ∈ I × E, M a positive

constant.

For F satisfying (H) and a ∈ E, consider the following Cauchy problems:

ẋ(t) ∈ F (t, x(t)) , x(t0) = a,(CF,a)

ẋ(t) ∈ intF (t, x(t)) , x(t0) = a,(C intF,a)

ẋ(t) ∈ extF (t, x(t)) , x(t0) = a.(C extF,a)

A function x : I → E is said to be a solution of the Cauchy problem (CF,a) (resp.
(C intF,a), (C extF,a)) if x is Lipschitzian on I, with x(t0) = a, and satisfies (CF,a)
(resp. (C intF,a), (C extF,a)), t ∈ I a.e.

For F satisfying (H) and a ∈ E set:

MF,a = {x : I → E | x is a solution of (CF,a)},
M intF,a = {x : I → E | x is a solution of (C intF,a)},
M extF,a = {x : I → E | x is a solution of (C extF,a)}.

The space MF,a is equipped with the metric induced by the norm of C(I, E),
i.e. the metric of uniform convergence.

It is evident that M extF,a and M intF,a are contained in MF,a. Furthermore
MF,a can be empty if E is infinite dimensional and F is merely continuous.

Under the assumption that F : I×E → C(E) is continuous, locally Lipschitzian
in the x-variable and bounded, the set MF,a is nonempty and moreover the follow-
ing bang-bang property holds (see [9]):

M extF,a = MF,a,

where the closure is in C(I,E). Whenever F is only continuous, then the bang-bang
property is no longer valid and one has

M extF,a ⊂ MF,a,

where the inclusion can be strict, in view of the Plis example [16].
The aim of this paper is to show that if F : I × E → B(E) is continuous and

bounded, then M intF,a �= ∅ and the following weak form of the bang-bang property
holds:

(1.1) M extF,a ⊃ M intF,a.

Remark 1. If F takes on values in C(E) and E is infinite dimensional, then one
can have M extF,a = MF,a = ∅, by virtue of Godunov’s theorem [11].

Remark 2. The inclusion (1.1) can be strict, as is shown by an example presented
in Section 3.
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For any set J ⊂ I we denote by |J | and χ
J
, respectively, the Lebesgue measure

and the characteristic function of J.
By a regular partition of the interval I = [t0, t1] we mean a finite or denumerable

infinite family P = {Ii} of pairwise disjoint nondegenerate intervals Ii ⊂ I such
that, setting N0 = I �

⋃
i Ii, one has |N0| = 0.

Definition 1. A map u : I → E is said to be piecewise constant if u is given by

(1.2) u(t) =
∑
i

uiχIi
(t) + u0(t)χN0

(t), t ∈ I,

where {Ii} is a regular partition of I, {ui} ⊂ E is a bounded sequence, and u0(t) ∈ E

for every t ∈ N0 = I �
⋃

i Ii.

Definition 2. A solution x ∈ MF,a is said to be regular if there exist a regular
partition P = {Ii} of I and corresponding sequences {ui} ⊂ E and {σi} ⊂ (0,+∞)
such that, denoting by u : I → E a piecewise constant map given by (1.2), one has:

x(t) = a+

∫ t

t0

u(s)ds for each t ∈ I,(j)

ẋ(t) + σiB = ui + σiB ⊂ F (t, x(t)) for each t ∈ int Ii and Ii ∈ P.(jj)

Set
M0

F,a = {x : I → E | x is a regular solution of (C intF,a)},
and define

M = M0

F,a,

where the closure is in C(I,E). The space M is equipped with the metric induced
by the norm of C(I,E).

The Choquet function, which we now introduce, plays a crucial role in the proof
of our main result.

Denote by E
∗ the topological dual of E. Let {ln} , ‖ln‖ = 1, be a sequence

dense in the unit sphere of E∗. Let F satisfy assumption (H). Following Choquet
[5], Vol. II, Ch. 6, we define ϕF : I × E× E → [0,+∞] by

ϕ(t, x, v) =

{∑∞
n=1

(ln(v))
2

2n , v ∈ F (t, x),

+∞, v ∈ E � F (t, x).

Let A be the set of all continuous affine functions a : E → R. Let ϕF : I×E×E →
[−∞,+∞) be given by

ϕF (t, x, v) = inf{a(v) | a ∈ A and a(z) > ϕF (t, x, z) for every z ∈ F (t, x)}.
We define dF : I × E× E → [−∞,+∞) by

dF (t, x, v) = ϕF (t, x, v)− ϕF (t, x, v).

In the next proposition we review some properties of dF , the Choquet function
associated to F (see Choquet [5], Castaing and Valadier [2]).

Proposition 1. Let F : I × E → B(E) satisfy (H). Then:
(i) for each (t, x) ∈ I × E and v ∈ F (t, x) we have 0 ≤ dF (t, x, v) ≤ M2. Moreover
dF (t, x, v) = 0 if and only if v ∈ extF (t, x);
(ii) for each (t, x) ∈ I × E, the function dF (t, x, .) is concave on E and strictly
concave on the set F (t, x);
(iii) dF is upper semicontinuous on I × E× E;
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(iv) for each x ∈ MF,a, the function t → dF (t, x(t), ẋ(t)) is nonnegative, bounded
and integrable on I;
(v) if {xn} ⊂ MF,a converges uniformly to x, then

lim sup
n→∞

∫
I

dF (t, xn(t), ẋn(t))dt ≤
∫
I

dF (t, x(t), ẋ(t))dt.

2. Auxiliary results

In this section we prove some results which will be useful in what follows.

Proposition 2. Let F : I × E → B(E) satisfy (H). Let x ∈ M intF,a and ε > 0.
Then there exists a regular solution y : I → E of the Cauchy problem (C intF,a) such
that ‖y − x‖I < ε.

Proof. Let x ∈ M intF,a and ε > 0 be given. Set

J = {t ∈ (t0, t1) | ẋ(t) exists and ẋ(t) ∈ intF (t, x(t))}.
Let τ ∈ J be arbitrary. Hence for some σ > 0 we have

ẋ(τ ) + 3σB ⊂ F (τ, x(τ )).

Since F is continuous, there exists δτ > 0, with [τ, τ + δτ ] ⊂ (t0, t1), such that
(2.1)

0 < h < δτ , |t−τ | < δτ , t ∈ I, ‖z−x(τ )‖ < δτ ⇒ x(τ + h)− x(τ )

h
+σB ⊂ F (t, z).

For any δ with

0 < δ < min{ δτ
M + 1

,
ε

2M + 1
},

set Iτ,δ = [τ, τ + δ] and define yτ,δ : Iτ,δ → E by

yτ,δ(t) = x(τ ) +
x(τ + δ)− x(τ )

δ
(t− τ ), t ∈ Iτ,δ.

Claim 1. yτ,δ : Iτ,δ → E is a regular solution of the following boundary value
problem:

(Bτ,δ) ẏ(t) = intF (t, y(t)), y(τ ) = x(τ ), y(τ + δ) = x(τ + δ).

Evidently y(τ ) = x(τ ) and y(τ + δ) = x(τ + δ). Moreover for t ∈ Iτ,δ we have

(2.2) ‖yτ,δ(t)− x(τ )‖ =
‖x(τ + δ)− x(τ )‖

δ
(t− τ ) < δτ ,

because ‖x(τ + δ) − x(τ )‖ < Mδ and t − τ ≤ δ < δτ/(M + 1). From (2.1) (with
h = δ), in view of (2.2) it follows that

ẏτ,δ(t) + σB =
x(τ + δ)− x(τ )

δ
+ σB ⊂ F (t, yτ,δ(t)), t ∈ (τ, τ + δ),

and hence Claim 1 holds.

Now the family

F = {Iτ,δ , τ ∈ J , 0 < δ < δτ}
of closed intervals Iτ,δ covers J in the sense of Vitali. Hence there exists a finite or
denumerable infinite family F0 = {Iτj ,δj} ⊂ F of pairwise disjoint closed intervals
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Iτj ,δj ∈ F such that J �
⋃

j Iτj ,δj has measure zero. As I � J has measure zero it

follows that N0 = I �
⋃

j Iτj ,δj has measure zero. Evidently

(2.3) I =
⋃
j

Iτj ,δj ∪N0,

and thus F0 is a regular partition of I. Now define u : I → E and y : I → E as
follows:

u(t) =
∑
j

ẏτj ,δj (t)χIτj,δj
(t) , t ∈ I,

y(t) = a+

∫ t

t0

u(s)ds , t ∈ I.

Claim 2. y : I → E is a regular solution of the Cauchy problem (C intF,a) satisfying
‖y − x‖I < ε.

Since the functions yτj ,δj and x agree at τj and τj + δj , the end points of Iτj ,δj ,
then in view of the definition of y it is easy to show that y(t) = yτj ,δj (t) for each
t ∈ Iτj ,δj and Iτj ,δj ∈ F0. By virtue of Claim 1 and (2.3) it follows that y is a
regular solution of the Cauchy problem (C intF,a). Furthermore for any Iτj ,δj ∈ F0

and all t ∈ Iτj ,δj we have

‖y(t)− x(t)‖ ≤ ‖y(t)− y(τj)‖+ ‖x(τj)− x(t)‖ < 2Mδj .

As δj < ε/(2M+1) , in view of (2.3) it follows that ‖y−x‖I < ε. Therefore Claim 2
holds. This completes the proof. �

Proposition 3. Let F : I × E → B(E) satisfy (H). Then M is a nonempty
complete metric space (under the induced metric of C(I,E)) and M ⊂ MF,a.

Proof. Since the multifunction intF admits locally Lipschitzian selections, we have
M intF,a �= ∅ and thus M0

F,a �= ∅, by virtue of Proposition 2. Hence M �= ∅.
Evidently M is complete for C(I,E) is so. As F is a continuous and bounded
multifunction with closed convex values contained in E, a reflexive Banach space,
the uniform limit of solutions is also a solution, and hence M ⊂ MF,a. �

Proposition 4. Let F : I × E → B(E) satisfy (H). Let (t, x) ∈ I × E and let
u ∈ intF (t, x) and α > 0 be given. Then for some n ∈ N there exist points
ai ∈ intF (t, x) , with dF (t, x, ai) < α , i = 1, . . . , n, and numbers λi > 0, with
λ1 + · · ·+ λn = 1, such that

n∑
i=1

λiai = u.

Proof. Fix θ > 0 so that u + θB ⊂ F (t, x). For some p ∈ N there exist points
ei ∈ extF (t, x) and numbers μi > 0 with μ1 + · · · + μp = 1, such that, setting
c = μ1e1 + · · ·+ μpep, one has

0 < ‖c− u‖ <
θ

2
.

By Proposition 1, dF (t, x, ei) = 0, i = 1, . . . , p, and thus sufficiently close to each
ei there exists a point ai ∈ intF (t, x) such that

(2.4) dF (t, x, ai) <
α

2
, i = 1, . . . , p and 0 < r = ‖a− u‖ <

θ

2
,
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where a = μ1a1 + · · · + μpap. By virtue of Proposition 1 and (2.4) there exists an
ε > 0 such that each ball Bi = ai + εB , i = 1, . . . , p, is contained in F (t, x) and
moreover,

(2.5) dF (t, x, v) < α for every v ∈ Bi , i = 1, . . . , p.

It is evident that

(2.6)

p∑
i=1

μiBi = Bε(a), where Bε(a) = a+ εB.

Let b ∈ intF (t, x) be such that u = a+b
2 . As above, for some q ∈ N there exist

points a′i ∈ intF (t, x), with dF (t, x, a
′
i) < α , i = 1, . . . , q, and numbers νi > 0,

with ν1 + · · ·+ νq = 1, such that setting

(2.7) b′ =

q∑
i=1

νia
′
i

one has ‖b′−b‖ < ε
4 . As u+ ε

2B ⊂ co{b, Bε(a)} and h(co{b, Bε(a)}, co{b′, Bε(a)}) ≤
‖b′ − b‖ < ε

4 , it follows that u+
ε
2B ⊂ co{b′, Bε(a)}+ ε

4B , which implies u+ ε
4B ⊂

co{b′, Bε(a)}. Hence there exist d ∈ Bε(a) and t ∈ [0, 1] so that

(2.8) u = tb′ + (1− t)d.

As d ∈ Bε(a), by virtue of (2.6) and (2.5) there exist points d′i ∈ Bi, with dF (t, x, d
′
i)

< α , i = 1, . . . , p, such that

(2.9) d =

p∑
i=1

μid
′
i.

From (2.8), in view of (2.7) and (2.9), it follows that

u = t

q∑
i=1

νia
′
i + (1− t)

p∑
i=1

μid
′
i.

This completes the proof. �

3. The weak bang-bang property

In this section we shall prove the weak bang-bang property. To this end, for
F : I × E → B(E) satisfying (H) and α > 0, we set

Nα = {x ∈ M :

∫
I

dF (t, x(t), ẋ(t))dt < α|I|}.

Proposition 5. Nα is dense in M.

Proof. It suffices to show that given x ∈ M0
F,a and ε > 0 there exists y ∈ Nα such

that ‖y − x‖I ≤ ε.
By hypothesis x is a regular solution of (C intF,a) and thus, with the notation of

Definition 2, for some piecewise constant map u : I → E, given by (1.2), we have:

x(t) = a+

∫ t

t0

u(s)ds , t ∈ I,

ẋ(t) + σiB = ui + σiB ⊂ F (t, x(t)), t ∈ int Ii , Ii ∈ P.
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Consider an interval Ii ∈ P with end points αi < βi and let τ ∈ (αi, βi) be arbitrary.
Evidently

ui + σiB ⊂ F (τ, x(τ )),

and thus by Proposition 4, for some n ∈ N there exist points ek ∈ intF (τ, x(τ )),
with dF (τ, x(τ ), ẋ(τ )) < α , k = 1, . . . , n, and corresponding numbers λk > 0, with
λ1 + · · ·+ λn = 1, such that

(3.1) ui =

n∑
k=1

λkek.

Clearly for some γτ > 0,

(3.2)
n⋃

k=1

(ek + γτB) ⊂ F (τ, x(τ )).

Since F is continuous and satisfies (3.2) there exists ρ0, with

(3.3) 0 < ρ0 < min{ε, τ − αi, βi − τ},

such that

(3.4) t ∈ [τ − ρ0, τ + ρ0] , ‖y − x(τ )‖ < ρ0 ⇒
n⋃

k=1

(ek +
γτ
2
B) ⊂ F (t, y).

Furthermore as dF is upper semicontinuous at (τ, x(τ ), ek) and dF (τ, x(τ ), ek) < α
there exists a ρ, with 0 < ρ < min{ρ0, γτ/2}, such that for k = 1, . . . , n we have

(3.5) t ∈ [τ − ρ, τ + ρ] , ‖y − x(τ )‖ < ρ , ‖v − ek‖ < ρ ⇒ dF (t, y, v) < α.

Let δτ satisfy

(3.6) 0 < δτ <
ρ

4M + 1

and, for 0 < δ < δτ , set

Iτ,δ = [τ − δ, τ + δ].

Let {Jk
τ,δ}nk=1 be a partition of Iτ,δ into n pairwise disjoint nondegenerate subin-

tervals Jk
τ,δ of length

(3.7) |Jk
τ,δ| = λk|Iτ,δ| , k = 1, . . . , n.

Now define uτ,δ : I → E and yτ,δ : Iτ,δ → E as follows:

uτ,δ(t) =

n∑
k=1

ekχ
Jk
τ,δ

(t) , t ∈ Iτ,δ,(3.8)

yτ,δ(t) = x(τ − δ) +

∫ t

τ−δ

uτ,δ(s)ds , t ∈ Iτ,δ.(3.9)



2420 F. S. DE BLASI AND G. PIANIGIANI

We have

ẏτ,δ(t) +
γτ
2
B ⊂ F (t, yτ,δ(t)), t ∈

n⋃
k=1

int Jk
τ,δ,(j)

yτ,δ(τ ± δ) = x(τ ± δ),(jj)

‖yτ,δ(t)− x(t)‖ < ε , t ∈ Iτ,δ,(jjj)

dF (t, yτ,δ(t), ẏτ,δ(t)) < α , t ∈
n⋃

k=1

int Jk
τ,δ.(jv)

(j) Let t ∈ int Jk
τ,δ, where 1 ≤ k ≤ n. Clearly

(3.10) t ∈ [τ − ρ, τ + ρ]

since |t− τ | ≤ δ < δτ < ρ by (3.6). Moreover,

‖yτ,δ(t)− x(τ )‖ = ‖x(τ − δ) +

∫ t

τ−δ

uτ,δ(s)ds− a−
∫ τ

t0

u(s)ds‖

= ‖
∫ t

τ−δ

uτ,δ(s)ds−
∫ τ

τ−δ

u(s)ds‖

≤
∫
Jk
τ,δ

(‖uτ,δ(s)‖+ ‖u(s)‖)ds ≤ 4Mδτ ,

for |Jk
τ,δ| ≤ |Iτ,δ| = 2δ < 2δτ and uτ,δ and u are bounded by M . Since δτ <

ρ/(4M + 1) by (3.6), it follows that

(3.11) ‖yτ,δ(t)− x(τ )‖ < ρ.

From (3.4), in view of (3.10) and (3.11), as ρ < ρ0 and ẏτ,δ(t) = ek, one has

ẏτ,δ(t) +
γτ
2
B ⊂ F (t, yτ,δ(t))

and thus (j) holds.
(jj) From (3.9), in view of (3.8), (3.7) and (3.1) we have:

yτ,δ(τ + δ) = x(τ − δ) +

∫ τ+δ

τ−δ

(

n∑
k=1

ekχ
Jk
τ,δ

(s))ds

= x(τ − δ) +

n∑
k=1

ek|Jk
τ,δ

| = x(τ − δ) +

n∑
k=1

λkek|Iτ,δ|

= x(τ − δ) + ui|Iτ,δ| = x(τ − δ) +

∫ τ+δ

τ−δ

u(s)ds = x(τ + δ).

Clearly yτ,δ(τ − δ) = x(τ − δ), and thus (jj) holds.
(jjj) For any t ∈ Iτ,δ we have:

‖yτ,δ(t)− x(t)‖ = ‖x(τ − δ) +

∫ t

τ−δ

uτ,δ(s)ds− a−
∫ t

t0

u(s)ds‖

= ‖
∫ t

τ−δ

uτ,δ(s)ds−
∫ t

τ−δ

u(s)ds‖ ≤
∫
Iτ,δ

(‖uτ,δ(s)‖+ ‖u(s)‖)ds ≤ 4Mδ.

From the latter, (jjj) follows at once since δ < δτ < ρ/(4M + 1) by (3.6), and
ρ < ρ0 < ε by (3.3).



WEAK BANG-BANG PROPERTY 2421

(jv) Let t ∈ int Jk
τ,δ be arbitrary, where 1 ≤ k ≤ n . From (3.5), in view of (3.10)

and (3.11), as ẏτ,δ(t) = ek ∈ F (t, yτ,δ(t)), one has dF (t, yτ,δ(t), ẏτ,δ(t)) < α, and
thus (jv) holds.

It is evident that the family

F = {Iτ,δ | τ ∈
⋃
i

int Ii , 0 < δ < δτ}

of closed intervals Iτ,δ ⊂ I covers the set
⋃

i int Ii in the sense of Vitali. Hence
there is a finite or denumerable infinite family F0 = {Iτj ,δj} ⊂ F of pairwise
disjoint closed intervals Iτj ,δj such that

(3.12) I = (
⋃
j

Iτj ,δj ) ∪N0,

where N0 = I �
⋃

j Iτj ,δj has measure zero. Now define v : I → E and y : I → E as
follows:

v(t) =
∑
j

uτj ,δj (t)χIτj,δj
(t) , t ∈ I,

y(t) = a+

∫ t

t0

v(s)ds , t ∈ I.

Since by (jj) yτj ,δj (τj ± δj) = x(τj ± δj), it is easy to see that for each Iτj ,δj ∈ F0

we have

(3.13) y(t) = yτj ,δj (t) for every t ∈ Iτj ,δj .

In view of (3.13), (3.12) and (j) it follows that y : I → E is a regular solution
of the Cauchy problem (C intF,a); hence y ∈ M0

intF,a and so a fortiori y ∈ M.

Furthermore, by virtue of (3.13), (3.12) and (jv),∫
I

dF (t, y(t), ẏ(t))dt < α|I|

and hence y ∈ Nα. Finally from (3.13), (3.12) and (jjj) it follows that ‖y−x‖I ≤ ε.
This completes the proof. �

Proposition 6. Nα is open in M.

Proof. Let {xn} ⊂ M � Nα be a sequence which converges uniformly to x ∈ M.
Then, by Proposition 1,∫

I

dF (t, x(t), ẋ(t))dt ≥ lim sup
n→∞

∫
I

dF (t, xn(t), ẋn(t))dt ≥ α|I|.

Thus x ∈ M�Nα, completing the proof. �

We are now ready to prove the following weak form of the bang-bang property.

Theorem 1. Let F : I × E → B(E) satisfy assumption (H). Then M intF,a �= ∅
and

(3.14) M extF,a ⊃ M intF,a.

Proof. Under our assumptions, M intF,a �= ∅. To prove (3.14) set

M∗ =
⋂
n∈N

N1/n.
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By virtue of Propositions 5 and 6 each N1/n is open and dense in M, which is a
complete metric space, by Proposition 3. Consequently M∗ is dense in M.

Let x ∈ M∗. Then for every n ∈ N,∫
I

dF (t, x(t), ẋ(t))dt < (1/n)|I|,

and thus, by Proposition 1, dF (t, y(t), ẏ(t)) = 0 , t ∈ I a.e., which implies that
x ∈ M extF,a. Therefore M extF,a ⊃ M∗ and hence,

M extF,a ⊃ M.

Since, by Proposition 2, M = M0

F,a ⊃ M intF,a, it follows that M extF,a ⊃
M intF,a. This completes the proof. �

The following example shows that in (3.14) the inclusion can be strict.

Example 3.1. Set f(y) =
√
|y| if |y| ≤ 1 and f(y) = 1 if |y| > 1. For F : R2 →

B(R2) given by

F (x, y) = {(u, v) ∈ R
2 | u ∈ [0, 1] , v ∈ [f(y), 2]}, (x, y) ∈ R

2,

consider the following Cauchy problems:

(ẋ(t), ẏ(t)) ∈ intF (x(t), y(t)), (x(0), y(0)) = (0, 0),(C intF,0)

(ẋ(t), ẏ(t)) ∈ extF (x(t), y(t)), (x(0), y(0)) = (0, 0).(C extF,0)

Put I = [0, 1/2]. Clearly

extF (x, y) = {(0, f(y)) , (0, 2) , (1, f(y)) , (1, 2)}

and thus (0, 0) ∈ extF (0, 0), which shows that (x0(t), y0(t)) = (0, 0) , t ∈ I, is a
solution of (C extF,0). Let (x(t), y(t)) , t ∈ I, be an arbitrary solution of (C intF,0).
As x(0) = y(0) = 0 and x(t) and y(t) satisfy

(3.15) ẋ(t) ∈ (0, 1), ẏ(t) ∈ (f(y(t)), 2),

it follows that x(t) and y(t) are strictly positive for every t ∈ (0, 1/2]. Clearly

ẏ(t) ∈ (
√
y(t), 2) for t ∈ I a.e. since, by (3.15), y(t) ≤ 1 for every t ∈ I. Let

0 < ε < 1/4. Then for t ∈ [ε, 1/2] a.e. we have ẏ(t) >
√
y(t), and hence

√
y(t) >√

y(ε) + t−ε
2 , t ∈ [ε, 1/2], from which letting ε → 0 one has

y(t) ≥ t2

4
, t ∈ I.

Consequently

d((x0(.), y0(.)),M intF,0) ≥
1

8
,

as (x(t), y(t)), t ∈ I, is an arbitrary solution of (C intF,0). This shows that the

inclusion M extF,0 ⊃ M intF,0 is strict.
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