
20 February 2025

Harnack type estimates and Hölder continuity for non-negative solutions to certain sub-critically singular
parabolic partial differential equations / E. DiBenedetto; U. Gianazza; V.Vespri. - In: MANUSCRIPTA
MATHEMATICA. - ISSN 0025-2611. - STAMPA. - 131:(2010), pp. 231-245. [10.1007/s00229-009-0317-9]

Original Citation:

Harnack type estimates and Hölder continuity for non-negative
solutions to certain sub-critically singular parabolic partial

Published version:
10.1007/s00229-009-0317-9

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La data sopra indicata si riferisce all'ultimo aggiornamento della scheda del Repository FloRe - The above-
mentioned date refers to the last update of the record in the Institutional Repository FloRe

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
The webpage https://hdl.handle.net/2158/373329 of the repository was last updated on 2016-09-
11T13:58:17Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

https://hdl.handle.net/2158/373329


manuscripta math. 131, 231–245 (2010) © Springer-Verlag 2009

Emmanuele DiBenedetto, Ugo Gianazza, Vincenzo Vespri

Harnack type estimates and Hölder continuity
for non-negative solutions to certain sub-critically
singular parabolic partial differential equations

Received: 7 October 2009
Published online: 24 November 2009

Abstract. A two-parameter family of Harnack type inequalities for non-negative solutions
of a class of singular, quasilinear, homogeneous parabolic equations is established, and it is
shown that such estimates imply the Hölder continuity of solutions. These classes of singular
equations include p-Laplacean type equations in the sub-critical range 1 < p ≤ 2N

N+1 and

equations of the porous medium type in the sub-critical range 0 < m ≤ (N−2)+
N .

1. Introduction and main results

Let E be an open set in R
N and for T > 0 let ET denote the cylindrical domain

E × (0, T ]. Consider quasi-linear, parabolic differential equations of the form

u ∈ Cloc
(
0, T ; L2

loc(E)
) ∩ L p

loc

(
0, T ; W 1,p

loc (E)
)

ut − div A(x, t, u, Du) = 0 weakly in ET

(1.1)

where the function A : ET × R
N+1 → R

N is only assumed to be measurable and
subject to the structure conditions

{
A(x, t, u, Du) · Du ≥ Co|Du|p

|A(x, t, u, Du)| ≤ C1|Du|p−1 a.e. (x, t) ∈ ET (1.2)

where Co and C1 are given positive constants, and p is in the sub-critical range

1 < p ≤ p∗
def= 2N

N + 1
. (1.3)
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The homogeneous prototype of such a class of parabolic equations is

ut − div |Du|p−2 Du = 0 weakly in ET . ((1.1)o)

The parameters {N , p, Co, C1} are the data, and we say that a generic constant
γ = γ (N , p, Co, C1) depends upon the data, if it can be quantitatively determined
a priori only in terms of the indicated parameters. For ρ > 0 let Bρ be the ball
of center the origin on R

N and radius ρ and for y ∈ R
N let Bρ(y) denote the

homothetic ball centered at y. For τ > 0 and for (y, s) ∈ R
N × R set also

Qρ(τ ) = Bρ × (−τ, 0], (y, s) + Qρ(τ ) = Bρ(y) × (s − τ, s].
Let u be a non-negative weak solution of (1.1–1.3). Having fixed (xo, to) ∈ ET ,
and B4ρ(xo) ⊂ E , introduce the quantities

−
∫

Bρ(xo)

uq(x, to)dx, δ
def=

⎡

⎣ε

(

−
∫

Bρ(xo)

uq(·, to)dx

) 1
q
⎤

⎦

2−p

ρ p (1.4)

where ε ∈ (0, 1) is to be chosen, and q ≥ 1 is arbitrary. If δ > 0, set also

η
def=

⎡

⎢⎢
⎣

(
−
∫

Bρ(xo)
uq(·, to)dx

) 1
q

(
−
∫

B4ρ(xo)
ur (·, to − δ)dx

) 1
r

⎤

⎥⎥
⎦

rp
λr

(1.5)

where r ≥ 1 is any number such that

λr
def= N (p − 2) + r p > 0. (1.6)

Theorem 1.1. Let u be a non-negative, locally bounded, local, weak solution of
(1.1–1.3). Introduce δ as in (1.4) and assume that δ > 0. There exist constants
ε ∈ (0, 1), and γ > 1, depending only on the data and the parameters q, r , and a
constant β > 1, depending only upon the data and independent of q, r , such that

inf
(xo,to)+Qρ( 1

2 δ)

u ≥ γ

⎡

⎢⎢
⎣

(
−
∫

Bρ(xo)
uq(·, to)dx

) 1
q

(
−
∫

B4ρ(xo)
ur (·, to − δ)dx

) 1
r

⎤

⎥⎥
⎦

β
rp
λr

sup
(xo,to)+Qρ(δ)

u (1.7)

provided q ≥ 1 and r ≥ 1 satisfies (1.6) and (xo, to)+Q8ρ(δ) ⊂ ET . The constants
ε → 0, and γ → ∞ as either λr → 0 or λr → ∞.

Remark 1.1. The estimate is vacuous if δ = 0. This does occur for certain solutions
of (1.1) for to larger than the extinction time ([8]).



Harnack type estimates and Hölder continuity 233

Remark 1.2. Inequality (1.7) is not a Harnack inequality per se, since η depends
upon the solution itself. It would reduce to a Harnack inequality if η ≥ ηo > 0
for some absolute constant ηo depending only upon the data. This however can-
not occur since a Harnack inequality for solutions of (1.1–1.3) does not hold, as
shown by the counterexamples of [7]. Further comments in this direction are in
Remark 4.1.

Remark 1.3. An estimate similar to (1.7) has been derived in [3] for non-negative
solutions of the prototype equation (1.1)o, by means of maximum and comparison
principles, and some asymptotic estimates of [8]. However the Harnack inequality
is a structural property of a parabolic equation, unrelated to comparison and maxi-
mum principles. This emerges from the pioneering work of Moser [9,10], and the
results of [1,4,6,11]. Theorem 1.1 is in this direction.

Remark 1.4. Inequality (1.7) actually holds for non-negative solutions of (1.1–1.2)
for all 1 < p < 2, provided r ≥ 1 satisfies (1.6). For super-critical values of
p > 2N

N+1 one has λ = λ1 > 0, and (1.6) can be realized for r = 1. However, for
λ > 0 the strong form of a Harnack estimate holds ([7]). Therefore (1.7), while
true for all 1 < p < 2, holds significance only for critical and sub-critical values
1 < p ≤ 2N

N+1 . In this sense (1.7) can be regarded as a “weak” form of a Harnack
estimate. Neverthless (1.7) is sufficient to establish the local Hölder continuity of
locally bounded, weak solutions of (1.1–1.2), irrespective of their sign, as we show
in Sect. 4.

2. Components of the proof of Theorem 1.1

2.1. Lr
loc-L∞

loc Estimates For r ≥ 1 Such That λr > 0

Proposition 2.1. Let u be a non-negative, locally bounded, local, weak solution to
(1.1–1.3), and assume that u ∈ Lr

loc(ET ) for some r ≥ 1, satisfying (1.6). There
exists a positive constant γr depending only upon the data, and r, such that

sup
Bρ(y)×[s,t]

u ≤ γr

(t − s)
N
λr

(∫

B2ρ(y)

ur (x, 2s − t)dx

) p
λr

+ γr

(
t − s

ρ p

) 1
2−p

(2.1)

for all cylinders

B2ρ(y) × [s − (t − s), s + (t − s)] ⊂ ET . (2.2)

The constant γr → ∞ if either λr → 0 or λr → ∞.

Remark 2.1. The values of u in the upper part of the cylinder (2.2) are estimated
by the integral on the lower base of the cylinder.

Remark 2.2. The local boundedness of a weak solution is insured by the integra-
bility u ∈ Lr

loc(ET ) for some r ≥ 1 satisfying (1.6). For 2N
N+2 < p ≤ 2N

N+1 , such
an integrability condition is a consequence of the notion of weak solution. Indeed
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by parabolic embedding (see [5], Chapter I, Proposition 3.1), u ∈ Lm
loc(ET ) with

m = N+2
N p, and λm > 0. For 1 < p ≤ 2N

N+2 this is no longer the case, and the
integrability requirement is an extra assumption imposed on the notion of weak
solution, to insure its local boundedness. Indeed for 1 < p ≤ 2N

N+2 there exist
unbounded, local, weak solutions to (1.1) ([5]).

The proof of Proposition 2.1 follows arguments similar to those in of [5] Chap. V,
with minor modifications outlined in Appendix A.

2.2. Expansion of positivity

Proposition 2.2. Let u be a non-negative, local, weak solution to (1.1–1.2), for
1 < p < 2, satisfying

∣∣[u(·, t) > M] ∩ Bρ(y)
∣∣ > α|Bρ | (2.3)

for all times

s − εM2−pρ p ≤ t ≤ s (2.4)

for some M > 0, and some α, ε ∈ (0, 1). Assume moreover that

B8ρ × (s − εM2−pρ p, s) ⊂ ET .

There exists σ ∈ (0, 1) that can be determined a priori, quantitatively only in terms
of the data, and the numbers α and ε, independent of M, such that

u(x, t) ≥ σ M for all x ∈ B2ρ(y) (2.5)

for all times

s − 1
2εM2−pρ p < t ≤ s. (2.6)

Remark 2.3. Thus measure-theoretical information on the measure of the “positiv-
ity set” in Bρ(y) for all times in (2.4) implies that such a positivity set actually
expands to B2ρ(y) for comparable times. This is the main underlying structural
fact of a Harnack inequality.

Remark 2.4. The proof, given in [5], Chap. IV, and in [7], shows that the functional
dependence of σ on ε and α is of the form

σ(ε, α) ≈ a1/εbαc
(2.7)

for constants a ∈ (0, 1) and b, c > 1 depending only upon the data.

Remark 2.5. Proposition 2.2 holds for all 1 < p < 2, irrespective of p belonging
to the sub-critical or super-critical range.
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2.3. Lr
loc estimates backward in time

Proposition 2.3. Let u be a non-negative, local, weak solution to (1.1–1.2), for
1 < p < 2, and assume that u ∈ Lr

loc(ET ) for some r ≥ 1. There exists a constant
γ̄r depending only upon the data and r, such that for all cylinders B2ρ(y)×[τ, t] ⊂
ET

sup
τ≤s≤t

∫

Bρ(y)

ur (x, s)dx ≤ γ̄r

∫

B2ρ(y)

ur (x, τ )dx + γ̄r

[
(t − τ)r

ρλr

] 1
2−p

(2.8)

where λr is defined in (1.6), but it is not required to be positive.

The proof is in Appendix A. If r = 1 this estimate can be given the form of a
Harnack inequality in the L1

loc topology.

Proposition 2.4. Let u be a non-negative, local, weak solution to (1.1–1.2), for
1 < p < 2. There exists a positive constant γ̄ depending only upon the data, such
that for all cylinders B2ρ(y) × [τ, t] ⊂ ET

sup
τ≤s≤t

∫

Bρ(y)

u(x, τ )dx ≤ γ̄ inf
τ≤s≤t

∫

B2ρ(y)

u(x, τ )dx + γ̄

(
t − τ

ρλ

) 1
2−p

(2.9)

where λ = λ1 is defined in (1.6), but it is not required to be positive.

If p∗ < p < 2 then λ > 0, whereas 1 < p ≤ p∗ implies λ ≤ 0. However (2.9)
holds true for all 1 < p < 2 and accordingly, λ could be of either sign. The constant
γ̄ = γ̄ (p) → ∞ as either p → 2 or p → 1. The proof is in [7].

3. Estimating the positivity set of the solutions

Having fixed (xo, to) ∈ ET , assume it coincides with the origin, write Bρ(0) = Bρ

and introduce the quantity δ as in (1.4), which is assumed to be positive. From (2.8)
and the definition of δ

∫

Bρ

uq(·, 0)dx ≤ γ̄q

∫

B2ρ

uq(·, τ )dx + γ̄q εq
∫

Bρ

uq(·, 0)dx

for all q ≥ 1 and for all τ ∈ (−δ, 0]. Choosing γ̄q εq ≤ 1
2 yields

∫

B2ρ

uq(·, τ )dx ≥ 1

2γ̄q

∫

Bρ

uq(·, 0)dx for all τ ∈ (−δ, 0]. (3.1)
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Next apply the sup-estimate (2.1) over the cylinder B2ρ × (− 1
2δ, 0] with r ≥ 1

such that λr > 0, to get

sup
B2ρ×(− 1

2 δ,0]
u ≤ γr [ωN (4ρ)N ] p

λr

δ
N
λr

(

−
∫

B4ρ

ur (·,−δ)dx

) 1
r

rp
λr

+ γr

(
δ

ρ p

) 1
2−p

≤ γ ′
r

ε
N (2−p)

λr

1

η

(

−
∫

Bρ

uq(·, 0)dx

) 1
q

+ γ ′
r ε

(

−
∫

Bρ

uq(·, 0)dx

) 1
q

= γ ′
r ε

(

1 + 1

η ε
rp
λr

) (

−
∫

Bρ

uq(·, 0)dx

) 1
q

for a constant γ ′
r depending only upon the data and r . One verifies that γ ′

r → ∞
as either λr → 0 or λr → ∞.

Assume momentarily that 0 < η < 1 so that in the round brackets containing
η, the second term dominates the first. In such a case

sup
B2ρ×(− 1

2 δ,0]
u ≤ M

def= 1

ε′η

(

−
∫

Bρ

uq(·, 0)dx

) 1
q

where ε′ = ε
N (2−p)

λr

2γ ′
r

. (3.2)

and therefore

ε′ηM =
(

−
∫

Bρ

uq(·, 0)dx

) 1
q

. (3.3)

Let ν ∈ (0, 1) to be chosen. Combining (3.3) with (3.1) gives

(ε′ηM)q ≤ 2N+1γ̄q−
∫

B2ρ

uq(·, τ )dx

≤ 2N+1γ̄qνq(ηM)q + 2N+1γ̄q Mq |[u(·,τ )>νηM]∩B2ρ |
|B2ρ |

for all τ ∈ (− 1
2δ, 0]. From this

|[u(·, τ ) > νηM] ∩ B2ρ | ≥ αηq |B2ρ | where α = ε′q − νq 2N+1γ̄q

2N+1γ̄q
(3.4)

for all τ ∈ (− 1
2δ, 0]. By choosing ν ∈ (0, 1) sufficiently small, only dependent on

the data and γ̄q , we can insure that α ∈ (0, 1) depends only upon the data and q,
and is independent of η.

Proposition 3.1. Let u be a non-negative, locally bounded, local, weak solution of
(1.1–1.2) for 1 < p < 2. Fix (xo, to) ∈ ET , let B4ρ(xo) ⊂ E and let δ and η be
defined by (1.4–1.6) for some ε ∈ (0, 1). For every r ≥ 1 satisfying (1.6) and every
q ≥ 1, there exist constants ε, ν, α ∈ (0, 1), depending only upon the data and q
and r, such that

|[u(·, t) > νηM] ∩ B2ρ(xo)| ≥ αηq |B2ρ | for all t ∈ (to − 1
2δ , to]. (3.5)
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3.1. A first form of the Harnack inequality

The definition of (1.4) of δ and the parameters in (3.2–3.4), imply that

1
2δ = ε(νηM)2−pρ p where ε = 1

2

(
εε′

ν

)2−p

. (3.6)

Therefore by Proposition 2.2 with M replaced by νηM and α replaced by αηq

u(·, t) > σ(αηq , ε)νηM in B4ρ(xo), for all t ∈ (to − 1
4δ , to].

Proposition 3.2. Let u be a non-negative, locally bounded, local, weak solution of
(1.1–1.3). Fix (xo, to) ∈ ET , let B4ρ(xo) ⊂ E and let δ and η be defined by (1.4–
1.6) for some ε ∈ (0, 1). For every r ≥ 1 satisfying (1.6) and every q ≥ 1, there
exist a constant ε, depending only upon the data and q and r, and a continuous,
increasing function η → f (η) defined in R

+ and vanishing at η = 0, that can be
quantitatively determined a priori only in terms of the data, such that

inf
B4ρ(xo)

u(·, t) ≥ f (η) sup
(xo,to)+Q2ρ( 1

4 δ)

u, for all t ∈ (to − 1
4δ , to]. (3.7)

provided (xo, to) + Q8ρ(δ) ⊂ ET .

Remark 3.1. In view of (2.7) the function f (·) can be taken of the form

f (η) ≈ η B
− 1

ηd

for constants B, d > 1 depending only upon the data and q and r .

Remark 3.2. The function f (·) depends on δ only through the parameter ε in the
definition (1.4) of δ.

Remark 3.3. The inequality (3.7) is a Harnack type estimate of the same form as
that established in [7], where however the constant f (η) depends on the solution
itself, through η defined in (1.5), as a proper quotient of the Lq

loc and Lr
loc averages

of u, respectively at time t = to on ball Bρ(xo), and at time t = to − δ on ball
B4ρ(xo).

Remark 3.4. The inequality (3.7) has been derived by assuming that 0 < η < 1. If
η ≥ 1 the same proof gives (3.7) where f (η) ≥ f (1), thereby establishing a strong
form of the Harnack estimate for these solutions. As shown in [7] such a strong
form is false for p in the sub-critical range (1.3).

It turns out that (3.7) is actually sufficient to establish that any locally bounded,
possibly of variable sign, local, weak solutions of (1.1–1.2) for 1 < p < 2, is
locally Hölder continuous in ET . In turn, such a Hölder continuity permits one to
improve the lower bound in (3.7) by estimating f (·) to a power of its argument, as
indicated in (1.7).
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4. The first form of the Harnack inequality implies the Hölder continuity of u

Let u be a locally bounded, possibly of variable sign, local, weak solution of (1.1–
1.3) in ET . It is shown in [5] (Chap. IV, Proposition 2.1 and Lemma 2.1), that u is
locally Hölder continuous in ET if there exist constants θ ∈ (0, 1) and C, A > 1,
depending only upon the data and independent of u, such that, for every (xo, to) ∈
ET , constructing the sequences

Ro = R, Rn = R

Cn
; ωo = ω, ωn+1 = θωn for n = 0, 1, 2, . . .

for positive R and ω, and the cylinders

Qn = BRn (xo) ×
(

to −
(ωn

A

)2−p
R p

n , to

]
for n = 1, 2, . . .

there holds

Qn+1 ⊂ Qn ⊂ Qo ⊂ ET and ess osc
Qn

u ≤ ωn .

We will show that (3.7) permits one to construct such sequences for an arbitrary
(xo, to) ∈ ET . Having fixed (xo, to) ∈ ET assume it coincides with the origin of
R

N+1 and for ρ > 0 set

Ro = 4ρ and Q = B4ρ × (−(4ρ)p, 0] (4.1)

where ρ is so small that Q ⊂ ET . Set also

µ+
o = ess sup

Q
u, µ−

o = ess inf
Q

u, ωo = µ+
o − µ−

o = ess osc
Q

u.

Since u is locally bounded in ET , without loss of generality we may assume that
ωo ≤ 1 so that

Qo
def= B4ρ ×

(
−

(ωo

A

)2−p
(4ρ)p, 0

]
⊂ Q ⊂ ET and ess osc

Qo
u ≤ ωo

for a number A ≥ 1 to be chosen. Now set

µ+ = ess sup
Qo

u, µ− = ess inf
Qo

u, ω̄ = ess osc
Qo

u

and introduce the two functions defined in Qo

v+ = µ+ − u, v− = u − µ−.

Without loss of generality may assume that

µ+ − 1
4ωo ≥ µ− + 1

4ωo. (4.2)
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Indeed otherwise ω̄ ≤ 1
2ωo and thus passing from Q to any smaller cylinder the

essential oscillation of u is reduced by a factor 1
2 , and there is nothing to prove.

Then either
∣∣[v−(·, 0) ≥ 1

4ωo
] ∩ Bρ

∣∣ ≥ 1
2 |Bρ | or

∣∣[v+(·, 0) ≥ 1
4ωo

] ∩ Bρ

∣∣ > 1
2 |Bρ |.

(4.3)

Indeed by virtue of (4.2)
[
u ≤ µ+ − 1

4ωo
] ∩ Bρ ⊃ [

u ≤ µ− + 1
4ωo

] ∩ Bρ.

Therefore if the first of (4.3) is violated, then
∣∣[u ≤ µ+ − 1

4ωo
] ∩ Bρ

∣∣ > 1
2 |Bρ |.

Compute and estimate the values δ±, as defined by (1.4), relative to the functions
v±, over Bρ at the time level t = 0. Assuming the first of (4.3) holds

ω
q
o ≥ 1

|Bρ |
∫

Bρ

(
u(·, 0) − µ−)q

dx

≥ 1
|Bρ |

∫

Bρ∩[v−> 1
4 ωo]

[u(·, 0) − µ−]qdx ≥ 1

2

(ωo

4

)q
.

Therefore if the first of (4.3) holds

1

2
2−p

q

(
ωo

4Ao

)2−p

ρ p ≤ δ− ≤
(

ωo

Ao

)2−p

ρ p for A−1
o = ε (4.4)

and there holds the inclusion

B4ρ × (−δ−, 0] ⊂ B4ρ ×
(

−
(

ωo

Ao

)2−p

ρ p, 0

]

.

Similar estimates hold for δ+ if the second of (4.3) is in force. By the structure
conditions (1.2) both v± are solutions of (1.1–1.6) for the same constants Co and
C1 and hence the Harnack-type inequality (3.7) holds for either v− or v+, i.e.,

inf
Q4ρ( 1

4 δ±)

v± ≥ f (η±) sup
Q2ρ( 1

2 δ±)

v±. (4.5)

where η± are defined as in (1.5) for v±. By virtue of (4.4), which holds for either
δ− or δ+, and Remark 3.2, the function f (·) can be taken to be the same. Assume
now that the first of (4.3) holds true. Then as shown before

−
∫

Bρ

v
q
−(·, 0)dx ≥ 1

|Bρ |
∫

Bρ∩[v≥ 1
4 ωo]

v
q
−(x, 0)dx ≥ 1

2

(
ωo
4

)q
.

On the other hand

−
∫

B4ρ

vr−(x,−δ−)dx ≤ ωr
o



240 E. DiBenedetto et al.

and therefore recalling the definition (1.5) of η−

f (η−) ≥ f

((
1

21/q4

) pr
λr

)
def= 1 − θ

for θ ∈ (0, 1) depending only on the data and q and r . This and (4.5) imply

inf
B4ρ×(− 1

4 δ,0]
v− ≥ (1 − θ) sup

B2ρ×(− 1
2 δ,0]

v− (4.6)

from which

ess osc
Q1

u ≤ ω1
def= θωo

where

Q1 = Bρ ×
(

−
(ωo

A

)2−p
ρ p, 0

]
and A = 21/q 41+ 1

2−p Ao.

This and (4.4) determine A depending only upon the data and q, r . Taking into
account (4.1) the cylinder Q1 is determined from Qo by the indicated choice of A
and for C = 4. A similar argument holds if the second of (4.3) is in force. This
process can now be iterated and continued to yield:

Proposition 4.1. Let u be a locally bounded, local, weak solution of (1.1–1.2) for
1 < p < 2, in ET . There exist constants γ̄ > 1 and εo ∈ (0, 1), depending only
upon the data and r and q, such that for all (xo, to) ∈ ET , setting

M = ess sup
(xo,to)+Q R(R p)

u for (xo, to) + Q R(R p) ⊂ ET , (4.7)

there holds

ess osc
(xo,to)+Qρ(δM )

u ≤ γ̄ M
( ρ

R

)εo
where δM =

(
M

A

)2−p

ρ p (4.8)

for all 0 < ρ ≤ R and all cylinders

(xo, to) + Qρ(δM ) ⊂ (xo, to) + Q R(R p) ⊂ ET .

Remark 4.1. Returning to Remark 1.2, the previous arguments show that either η+
or η− are bounded below by an absolute, positive constant ηo. Thus (4.5) implies
that either µ+ −u or u −µ− satisfy a strong form of the Harnack Inequality. By the
results of [7] a strong form of the Harnack estimate need not hold simultaneously
for µ+ − u and u − µ−.
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5. Proof of Theorem 1.1 concluded

Assume (xo, to) coincides with the origin of R
N+1. Returning to (3.3) observe that

by (3.2) and the same argument leading to (3.4)

|[u(·, 0) > νηM] ∩ Bρ | ≥ αηq |Bρ | and sup
B2ρ×(− 1

2 δ,0]
u ≤ M

for the same values of ν and α and with δ given by (3.7). Since u is locally Hölder
continuous, there exists x1 ∈ Bρ such that

u(x1, 0) = νηM.

Using the parameter A claimed by Proposition 4.1, construct the cylinder with “ver-
tex” at (x1, 0)

(x1, 0) + Q2r

[(
νηM

A

)2−p

r p

]

⊂ B2ρ × (− 1
4δ, 0

]
.

In view of (3.7) and the choice (4.4–4.6) of the parameter A, such an inclusion can
be realized by possibly increasing A by a fixed quantitative factor depending only
on the data, and by choosing r sufficiently small. Assuming the choice of r has
been made, by Proposition 4.1

|u(x, t) − u(x1, 0)| ≤ γ̄ M

(
r

ρ

)εo

for all

(x, t) ∈ Q̃1
def= (x1, 0) + Qr

[(
νηM

A

)2−p

r p

]

.

From this

u(x, t) ≥ 1
2νηM for all (x, t) ∈ Q̃1

provided r is chosen to be so small that

γ̄

νη

(
r

ρ

)εo

=1

2
that is r = ε1η

1
εo ρ where ε1 =

(
ν

2 γ̄

) 1
εo

(5.1)

Therefore by Proposition 2.2

u ≥ σ [νηM] in (x1, 0) + Q2r

[(
σ [νηM]

A

)2−p

(2r)p

]

for σ ∈ (0, 1) depending only on A and p. This process can now be iterated to give

u ≥ σ n[νηM] in (x1, 0) + Q2nr

[(
σ n[νηM]

A

)2−p

(2nr)p

]
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for all n ∈ N. Choose n as the smallest integer for which

2nr ≥ 4ρ that is n ≥ log2

(
4

ε1η
1
εo

)

.

For such a choice

u ≥ γ ηβ M in Q2ρ

[(
γ ηβ M

A

)2−p

ρ p

]

for some β = β(data).

6. Equations of porous medium type

The techniques apply, by minor variants, to non-negative solutions of the class of
quasi-linear, singular, parabolic equations of the porous-medium type. Precisely

u ∈ Cloc
(
0, T ; L2

loc(E)
)

such that |u|m+1
2 ∈ L2

loc

(
0, T ; W 1,2

loc (E)
)

ut − div A(x, t, u, Du) = 0 weakly in ET .

(6.1)

The functions A : ET × R
N+1 → R

N are only assumed to be measurable and
subject to the structure conditions

{
A(x, t, u, Du) · Du ≥ Co|u|1−m

∣∣D|u|m∣∣2

|A(x, t, u, Du)| ≤ C1
∣∣D|u|m∣∣ a.e. in ET (6.2)

where Co and C1 are given positive constants, and m is in the critical and sub-critical
range

0 < m ≤ (N − 2)+
N

. (6.3)

The homogeneous prototype of such a class is

ut−�|u|m−1u = 0 weakly in ET . (6.1)o

For τ > 0 and for (y, s) ∈ R
N × R set

Qρ(τ ) = Bρ × (−τ, 0], (y, s) + Qρ(τ ) = Bρ(y) × (s − τ, s].
Let u be a non-negative weak solution of (6.1–6.3). Having fixed (xo, to) ∈ ET ,
and B4ρ(xo) ⊂ E , introduce the quantities

−
∫

Bρ(xo)

uq(x, to)dx, δ
def=

⎡

⎣ε

(

−
∫

Bρ(xo)

uq(·, to)dx

) 1
q
⎤

⎦

1−m

ρ2 (6.4)
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where ε ∈ (0, 1) is to be chosen, and q ≥ 1 is arbitrary. If δ > 0, set also

η
def=

⎡

⎢
⎢
⎣

(
−
∫

Bρ(xo)
uq(·, to)dx

) 1
q

(
−
∫

B4ρ(xo)
ur (·, to − δ)dx

) 1
r

⎤

⎥
⎥
⎦

2r
λr

(6.5)

where r ≥ 1 is any number such that

λr
def= N (m − 1) + 2r > 0. (6.6)

Theorem 6.1. Let u be a non-negative, locally bounded, local, weak solution of
(6.1–6.3). Introduce δ as in (6.4) and assume that δ > 0. There exist constants
ε ∈ (0, 1), and γ > 1, depending only on the data and the parameters q, r , and a
constant β > 1, depending only upon the data and independent of q, r , such that

inf
(xo,to)+Qρ( 1

2 δ)

u ≥ γ

⎡

⎢⎢
⎣

(
−
∫

Bρ(xo)
uq(·, to)dx

) 1
q

(
−
∫

B4ρ(xo)
ur (·, to − δ)dx

) 1
r

⎤

⎥⎥
⎦

β 2r
λr

sup
(xo,to)+Qρ(δ)

u (6.7)

provided q ≥ 1 and r ≥ 1 satisfies (6.6) and (xo, to)+Q8ρ(δ) ⊂ ET . The constants
ε → 0, and γ → ∞ as either λr → 0 or as λr → ∞.

Remark 6.1. An estimate similar to (6.7) has been derived in [2] for non-negative
solutions of the prototype equation (6.1)o, by means of maximum and comparison
principles. The arguments for the classes (1.1)o and (6.1)o are conceptually and
technically similar.

Remark 6.2. Inequality (6.7) actually holds for non-negative solutions of (6.1–6.2)
for all 0 < m < 1, provided r ≥ 1 satisfies (6.6). For super-critical values of
m >

(N−2)+
N one has λ = λ1 > 0, and (6.6) can be realized for r = 1. However,

for λ > 0 the strong form of a Harnack estimate holds ([7]). Therefore (6.7), while
true for all 0 < m < 1, holds significance only for critical and sub-critical values
0 < m ≤ (N−2)+

N . In this sense (6.7) can be regarded as a “weak” form of a Har-
nack estimate. Neverthless it can be shown (6.7) is sufficient to establish the local
Hölder continuity of locally bounded, weak solutions of (6.1–6.2), irrespective of
their sign.
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Appendix

A. Proof of Propositions 2.1 and 2.3

Proposition A.1. Let u be a non-negative, locally bounded, local, weak solution of
(1.1–1.2) for 1 < p < 2. For every r ≥ 1 satisfying (1.6), there exists a positive con-
stant γ̄r , depending only upon the data and r, such that for all B2ρ(y)×[2s−t, t] ⊂
ET , for s < t

sup
Bρ(y)×[s,t]

u ≤ γ̃r

(
ρ p

t − s

) N
λr

(
1

ρN (t − s)

∫ t

2s−t

∫

B2ρ(y)

ur dxdτ

) p
λr

+ γ̃r

(
t − s

ρ p

) 1
2−p

.

(A.1)

The proof is in [5] Chap. V.

A.1. Proof of Proposition2.3

If r = 1 this follows from Proposition 2.4. Assume r > 1, take (y, t) = (0, 0),
fix σ ∈ (0, 1] and let ζ be a non-negative piecewise smooth cutoff function in R

N

vanishing outside B(1+σ)ρ and satisfying

0 ≤ ζ ≤ 1 in B(1+σ)ρ; ζ = 1 in Bρ; |Dζ | ≤ C

σρ
in B(1+σ)ρ.

In the weak formulation of (1.1–1.2), take the testing function ur−1ζ p, modulo
a standard Steklov time averaging process, and integrate over the cylinder Q =
B(1+σ)ρ × (0, s]. This gives

1

r

∫∫

Q
ζ pur

τ dxdτ + (r − 1)

∫∫

Q
ur−2ζ pA(x, t, u, Du) · Dudxdτ

+ p
∫∫

Q
ζ p−1ur−1A(x, t, u, Du) · Dζdxdτ = 1

r
T1 + (r − 1)T2 + T3.

Compute

T1 =
∫

B(1+σ)ρ

ur (x, s)ζ pdx −
∫

B(1+σ)ρ

ur (x, 0)ζ pdx

and estimate
∫∫

Q
ur−2ζ pA(x, t, u, Du) · Du dxdτ ≥ Co

∫∫

Q
ur−2ζ p|Du|pdxdτ

|T3| ≤ Co(r − 1)

∫∫

Q
ζ pur−2|Du|pdxdτ + C

(σρ)p

∫∫

Q
u p−2+r dxdτ
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for a constant C depending only upon the data and r and such that C → ∞ if either
λr → 0 or λr → ∞. Combining these estimate yields

sup0≤s≤t

∫
Bρ

ur (x, s)dx ≤ ∫
B(1+σ)ρ

ur (x, 0)dx + C
(σρ)p

∫∫
Q u p−2+r dxdτ

≤ ∫
B(1+σ)ρ

ur (x, 0)dx + C
σ p

(
tr

ρλr

) 1
r
(

sup0≤s≤t

∫
B(1+σ)ρ

ur dx
) p−2+r

r
.

The proof is concluded by a standard interpolation argument as in Lemma 4.3 of
Chap. I of [5].

A.2. Proof of Proposition2.1

The proof of Proposition 2.1 follows by combining (A.1) and Proposition 2.3.
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