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Abstract: Gold compounds are a class of metallodrugs with great potential for cancer treatment.
During the last two decades, a large variety of gold(I) and gold(III) compounds are reported to possess
relevant antiproliferative properties in vitro against selected human tumor cell lines, qualifying them-
selves as excellent candidates for further pharmacological evaluation. The unique chemical properties of
the gold center confer very interesting and innovative pharmacological profiles to gold-based
metallodrugs. The primary goal of this review is to define the state of the art of preclinical studies on
anticancer gold compounds, carried out either in vitro or in vivo. The available investigations of
anticancer gold compounds are analyzed in detail, and particular attention is devoted to underlying
molecular mechanisms. Notably, a few biophysical studies reveal that the interactions of cytotoxic gold
compounds with DNA are generally far weaker than those of platinum drugs, implying the occurrence
of a substantially different mode of action. A variety of alternative mechanisms were thus proposed, of
which those involving either direct mitochondrial damage or proteasome inhibition or modulation of
specific kinases are now highly credited. The overall perspectives on the development of gold com-
pounds as effective anticancer drugs with an innovative mechanism of action are critically discussed on
the basis of the available experimental evidence.  © 2009 Wiley Periodicals, Inc. Med Res Rev, 30, No. 3, 550-580,
2010
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1. INTRODUCTION

Gold compounds have a long and important tradition in medicine (also known as chry-
sotherapy), which dates back to the ancient Egyptians and especially flourished during the
late Middle Age and the Renaissance. Gold compounds were widely used in early times of
modern pharmacology, for the treatment of several diseases, especially as anti-infective and
antitubercular agents. Despite extensive clinical experimentation carried out at that pio-
neering time, gold compounds have had limited medical application and are presently used
only for the treatment of severe rheumatoid arthritis."> This is probably the result of their
relevant systemic toxicity (e.g. nephrotoxicity) and of the poor chemical stability of the tested
compounds. However, we believe that the unique chemistry of the gold center is not yet fully
appreciated and may be further used for different and more relevant pharmacological pur-
poses, especially in the field of anticancer medicine.

Following the clinical use of cisplatin, one of the first metal complexes to be extensively
employed for cancer treatment,’® there have been several attempts to prepare and evaluate
new gold compounds—either gold(III) or gold(I)—as experimental antitumor agents with
particular focus on gold phosphine complexes.*> Some of these compounds showed very
pronounced and encouraging antitumor actions in vitro and were the object of great
attention; however, they were rapidly abandoned due to the occurrence of severe toxicity and
to the generally lower in vivo efficacy (in comparison with the in vitro effects). In recent
years, many new gold compounds—in most cases gold(III) compounds—have been syn-
thesized and characterized, which show greater chemical stability and a far better toxi-
cological profile, which undoubtedly warrant additional pharmacological testing. The
structural and solution chemistry of these novel gold compounds and their reactivity with a
variety of possible biomolecular targets are the object of recent reviews and will be briefly
outlined here.®’

The main scope of this article is to describe the most representative pharmacological
studies on anticancer gold compounds. Although this topic is essential to the development of
new drug-lead compounds as well as for the planning of future clinical studies, it has been
very marginally considered in the previous literature and deserves, in our opinion, far greater
attention.

2. CHEMISTRY OF GOLD COMPOUNDS

A. General Remarks

The chemistry of gold contains some unique aspects that are most likely the consequence of
important unique electronic properties of the gold center. For instance, gold has a great
propensity to form strong gold—gold bonds (the so-called “aurophilic interactions™).® A rich
redox chemistry is associated with the three main oxidation states of gold. In turn, redox
changes are strictly linked to changes in the coordination sphere with a frequent switch from
square planar gold(III) complexes to linear dicoordinated gold(I) complexes.” All these
aspects may be exploited to build up a variety of gold-based pharmacologically active
compounds.

The most important oxidation states for gold are the following: Au(0), Au(l), and
Au(IIl). The elemental forms of gold, principally metallic and colloidal gold, are stable;
however, in the presence of relatively strong ligands, elemental gold can undergo rather
facile oxidation. The chemistry of gold complexes in the oxidation states +1 and+3 has
been investigated in depth as well as their behavior in solution and reactivity with
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biomolecules.>*'% A relatively easy interchange between the oxidation states +1 and+3 even
under physiological conditions is possible.* This specific property may be pharmacologically
relevant. There are some excellent books and reviews>!! for readers wanting a more extensive
description of gold chemistry.

B. Gold(I) Compounds

Gold(I) has a d'° closed-shell configuration, which is the basis for three principal co-
ordination environments: linear two-coordination, by far the most important, but also tri-
gonal three-coordination and tetrahedral four-coordination.

Gold(I) is a soft cation with a preference for soft ligands. Thus, cyanide, thiolate, and
soft halides (e.g. iodide) tend to form stable AuX; ions; on the other hand, phosphines,
arsines, and other neutral ligands readily form a variety of cationic complexes of the AuLj
and AuL] type.

The most important gold(I) compounds for medicinal purposes are thiolate and phos-
phine complexes, which are most often dicoordinate gold(I) complexes. Some representative
examples of medicinally relevant gold(I) compounds, notably, auranofin, aurothiomalate,
aurothioglucose, and auro-bis(thiosulfate), are shown in Figure 1. Structural data are
available for the reported compounds.! Auranofin exists as a monomeric species, while the
other compounds have been isolated in solid state in oligomeric forms. The aqueous solution
chemistry of these compounds has been intensely investigated'®'? and indicates that thiolate
ligands are usually more labile than phosphine ligands and undergo rapid aquation. The
resulting cationic species usually show a strong reactivity with biomolecules. Analogously,
phosphine ligands may undergo aquation but these reactions are generally far slower.

The electrochemical behavior of gold(I) drugs has also been investigated in detail.'*'*
Auranofin can undergo reduction to colloidal gold, the process being irreversible. Cyclic
voltammetry studies show sufficiently high reduction potentials for auranofin, myocrisin, and
the parent compounds so that all these compounds may be easily and quickly reduced by
glutathione and other thiols within the cellular environment.

C. Gold(III) Compounds

Gold(IIT) has a d* closed-shell configuration, which originates metal complexes that are
isoelectronic and isostructural to platinum(II) complexes; accordingly, the dominant co-
ordination geometry for gold(IIl) complexes is square planar tetra-coordination. The bond
lengths are shorter than the corresponding gold(I) bond lengths although differences are not
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Figure 1. Schematic drawing of some gold(l) thiolates used in the treatment of rheumatoid arthritis: aurothioglucose (solga-

nol) (a), aurothiopropanol sulfonate (allocrysin) (b), aurothiomalate (myochrysine) (¢), auro-bis(thiosulfate) (sanochrysine) (d), and
auranofin (ridaura) (e).
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very large. Five- and six-coordinate complexes are also found that typically exhibit elongated
axial bond lengths perpendicular to the square plane and often involve ligand structures that
constrain the axial donor atoms. The reactivity behavior of the gold(III) cation is borderline,
showing a preference not only for soft ligands but also for nitrogen donors. The oxidation
state +3 is strongly oxidizing unless the gold(III) cation is stabilized by an appropriate set of
nitrogen or soft donors.

A vast array of gold(III) complexes showing rather variegated structural chemistry have
been considered as potential anticancer drugs’ and several of them are discussed in this
review. The gold(IIT) compounds of interest may be grouped into the four following classes:
(i) classical mononuclear gold(III) complexes; (i) gold(III) porphyrins; (iii) organogold(I1I)
compounds; (iv) dinuclear gold(III) complexes.

1. Classical Mononuclear Gold(III) Complexes

The main compounds of this class are shown in Figure 2. They are square planar gold(III)
compounds mostly with nitrogen or halide ligands: AuCl,, [Au(dien)CI]Cl, (Audien),
[Au(en),]Cl; (Auen), [Au(cyclam)](ClO4),Cl (Aucyclam), [Au(terpy)CI|Cl, (Auterpy),
[Au(phen)CL,]Cl (Auphen).'® Structural data are reported for all these compounds. As
nitrogen ligands are stronger and less labile than chloride ligands, it follows that chloride
ligands undergo far more facile aquation reactions that lead to complex activation. In turn,
nitrogen ligands induce significant stabilization of the oxidation state +3. The solution
behavior of these compounds has been investigated. AuCly is poorly stable in physiological
pH due to rapid and progressive release of its chloride ligands; in turn, Aucyclam is very
stable due to the equatorial donor set. In the other cases chloride release has been monitored
affording cationic species with at least one reactive coordination position. Notably, other
compounds belonging to this group are gold(Ill) dithiocarbamate complexes. The com-
pounds containing N,N-dimethyldithiocarbamate and ethylsarcosinedithiocarbamate
ligands, developed in Padua, have been intensely studied as possible anticancer agents (Fig. 3,
compounds 5 and 6).'°
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Figure 2. Schematic drawing of [Au(en,)]Cls (1), [Au(dien)CI]Clo (2), [Au(cyclam)](ClO,)Cl (3), [Au(terpy)Cl]Cl, 4), and
[Au(phen)Cl5]Cl (5).
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Figure 3. Schematic drawing of [Au(bipy®-H)(OH)][PFe] (1), [Au(bipy)(OH)sl[PFe] (2), [Au(bipy®™-H) (@ 6-xylidine-H)][PFg]
3), [Au(py®™-H)(AcO),] @) (where py™™ = 2-(11-dimethylbenzyl)-pyridine), and of the gold(lll) dithiocarbamate complexes
containing N,N-dimethyldithiocarbamate (5) and ethylsarcosinedithiocarbamate (6) ligands.

2. Gold(III) Porphyrins

The porphyrin ligand greatly stabilizes the gold(III) center and drastically reduces its redox
reactivity and oxidizing character.!” Crystal structures have been reported.'” It is very un-
likely that metalloporphyrin demetallation may occur with the release of the gold(III) ion.
Similarly gold(III) reduction to gold(I) or elemental gold is very unlikely. This means that the
biological activity of gold(III) porphyrins must be ascribed to the intact molecule. It has been
hypothesized that the primary target for gold(Ill) porphyrins is DNA following intercala-
tion; however, recent studies reveal that gold(III) porphyrins may greatly affect mitochon-
drial functions as well."®

3. Organogold(I1l) Compounds

Gold(IIT) compounds belonging to this class are characterized by the presence of at least one
direct carbon—gold(III) bond; this latter feature is very important for the stabilization of gold
oxidation state +3. Examples of organogold(Ill) compounds relevant to this review are
shown in Figure 3. Organogold(III) compounds are generally stable under physiological
conditions and have a scarce tendency to be reduced to gold(I). They are significantly
cytotoxic to human tumor cell lines.'”*°

4. Dinuclear Gold(Ill) Complexes
A series of structurally related oxo-bridged dinuclear gold(III) compounds, [Auy(n-O),
(N"N),](PF¢),, where N*N is 2,2"-bipyridine or a substituted 2,2’-bipyridine, have recently
been shown to exhibit appreciable stability under physiological-like conditions and to
manifest important antiproliferative effects toward selected human tumor cell lines (Fig. 4).
All these compounds contain a common structural motif consisting of an Au,O, “dia-
mond core” linked to two bipyridine ligands in a roughly planar arrangement. Interestingly,
the introduction of different kinds of alkyl or aryl substituents on the 6 (and 6’) position(s) of
the bipyridine ligand leads to small structural changes that nonetheless greatly affect the
reactivity of the metal centers. The 6,6’-dimethyl-2,2'-bipyridine derivative, which shows the
largest structural deviation compared with the model compound [Au,(p-O),(bipy),](PFs)a,
also has the highest oxidizing power, the least thermal stability, and the greatest cytotoxic
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Figure 4. Schematic drawings of the dinuclear gold(lll) complexes Auoxo. Auoxo3 is a ca. 11 mixture of the cis- and trans-
isomer, while Auoxo4 and Auoxob are, as depicted, only trans-isomers.

activity. The positive correlation between the oxidizing power and the antiproliferative effects
seems to be of particular interest.®

3. TRANSPORT, BIODISTRIBUTION, AND BIOTRANSFORMATION OF GOLD
COMPOUNDS

A variety of chemical, biochemical, and biological studies (both in animals and in patients)
indicate that gold(I) compounds—in clinical use for as long as antiarthritic agents—are
prodrugs as they must undergo specific chemical transformations to generate their pharma-
cologically active species.”?' These chemical transformations usually consist of fast ligand
exchange reactions. A number of important gold metabolites may be produced as well. Thus,
[Au(CN),]™~ (aurocyanide), gold—glutathione complexes, and gold—protein adducts seem to
play major roles in the overall in vivo metabolism of gold compounds.? Detailed information
is available on the metabolism, transport, and biodistribution of gold(I) complexes in relation
to several studies carried out so far on antiarthritic gold(I) drugs. Details will be described
below. Conversely, only limited data are available regarding the metabolism of experimental
gold(IIT) compounds and their intracellular disposition and fate. In any case, various bioi-
norganic studies performed on gold(III) metallodrugs in recent years point out that gold(III)
compounds exhibit, on the whole, relevant reactivity with several biomolecules consisting of
either ligand exchange processes or redox processes. Depending on the specific nature of the
various gold(III) complexes, their electrochemical profile, and the type of reacting species,
these reactions may lead either to the formation of tight gold(IIT)-biomolecule coordinative
bonds or to the oxidation and damage of the involved biomolecule itself.’

Due to the high affinity of the “soft” gold(I) center for sulfur and selenium ligands,
proteins (e.g. enzymes, transport proteins) bearing accessible side chains like cysteine, me-
thionine, and selenocysteine constitute preferential targets for gold(I) compounds.' However,
gold(I) coordination to imidazole groups of histidines is also possible. Commonly, reactions
of gold drugs or their metabolites with proteins result in the formation of tight gold—protein
adducts so that gold is usually associated with high-molecular-weight components.’

Gold(I) thiolate drugs as well as gold(I) phosphines have been reported to undergo
important ligand exchange reactions with the tripeptide glutathione or with proteins like
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albumin and metallothioneins (MTs).?> 2* Gold(I) is thermodynamically more stable than
gold(IIT). However, in the lysosomes of activated macrophages and granulocytes, i.e. one of
the main intracellular storage sites for gold compounds, injected gold(I) drugs may be oxi-
dized to gold(IIl) by hypochlorite (generated by myeloperoxidase).>>*® This represents an
effective and unexpected biochemical pathway whereby the usually unstable gold(III) species
are formed in vivo.

Much attention has been focused on the study of the reactions of gold(I) compounds
with serum albumin, a protein abundant in the blood, which can transport metal compounds
(Fig. 5). Among the several cysteine residues present in the serum albumin, the low pK,
cysteine-34, which is predominantly deprotonated at the physiological pH, seems to be the
most likely anchoring site for gold drugs in the blood. The coordination of aurothiomalate to
cysteine-34 to form albumin-S-Au-STm and albumin-S-(Au-puSTm),-Au-STm is supported
by chemical evidence.?’

Much is known about the reaction of auranofin with serum albumin. A ligand exchange
reaction of auranofin with cysteine-34 displaces its original thiol ligand—i.e. the tetra-
acetylthioglucose ligand.?’ ! In addition, a conformational change in albumin, which
accompanies gold binding to cysteine-34, has been described.’? In turn, the tetraacetyl-
thioglucose ligand released from auranofin may react further with cysteine-34 disulfide bonds
to liberate cysteine®’; the triethylphosphine (EtsP) ligand, once released from auranofin, is
rapidly oxidized to triethylphosphine oxide (Et;PO).**

Physiological low-molecular-weight thiol ligands like glutathione may induce the dis-
placement of phosphine®**> and its oxidation. The oxidant for phosphine can be either
molecular oxygen or albumin disulfide bonds.® As free oxygen is not present in the serum, it
is likely that disulfide bonds are the actual in vivo oxidants.*®

The three components of auranofin are thus metabolized very differently in vivo:
triethylphosphine oxide and the thiol ligand are excreted with half-lives of 8 and 16hr,
respectively, while the half-life for gold excretion is about 20 days.?” When auranofin is added
to whole blood, ligand displacement reactions are extremely rapid. Within 20 min, gold is
primarily protein bound in the serum, while Et;P is distributed in 1:2:2 ratio among serum
proteins, red cells, and Et;PO,* which is then excreted by the kidneys.*

In animal models, gold(I) compounds are known to bind strongly and extensively to MT,
a heavy-metal binding protein that is abundant in mammalian kidney and liver® (Fig. 5).
Under normal physiological conditions, MT can bind seven Zn(II) or Cd(II) ions in the two
metal clusters generated from its 20 cysteine residues. M T is found to manifest a high affinity
for gold(I) and to displace the thiomalate ligand from AuSTm; the resulting protein-bound
gold is coordinated with two cysteine residues to form Au,Cd-MT or Au,Cd,Zn-MT clusters,
depending on the initial metal loading of MT.*' In view of these interesting results it seems
very likely that MT plays a crucial role in the intracellular gold storage and metabolism.

Gold(I) drugs may also be activated through conversion to Au(CN);, a common me-
tabolite for gold(I) compounds, which is normally recovered in the blood and urine of gold-
treated patients.’ Au(CN), may be produced by two processes involving the formation of
hypothiocyanide and hypochlorous acid. Au(CN), is known to be an inhibitor of the
respiratory burst of neutrophils and monocytes and of lymphocyte proliferation. The neu-
trophil enzyme myeloperoxidase may convert gold thiomalate to Au(CN), through the
oxidation of thiocyanate.*?

As previously mentioned, gold(IIl) is apparently an intermediate metabolite formed in
vivo through the oxidation of gold(I). The oxidation of gold(I) to gold(III) for sodium
aurothiomalate seems to be responsible for the adverse immune reactions that may develop
during gold therapy.** In vitro studies with phagolysosomes suggest the presence of a redox
system and the formation of gold(IIl) from gold(I) following an oxidative burst in phagocytic
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Figure 5. Molecular structures of (a) human serum albumin (reprinted from Curry et al, BBA---Mol Cell Biol Lipids
1999;1441:131-140. Copyright 1999, with permission from Elsevier) and (b) metallothionein-2 (from rat liver), two proteins that are
primarily involved in gold transport and storage.

Figure 6. Schematic representation of the molecular structure of mammalian thioredoxin reductase TrxR1 (reprinted from
Casini et al®. Copyright 2008, with permission from Elsevier).

immune cells.** Conversely, the reduction of AuCl; and of its derivatives by serum albumin

and by a variety of thiols and thioethers occurs over longer time periods compared with the
hypochlorite oxidation of gold(I).**
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Overall, the described results point out that gold(I) drugs have a rich and complex
coordination chemistry inside cells and may undergo a variety of chemical transformations,
mainly driven by the intracellular thiols. The interplay of gold between the oxidation states
+1 and+3 has been conclusively demonstrated. Some studies have described the interactions
of gold drugs with membranes. Due to the presence of solubilizing groups, gold(I) thiolates
(including aurothiomalate and aurothioglucose) are water soluble compounds; therefore,
they do not enter cells, but rather bind to the cell membrane via cell surface thiols. Conse-
quently, these drugs may affect cell metabolism either by interfering with normal cell sig-
nalling pathways or by starving cells through inhibition of nutrient uptake.?>*>4¢

The mechanism of transport of auranofin metabolites (i.e. Au(CN),) has been in-
vestigated in depth by Snyder et al.*’ in cultured macrophage cells. They postulate the thiol-
shuttle (or the sulfhydryl-shuttle) model for gold entry inside cells. Auranofin reaches the
membrane of various cell types unmodified.’”*#”*® Sulfhydryl-dependent membrane trans-
port proteins provide a vehicle for the movement of the Et;PAu™ cation across the cell
membrane, whereas the thiolate ligand remains outside the cell. Then, the cation is trans-
ferred to proteins and to low-molecular-weight thiols while the phosphine is oxidized to
Et;PO. Either bound or unbound to phosphine, the gold ion can be shuttled out of the cell
the same way as it enters it.*”*® At this time, gold may still be bound to an intracellular thiol
(albumin or glutathione). Once outside the cell, gold again binds to an extracellular thiol (e.g.
albumin), resulting in the formation of a complex constituted by albumin, gold, and an
intracellular thiol. This complex may represent the major circulating metabolite of auranofin.
Membrane transport proteins that mediate gold uptake are not an energy-dependent active
transport process.*” Thus, the hypothesis of a possible equilibrium between intracellular gold
concentrations and extracellular gold sources has been successfully investigated.*®

4. CELLULAR AND MOLECULAR TARGETS OF GOLD COMPOUNDS

Due to the numerous in vitro studies that have appeared on gold compounds in the last
decade, a number of specific hypotheses have been formulated concerning their possible
mode of action. Nevertheless, the molecular mechanisms responsible for their biological
effects are still largely unknown. The conspicuous amount of pharmacological data now
available for a variety of gold compounds has led to the identification of a few crucial cellular
processes, likely involved in their cytotoxic actions, which should be further explored. In
particular, direct DNA damage, modification of the cell cycle, mitochondrial damage, pro-
teasome inhibition, modulation of specific kinases, and other cellular processes affected by
gold compounds, which eventually trigger apoptosis, seem to play a major role in the
mechanism of action of gold compounds. The main postulated biomolecular targets and
biochemical mechanisms that emerge from those investigations are reviewed below.

Overall, from a detailed analysis of the mechanistic studies carried out so far on the
biological reactions of gold compounds, it is possible to define three major classes according
to their mode of action with biological targets.

(1) Gold compounds are prodrugs capable of coordinating tightly to biomolecules’ side
chains, e.g. thiols, imidazole, and selenols, after activation (usually through the release
of a labile ligand), e.g. auranofin. This behavior involves an alkylation mechanism
similar to that of the platinum compounds.

(2) Gold complexes are big cations capable of crossing membranes and of binding
noncovalently but strongly to biomolecules (proteins, enzyme, DNA) (coordination
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compounds that target biomolecules) e.g. gold-based DNA intercalators, gold(III)
porphyrins.

(3) Gold compounds that react with biomolecules mainly through redox chemistry
causing oxidative damage e.g. Auoxob.

A. DNA as a Target

Initially, mechanistic studies on gold compounds have focused on DNA and RNA as these
biomolecules are commonly considered to be the major targets for anticancer platinum
drugs. However, weak interactions occurring in vitro between antiarthritic gold(I) drugs and
DNA in early studies were confirmed in later studies, disclosing the possibility that different
cellular processes might be involved in the cytotoxic mechanism of gold(I) drugs.*’ In turn,
the marked “‘soft” character of the gold(I) center makes a selective and tight reaction with the
nitrogen donors of nucleobases rather unlikely; recent studies revealing strong interactions of
gold(I) drugs with specific protein side chains such as thiols and selenols rather than with
nucleobases indirectly support that early view.>>°

More extensive studies have been carried out on the reactions of gold(IIT) compounds
with DNA upon consideration of the “harder” character of the gold(Ill) center and of its
high propensity to react with nucleobase nitrogens. Significantly stronger interactions with
DNA and DNA nucleobases are highlighted in comparison with gold(I) drugs. As gold in the
+3 oxidation state is isoelectronic (d*) with platinum(II) and forms square planar complexes,
cisplatin is the obvious comparative drug for most of the mechanistic studies carried out on
gold(III) complexes. However, the molecular mechanisms of gold(I1l) compounds and cis-
platin are still quite different. Although it was suggested that possible binding sites for
gold(III) compounds are the same as for platinum(II) drugs,>'>? it still remains to be seen to
what extent gold(III) compounds react with DNA and not with other intracellular targets
(i.e. proteins or low-molecular-weight thiols).

We analyzed the interactions of a series of structurally different gold(I1l) compounds
with DNA in detail using several physicochemical techniques. Our studies reveal that
the in vitro interactions of mononuclear bipyridyl gold(III) complexes (such as
[Au(bipy)(OH),][PF¢] and [Au(bipy*-H)(OH)][PF¢]),>® of polyamine complexes (such as
[Au(en),]Cl; and [Au(dien)-CI]Cl,),>* and of a series of dinuclear oxo gold(III) complexes
bearing bipyridyl ligands®> with calf-thymus DNA are usually weak and reversible, suggesting
that they are mainly electrostatic in nature. However, there are some notable exceptions.
[Au,(6,6'-dimethyl-2,2"-bipyridine)(u-O),][PF¢], is reported to give rise to specific redox
processes and to bind firmly to the DNA double helix.>> Also, chloroglycylhistidine gold(IIT)
compounds are reported to bind DNA tightly and modify appreciably its conformation.>®
The case of a gold(IIl) terpyridine (Terpy) complex, [AuCl(Terpy)]Cl,, a gold(IIT) analogue
of [PtCl(Terpy)]Cl, endowed with very relevant cytotoxic properties'> merits more extensive
analysis. This complex was investigated to establish whether it may act as an intercalating
agent like [PtCl(Terpy)]. In spite of their close structural similarity, the comparative study of
the interactions of both compounds with double-stranded DNA shows that they produce
quite different DNA interaction patterns. It also emerges that the resulting metal/DNA
interaction patterns depend on the applied incubation times. Remarkably, [PtCl(Terpy)]Cl
quickly intercalates DNA; then, coordinative bonds form progressively over time. At var-
iance, [AuCl(Terpy)]Cl, first interacts electrostatically with the DNA surface, with sub-
sequent slow formation of some coordinative bonds.>’

A recent study shows that the level of DNA metallation induced by two gold(III)
terpyridine complexes is comparable to that of DNA platination by trans-platinum
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complexes.”® In addition, the same authors found that for complexes bearing a different
positive charge, a higher positive charge enhances the DNA binding affinity. The main
interactions of these complexes with DNA are ascribed to the intercalation of the square
planar gold(IIT) chromophore into the DNA double helix.

DNA binding affinity studies performed using purified calf-thymus DNA on some
gold(IIT) dithiocarbamate derivatives (i.e. [Au(DMDT)X,] where DMDT is N,N-di-
methyldithiocarbamate and [Au(ESDT)X,] where ESDT is ethylsarcosinedithiocarbamate;
X = Cl or Br) show that they possess an appreciable affinity for the DNA double helix with
some evidence of binding being achieved soon after mixing.”® Thus, the studied gold(III)
dithiocarbamate derivatives appear to be more efficient in inducing interstrand cross-links
than cisplatin itself. In particular, gold(III)-DNA adducts are formed with faster kinetics
compared with cisplatin but turn out to be less stable.” Notably, the resulting DNA lesions
are very efficient in killing cells.

There is much recent attention focused on the analysis of the interactions of cytotoxic
gold(III) porphyrins with DNA. The first mechanistic studies on gold(IlI) porphyrins (using
gold(II) mesotetraarylporphyrins) show that they interact strongly and directly with
DNA,"” implying that DNA may actually constitute a preferential biomolecular target.
However, in a successive study, the same authors reveal that gold(III) porphyrin la acts
differently from cisplatin in vivo as the gold compound causes DNA fragmentation rather
than cross-linkage; moreover, its interactions with DNA are reported to be noncovalent and
reversible in nature.*

It seems reasonable to conclude that DNA is neither the primary nor the exclusive target
for most gold(I) and gold(Il11) complexes. A strong gold association with DNA has been
demonstrated only in a few cases, in particular those where the interaction is mainly
dependent on the nature of the ligand (as is the case for gold porphyrins and gold terpy-
ridines). Accordingly, the relevant cytotoxic effects induced by gold compounds must
logically arise from their ability to interfere with distinct cellular processes and targets.®'
A few relevant targets for gold compounds, mainly protein targets, have clearly emerged
during the last years and are described below.

B. Proteins as Targets: Inhibition of Thioredoxin Reductase

The action of gold compounds on the enzyme thioredoxin reductase, now described in depth,
might explain the relevant alterations observed in mitochondrial functions (e.g. permeability
transition) after gold treatment.®>®® The thioredoxin redox system comprises thioredoxin
reductase (TrxR), a homodimeric selenium containing flavoprotein, and thioredoxin (Trx), a
ubiquitously expressed small protein with a conserved Cys-Gly-Pro-Cys redox catalytic site
capable of reducing a variety of substrates.®* Both Trx and TrxR in mammals are expressed
as dedicated isoforms for either predominantly cytosolic (Trx1 and TrxR1) (Fig. 6) or mi-
tochondrial (Trx2 and TrxR2) localization.®® Thioredoxin plays multiple functions in the cell
that include the providing of reducing equivalents for DNA synthesis through ribonucleotide
reductase (RR) enzyme and for reactive oxygen species (ROS) scavenging through the per-
oxiredoxins (Prxs). In addition, thioredoxin is found to reduce, and thus activate, a number
of transcription factors that are all involved in the regulation of various aspects of cell growth
and cell survival, including NF-kB,*® AP-1,%7 SP-1, and p53.68

Expression levels of the cytosolic thioredoxin isoform Trxl are increased in several
human carcinomas®’® and linked to tumor aggressiveness, and to inhibition of apopto-
sis.”!"”? Hence, there is great interest in the thioredoxin system as a potential target for new
anticancer drugs. Both gold(I) and gold(III) compounds are found to interact strongly with
the thioredoxin system as detailed below.
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As auranofin reacts mainly with thiol and/or selenol groups, it behaves as a potent and
specific inhibitor of both cytosolic”® and mitochondrial TrxR,%*%*"* even in the nanomolar
range. In addition to inhibition of mitochondrial TrxR, auranofin and other gold(I) com-
pounds (e.g. aurothiomalate), at submicromolar concentrations, are shown to induce, in the
presence of Ca®" jons, mitochondrial swelling, mitochondrial membrane potential (Aym)
decrease, and stimulation of respiration, which is dependent on membrane permeability
transition,®? overall resulting in the release of cytochrome c into the cytoplasm.®*’> This
process is crucially involved in the formation of apoptosomes and the consequent induction
of apoptosis.

The ability of gold(I) compounds, in particular auranofin, to inhibit TrxR and induce
apoptosis has been recently investigated in cisplatin-resistant human ovarian cancer cells.”®
The treatment with auranofin of cisplatin-sensitive and -resistant ovarian cancer cells causes
a consistent release of cytochrome c in both cell lines while cisplatin is effective only in the
sensitive cells. Apoptosis is accompanied by the increased production of ROS. In resistant
cells, hydrogen peroxide production is counteracted by a large overexpression of TrxR. Thus,
these authors suggest that auranofin, acting as a potent inhibitor of TrxR, determines an
alteration of the redox state of the cell, leading to increased production of hydrogen peroxide
and to oxidation of the components of the thioredoxin system, which creates the conditions
for augmented apoptosis.”® Similar studies were recently carried out by Susan Berners Price
in a group of related gold(I) compounds; the main results of those studies and their unified
interpretation are summarized in a review.” The bis-chelated Au(I) bidentate phosphine
complex of the water soluble ligand 1,3-bis(di-2-pyridylphosphino)propane (d2pypp),
[Au(d2-pypp)-]CL,°> as well as a number of gold(I) N-heterocyclic carbene complexes of the
type [(R,Im)>Au]*’® are shown to selectively induce apoptosis in MDA-MB-468 human
breast adenocarcinoma cells rather than in human normal breast cells (HMEC). Apoptosis is
induced via the mitochondrial pathway by inhibition of both Trx and TrxR.> The selective
induction of apoptosis in cancer cells represents an element of particular value.

Similarly to gold(I) compounds, gold(IIl) compounds are known to target, rather
strongly and selectively, thiol and imidazole groups of proteins (as well as selenol groups).”>’
Some gold(IIT) compounds developed by Cinellu et al.”” * are shown to inhibit mitochon-
drial TrxR2 and to greatly perturb mitochondrial functions.®® The presumed site of inter-
action is the selenol moiety present in the active site of the carboxy terminus of the enzyme®?
as well as other cysteine and histidine residues. These compounds, in particular Aubipy and
Aubipyxil, trigger mitochondrial swelling, although to a lesser extent than auranofin,
probably in relation to their different permeability characteristics.®> Also, Aym is scarcely
diminished by this kind of compounds.

Later on, a series of gold(II) compounds characterized by an increasing number
(n=0-3) of carbon-gold bonds have been reported to inhibit TrxR.® Overall, the ICs,
values for TrxR activity and for the TrxR/Trx system of the nine compounds studied ranged
from 0.0022 to 1.8 umol/L and from 0.18 to > 50 umol/L, respectively. The compound with
two carbon—gold bonds is the most potent inhibitor of TrxR (ICso = 0.0022 umol/L).

[Au[DMDT)X,] and [Au(ESDT)X5] have been shown to inhibit both cytosolic and
mitochondrial TrxR and, interestingly, the first (ICsy values of four different compounds
ranging from 5.67 to 17.01 nM) more effectively than the second (ICsq values of four different
compounds ranging from 24.74 to 35.87nM).%!

The high selectivity of gold compounds for selenoenzymes is also suggested by the fact
that the activity of glutathione reductase, a protein structurally and functionally related to
TrxR but lacking selenol at the catalytic site and relying upon sulfhydryls for its catalysis,
requires greater concentrations of gold compounds to be inhibited.”® In conclusion, TrxR
seems to be a very specific target of gold(IIl) compounds as, in the same range of

Medicinal Research Reviews DOI 10.1002/med



562 o NOBILIETAL.

concentrations, these compounds are almost completely ineffective in altering the respiratory
chain.®

C. Activation of Downstream Signalling Fvents Leading to Apoptosis

It has been shown that auranofin-mediated generation of ROS in human promyelocytic
leukemia HL-60 cells is an early event in the activation of the apoptotic cascade. Increased
ROS subsequently activate p38 MAPK, which transduces a signal to the initiator caspase to
triggering further proapoptotic events, which lead to caspase-3 activation, poly-ADP-ribose
polymerase 1 (PARP-1) degradation, DNA fragmentation, and cell death.®?

Recently, a cationic gold(I) N-heterocyclic carbene complex, [(iPr,Im),Au]Cl, char-
acterized by intermediate lipophilicity, has been shown to accumulate selectively in the mi-
tochondria of tumorigenic cells (PIL cells) driven by the Aym. This gold(I) complex
depolarizes the Aym, depletes the ATP pool, and activates caspase-3 and caspase-9, leading
to apoptosis.®

The induction of apoptosis by mitochondrial death pathways related to ROS has been
demonstrated by Wang et al.'® for gold(IIT) porphyrin 1a in HONE1 human nasopharyngeal
carcinoma cells. These authors propose a specific and detailed model for this cellular me-
chanism: gold(III) porphyrin 1a directly causes depletion of the Aym, leading to alteration of
bel-2 family proteins (in particular suppression of bcl-2), translocation of the apoptosis-
inducing factor (AIF) nucleus, and release of cytochrome c. This last effect further activates
caspase-9 and caspase-3, and subsequently produces PARP-1 cleavage. Oxidative stress is
likely to affect the cytotoxicity of gold(IIl) porphyrin la by regulating Aym.

In a successive study, the same authors identify differentially expressed proteins by
comparing the protein alterations induced by either gold(III) porphyrin la or cisplatin
treatment in the SUNE] human nasopharyngeal carcinoma cell line.* A wide series of
protein alterations were indeed detected in this cell line after both treatments. The main
alterations were found in cellular structure and stress-related chaperone proteins and in those
involved in ROS (e.g. stomatin-like 2, peroxiredoxin 1 and 6, thioredoxin), in enzyme pro-
teins and translation factors (e.g. mitochondrial single-stranded DNA binding protein—
mtSSB, splicing factor 17, peptidylprolyl isomerase F, cyclophilin F—CypF), in proteins that
mediate cell proliferation or differentiation (e.g. cyclophilin A—CypA, porin isoform 1
voltage-dependent anion channel 1—VDACI, calcyclin binding protein, Siah-interacting
protein—CacyBP, Ras-related nuclear protein), and in proteins belonging to the internal
degradation system (e.g. proteasome o type 3, proteasome B type 4, proteasome o type 6).

Gold(III) porphyrin la treatment causes cell cycle arrest initially at G2-M phase, then at
GO0-G1, and upregulation of the proapoptotic protein p53 in SUNEI cells.®® Further ex-
amination of the MAPK family members shows that transient activation of p38MAFPK is
involved in gold(III) porphyrin la-mediated cell death and that phosphorylation of p3§™MAPK
induced by the gold compound is enhanced by increasing concentrations of H,0,.%> Overall,
a differential regulation of phosphotyrosine proteins showed up related to p38MAPX acti-
vation in gold(III) porphyrin la-induced signal transduction cascade.®

Based on the above reported observations, it is possible to suggest that treatment with
gold(III) porphyrin la causes multiple effects, leading to apoptosis in the human naso-
pharyngeal carcinoma cell lines. The balance between pro- and antiapoptotic signals
ultimately determines the survival or death of cancer cells.

The effects of gold(IlI) dithiocarbamate derivatives on the levels of antiapoptotic becl-2 and
proapoptotic bax in a panel of leukemia cell lines have also been analyzed.*® Short treatment (18 hr)
with [Au(MSDT)Br,] (dibromo[methyl N-(dithiocarboxy-kS,kS)-N-methylglicinato] gold(III)) or
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[AuMSDT)Cl,] (dichloro[methyl N-(dithiocarboxy-kS,kS)-N-methylglicinato]gold(III)) is found
to decrease bcl-2 and upregulate or induce bax in all cell lines examined.

Other gold(I11) dithiocarbamate complexes, such as [Au[DMDT)X,] and [Au(ESDT)X5],
have been shown to trigger ROS generation and ultimately increase the levels of phos-
phorylated ERK1/2 through the inhibition of both cytosolic and mitochondrial TrxR2, in
human uterine cervical carcinoma HeLa cells.®' The authors hypothesize that persistent
ERK1/2 activation caused at first by the accumulation of hydrogen peroxide and afterward by
the activation of ASK-1 may be responsible for cell death.

D. Inbibition of the Proteasome

The ubiquitin—proteasome pathway that is essential for many fundamental cellular processes
including cell cycle regulation, apoptosis, angiogenesis, and differentiation has recently been
investigated as a tumor target. Proteasome inhibitors are becoming the object of very intense
research (Fig. 7).%’

A gold(III) dithiocarbamate compound has been shown to inhibit, in a concentration-
dependent manner, all the peptidase activities (chymotrypsin-like, trypsin-like, and PGPH-
like) of a rabbit 20S purified proteasome (the proteolytic core of the 26S proteasome
complex) with similar potencies (ICso= 7.4, 10.2, and 7.0 umol/L, respectively).*® This
compound also showed the same inhibitory effects in intact MDA-MB-231 breast cancer
cells. Proteasome inhibition by this compound was confirmed by decreased proteasome ac-
tivity, increased levels of ubiquitinated proteins, and the proteasome target protein p27. Most
importantly, inhibition of the proteasome activity and accumulation of p27 were also found
in MDA-MB-231 xenografts treated with this gold(IIT) dithiocarbamate compound. Induc-
tion of apoptosis by this gold(IIl) dithiocarbamate compound was confirmed either in
the MDA-MB-231 cell line and in the treated tumors by multiple assays that measure
characteristic cellular and biochemical hallmarks. Thus, the authors suggest that proteasome
could be a primary target for gold(III) dithiocarbamates both in vitro and in vivo and that
inhibition of the proteasomal activity by these compounds is associated with apoptotic
cancer cell death.®®

E. Inbibition of Protein Kinases

Protein kinase C (PKC), a family of structurally related protein kinases, is involved in a large
variety of cellular functions, including cellular proliferation, cell cycle control, differentiation,
polarity, and survival.®® Altered PKC activity, localization, and/or expression have been ob-
served in several tumor types.” To date, several PKC isozymes have been identified as potential
therapeutic targets:”'*> a number of isozyme-selective PK.C inhibitors have been developed and
some are already in clinical use. The atypical protein kinase C iota (PKC1) (Fig. 8) is a bona fide
human oncogene that is required for the transformed growth of human cancer cells.”?

PKC4, as well as other atypical PKCs, is structurally and functionally distinct from other
PKCs as its catalytic activity does not depend upon diacylglycerol, calcium, or phosphati-
dylserine®*?> but may be regulated by 3-phosphoinositides,”® phosphorylation by the phos-
phoinositide-dependent kinase,””*® and through specific protein—protein interactions.”*’

It has been observed that elevated expression levels of PKCt play an important role in
the cell growth of nonsmall cell lung cancer (NSCLC) both in vitro and in vivo by the
activation of a PKCt— Racl — Pak —Mek — Erk signalling axis.'® The Phox Bem 1 (PBI)
domain is a structurally conserved, protein—protein interaction domain that is present in a
family of signalling molecules, including PKCu.

Upon considering the relevant role that cysteine residues usually play in interactions with
gold compounds, it was investigated whether the PB1 domain interactions between the po-
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Figure 7. Schematic representation of the proteasome. It consists of a 28-subunit catalytic core (20S proteasome) and two
multisubunit ATPase-containing PA700(19S) regulators. The 20S core is composed of two outer and two inner rings. Each of the
two inner rings consists of seven different B-subunits, which contain the three different catalytic sites (caspase-like, trypsin-like, and

chymotrypsin-like sites). Each of the two outer rings is composed of seven different a-subunits, none of which have catalytic activity,
but which serve as an anchor for the 19S regulators.

Figure 8. Ribbon plot of the PKCt catalytic domain structure. The N-lobe is cyan and the C-lobe is blue. The glycine-rich loop,
activation loop, turn motif, and HM segment are displayed in red. BIM1 and phosphorylated residues are given in stick representa-

tion (reprinted from Messerschmidt et al., J Mol Biol 2005;352:918—931. Copyright 2005, with permission from Elsevier). PKCy, protein
kinase C iota.
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larity protein par6 containing cysteine residue and PKCti, in human A549 NSCLC cells,
might represent a potential target for aurothiomalate and aurothioglucose.”*'°""!%> Results
indicate that both compounds act as potent inhibitors of PKCi-par6 interaction in vitro
(IC5o~1puM/L). Aurothioglucose blocks PKCi-dependent signalling to Racl and inhibits
transformed growth of NSCLC cells.'®? Aurothiomalate can form gold—cysteine adducts on
target cellular proteins, in particular with a critical cysteine residue, Cys69, located within the
active site of the enzyme. The adduct at Cys69 protrudes into the binding cleft normally
occupied by par6. These authors conclude that the selective targeting of Cys69 within
the PB1 domain of PKCt might explain the inhibition of cellular transformation by
aurothiomalate.”>!*!

5. PRECLINICAL STUDIES

A. In Vitro Studies

Early studies indicate that auranofin has in vitro anticancer activity similar to that of cis-
platin.'"*1%* A systematic investigation of the cytotoxic activity of auranofin and a variety of
its analogues in murine P388 leukemia and B16 melanoma cell lines shows that compounds
containing both phosphine and thioglucose ligands are the most potent (ICso< 10 uM).'**

Another phosphine gold compound, p-[1,2-bis(diphenylphosphino) ethane] bis[(1-thio-[3-
D-glucopyranosato-S)gold(I)] complex with ICs, values in the micromolar range (from 4 to
11 pM) toward a panel of tumor cisplatin-sensitive cell lines,'*® displays similar cytotoxic
activity even in cisplatin-resistant cell lines.'*®

Gold phosphine compounds containing a variable number of coordinated phosphorus
atoms (from 1 to 4) show increased cytotoxic potency in murine tumor cell lines as the
number of gold-coordinated phosphorus atoms increases.'®”-!%

Unfortunately, after relatively encouraging studies on selected tumor cell lines,
auranofin analogues containing thiolate ligands derived from thionucleobases (phosphine
gold(I) thionucleobase compounds) have not demonstrated marked cytotoxic activity when
screened through the National Cancer Institute’s panel of 60 tumor cell lines.!'® However,
related phosphine gold(I) thiolates show higher cytotoxic activity compared with cisplatin
and 5-fluorouracil in seven human solid tumor cell lines.'™*

Gold(I) dithiocarbamate derivatives (DMDTM gold derivatives) have no or modest
cytotoxic activity against highly sensitive human promyelocytic leukemia HL-60 cells.'®

At present, the cytotoxic activity of a relatively wide number of gold(III) complexes has
been evaluated. The possibility of combining gold(III) compounds with nitrogen-containing
ligands derived from biologically active molecules such as streptonigrin,''® uracil,''® and
glycylhistidine™® has led to the synthesis of several gold(III) compounds. The gold(III)
streptonigrin complex shows inhibitory values of 0.05 mg/mL against P388 leukemia cells.'"?
Gold(III) compounds containing uracil derivatives show growth inhibition values ranging
from 11.0 to 74.5% in the HeLa cell line."'® The chloroglycylhistidinate gold(IIT) compound
has been investigated both in cisplatin-sensitive and -resistant human ovarian carcinoma cell
lines (A2780/S and A2780/R, respectively) and is more active than cisplatin in the resistant
cell line.>®

A wide series of compounds containing imine and amine ligands have also been assayed.
Gold compounds synthesized by Cossu et al.''” show higher cytotoxic activity than carbo-
platin both in A2780/S and A2780/R and mouse leukemia (L1210/S and L1210/R) cell lines.
Cisplatin is more active than gold compounds in both sensitive cell lines (Table I).

109-112
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Square planar gold(III) complexes containing at least two gold—chloride bonds in cis-
position produce significant cytotoxic effects in the human cisplatin-resistant CCRF-CEM/R
(leukemia) and A2780/R lines."'® Some compounds are also more active than cisplatin in the
A2780 cisplatin-sensitive cells (Table II).

The A2780/S and A2780/R cell lines have also been used to evaluate the cytotoxic effects
of a series of classical gold(I1T) complexes (Table I1I).'> Most of these compounds manifest a
relevant cytotoxicity with ICsy values generally falling in the low micromolar range. In
particular, [Au(terpy)CI]|Cl, turns out to be more active than cisplatin both in A2780/S and in
A2780/R and [Au(phen)CL,]Cl only in the resistant cell line (Table I11).

Cytotoxic effects of several organogold(IIl) compounds have also been analyzed.
Organogold(II1) DAMP were the first ones studied.!''?° At a primary screening conducted
against a panel of seven human tumor cell lines, [AuCl,y(damp)] produced cytotoxic effects
similar to those of cisplatin with the breast carcinoma ZR-75-1 cell line being the most
sensitive (ICso 11 uM).'" However, four additional organogold(Ill) DAMP compounds
failed to show higher activity than cisplatin both in cisplatin-sensitive and -resistant cell lines
(Table 1V)."°

Bipyridyl gold(III) compounds have relevant cytotoxic effects against A2780/S,
A2780/R, SKOV3 (this latter inherently resistant to cisplatin) human ovarian carcinoma cell
lines and the CCRF-CEM cell line, either sensitive (CCRF-CEM/S) or resistant (CCRF-
CEM/R) to cisplatin. In particular, [Au(bipy°-H)(OH)][PFs] is markedly more active than
cisplatin in A2780/R (Table V).>?

Table I. In Vitro Growth Inhibition (ICsy pM) of Tumor Cell Lines by Gold(III) Compounds
Containing Imine Ligands (General Formula [Au(NR")Cl5]"'"’

Compound A2780/S A2780/R L1210/S L1210/R
[Au(NR')Cl;] 14.3 31.2 (2.2) 19.4 18.3 (0.94)
[Au(NR'HCl3] 22.0 23.4 (1.1) 12.8 11.2 (0.87)
[Au(NR'?)Cl3] 14.9 16.9 (1.1) 14.0 12.4 (0.88)
Cisplatin 8.3 55.7 (6.7) 3.3 28.7 (8.7)
Carboplatin 119.9 894.8 (7.5) 67.6 258.8 (3.8)

() resistance index = ICgq(resistant line)/ICsq(sensitive line). A2780, human ovarian carcinoma; L1210, murine leuke-
mia; S, sensitive to cisplatin; R, resistant to cisplatin.

Table II. 1n Vitro Growth Inhibition (ICsy pM) of Tumor Cell Lines by Gold(III) Compounds
Containing At Least Two Gold—Chloride Bonds®''®

Compound A2780/S A2780/R  SKOV3 HECI-A HCT-8 CCRF-CEM/S CCRF-CEM/R

AuClyHpm)  10.10  21.0 2.1)  30.50  21.50  29.0 17.80 36.30 (2.0)
AuCly(pm) 690 1630 (2.4) 3330 1730 28.50 23.30 36.30 (1.5)
AuCly(mesal)  2.80  3.70(1.3) 1320  11.80  11.60 2.0 13.60 (6.8)
AuCly(esal) 210  3.80(1.0) 1350  14.10 8.0 5.0 10.80 (2.2)
Na[AuCly] 1.0 1770 (1.8) 42,0 1260  26.50 22.50 35.50 (1.6)
Cisplatin 530 4170 (7.9) 24.50 6.40 3.90 1.50 44.80 (29.9)

() resistance index = ICsp(resistant line)/ICsq(sensitive line). A2780, SKOV3, human ovarian carcinoma; HEC1-A,
human endometrial carcinoma; HCT-8, human colon cancer; CCRF-CEM, human leukemia; S, sensitive to cispla-
tin; R, resistant to cisplatin.

a72-hr drug exposure.
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Table III. In Vitro Growth Inhibition (ICsy uM) of Tumor Cell Lines by Gold(III) Compounds

Containing Amine Ligands®'>

Compound A2780/S A2780/R
[Au(en),]Cl5 8.36 17.0 (2.03)
[Au(dien)Cl]Cl; 8.2 18.7 (2.28)
[Au(cyclam)ClO4]Cl1 99.0 >120
[Au(terpy)CI]Cl, 0.2 0.37 (1.23)
[Au(phen)Cl,]Cl 3.8 3.49 (0.92)
Cisplatin 1.2 14 (11.6)

() resistance index = ICsq(resistant line)/ICsq(sensitive line). A2780, human ovarian carcinoma; S, sensitive to cispla-
tin; R, resistant to cisplatin.
a72-hr drug exposure.

Table IV. 1In Vitro Growth Inhibition (ICsy pM) of Tumor Cell Lines by Organogold(III)
Compounds With the General Formula [AuX,(damp)]'*°

Cell line X=0a X=SCN X=CH;CO X=0,CCH,CCO, X=0,C,0, Cisplatin

Primary panel®

SW620 124.0 51.0 281.0 205.0 67.0 167.0
SW1l116 119.0 47.0 238.0 215.0 80.0 163.0
ZR-75-1 27.0 34.0 45.0 41.0 36.0 27.0
HT29/219  55.0 25.0 67.0 19.0 36.0 17.0
HT1376 30.0 6.7 13.0 10.0 11.0 23.0
SKOV3 45.0 20.0 13.0 10.0 11.0 23.0
Ovarian carcinoma cell line panel®

HX62 57.0 31.0 34.0 30.0 27.0 18.0
SKOV3 109.0 39.0 107.0 42.0 30.0 5.2
CH1/S 13.0 10.0 11.0 11.0 2.7 0.12
CHI/R 22.0 (1.7) 11.0 (1.1) 12.0 (1.1) 13.0 (1.2) 3.3 (1.2) 0.56 (4.7)
A2780/S 8.2 2.0 3.5 3.7 2.7 1.2
A2780/R 47.0 (5.7) 26.0 (13) 35.0 (10) 35.0 (9.5) 16.0 (5.9) 10.0 (8.3)

() resistance index = ICsq(resistant line)/ICsq(sensitive line). SW620, SW1116, SW403, HT29/219, human colon
carcinoma; ZR-75-1, human breast carcinoma; HT1376, human bladder carcinoma; A2780, SKOV3, HX62, CH1, hu-
man ovarian carcinoma; S, sensitive to cisplatin; R, resistant to cisplatin.

@4-hr drug exposure.

P96-hr drug exposure.

Four gold(I1T) compounds (AuXyl, AuTol, AuPyAcO, and AuPzCl) have been screened
in a panel of five human tumor cell lines. After 72-hr drug exposure, AuPyAcO and AuXyl
were generally the most active, showing the highest cytotoxic activity against A2780/S
(Table V)." After shorter drug exposure (48hr), the same compounds and
[Au(bipy?™-H)(OH)][PF4] showed ICs, values comparable to those of cisplatin both in
A2780/S and in A2780/R cell lines.*°

Another series of dinuclear gold(III) compounds with bipyridyl ligands (Auoxo1-6) have
also been evaluated in A2780/S and A2780/R.>> Auoxo6 is more active than cisplatin against
both cell lines (Table VI).>

Differently from gold(I) dithiocarbamate compounds, gold(IIl) dithiocarbamates dis-
play a very promising cytotoxic profile.'® Four DMDT and ESDT gold(IIl) derivatives
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exhibit relevant cytotoxic activities toward a panel of human tumor cell lines, being far more
potent than cisplatin even at nanomolar concentration (Table VII). In addition, all the tested
gold(IIl) complexes are more cytotoxic than cisplatin on cisplatin-resistant cell lines, with
activity levels comparable to those induced on the parental sensitive cell lines, ruling out the
occurrence of cross-resistance phenomena (Table VII).'¢

The same group of authors have recently investigated the cytotoxic properties of two
gold(IIT) methylsarcosinedithiocarbamate derivatives on a panel of human acute myeloid
leukemia (AML) cells.®® [Au(MSDT)Cl,] and [Au(MSDT)Br,] are significantly more active
than cisplatin in inhibiting the clonogenic growth of all AML cell lines in a dose-dependent
manner.

Table VI. In Vitro Growth Inhibition (ICsy uM) of Tumor Cell Lines by Dinuclear Organogold(III)
Compounds After a 72-hr Drug Exposure®

Compound A2780/S A2780/R
Auoxol 22.80 23.30 (1.0)
Auoxo2 12.10 13.5 (1.1)
Auoxo3 25.40 29.8 (1.2)
Auoxo4 12.70 19.8 (7.3)
Auoxo5 11.0 13.2 (1.2)
Auoxo6 1.79 4.81 (2.7)
Cisplatin 2.1 24.4 (11.6)

() resistance index = ICgq(resistant line)/ICsp(sensitive line). A2780, human ovarian carcinoma; S, sensitive to cispla-
tin; R, resistant to cisplatin.

Table VII. In Vitro Growth Inhibition (ICsy pM) of Tumor Cell Lines by Gold(III) Compounds
Containing Dithiocarbamate Ligands After a 24-hr Drug Exposure!'®

[(DMDT)AuCl,] [(DMDT)AuBr)] [(ESDT)AuCl] [(ESDT)AuBr,]  Cisplatin

HELA 2.10 3.50 8.20 7.60 15.60
HL-60 0.80 x 1072 0.10 x 1072 2.0 0.14 0.35
Daudi 0.10 x 1072 0.10 x 1072 4.65 5.80 95.0
MeWo 2.0 0.10 x 1072 12.50 10.0 48.0
LoVo 2.40 x 1072 3.80 7.60 7.90 56.0
A549 0.35x 1072 0.41 4.73 9.60 35.0
2008 0.20 x 1072 30.10 49.30 16.50 43.20
C13* 0.10 x 1072 2.18 23.80 0.10 x 1072 556.0
A431 1.20 x 1072 1.80 0.29 1.5x 1072 77.40
A431-R 0.20 x 1073 2.80 0.43 0.10 x 1072 382.0
U208 4.80 18.0 5.80 0.49 35.0
U20S-R 6.40 13.0 5.20 0.24 85.0

HELA, human squamous cervical adenocarcinoma; HL-60, human leukemic promyelocytes; Daudi, human
Burkitt's lymphoma; MeWo, human malignant melanoma; LoVo, human colon adenocarcinoma; A549, human
nonsmall cell lung adenocarcinoma; 2008, cisplatin-sensitive human ovarian carcinoma; C13*, cisplatin-resistant
human ovarian carcinoma; U20S, cisplatin-sensitive human osteosarcoma; U20S-R, cisplatin-resistant human
osteosarcoma; A431, cisplatin-sensitive human squamous cervix carcinoma; A431-R, cisplatin-resistant human
squamous cervix carcinoma.
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Gold(III) mesotetraarylporphyrin complexes (including gold(IIT) porphyrin 1a)'” have
been investigated in a panel of human tumor cell lines and have ICs, values ranging from 0.1
to 1.5uM. Lack of cross-resistance with cisplatin was also observed. More recently, the in
vitro cellular pharmacology properties of gold(IIT) porphyrin la have been more extensively
investigated in a nasopharyngeal carcinoma cell line (SUNE1),%® where the higher activity of
the gold compound compared with cisplatin was confirmed.

B. Efficacy Data in In Vivo Studies

Although most gold(I) compounds exhibit marked antitumor activity in vitro, very limited
success has been observed in vivo.'?! Efficacy data in mice inoculated with lymphocytic
leukemia P388 are available for auranofin. Eight dose schedules ranging from 6 mg/kg every
fourth day to 6 mg/kg twice daily for 9 days administered i.p. were used.'?* Increased survival
is correlated with drug dose amount and/or dose frequency. The median survival times for
the groups of animals treated at higher and more frequent doses are 18.5 days (3 mg/kg, twice
daily), 21 days (4.5 mg/kg, twice daily), and 22 days (6 mg/kg, twice daily) with 7/C (tumor/
control) ratios of 185, 210, and 220%, respectively. The efficacy of auranofin in the same
tumor model was only partially confirmed in the study of Mirabelli et al.'?' where the
optimal dose of 12mg/kg administered i.p. (days 1-5) produced a 59% increased life span
(ILS); the drug was completely inactive when administered i.v., s.c., or p.o. Although several
mouse models, including solid cancers (e.g. lung, colon, breast cancers), were used in this
study, only the P388 leukemia model was sensitive to auranofin.

Other gold(I) thiolates, such as aurothioglucose and aurothiomalate, have been
examined for antitumor activity. They inhibited the growth of the primary tumor and re-
duced lung metastases in mice bearing Lewis carcinoma.'** Aurothiomalate was less active
compared with cisplatin in Balb/C mice inoculated (i.p.) with syngenic Meth/A cells, al-
though it displayed a wider range of dose effectiveness and no significant toxicity when
administered in doses up to 125 mg/kg/day.'**

Aurothioglucose has been evaluated in athymic nude mice injected with A549 NSCLC
cells. Once tumors were established, mice were randomized to receive aurothioglucose
20mg/kg or diluent (0.9% saline). In the presence of aurothioglucose, A549 cell tumors
exhibited a marked reduction in growth kinetics compared with controls. However, results
indicate that aurothioglucose has a cytostatic rather then cytotoxic effect on A549 tumors.'%?

The in vivo data available for gold(III) compounds as anticancer agents are even more
limited, probably due to the high redox potential and relatively poor kinetic stability of
several of these compounds under physiological conditions. However, a conspicuous number
of gold(IIl) compounds that are stable against demetallation and/or reduction under phy-
siological conditions are today available (see ‘“Chemistry of gold compounds”™ section) and
their in vivo evaluation is warranted.

Efficacy and toxicity data are now available for the gold(IIT) porphyrins developed by
Che and co-workers'?® and for the gold(III) dithiocarbamates developed by Fregona and co-
workers.®® The efficacy of gold(III) porphyrin la has been evaluated in an orthotopic rat
hepatocellular carcinoma model.'*> After an intratumoral injection of 0.5 or 0.75 mg/kg of
gold(III) porphyrin 1a, followed by i.p. injections twice weekly to animals according to
body weight until their death, survival of both groups of treated animals was significantly
prolonged compared with that of the control group (median 42 and 40 vs. 30 days,
P<0.05)."*° Interestingly, the tumor tissue of the treated rats contained larger areas of
necrosis compared with those observed in the control group and the gold compound did not
cause observable necrosis in the adjacent normal liver tissue. This last observation was
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confirmed by plasma AST levels that were lower in the treated animals compared with the
control group.'®

In a recent study® the s.c. treatment of MDA-MB-231 tumor-bearing nude mice with a
gold(I1I) dithiocarbamate compound significantly inhibited tumor growth, as a consequence
of proteasomal inhibition and apoptosis induction. During the 29-day treatment with this
compound at 1-2mg/kg/day, no toxicity was observed, and mice did not display signs of
weight loss, decreased activity, or anorexia. However, these toxicity data are preliminary and
warrant further investigation.

Other in vivo experiences have been reported for 2-[(dimethylamino) methyl]phenyl-
gold(III) compounds whose general formula is [(CR')AuX,]. One of these compounds in
which X corresponds to SCN was evaluated against murine ADJ/PC6 plasmacytoma; only
24% of tumor growth was inhibited at a dose of 25 mg/kg (the maximum tolerated dose).
Two other compounds in which X represents the O,CMe, acetate group and X, the
0,CCH,CO,, malonate group show activity comparable to that displayed by cisplatin in a
bladder tumor (HT1376) xenograft. The compound characterized by the acetate group shows
some antitumor activity also in an ovarian tumor (CH1) model."*°

C. Animal Pharmacokinetic Data

There is little pharmacokinetic data on gold(I) compounds in animals and none currently
available for gold(IIl) complexes.

The pharmacokinetics of MU-Gold, tetrakis (trishydroxymethyl) phosphine gold(I)
chloride, active in a series of in vitro and in vivo tumor models, have been studied in normal
dogs in anticipation of trials in cancer-bearing dogs.'** MU-Gold (10 mg/kg) was adminis-
tered by i.v. injection to three purpose-bred dogs. A two-compartment i.v. bolus model with
first-order kinetics, mean elimination half-life of approximately 40 hr, and mean volume of
distribution of 0.6 L/kg was established. Serum gold concentrations ranging from 10 to
50 ug/mL were sustained from 2 to 3 days with no clinically significant toxicities observed.

Gold sodium thiomalate was administered to New Zealand white rabbits by two dif-
ferent routes. A single 2mg/kg dose of the drug was administered i.m. and i.v. to four and
three animals, respectively.'?” The blood concentration-time profiles were described by a
two-compartment open model with first-order absorption by intramuscular route. Gold was
absorbed rapidly with a mean absorption half-life of 9.0 min and a peak concentration of
6.0+ 1.0 ug/mL (n = 4). Blood concentrations declined in a biphasic manner; the mean o half-
lives were 0.738 and 1.78 hr for the i.v. and i.m. routes, respectively. The corresponding
terminal (B) half-lives were 54.1 and 63.0 hr. The estimated volume of the central compart-
ment (70-93 mL/kg) agreed closely with the rabbit blood volume. The mean (+SD) extent of
the dose absorbed following i.m. injection was 68.9+12.4%.

6. CLINICAL INVESTIGATIONS

To date, gold compounds have not been formally investigated as anticancer drugs in the clinic
and no published clinical data are available (PubMed, American Society of Clinical Oncol-
0gy—ASCO Proceedings, American Association of Cancer Research—AACR Proceedings,
reviewed in December 2008). The Mayo Clinic web site (http://clinicaltrials.mayo.edu) reports
an ongoing phase I study to evaluate the side effects and the best dose of gold sodium
thiomalate administered to patients with NSCLC as well as the effect of this compound on
PKCt expression.
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7. CONCLUDING REMARKS

Gold compounds are undoubtedly an interesting class of metal compounds, which have great
potential as cytotoxic and anticancer agents. A variety of structurally different gold com-
pounds have been prepared and characterized during the last two decades with unique
chemistry at the gold center and pronounced reactivity with a variety of biomolecules. There
are evident differences between gold(I) and gold(III) compounds, both in terms of chemistry
and biological activity. Their biological properties appear to be critically governed by the
coordination environment of the metal center. Extensive data are available on the in vitro
cytotoxic activity of several gold compounds and their pronounced growth inhibition in a
variety of cell lines. Biochemical and cellular studies indicate a large variety of molecular
mechanisms for the numerous cytotoxic gold compounds that are presently under in-
vestigation. Some major molecular and cellular targets have been identified. Nevertheless,
only a few in vivo studies are available on these compounds at present. It is evident that more
extensive in vivo investigations are warranted for gold compounds to assess their possible
efficacy as anticancer agents more thoroughly.
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