
01 September 2024

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting / Andrea Passerini; Paolo Frasconi;
Luc De Raedt. - In: JOURNAL OF MACHINE LEARNING RESEARCH. - ISSN 1532-4435. - STAMPA. - 7:(2006),
pp. 307-342.

Original Citation:

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/386602 since: 2021-02-22T11:31:14Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

Journal of Machine Learning Research 7 (2006) 307–342 Submitted 7/05; Revised 1/06; Published 2/06

Kernels on Prolog Proof Trees:
Statistical Learning in the ILP Setting∗

Andrea Passerini passerini a©dsi·unifi·it
Paolo Frasconi p-f a©dsi·unifi·it
Dipartimento di Sistemi e Informatica
Università degli Studi di Firenze
Via di Santa Marta 3
I-50139 Firenze, Italy

Luc De Raedt deraedt a©informatik·uni-freiburg·de

Institute for Computer Science
Albert-Ludwigs Universität Freiburg
Georges-Koehler-Allee 79
D-79110 Freiburg, Germany

Editor: Roland Olsson

Abstract

We develop kernels for measuring the similarity between relational instances using back-
ground knowledge expressed in first-order logic. The method allows us to bridge the gap
between traditional inductive logic programming (ILP) representations and statistical ap-
proaches to supervised learning. Logic programs are first used to generate proofs of given
visitor programs that use predicates declared in the available background knowledge. A
kernel is then defined over pairs of proof trees. The method can be used for supervised
learning tasks and is suitable for classification as well as regression. We report positive
empirical results on Bongard-like and M -of-N problems that are difficult or impossible to
solve with traditional ILP techniques, as well as on real bioinformatics and chemoinformat-
ics data sets.
Keywords: kernel methods, inductive logic programming, Prolog, learning from program
traces

1. Introduction

Within the fields of automated program synthesis, inductive logic programming (ILP) and
machine learning, several approaches exist that learn from example-traces. An example-
trace is a sequence of steps taken by a program on a particular example input. For instance,
Biermann and Krishnaswamy (1976) have sketched how to induce Turing machines from
example-traces (in this case sequences of primitive actions and assertions). Mitchell et al.
(1983) have developed the LEX system that learned how to solve symbolic integration
problems by analyzing traces (or search trees) for particular example problems. Ehud
Shapiro’s Model Inference System (1983) inductively infers logic programs by reconstructing

∗. An early version of this paper was presented at the ICML ’05 Workshop on Approaches and Applications
of Inductive Programming (AAIP).

c©2006 Andrea Passerini, Paolo Frasconi and Luc De Raedt.

Passerini, Frasconi and De Raedt

the proof-trees and traces corresponding to particular facts. Zelle and Mooney (1993)
show how to speed-up the execution of logic programs by analyzing example-traces of the
underlying logic program. Finally, De Raedt et al. (2005) proposed a method for learning
stochastic logic programs using proof trees as training examples. The diversity of these
applications as well as the difficulty of the learning tasks considered illustrate the power of
learning from example-traces for a wide range of applications.

In this paper, we generalize the idea of learning from example-traces. Rather than
explicitly learning a target program from positive and negative example-traces, we assume
that a particular—so-called visitor program—is given and that our task consists of learning
from the associated traces. The advantage is that in principle any programming language
can be used to model the visitor program and that any machine learning system able to
use traces as an intermediate representation can be employed. In particular, this allows
us to combine two frequently employed frameworks within the field of machine learning:
ILP and kernel methods. Logic programs will be used to generate traces corresponding to
specific examples and kernels to quantify the similarity between traces. This combination
yields an appealing and expressive framework for tackling complex learning tasks involving
structured data in a natural manner. We call trace kernels the resulting broad family of
kernel functions obtainable as a result of this combination. The visitor program is a set
of clauses that can be seen as the interface between the available background knowledge
and the kernel itself. Intuitively, the visitor program plays a role that is similar to that
of declarative bias in inductive logic programming systems (Nédellec et al., 1996) (see also
Section 6).

Kernels methods have been widely used in many relational learning contexts. Starting
from the seminal work of Haussler (1999) (briefly reviewed in Section 4.1) several researchers
have proposed kernels over discrete data structures such as sequences (Lodhi et al., 2002;
Jaakkola and Haussler, 1999; Leslie et al., 2002; Cortes et al., 2004), trees (Collins and
Duffy, 2002; Viswanathan and Smola, 2003), annotated graphs (Gärtner, 2003; Schölkopf
and Warmuth, 2003; Kashima et al., 2003; Mahé et al., 2004; Horváth et al., 2004; Menchetti
et al., 2005), and complex individuals defined using higher order logic abstractions (Gärtner
et al., 2004). Constructing kernels over structured data types, however, is not the only aim
of the proposed framework. In many symbolic approaches to learning, logic programs al-
low us to define background knowledge in a natural way. Similarly, in the case of kernel
methods, the notion of similarity between two instances expressed by the kernel function is
the main tool for exploiting the available domain knowledge. It seems therefore natural to
seek a link between logic programs and kernels, also as a means for embedding knowledge
into statistical learning algorithms in a principled and flexible way. This aspect is one of
the main contributions of this paper as few alternatives exist to achieve this goal. Proposi-
tionalization, for example, transforms a relational problem into one that can be solved by
an attribute-value learner by mapping data structures into a finite set of features (Kramer
et al., 2000). Although it is known that in many practical applications propositionalization
works well, its flexibility is generally limited. A remarkable exception is the method pro-
posed by Cumby and Roth (2002) that uses description logic to specify features and that
has been subsequently extended to specify kernels (Cumby and Roth, 2003). Muggleton
et al. (2005) have proposed an approach where the feature space is spanned by a set of first
order clauses induced by an ILP learning algorithm. Declarative kernels (Frasconi et al.,

308

Kernels on Prolog Proof Trees

2004) are another possible solution towards the above aim. A declarative kernel is essen-
tially based on a background-knowledge dependent relation that allows us to extract parts
from instances. Instances are reduced in this way to “bags-of-parts” and a combination of
sub-kernels between parts is subsequently used to obtain the kernel between instances.

The guiding philosophy of trace kernels is very different from all the above approaches.
Intuitively, rather than comparing two given instances directly, these kernels compare the
execution traces of a program that takes instances as its input. Similar instances should
produce similar traces when probed with programs that express background knowledge and
examine characteristics they have in common. These characteristics can be more general
than parts. Hence, trace kernels can be introduced with the aim of achieving a greater
generality and flexibility with respect to various decomposition kernels (including declarative
kernels). In particular, any program to be executed on data can be exploited within the
present framework to form a valid kernel function, provided one can give a suitable definition
of the visitor program to specify how to obtain relevant traces and proofs to compare
examples. Although in this paper we only study trace kernels for logic programs, similar
ideas could be used in the context of different programming paradigms and in conjunction
with alternative models of computation such as finite state automata or Turing machines.

In this paper, we focus on a specific learning framework for Prolog programs. The execu-
tion trace of a Prolog program consists of a set of search trees associated with a given goal.
To avoid feature explosion due to failed paths, which are typically much more numerous and
less informative than successful ones, we resort to a reduced representation of traces based
on proof trees (Russell and Norvig, 2002) that only maintain successful search paths. Proof
trees can be conveniently represented as Prolog ground terms. Thus, in this case, kernels
over traces reduce to Prolog ground terms kernels (PGTKs) (Passerini and Frasconi, 2005).
These kernels (which are reviewed in Section 4.3) can be seen as a specialization to Prolog
of the kernels between higher order logic individuals earlier introduced by Gärtner et al.
(2004). Because of the special nature of terms in the present context, we also suggest some
proper choices for comparing logical terms that represent proofs. One central advantage
of the proposed method, as compared to inductive logic programming, is that it naturally
applies to both classification and regression tasks.

The remainder of this paper is organized as follows. In Section 2 we review the traditional
frameworks of statistical learning and ILP. In Section 3 we develop a new framework for
statistical learning in the ILP setting and introduce visitor programs and their traces. In
Section 4 we derive kernel functions over program traces represented as Prolog proof trees.
In Section 5 we report an empirical evaluation of the methodology on some classic ILP
benchmarks including Bongard problems, M -of-N problems on sequences, and real world
problems in bioinformatics and chemoinformatics. Section 6 contains a discussion on the
relations between our approach and traditional ILP methods, as well as explanation based
learning (Mitchell et al., 1986). Finally, conclusions are drawn in Section 7.

2. Notation and Background

In this section, we briefly review some concepts related to supervised learning (from both
the statistical and the ILP perspective) that will be used for defining the framework of
learning from proof trees presented in the paper.

309

Passerini, Frasconi and De Raedt

2.1 Statistical Learning and Kernels

In the usual statistical learning framework (see, e.g., Cucker and Smale, 2002, for a thorough
mathematical foundation) a supervised learning algorithm is given a training set of input-
output pairs D = {(x1, y1), . . . , (xm, ym)}, with xi ∈ X and yi ∈ Y. The set X is called the
input (or instance) space and can be any set. The set Y is called the output (or target)
space; in the case of binary classification Y = {−1, 1} while the case of regression Y is
the set of real numbers. A fixed (but unknown) probability distribution on X × Y links
input objects to their output target values. The learning algorithm outputs a function
f : X 7→ Y that approximates the probabilistic relation between inputs and outputs. The
class of functions that is searched is called the hypothesis space.

A (Mercer) kernel is a positive semi-definite symmetric function1 K : X × X 7→ IR
that generalizes the notion of inner product to arbitrary domains (see, e.g., Shawe-Taylor
and Cristianini, 2004, for details). When using kernel methods in supervised learning, the
hypothesis space, denoted FK , is the so-called reproducing kernel Hilbert space (RKHS)
associated with K. Learning consists of solving the following Tikhonov regularized problem:

f = arg min
h∈FK

C

m∑
i=1

V (yi, h(xi)) + ‖h‖K (1)

where V (y, h(x)) is a positive function measuring the loss incurred in predicting h(x) when
the target is y, C is a positive regularization constant, and ‖ · ‖K is the norm in the RKHS.
Popular algorithms in this framework include support vector machines (SVM) (Cortes and
Vapnik, 1995) and kernel ridge regression (Poggio and Smale, 2003; Shawe-Taylor and Cris-
tianini, 2004). The representer theorem (Kimeldorf and Wahba, 1970) shows that the solu-
tion to the above problem can be expressed as a linear combination of the kernel between
individual training examples xi and x as follows:

f(x) =
m∑

i=1

ciK(x, xi). (2)

The above form also encompasses the solution found by other algorithms such as the kernel
perceptron (Freund and Schapire, 1999).

2.2 Inductive Logic Programming

Within the field of inductive logic programming, the standard framework is that of learning
from entailment. In this setting, the learner is given a set of positive and negative examples
D+ and D−, respectively (in the form of ground facts), and a background theory B (as
a set of definite clauses) and has to induce a hypothesis H (also a set of definite clauses)
such that B ∪H covers all positive examples and none of the negative ones. More formally,
∀p(x) ∈ D+ : B ∪ H |= p(x) and ∀p(x) ∈ D− : B ∪ H 6|= p(x). In this paper, as in the work
by Lloyd (2003), we shall use examples that are individuals, i.e., first-order logic objects or
identifiers. This means that we shall effectively refer to the examples by their identifier x
rather than use p(x). The traditional definition of inductive logic programming does not

1. A symmetric function K : X ×X 7→ IR is called a positive semi-definite kernel iff ∀m ∈ IN,∀x1, . . . , xm ∈
X ,∀ a1, . . . , am ∈ IR,

Pm
i,j=1 aiajK(xi, xj) ≥ 0.

310

Kernels on Prolog Proof Trees

mutagenic(d26).

lumo(d26, -2.072).

logp(d26, 2.17).

atm(d26,d26_1,c,22,-0.093).

atm(d26,d26_2,c,22,-0.093).

atm(d26,d26_3,c,22,-0.093).

atm(d26,d26_4,c,22,-0.093).

atm(d26,d26_5,c,22,-0.093).

atm(d26,d26_6,c,22,-0.093).

atm(d26,d26_7,h,3,0.167).

atm(d26,d26_8,h,3,0.167).

atm(d26,d26_9,h,3,0.167).

atm(d26,d26_10,cl,93,-0.163).

atm(d26,d26_11,n,38,0.836).

atm(d26,d26_12,n,38,0.836).

atm(d26,d26_13,o,40,-0.363).

atm(d26,d26_14,o,40,-0.363).

atm(d26,d26_15,o,40,-0.363).

atm(d26,d26_16,o,40,-0.363).

bond(d26,d26_1,d26_2,7).

bond(d26,d26_2,d26_3,7).

bond(d26,d26_3,d26_4,7).

bond(d26,d26_4,d26_5,7).

bond(d26,d26_5,d26_6,7).

bond(d26,d26_6,d26_1,7).

bond(d26,d26_1,d26_7,1).

bond(d26,d26_3,d26_8,1).

bond(d26,d26_6,d26_9,1).

bond(d26,d26_10,d26_5,1).

bond(d26,d26_4,d26_11,1).

bond(d26,d26_2,d26_12,1).

bond(d26,d26_13,d26_11,2).

bond(d26,d26_11,d26_14,2).

bond(d26,d26_15,d26_12,2).

bond(d26,d26_12,d26_16,2).

nitro(X,[Atom0,Atom1,Atom2,Atom3]) :-

atm(X,Atom1,n,38,_),

bondd(X,Atom0,Atom1,1),

bondd(X,Atom1,Atom2,2),

atm(X,Atom2,o,40,_),

bondd(X,Atom1,Atom3,2),

Atom3 @> Atom2,

atm(X,Atom3,o,40,_).

bondd(X,Atom1,Atom2,Type) :-

bond(X,Atom1,Atom2,Type).

bondd(X,Atom1,Atom2,Type) :-

bond(X,Atom2,Atom1,Type).

N

OO

N

O

O

Cl

Figure 1: Example from the mutagenesis domain. Top: extensional representation of an
instance (a molecule). Left: sample fragment of intensional background theory.
Right: chemical structure of the molecule.

explicitly—as is the case of regularized empirical risk minimization—account for noisy data
and the possibility that a complete and consistent hypothesis might not exist. Even though
various noise handling techniques exist in inductive logic programming, they are not as
principled as those offered by statistical learning theory.

Example 1 As an illustration of the above concepts, consider the famous mutagenicity
benchmark by Srinivasan et al. (1996). There the examples are of the form mutagenic(id)
where id is a unique identifier of the molecule and the background knowledge contains in-
formation about the atoms, bonds and functional groups in the molecule. A hypothesis in
this case could be

mutagenic(ID) ← nitro(ID,R),lumo(ID,L), L< -1.5.

It entails (covers) the molecule listed in Figure 1. It will be convenient to distinguish ex-
tensional predicates, such as atm, logp, lumo and bond, which specify information about
specific examples, from the intensional ones, such as bbond and nitro, which specify general
properties about all examples.

311

Passerini, Frasconi and De Raedt

Regression can be introduced in ILP in different ways. For example in the First-Order
Regression System (Karalič and Bratko, 1997) some arguments of the target predicate
(called continuous attributes) are real-valued. For instance, in our example one could use
examples of the form mutagenic(d26, -2.072, 2.17, 6.3) where the arguments would
be the lumo and logp values as well as the target activity. FORS then learns from “pos-
itive” examples only, covering subsets of examples on which linear regression between the
continuous arguments is solved in a numerical way. An interesting alternative is Struc-
tural Regression Trees, a method based on divide-and-conquer, similar to regression trees
(Kramer, 1996).

3. A Framework for Statistical Learning in the ILP Setting

In this section we introduce the logical framework for defining program traces and, in
particular, the concepts of visitor programs and proof trees.

3.1 General Assumptions

The methods described in this paper are based on a framework that combines some of the
advantages of the statistical and the ILP settings, in particular noise robustness and the
possibility of describing background knowledge in a flexible declarative language. First, we
assume that the instance space X is a set of first-order logic objects (i.e., individuals in
the universe of discourse), each having a unique identifier x. As in the ILP setting, we
assume that a background theory B is available in the form of a set of definite clauses.
This background theory is divided into intensional predicates, which are relevant to all
examples, and extensional ones, which specify facts about specific examples. As in the
statistical setting, we assume that a fixed and unknown distribution is defined on X ×Y and
that training data D consist of input-output pairs (xi, yi) (for classification or regression).
Rather than having to find a set of clauses H, the learning algorithm outputs a function f
that maps instances into their targets and whose general form is given by Equation (2). In
this sense, our setting is close to statistical learning and predictions on new instances will
be essentially opaque. However, we make the fundamental assumption that f also depends
on the available background theory via the kernel function.

3.2 Visitors

A second key difference with respect to the traditional ILP setting is that in addition to data
D and background knowledge B, the learner is given an additional set of clauses forming
the so-called visitor program. Clauses in this program should be designed to “inspect”
examples using other predicates declared in B. In facts, as detailed in Section 4, the kernel
function to be plugged in Equation (2) will be defined by means of the trace of this program.
To this aim, we are not only interested in determining whether certain clauses succeed or
fail on a particular example. In our approach, the execution traces of the visitor programs
are recorded and compared, on the rationale that examples having similar traces should
be mapped to similar representations in the feature space associated with the kernel. The
purpose of visitors is thus to construct useful features during their execution. This is a major

312

Kernels on Prolog Proof Trees

difference with respect to other approaches in which features are explicitly constructed by
computing the truth value for predicates (Muggleton et al., 2005).

Definition 1 (Visitor programs) A visitor program for a background theory B and do-
main X is a set V of definite clauses that contains at least one special clause (called a
visitor) of the form V ← B1, . . . , BN and such that

• V is a predicate of arity 1

• for each j = 1, . . . , N , Bj is declared in B ∪ V;

Intuitively, if visit/1 is a visitor in V, by answering the query visit(x)? we explore the
features of the instance whose constant identifier x is passed to the visitor. Having multiple
visitors in the program V allows us to explore different aspects of the examples and include
multiple sources of information.

Some examples of visitor programs are introduced in the remainder of this section and
when presenting empirical results in Section 5.

3.3 Traces and Proof Trees

A visitor program trace for a given domain instance is obtained by recording proofs of visitor
goals called on that instance. There are alternative options for choosing the kind of proof to
be employed. Therefore in order to give a precise definition of traces, we now need to make
a specific design choice. In this paper, we are committed to Prolog-based representations.
Hence, a natural option would be the use of SLD-trees, whose paths correspond to execution
sequences of the Prolog interpreter. A drawback of this choice is that an SLD-tree is a
very complex and rather unstructured representation and also contains information about
failed paths, potentially leading to an explosion of redundant and irrelevant features for
the purpose of learning. For these reasons we prefer to resort to proof trees (Russell and
Norvig, 2002), defined as follows:

Definition 2 (Proof tree) 2 Let P be a program and G a goal. If P 6|= G then the proof
tree for G is empty. Otherwise, it is a tree t recursively defined as follows:

• if there is a fact f in P and a substitution θ such that Gθ = fθ, then Gθ is a leaf of
t.

• otherwise there must be a clause H ← B1, ..., Bn ∈ P and a substitution θ′ such that
Hθ′ = Gθ′ and P |= Bjθ

′ ∀j, Gθ′ is the root of t and there is a subtree of t for each
Bjθ

′ which is a proof tree for Bjθ
′.

The kernels used in this paper work on ground proof trees. In general, however, proof
trees or SLD-trees need not be ground. If they are not, they can however always be made
ground by skolemization, i.e., by substituting all variables by different constants not yet
appearing in the program and goal. The skolemized proof will then still logically follow
from the program. Alternatively, one could impose the requirement that all clauses are

2. Such trees are sometimes also named and-trees.

313

Passerini, Frasconi and De Raedt

range-restricted, a requirement that is often imposed in the logic programming community.
Range-restrictedness requires that all variables that appear in the head of a clause also
appear in its body. It is a sufficient requirement for guaranteeing that all proofs will
be ground. Finally, ground proofs can be also obtained by making specific assumptions
about the mode of head variables not occurring in the body, so that these variables will
be instantiated in proving the goal. All the visitor programs presented in our empirical
evaluation (see Section 5) yield ground proofs thanks to such assumptions.

Example 2 For the sake of illustration, consider again the mutagenesis domain. Consider
the atom bond representation of the simple molecule in Figure 1. By looking at the molecule
as a graph where atoms are nodes and bonds are edges, we can introduce the common notions
of path and cycle:

1 : cycle(X,A):- 2 : path(X,A,B,M):- 3 : path(X,A,B,M):-
path(X,A,B,[A]), atm(X,A,_,_,_), atm(X,A,_,_,_),
bond(X,B,A,_). bond(X,A,B,_), bond(X,A,C,_),

atm(X,B,_,_,_), not(member(C,M)),
not(member(B,M)). path(X,C,B,[C|M]).

The following simple visitor may be used to inspect cycles in the molecule:

4 : visit(X):
cycle(X,A).

Note that we numbered each clause in V and the intensional part of the background
theory B (but not in the extensional part 3) with a unique identifier. This will allow us to
take into account information about the clauses that are used in a proof. The corresponding
proof tree for this example is shown in Figure 2.

In general, a goal can be satisfied in more than one way. Therefore, each query generates
a (possibly empty) set of proof trees. Since multiple visitors may be available, the trace of
an instance is a tuple of sets of proof trees, as formalized in the following definition:

Definition 3 (Trace) Let N be the number of visitors in V and for each l = 1, . . . , N let
Tlj,x denote the proof tree that represents the j-th proof of the goal Vl(x), i.e., a proof that
B ∪ V |= Vl(x). Let

Tl,x = {Tl1,x, . . . , Tlsl,x,x} (3)

where sl,x ≥ 0 is the number of alternative proofs of goal Vl(x). The trace of an instance x
is the tuple

Tx = [T1,x, . . . , TN,x]. (4)

3.4 Pruning Proof Trees

In many situations, the proof tree for a given goal will be unnecessary complex in that
it may contain several uninteresting subtrees. In these cases, we will often work with
pruned proof trees, which are trees where subtrees rooted at specific predicates (declared
as leaf predicates by the user) are turned into leafs. This will reduce the complexity of

3. The numbers in the extensional part would change from example to example and hence, would not carry
any useful information.

314

Kernels on Prolog Proof Trees

4 : visit(d26)

1 : cycle(d26,d26 1)

3 : path(d26, d26 1, d26 6, [d26 1])

atm(d26, d26 1, c, 22, -0.093)

bond(d26, d26 1, d26 2, 7)

not(member(d26 2, [d26 1]))

3 : path(d26, d26 2, d26 6, [d26 2, d26 1])

atm(d26, d26 2, c, 22, -0.093)

not(member(d26 3, [d26 2, d26 1]))

3 : path(d26, d26 3, d26 6, [d26 3, d26 2, d26 1])

atm(d26, d26 3, c, 22, -0.093)

bond(d26, d26 3, d26 4, 7)

not(member(d26 4, [d26 3, d26 2, d26 1]))

3 : path(d26, d26 4, d26 6, [d26 4, d26 3, d26 2, d26 1])

atm(d26, d26 4, c, 22, -0.093)

bond(d26, d26 4, d26 5, 7)

not(member(d26 5, [d26 4, d26 3, d26 2, d26 1]))

2 : path(d26, d26 5, d26 6, [d26 5, d26 4, d26 3, d26 2, d26 1])

atm(d26, d26 5, c, 22, -0.093)

bond(d26, d26 5, d26 6, 7)

atm(d26, d26 6, c, 22, -0.093)

not(member(d26 6, [d26 5, d26 4, d26 3, d26 2, d26 1]))

bond(d26, d26 6, d26 1, 7)

bond(d26, d26 2, d26 3, 7)

Figure 2: Proof tree resulting from the goal visit(d26) in the mutagenesis example.

the feature space associated with the kernel by selectively ignoring subproofs. For instance,
consider again the mutagenesis domain described in Srinivasan et al. (1996) where a theory
of rings and functional groups is included as background knowledge (see Figure 1). In this
domain, it may be useful to define visitors that explore groups such as benzene rings:

atoms(X,[]). visit_benzene(X):-
atoms(X,[H|T]):- benzene(X,Atoms),

atm(X,H,_,_,_), atoms(X,Atoms).
atoms(X,T).

If we believe that the presence of the ring and the nature of the involved atoms represent
a sufficient set of features, we may want to ignore details about the proof of the predicate
benzene by pruning the corresponding proof subtree. This can be accomplished by including
the following fact in the visitor program:

leaf(benzene(_,_)).

315

Passerini, Frasconi and De Raedt

3.5 Bridging the Gap

We are finally able to give a complete formalization of our framework for learning from
example-traces. The learner is given a data set D = {(x1, y1), . . . , (xm, ym)}, background
knowledge B, and visitor program V. For each instance xi, a trace Txi is obtained by
running the visitor program according to Definition 3. A kernel machine (e.g., an SVM) is
then trained to form the function f : X 7→ Y defined as

f(x) =
m∑

i=1

ciK(Txi , Tx).

The only missing ingredient is the kernel function K for comparing two visitor traces. The
definition of this function is detailed in the next section.

4. Kernels over Visitor Traces

In this section, we derive kernel functions for comparing traces of visitor programs. We
begin by reviewing some preliminary concepts about convolution kernels (Haussler, 1999),
a very general family of kernels on discrete structures that will be used in the rest of the
paper to define kernels over the logical structures of interest.

4.1 Kernels for Discrete Structures

For the purposes of this subsection, let X be a set of composite structures and for x ∈ X let
x1, . . . , xD denote the “parts” of x, with xd ∈ Xd for all i ∈ [1, D]. This decomposition can
be formally represented by a relation R on X1×· · ·×XD×X such that R(x1, . . . , xD, x) is true
iff x1, . . . , xD are the parts of x. We also write (x1, . . . , xD) = R−1(x) if R(x1, . . . , xD, x)
is true. Note that the relation R used in this definition is very general and does not neces-
sarily satisfy an axiomatic theory for parts and wholes such as those studied in knowledge
representation (Varzi, 1996). For example if X1 = · · · = XD = X are sets containing all
finite strings over a finite alphabet, we can define a relation R(x1, . . . , xD, x) which is true
iff x = x1 ◦ · · · ◦ xD, with ◦ denoting concatenation of strings. Note that in this example x
can be decomposed in multiple ways. We say that the relation R is finite if the number of
such decompositions is finite. Given a set of kernels Kd : Xd ×Xd → IR, one for each of the
parts of x, the R-convolution kernel is defined as

KR,⊗(x, z) =
∑

(x1,...,xD)∈R−1(x)

∑
(z1,...,zD)∈R−1(z)

D∏
d=1

Kd(xd, zd) (5)

where the sums run over all the possible decompositions of x and z. Similarly, one could
use direct sum obtaining

KR,⊕(x, z) =
∑

(x1,...,xD)∈R−1(x)

∑
(z1,...,zD)∈R−1(z)

D∑
d=1

Kd(xd, zd). (6)

For finite relations R, these functions can be shown to be valid kernels:

316

Kernels on Prolog Proof Trees

Theorem 4 (Haussler 1999) For any finite R on a space X , the functions KR,⊗ : X ×
X 7→ IR (defined by Equation (5)) and KR,⊕ : X × X 7→ IR (defined by Equation (6)) are
positive semi-definite kernels on X × X .

Proof : Follows from closure properties of tensor product and direct sum. See Haussler
(1999) for details.

The set kernel (Shawe-Taylor and Cristianini, 2004) is a special case of convolution
kernel that will prove useful in defining kernels between visitor traces. Suppose instances
are sets and let us define the part-of relation as the usual set-membership. The kernel over
sets Kset is then obtained from kernels between set members Kmember as follows:

Kset(x, z) =
∑
ξ∈x

∑
ζ∈z

Kmember (ξ, ζ). (7)

In order to reduce the dependence on the dimension of the objects, kernels over discrete
structures are often normalized. A common choice is that of using normalization in feature
space, i.e., given a convolution kernel KR:

Knorm(x, z) =
KR(x, z)√

KR(x, x)
√

KR(z, z)
. (8)

In the case of set kernels, an alternative is that of dividing by the cardinalities of the two
sets, thus computing the mean value between pairwise comparisons:4

Kmean(x, z) =
Kset(x, z)
|x||z|

. (9)

Richer families of kernels on data structures can be formed by applying composition to the
feature mapping induced by a convolution kernel. For example, a convolution kernel KR

can be combined with a Gaussian kernel as follows:

K(x, z) = exp
(
−γ

(
KR(x, x)− 2KR(x, z) + KR(z, z)

))
. (10)

4.2 Kernels over Visitor Programs

Going back to the framework defined in Section 3, let X be a set of first-order logic objects
and for x, z ∈ X consider the program traces Tx and Tz defined by Equations (3) and (4).
In order to define the kernel over program traces we follow a top-down approach. We begin
by decomposing traces into parts associated with different visitors (i.e., the elements of the
tuple in Equation (4)) and applying a decomposition kernel based on direct sum as defined
by Equation (6):

K(Tx, Tz) =
N∑

l=1

Kl(Tl,x, Tl,z). (11)

4. Note that normalizations such as those of Equations (8) and (9) can give indefinite results iff one of the
two arguments (say x) is the null vector of the feature space associated to the original kernel (i.e., KR

or Kset). In such a case, we will define Knorm(x, z) = Kmean(x, z) = 0 ∀z ∈ X , z 6= x.

317

Passerini, Frasconi and De Raedt

Note that there is a unique decomposition of Tx and Ty, that is we just compare proofs of
the same visitor. According to Definition 3 for each l = 1, . . . , N , the arguments to Kl are
sets of proof trees. Hence, using the set kernel of Equation (7) we further obtain:

Kl(Tl,x, Tl,z) =
sl,x∑
p=1

sl,z∑
q=1

Ktree(Tlp,x, Tlq,z). (12)

In this way, we have shown that the problem boils down to defining a kernel Ktree over
individual proof trees. This will be detailed in the remainder of this section. Note that we
can define different kernels for proof trees originating from different visitors.

At the highest level of kernel between visitor programs (Equation (11)), it is advisable
to employ a feature space normalization using Equation (8). In some cases it may also
be useful to normalize lower-level kernels, in order to rebalance contributions of individual
parts. In particular, the mean normalization of Equation (9) can be applied to the kernel
over individual visitors (Equation (12)) and it is also possible to normalize kernels between
individual proof trees, in order to reduce the influence of the proof size.

4.3 Representing Proof Trees as Prolog Ground Terms

Proof trees are discrete data structures and, in principle, existing kernels on trees could be
applied (e.g. Collins and Duffy, 2002; Viswanathan and Smola, 2003). However, we can gain
more expressiveness by representing individual proof trees as typed Prolog ground terms.
In so doing we can exploit type information on constants and functors so that different sub-
kernels can be applied to different object types. In addition, while traditional tree kernels
would typically compare all pairs of subtrees between two proofs, the kernel on ground
terms presented below results in a more selective approach that compares certain parts of
two proofs only when reached by following similar inference steps (a distinction that would
be difficult to implement with traditional tree kernels).
We will use the following procedure to represent a proof tree as a Prolog ground term:

• Base step: if a node contains a fact, this is already a ground term.

• Induction: if a node contains a clause, then let n be the number of arguments in the
head and m the number of atoms in the body (corresponding to the m children of the
node). A ground compound term t having n + 1 arguments is then formed as follows:

– the functor name of t is the functor name of the head of the clause;

– the first n arguments of t are the arguments of the clause head;

– the last argument of t is a compound term whose functor name is a Prolog
constant obtained from the clause number,5 and whose m arguments are the
ground term representations of the m children of the node.

Example 3 Consider the proof tree of Figure 2 in the mutagenesis domain. The transfor-
mation outlined above yields the following representation as a Prolog ground term:

5. Since numbers cannot be used as functor names, this constant can be simply obtained by prefixing the
clause number by ’cbody’.

318

Kernels on Prolog Proof Trees

visit(d26,
cbody4(cycle(d26,

d26_1,
cbody1(path(d26,

d26_1,
d26_6,
[d26_1],
cbody3(...)),

bond(d26,d26_6,d26_1,7))))).

where we skipped the representation of the children of path for the sake of readability.

We are now able to employ kernels on Prolog ground terms as defined in Passerini and
Frasconi (2005) to compute kernels over individual proof trees.

4.4 Kernels on Prolog Ground Terms

We begin with kernels on untyped terms. Let C be a set of constants and F a set of functors,
and denote by U the corresponding Herbrand universe (the set of all ground terms that can
be formed from constants in C and functors in F). Let f/n ∈ F denote a functor having
name f and arity n.

Definition 5 (Sum kernels on untyped terms) The kernel between two terms t and s
is a function K : U × U 7→ IR defined inductively as follows:

• if s ∈ C and t ∈ C then
K(s, t) = κ(s, t) (13)

where κ : C × C 7→ IR is a valid kernel on constants;

• else if s and t are compound terms and have different functors, i.e., s = f(s1, . . . , sn)
and t = g(t1, . . . , tm), then

K(s, t) = ι(f/n, g/m) (14)

where ι : F × F 7→ IR is a valid kernel on functors;

• else if s and t are compound terms and have the same functor, i.e., s = f(s1, . . . , sn)
and t = f(t1, . . . , tn), then

K(s, t) = ι(f/n, f/n) +
n∑

i=1

K(si, ti) (15)

• in all other cases K(s, t) = 0.

Functions κ and ι are called atomic kernels as they operate on non-structured symbols.
A special but useful case is the atomic delta kernel δ defined as δ(x, z) = 1 if x = z and
δ(x, z) = 0 if x 6= z.

319

Passerini, Frasconi and De Raedt

Example 4 Consider the two lists s = [a, b, c] and t = [a, c]. Recall that in Prolog [a, b] is
a shorthand for .(a, .(b, [])) where the functor ./2 is a data constructor for lists and [] is the
data constructor for the empty list. Suppose ι(./2, ./2) = 0.25 and κ(x, z) = δ(x, z) for all
x, z ∈ C. Then

K(s, t) = K(.(a, .(b, .(c, []))), .(a, .(c, [])))
= ι(./2, ./2) + K(a, a) + K(.(b, .(c, [])), .(c, []))
= ι(./2, ./2) + κ(a, a) + ι(./2, ./2) + κ(b, c) + K(.(c, []), [])
= 0.25 + 1 + 0.25 + 0 + 0 = 1.5

The result obtained in the above example is similar to what would be achieved with the
kernel on higher-order logic basic terms defined in Gärtner et al. (2004). The following
examples illustrate the case of two other common data structures.

Example 5 Consider the two tuples simulated via a predicate r: s = r(a, b, c) and t =
r(d, b, a). Suppose ι(r/3, r/3) = 0 and κ(x, z) = δ(x, z) for all x, z ∈ C. Then it immediately
follows from the definition that K(s, t) = 1.

Example 6 As a last example consider data structures intended to describe scientific ref-
erences:

r = article("Kernels on Gnus and Gnats", journal(ggj, 2004))
s = article("The Logic of Gnats", conference(icla, 2004))
t = article("Armadillos in Hilbert space", journal(ijaa, 2004))

Using κ(x, z) = δ(x, z) for all x, z ∈ C and ι(x, z) = δ(x, z) for all x, z ∈ F , we obtain
K(r, s) = 1, K(r, t) = 3, and K(s, t) = 1. The fact that all papers are published in the
same year does not contribute to K(r, s) or K(s, t) since these pairs have different functors
describing the venue of the publication; it does contribute to K(r, t) as they are both journal
papers. Note that strings have been treated as constants (as standard in Prolog). Under our
above definition the kernel cannot recognize the fact that r and s share a word in the title.

A finer level of granularity in the definition of ground term kernels can be gained from
the use of typed terms. This extra flexibility may be necessary to specify different kernel
functions associated with constants of different type (e.g., numerical vs categorical). Types
are also useful to specify different kernels associated to different arguments of compound
terms. As detailed below, this allows us to distinguish different roles played by clauses in a
proof tree.

Our approach for introducing types is similar to that proposed by Lakshman and
Reddy (1991). We denote by T the ranked set of type constructors, which contains at
least the nullary constructor ⊥. The type signature of a function of arity n has the form
τ1×, . . . ,×τn 7→ τ ′ where n ≥ 0 is the number of arguments, τ1, . . . , τk ∈ T are their types,
and τ ′ ∈ T is the type of the result. Functions of arity 0 have signature ⊥ 7→ τ ′ and can
therefore be interpreted as constants of type τ ′. The type of a function is the type of its
result. The type signature of a predicate of arity n has the form τ1×, . . . ,×τn 7→ Ω where

320

Kernels on Prolog Proof Trees

Ω ∈ T is the type of Booleans, and is thus a special case of type signatures of functions.
We write t : τ to assert that t is a term of type τ . We denote by G the set of all typed
ground terms, by C ⊂ G the set of all typed constants, and by F the set of typed functors.
Finally we introduce a (possibly empty) set of distinguished type signatures D ⊂ T that
can be useful to specify ad-hoc kernel functions on certain compound terms.

Definition 6 (Sum kernels on typed terms) The kernel between two typed terms t and
s is defined inductively as follows:

• if s ∈ C, t ∈ C, s : τ , t : τ then

K(s, t) = κτ (s, t) (16)

where κτ : C × C 7→ IR is a valid kernel on constants of type τ ;

• else if s and t are compound terms that have the same type but different functors
or signatures, i.e., s = f(s1, . . . , sn) and t = g(t1, . . . , tm), s : σ1×, . . . ,×σn 7→ τ ′,
t : τ1×, . . . ,×τm 7→ τ ′, then

K(s, t) = ιτ ′(f/n, g/m) (17)

where ιτ ′ : F × F 7→ IR is a valid kernel on functors that construct terms of type τ ′

• else if s and t are compound terms and have the same functor and type signature,
i.e., s = f(s1, . . . , sn), t = f(t1, . . . , tn), and s, t : τ1×, . . . ,×τn 7→ τ ′, then

K(s, t) =

κτ1×,...,×τn 7→τ ′(s, t)

if (τ1×, . . . ,×τn 7→ τ ′) ∈ D

ιτ ′(f/n, f/n) +
n∑

i=1

K(si, ti) otherwise
(18)

where κτ1×,...,×τn 7→τ ′ : U ×U 7→ IR is a valid kernel on terms having distinguished type
signature τ1×, . . . ,×τn 7→ τ ′ ∈ D.

• in all other cases K(s, t) = 0.

Versions of the kernels which combine arguments using products instead of sums can be
easily defined as follows.

Definition 7 (Product kernels on untyped terms) Use Definition 5 replacing Equa-
tion (15) with

K(s, t) = ι(f/n, f/n)
n∏

i=1

K(si, ti) (19)

Definition 8 (Product kernels on typed terms) Use Definition 6 replacing Equation (18)
with

K(s, t) =

κτ1×,...,×τn 7→τ ′(s, t)

if (τ1×, . . . ,×τn 7→ τ ′) ∈ D

ιτ ′(f/n, f/n)
n∏

i=1

K(si, ti) otherwise
(20)

The families of functions in Definitions 5–8 are special cases of Haussler’s decomposition
kernels and therefore they are positive semi-definite (see Appendix A for formal results).

321

Passerini, Frasconi and De Raedt

4.5 Kernels on Prolog Proof Trees

In order to employ full typed term kernels (as in Definitions 6 and 8) on proof trees, we
need a typed syntax for their ground term representation. We will assume the following
default types for constants: num (numerical) and cat (categorical). Types for compounds
terms will be either fact, corresponding to leaves in the proof tree, clause in the case of
internal nodes, and body when containing the body of a clause. Note that regardless of the
specific implementation of kernels between types, such definitions imply that we actually
compare the common subpart of proofs starting from the goal (the visitor clause), and stop
whenever the two proofs diverge.

A number of special cases of kernels can be implemented with appropriate choices of the
kernel for compound and atomic terms. The equivalence kernel outputs one iff two proofs
are equivalent, and zero otherwise:

Kequiv(s, t) =
{

1 if s ≡ t
0 otherwise

(21)

We say that two proofs are equivalent if the same sequence of clauses is proven in the two
cases, and the head arguments in corresponding clauses satisfy a given equivalence relation.
A trivial implementation of proof equivalence can be obtained using the product kernel on
typed terms (Definition 8) in combination with the delta kernel on constants and functors.

In many cases, we will be interested in ignoring some of the arguments of a pair of
ground terms when computing the kernel between them. As an example, consider the atom
bond representation of a molecule shown in the upper part of Figure 1. The first arguments
of atm and bond predicates are simply molecule and atom identifiers, and we would like
to ignore their values when comparing two molecules together. This can be implemented
using a special ignore type for arguments that should be ignored in comparisons, and a
corresponding constant kernel which always outputs a constant value:

Kη(s, t) = η.

It is straightforward to see that Kη is a valid kernel provided η ≥ 0. The constant η should
be set equal to the identity element of the operation used to combine results for the different
arguments of the term under consideration, that is η = 0 for the sum kernel and η = 1 for
the product one.

The extreme use for this kernel is that of implementing the notion of functor equality for
proof tree nodes, where two nodes are the same iff they share the same functor, regardless
of the specific values taken by their arguments. Given two ground terms s = f(s1, . . . , sn)
and t = g(t1, . . . , tm) the functor equality kernel is given by:

Kf (s, t) =

0 if type(s) 6= type(t)
δ(f/n, g/m) if s, t : fact
δ(f/n, g/m) ? K(sn, tm) if s, t : clause
K(s, t) if s, t : body

(22)

where K is a kernel on ground terms as defined in Section 4.4, and the operator ? can be
either sum or product. Note that if s and t represent clauses (i.e., internal nodes of the

322

Kernels on Prolog Proof Trees

proof tree), the comparison skips clause head arguments, represented by the first n − 1
(resp. m − 1) arguments of the terms, and compares the bodies (the last argument, see
Section 4.3) thus proceeding on the children of the nodes. This kernel allows to define a
non trivial equivalence between proofs (or parts of them) checking which clauses are proved
in sequence and ignoring the specific values of their head arguments.

Moreover, it will often be useful to define custom kernels for specific terms by using
distinguished type signatures. Appendix B contains details of possible kernel configurations
as sets of Prolog clauses, while Appendix C contains the Prolog code for all visitors and
kernel configurations employed in the experimental section.

5. Experiments

We run a number of experiments in order to demonstrate the possibilities of the proposed
method. In particular, we aim to empirically show that

1. statistical learning in the ILP setting can be addressed, scaling better than typical
ILP algorithms with the complexity of the target hypothesis;

2. problems which are difficult for traditional ILP algorithms can be solved;

3. both classification and regression tasks can be effectively handled;

4. significant improvements on real world applications can be achieved.

For classification tasks, we employed SVM (Cortes and Vapnik, 1995) using the Gist6

implementation, which permits to separate kernel calculation from training by accepting the
complete kernel matrix as input. We compared our method with two popular and diverse
ILP algorithms: Tilde (Blockeel and De Raedt, 1998), which upgrades C4.5 to induction
of logical decision trees, and Progol (Muggleton, 1995), which learns logical theories using
inverse entailment.

Regression is quite a difficult task for ILP techniques, and few algorithms currently exist
which are able to address it. Conversely, our definition of kernel over proof trees allows us to
apply standard kernel methods for regression, such as kernel ridge regression (KRR, (Poggio
and Smale, 2003)) and support vector regression (Vapnik, 1995). We report results using the
former approach, as training was more stable and no significant difference in performance
could be noted. However, when dealing with large data sets, the latter method would be
preferable for efficiency reasons. In Section 5.4 we report regression experiments comparing
our approach to a number of propositional as well as relational learners.

5.1 Bongard Problems

In order to provide a full basic example of visitor program construction and exploitation
of the proof tree information, we created a very simple Bongard problem (Bongard, 1970).
The concept to be learned can be represented with the simple pattern triangle-Xn-triangle
for a given n, meaning that a positive example is a scene containing two triangles nested into

6. The Gist package by W. Stafford Noble and P. Pavlidis is available from
http://microarray.genomecenter.columbia.edu/gist/.

323

Passerini, Frasconi and De Raedt

one another with exactly n objects (possibly triangles) in between. Figure 3 shows a pair
of examples of such scenes with their representation as Prolog facts and their classification
according to the pattern for n = 1.

A possible example of background knowledge introduces the concepts of nesting in
containment and polygon as a generic object, and can be represented as follows:

inside(X,A,B):- in(X,A,B). % clause nr 1
inside(X,A,B):- % clause nr 2

in(X,A,C),
inside(X,C,B).

polygon(X,A) :- triangle(X,A). % clause nr 3
polygon(X,A) :- rectangle(X,A). % clause nr 4
polygon(X,A) :- circle(X,A). % clause nr 5

A visitor exploiting such background knowledge, and having hints on the target concept,
could be looking for two polygons contained one into the other. This can be represented as:

visit(X):- % clause nr 6
inside(X,A,B),polygon(X,A),polygon(X,B).

Figure 4 shows the proofs trees obtained running such a visitor on the first Bongard problem
in Figure 3.

A very simple kernel can be employed to solve such a task, namely an equivalence kernel
with functor equality for nodewise comparison. For any value of n, such a kernel maps the
examples into a feature space where there is a single feature discriminating between positive
and negative examples, while the simple use of ground facts without intensional background
knowledge would not provide sufficient information for the task.

The data set was generated by creating m scenes each containing a series of ` randomly
chosen objects nested one into the other, and repeating the procedure for ` varying from
2 to 20. Moreover, we generated two different data sets by choosing m = 10 and m = 50
respectively. Finally, for each data set we obtained 15 experimental settings denoted by
n ∈ [0, 14]. In each setting, positive examples were scenes containing the pattern triangle-
Xn-triangle. We run an SVM with the above mentioned proof tree kernel and a fixed value
C = 10 for the regularization parameter, on the basis that the data set is noise free. We
evaluated its performance with a leave-one-out (LOO) procedure, and compared it to the
empirical error of Tilde and Progol trained on the same data and background knowledge
(including the visitor). Here we focus on showing that ILP algorithms have troubles finding
a consistent hypothesis for this problem, hence we did not measure their generalization.

Figure 5(a) plots results for m = 10. Both Tilde and Progol stopped learning the concept
for n > 4. Progol found the trivial empty hypothesis for all n > 4 apart from n = 6, and
Tilde for all n > 9. While never learning the concept with 100% generalization accuracy, the
SVM performance was much more stable when increasing the nesting level corresponding
to positive examples. Figure 5(b) plots results for m = 50. Progol was extremely expensive
to train with respect to the other methods. It successfully learned the concept for n ≤ 2,
but we stopped training for n = 3 after more than one week training time on a 3.20 GHz
PENTIUM IV. Tilde stopped learning the concept for n > 8, and found the trivial empty
hypothesis for n > 12. Conversely, the SVM was almost always able to learn the concept
with 100% generalization accuracy, regardless of its complexity level.

324

Kernels on Prolog Proof Trees

positive(bong1).
triangle(bong1,o1).
circle(bong1,o2).
triangle(bong1,o3).
in(bong1,o1,o2).
in(bong1,o2,o3).

negative(bong4).
triangle(bong4,o1).
rectangle(bong4,o2).
circle(bong4,o3).
triangle(bong4,o4).
in(bong4,o1,o2).
in(bong4,o2,o3).
in(bong4,o3,o4).

Figure 3: Graphical and Prolog facts representation of two Bongard scenes. The left and
right examples are positive and negative, respectively, according to the pattern
triangle-X-triangle.

visit(1)

inside(1,o1,o2) polygon(1,o1) polygon(1,o2) inside(1,o2,o3)

visit(1)

polygon(1,o2) polygon(1,o3)

in(1,o1,o2) triangle(1,o1) circle(1,o2) in(1,o2,o3) circle(1,o2) triangle(1,o3)

visit(1)

inside(1,o1,o3) polygon(1,o1) polygon(1,o3)

in(1,o1,o2) inside(1,o2,o3)

in(1,o2,o3)

triangle(1,o1) triangle(1,o3)

Figure 4: Proof trees obtained by running the visitor on the first Bongard problem in Fig. 3.

Note that in order for the ILP algorithms to learn the target concept regardless of the
nesting level, it would be necessary to provide a more informed inside predicate, which
explicitly contains such nesting level as one of its arguments. The ability of the kernel to
extract information from the predicate proof, on the other hand, allows our method to be
employed when only partial background knowledge is available, which is typically the case
in real world applications.

5.2 M-of-N Problems

The possibility to plug background knowledge into the kernel allows addressing problems
that are notoriously hard for ILP approaches. An example of such concepts is the M -of-N
one, which expects the model to be able to count and make the decision accordingly.

We represented this kind of tasks with a toy problem. Examples are strings of integers
i ∈ [0, 9], and a string is positive iff more than a half of its pairs of consecutive elements is
ordered, where we employ the partial ordering relation ≤ between numbers. In this task,
M and N are example dependent, while their ratio is fixed.

As background knowledge, we introduced the concepts of “length two substring” and
“pairwise ordering”:

325

Passerini, Frasconi and De Raedt

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10 12 14 16

A
cc

ur
ac

y

Nesting Level

(a)

SVM LOO
Progol train

Tilde train
 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10 12 14 16

A
cc

ur
ac

y

Nesting Level

(b)

SVM LOO
Progol train

Tilde train

Figure 5: Comparison between SVM leave-one-out error, Progol and Tilde empirical er-
ror in learning the triangle-Xn-triangle for different values of n, for data sets
corresponding to m = 10 (a) and m = 50 (b).

substr([A,B],[A,B|_T]).
substr([A,B],[_H|T]):-

substr([A,B],T).

comp(A,B):- A @> B.
comp(A,B):- A @=< B.

We then designed a visitor which looks for a substring of length two in the example, and
compares its elements:

visit(X):-
string(X,S),substr([A,B],S),comp(A,B).

We also declared substr to be a leaf predicate, thus pruning the proof tree as explained
in Section 3.4, because we are not interested in where the substring is located within the
example.

The kernel we employed for this task is a sum kernel with functor equality for nodewise
comparison. This kernel basically counts the number of clauses proved in the common sub-
part of two proof trees, where common means that the same clauses were proved regardless
of the specific values of their head arguments.

The data set was created in the following way: the training set was made of 150 randomly
generated strings of length 4 and 150 strings of length 5; the test set was made of 1455
randomly generated strings of length from 6 to 100. This allowed to verify the generalization
performance of the algorithm for lengths very different from the ones it was trained on.

Accuracy on the test set for a default value of the regularization parameter C = 1
was 93.5%, with a contingency table as in Table 1. Moreover, false negatives were the
nearest to the decision threshold, and slightly modifying the regularization parameter led
to 100% accuracy. On the other hand, neither Tilde nor Progol were able to induce any
approximation of the target concept with the available background knowledge. A number
of problems prevented them from learning:

326

Kernels on Prolog Proof Trees

-1 1
-1 528 0

True
1 94 833

Predicted

Table 1: Contingency table for the strings task with default regularization parameter. Pre-
dicted class is on columns, true class on rows.

1. All proofs of a given predicate (substr) were necessary ingredients for the target
concept.

2. Counting such proofs was needed, conditioned on the proof details.

3. Gain measures were useless in guiding Tilde hypothesis search, as single atoms forming
the target concept had no discriminative power if taken alone.

These problems are due to the need for an aggregation predicate (in this case count) to
correctly define the target concept. Dealing with aggregation is known to be difficult for
relational learning (Perlich and Provost, 2003; Knobbe et al., 2002).

In order for Progol to learn the target concept, two explicit conditioned counting pred-
icates had to be provided, counting the number of ordered (resp. unordered) length two
substrings of a given string. Tilde was still unable to learn the concept with such back-
ground knowledge, due the above mentioned problem with gain at intermediate steps of the
search, and full lookahead of all building predicates was needed. Again, this is a known
problem for decision tree learners (Van de Velde, 1989).

5.3 Protein Fold Classification

In this experiment, we tested our methodology on the protein fold classification problem
studied by Turcotte et al. (2001). The task consists of classifying proteins into Scop folds,
given their high-level logical descriptions about secondary structure and amino acid se-
quence. Scop is a manually curated database of proteins hierarchically organized according
to their structural properties. At the top level Scop groups proteins into four main classes
(all-α, all-β, α/β, and α + β). Each class is then divided into folds that group together
proteins with similar secondary structures and three-dimensional arrangements. We used
the data set made available as a supplement to the paper by Turcotte et al. (2001)7 that
consists of the five most populated folds from each of the four main Scop classes. This
setting yields 20 binary classification problems. The data sets for each of the 20 problems
are relatively small (from about 30 to about 160 examples per fold, totaling 1143 examples).

We relied on the background knowledge provided in Turcotte et al. (2001), to design
a set of visitors managing increasingly complex information. A global visitor was used to
extract protein level information, such as its length and the number of its α or β secondary
structure segments. A local visitor explored the details of each of such segments, while
a connection visitor looked for pairs of adjacent segments within the protein. Numerical

7. http://www.bmm.icnet.uk/ilp/data/ml 2000.tar.gz.

327

Passerini, Frasconi and De Raedt

values were normalized within each top level fold class. The kernel configuration mainly
consisted of type signatures aiming to ignore identifiers and treat some of the numerical
features as categorical ones. A functor equality kernel was employed for those nodes of
the proofs which did not contain valuable information in their arguments. Code details for
visitors and kernel configuration can be found in Appendix-C.3.

Following Turcotte et al. (2001), we measured prediction accuracy by 10-fold cross-validation,
micro-averaging the results over the 20 experiments by summing contingency tables. The
proof-tree kernel was combined with a Gaussian kernel (see Equation (10)) in order to model
nonlinear interactions between the features extracted by the visitor program. Model selec-
tion (i.e., choice of the Gaussian width γ and the SVM regularization parameter C) was
performed for each binary problem with a LOO procedure before running the 10-fold cross
validation. Table 2 shows comparisons between the best setting for Progol (as reported by
Turcotte et al. (2001)), which uses both propositional and relational background knowledge,
results for Tilde using the same setting, and SVM with our kernel over proof trees. The
difference between Tilde and Progol is not significant, while our SVM achieves significantly
higher overall accuracy with respect to both methods.

5.4 QSAR Regression Tasks

Quantitative structure activity relationship (QSAR) tasks deal with the problem of pre-
dicting the biological activity of a molecule given its chemical structure. They can thus
be naturally represented as regression problems. The chemical structure of molecules is
typically represented by atom and bond predicates, possibly specifying also non topological
attributes such as atom and bond detailed types and atom partial charge. Additional fea-
tures include molecule physico-chemical properties, such as its weight, its hydrophobicity
(logP) and lumo, which is the energy of the molecule lowest unoccupied orbital. Intensional
background knowledge can be represented by predicates looking for ring structures and
functional groups within the molecule, such as benzene, anthracene and nitro. Relational
features can also be propositionalized in different ways in order to employ propositional
learners.

In the following we focused on two well known QSAR data sets, mutagenesis and bio-
degradability, and compared to published results for different relational and propositional
learners, always attaining to their same experimental settings. In both cases we run a pre-
liminary model selection phase (optimizing Gaussian width and regularization parameter)
on an additional 10 fold cross validation procedure. We employed the Pearson correlation
coefficient as a standard performance measure, and two tailed Fisher z tests at 0.05 signif-
icance level in order to verify if the performance difference between pairs of methods was
statistically significant.

5.4.1 Mutagenesis

The mutagenicity problem is a standard benchmark for ILP approaches. The problem
is treated in Srinivasan et al. (1996) as a binary classification task (mutagenic vs. non-
mutagenic). Here we focused on its original formulation as a regression task, and compared
to the results presented in Kramer (1999) for the regression friendly data set.

328

Kernels on Prolog Proof Trees

Tilde Progol SVM
All-α:

Globin-like 97.4 95.1 94.9
DNA-binding 3-helical bundle 81.1 83.0 88.9
4-helical cytokines 83.3 70.7 86.7
lambda repressor-like DNA-binding domains 70.0 73.4 83.3
EF Hand-like 71.4 77.6 85.7

All-β:
Immunoglobulin-like beta-sandwich 74.1 76.3 85.2
SH3-like barrel 91.7 91.4 93.8
OB-fold 65.0 78.4 83.3
Trypsin-like serine proteases 95.2 93.1 93.7
Lipocalins 83.3 88.3 92.9

α/β:
beta/alpha (TIM)-barrel 69.7 70.7 73.3
NAD(P)-binding Rossmann-fold domains 79.4 71.6 84.1
P-loop containing nucleotide triphosphate hydrolases 64.3 76.0 76.2
alpha/beta-Hydrolases 58.3 72.2 86.1
Periplasmic binding protein-like II 79.5 68.9 79.5

α + β:
Interleukin 8-like chemokines 92.6 92.9 96.3
beta-Grasp 52.8 71.7 88.9
Ferredoxin-like 69.2 83.1 76.9
Zincin-like 51.3 64.3 79.5
SH2-like 82.1 76.8 66.7

Micro average: 75.2 78.3 83.6
±2.5 ±2.4 ±2.2

Table 2: Protein fold classification: 10-fold cross validation accuracy (%) for Tilde, Progol
and SVM for the different classification tasks, and micro averaged accuracies with
95% confidence intervals. Results for Progol are taken from Turcotte et al. (2001).

329

Passerini, Frasconi and De Raedt

System r
KRR 0.898(0.002)
S-CART 0.830 (0.020)
P + S-CART 0.834 (0.010)
P + M5’ 0.893(0.001)
P + SP + S-CART 0.767 (0.038)
P + SP + M5’ 0.835 (0.012)

Table 3: Pearson correlation coefficient for the different learners on the regression friendly
mutagenesis data set. Results are averaged over four 10-fold cross validation pro-
cedures, and standard deviations over the four procedures are reported. Boldface
numbers are significantly better than plain ones. All other differences are not
significant. Results for all systems except for KRR are taken from Kramer (1999).

We employed a global visitor exploring physico-chemical properties of the molecule, that
is logp, lumo, ind1 and inda. We then developed a set of visitors exploiting the ring theory
for nitro aromatic and heteroaromatic compounds, each looking for compounds of a certain
type, and extracting the properties of the atoms belonging to it. We employed pruned trees
for such visitors, as described in the example shown in Section 3.4. Kernel configuration
was mostly made of type signatures as for the protein fold classification task (Section 5.3,
see Appendix-C.4 for code details).
Competing algorithms included S-CART (Kramer, 1999), which is an upgrade of CART
to first order logic, and M5’ (Quinlan, 1993; Wang and Witten, 1997), a propositional
regression-tree induction algorithm. Propositionalization was conducted either by (P)
counting occurrences of different functional groups (together to physico-chemical global
properties), or (SP) running a supervised stochastic propositionalization algorithm as de-
scribed in Kramer (1999). Table 3 reports experimental comparisons on four 10 fold cross
validation procedures. Our method consistently outperforms all other learners, and such
difference is significant on four out of five cases.

5.4.2 Biodegradability

Degradation is the process by which chemicals are transformed into components which are
not considered pollutants. A number of different pathways are responsible for such process,
depending on environmental conditions. Blockeel et al. (2004) conducted a study focused
on aqueous biodegradation under aerobic conditions. Low and high estimates of half life
time degradation rate were collected for 328 molecules. The regression task consisted in
predicting the natural logarithm of the arithmetic mean of the low and high estimate for a
given molecule. A comprehensive background knowledge of rings and functional groups was
available as for the mutagenesis data set. Moreover, relational features had been proposi-
tionalized in two different ways. Four sets of features were thus made available to learning
algorithms (Blockeel et al., 2004):

• Global consisted of molecule physico-chemical properties, namely weight and logP.

330

Kernels on Prolog Proof Trees

System G G+P1 G+P2 G+R G+P1+P2+R
KRR 0.472 (0.005) 0.701 (0.005) 0.683 (0.006) 0.694 (0.005) 0.695 (0.005)
Tilde 0.487 (0.020) 0.596 (0.029) 0.615 (0.014) 0.616 (0.021) 0.595 (0.020)
S-CART 0.476 (0.031) 0.563 (0.010) 0.595 (0.032) 0.605 (0.023) 0.606 (0.032)
M5’ 0.503 (0.012) 0.579 (0.024) 0.646 (0.013)
LR 0.436 (0.004) 0.592 (0.014) 0.443 (0.026)

Table 4: Pearson correlation coefficient for the different learners for various combinations
of features on the biodegradability data set. Results are averaged over five 10-fold
cross validation procedures, and standard deviations over the five procedures are
reported. Results for all systems except for KRR are taken from Blockeel et al.
(2004).

• P1 were counts of rings and functional groups defined in the background theory.

• P2 were counts of small substructures of molecules (all connected substructures of
two or three atoms, those of four with a star topology).

• R contained full relational features: atoms, bonds, ring and functional structures
described by their constituent atoms and those connecting them to the rest of the
molecule.

We developed appropriate visitors for each of these feature sets. Visitors for full rela-
tional features (R) explored atoms within rings and functional structures as in the muta-
genesis task, additionally including information about atoms connecting each compound to
the rest of the molecule. Numerical features8 were normalized. The kernel configuration
was again similar to that in the protein fold classification task (Section 5.3), but we also
modified the default combining operator for a few type signatures in order to compared
substructures of the same type only (code details in Appendix-C.5).

A number of relational and propositional learners were compared in Blockeel et al. (2004)
on different feature sets: apart from S-CART and M5’, already introduced for the mutagen-
esis data set, simple linear regression (LR) and the version of Tilde learning regression trees
(Blockeel and De Raedt, 1998). Table 4 reports average and standard deviation of Pearson
correlation coefficient on five 10-fold cross validation procedures, for different combinations
of the feature sets. Our kernel outperforms all other methods on four out of five scenarios,
and in two cases results are significantly better than any competitor (see Figure 6).

In a second batch of experiments, Blockeel et al. (2004) separately predicted low and
high estimates of half life time degradation rate, and reported the mean of such predictions.
Results are shown in Table 5. While other methods often improve their performance over
the previous batch, our method is almost unaffected. Still, it outperforms all learners on
the same four scenarios, and in one case it obtains significantly better results than any other
algorithm (Figure 7).

8. Apart from those in P1 which had a small range ([0, 4]).

331

Passerini, Frasconi and De Raedt

LR

M5’

S−CART

KRR PTK

Tilde

L
R

M
5

’

S
−

C
A

R
T

K
R

R
 P

T
K

T
il

d
e

L
R

M
5

’

S
−

C
A

R
T

K
R

R
 P

T
K

T
il

d
e

L
R

M
5

’

S
−

C
A

R
T

K
R

R
 P

T
K

T
il

d
e

S
−

C
A

R
T

T
il

d
e

K
R

R
 P

T
K

S
−

C
A

R
T

T
il

d
e

K
R

R
 P

T
K

G+P1 G+P2 G+R G+P1+P2+RG

Figure 6: Significance of performance difference between learners for the biodegradability
data set. A black box indicates that the learner on the row is significantly better
than that on the column for the given feature setting.

System G G+P1 G+P2 G+R G+P1+P2+R
KRR 0.498 (0.004) 0.700 (0.005) 0.683 (0.006) 0.694 (0.005) 0.695 (0.005)
Tilde 0.495 (0.015) 0.612 (0.022) 0.619 (0.021) 0.635 (0.018) 0.618 (0.022)
S-CART 0.478 (0.016) 0.581 (0.015) 0.636 (0.015) 0.659 (0.019) 0.631 (0.026)
M5’ 0.502 (0.014) 0.592 (0.013) 0.646 (0.014)
LR 0.437 (0.005) 0.592 (0.013) 0.455 (0.022)

Table 5: Pearson correlation coefficient for the different learners for various combinations
of features on the biodegradability data set (second batch). Results are averaged
over five 10-fold cross validation procedures, and standard deviations over the five
procedures are reported. Results for all systems except for KRR are taken from
Blockeel et al. (2004).

LR

M5’

S−CART

KRR PTK

Tilde

L
R

M
5

’

S
−

C
A

R
T

K
R

R
 P

T
K

T
il

d
e

L
R

M
5

’

S
−

C
A

R
T

K
R

R
 P

T
K

T
il

d
e

L
R

M
5

’

S
−

C
A

R
T

K
R

R
 P

T
K

T
il

d
e

S
−

C
A

R
T

T
il

d
e

K
R

R
 P

T
K

S
−

C
A

R
T

T
il

d
e

K
R

R
 P

T
K

S
−

C
A

R
T

T
il

d
e

K
R

R
 P

T
K

G+P1 G+P2 G+R G+P1+P2+RG

Figure 7: Significance of performance difference between learners for the biodegradability
data set (second batch). A black box indicates that the learner on the row is
significantly better than that on the column for the given feature setting.

332

Kernels on Prolog Proof Trees

6. Discussion and Related Work

When tackling inductive learning problems using the presented techniques, there are a
number of design decisions to be made. These include: the choice of the background theory
B, visitor program V and also the kernel K. As compared to traditional ILP, the background
theory B is similar, the visitor program plays the role of the declarative and inductive bias,
and the kernel can perhaps be related to some distance based learning approaches (Ramon
and Bruynooghe, 1998; Horvath et al., 2001). The visitor program, however, constitutes an
entirely different form of bias than the typical declarative language bias employed in ILP
(Nédellec et al., 1996), which is purely syntactic. The visitor incorporates a much more
procedural bias, which is perhaps more similar to explanation-based learning (Mitchell
et al., 1986). Indeed, explanation-based learning also starts from proof trees or traces for
specific examples and then generalizes them using deductive methods (such as regression
or partial evaluation (Van Harmelen and Bundy, 1988)). There has, however, also been
a strong interest in integrating inductive concept-learning with explanation-based learning
(Mitchell et al., 1986). To some extent, the combination of the proof trees with the kernel
realizes such an integration, although it does not produce interpretable rules, due to the use
of the kernel. The notion and use of background theory has—to some degree—always been
debated. The reason is that, on the one hand, it provides the user with a flexible means to
guide and influence the learning process, but, on the other hand, it is not always easy to
define a background theory that will yield accurate hypotheses. For instance, in applying
traditional ILP systems to the Bongard example (Section 5.1), it is clear that by using only
the outcome of the inside predicate, one loses the information of how many objects are
between the outermost and innermost triangle. But this could easily be fixed by defining
inside(X,Y,Z) as “X is inside Y with Z objects between them.” In other words, a change
of background definitions makes it possible to learn the correct concept, even by traditional
ILP systems. This is one example that shows that background theory is a powerful but
sometimes hard to master tool.

To gain some further insights into the relationship of our method to traditional ILP, let us
try to relate the background theory to the visitor program. From an ILP perspective, it does
seem natural to add the visitor program to the background theory and run the traditional
ILP system. Whereas this is—in principle—possible, there are some major differences that
would result. Indeed, the ILP system could only use the predicates mentioned in the visitor
program as conditions in its hypotheses, and it would not have any means to look into
the trace or proof. For instance, if there is a predicate v in the visitor program that is
defined using two different clauses, the ILP system will not be able to distinguish instances
of v proven using the first clause from those proven using the second one. Also, differences
and similarities between proof trees could not be discovered unless one would also add the
meta-program (implemented as a Prolog predicate) that generates the proof tree to the
background theory. In this case, the information about the structure of proof trees and
the clauses being used in there could be employed in the hypotheses of the ILP system.
This would yield conditions such as prove(visitor(x), proof-tree). However, since
ILP systems have severe search problems when dealing with large structured and terms
and recursion, this idea cannot be applied in practice. The use of kernels to realize the
generalization is much more appealing because there is no search involved in computing the

333

Passerini, Frasconi and De Raedt

kernel. Finally, let us remark that it would be interesting to further investigate the design
choices (B,V,K) to be made. In particular, one may wonder under what conditions two
possible choices (say (B,V,K) and (B′,V ′,K ′)) are equivalent, and whether this would allow
us to reformulate one element (say the visitor) as a part of another one (say the background
theory).

7. Conclusions

We have introduced the general idea of kernels over program traces and specialized it to
the case of Prolog proof trees in the logic programming paradigm. The theory and the
experimental results that we have obtained indicate that this method can be seen as a
successful attempt to bridge several aspects of symbolic and statistical learning, including
the ability of working with relational data, the incorporation of background knowledge in
a flexible and principled way, and the use of regularization. Computational complexity is
also an advantage compared to typical ILP systems. The kernel matrix can be computed
in time quadratic in the size of the training set and the complexity of the learning problem
is that of the kernel method employed (e.g., SVM or KRR) which is typically inferior to
ILP algorithms. This may potentially open the road towards some large-scale applications
of learning in the ILP setting.

The advantages of the proposed approach were experimentally verified. The Bongard
problems showed that our method scales better than typical ILP algorithms with the com-
plexity of the target concept. Furthermore, it is able to effectively address problems (like
the M -of-N one) that require precise counting, and are difficult to solve with classic ILP
approaches. Both classification and regression tasks can be naturally handled using appro-
priate kernel methods. Finally, the robust nature of statistical learning can offer advantages
with respect to symbolic approaches when dealing with noisy data sets, as shown by the
improved performance on the bioinformatics and chemoinformatics tasks.

Besides the cases of classification and regression that have been studied in this paper,
other learning tasks could naturally benefit from the proposed framework including clus-
tering, ranking, and novelty detection. One advantage of ILP as compared to the present
work is the intrinsic ability of ILP to generate transparent explanations of the learned func-
tion. Developing kernel machines capable of providing transparent predictions and the use
of kernel-based approaches to guide hypothesis search as in ILP remain interesting open
issues.

Acknowledgments

This research is supported by EU Grant APrIL II (contract n◦ 508861). PF and AP are
also partially supported by MIUR Grant 2003091149 002. We would like to thank the
anonymous reviewers whose comments contributed to improve the paper substantially.

Appendix A. Proofs of Theorems

We give in this appendix a result showing that the class of functions studied in this paper
are positive semi-definite and therefore valid Mercer kernels.

334

Kernels on Prolog Proof Trees

Theorem 9 The kernel function on Prolog ground terms given in Definition 5 is positive
semi-definite.

Proof. Let us introduce the following decomposition structure (see Shawe-Taylor and Cris-
tianini, 2004): R = 〈(X1, X2), R, (k1, k2)〉 with X1 = F , X2 = (F ,U), and

R =
{

(f/n, (f/n, a), s)s.t. s is a term having functor f/n and tuple of arguments a
}

.

Then it can be immediately verified that the kernel function of Equations (14) and (15)
correspond to the direct sum decomposition kernel associated with the decomposition struc-
ture R if k1 = ι and k2((f/n, a), (g/m, b)) = δ(f/n, g/m)k′(a, b) where given a = (s1, . . . , sn)
and b = (t1, . . . , tn)

k′(a, b) =
n∑

i=1

K(si, ti).

Note that k′ is a valid kernel if K is (being a direct sum). The proof then follows by
induction using the fact that kernels for base steps (κ (Equation (13)) and ι (Equation (14)))
are by hypothesis positive semi-definite, and the induction step simply consists of combining
positive semi-definite kernels by direct sum which itself produces valid kernels (Theorem 4).
�

Theorem 10 The kernel function on typed Prolog ground terms given in Definitions 6 is
positive semi-definite.

Proof. We can use the same technique as for Theorem 9 but including types in the decom-
position structure: R = 〈(X1, X2), R, (k1, k2)〉 with X1 = (F , T), X2 = (F , T ,U), and

R = {((f/n, τ), (f/n, (τ1×, . . . ,×τn 7→ τ), t), s) s.t. s is a term having functor f/n,
tuple of arguments t, and type signature τ1×, . . . ,×τn 7→ τ}.

The kernel function of Equations (17) and (18) correspond to the direct sum decomposition
kernel associated with the decomposition structure R if:

k1((f/n, τ), (g/m, σ)) = δ(τ, σ)ιτ (f/n, g/m)

and

k2((f/n, τ1×, . . . ,×τn 7→ τ, a), (g/m, σ1×, . . . ,×σm 7→ σ, b)) =
δ(f/n, g/m)δ(τ1×, . . . ,×τn 7→ τ, σ1×, . . . ,×σm 7→ σ)k′(a, b).

The proof follows from Theorem 4 and by induction using the fact that κτ (Equa-
tion (16)), ιτ (Equation (17)) and kernels on distinguished types (see Equation (18)) are by
hypothesis valid kernels. �

Theorem 11 The kernel functions on Prolog ground terms given in Definitions 7 and 8
are positive semi-definite.

Proof. Same as in Theorem 9 and 10 respectively, simply replacing direct sums with tensor
products. �

335

Passerini, Frasconi and De Raedt

Appendix B. Kernel Configuration Details

The kernel specification defines the way in which data and knowledge should be treated.
The default way of treating compound terms can be declared to be either sum or product,
by writing compound_kernel(sum) or compound_kernel(product) respectively.

The default atomic kernel is the delta one for symbols, and the product for numbers.
Such behavior can be modified by directly specifying the type signature of a given clause
or fact. As an example, the following definition overrides the default kernel between atm
terms in mutagenesis:

type(atm(ignore,ignore,cat,cat,num)).

It allows to ignore identifiers for molecule and atom, and change the default behavior for
atom type (which is a number) to categorical. At this level, it is possible to specify a
combining operator for predicate arguments which is different from the default one:

type(atm(ignore,ignore,cat,cat,num),product).

Here we are stating that atoms of different types will always have zero similarity. Default
behaviors can also be overridden by defining specific kernels for particular clauses or facts.
This corresponds to specifying distinguished types together to appropriate kernels for them.
Thus, the last kernel between atoms could be equivalently specified by writing:

term_kernel(atm(_,_,Xa,Xt,Xc), atm(_,_,Ya,Yt,Yc),K) :-
delta_kernel(Xa,Ya,Ka),
delta_kernel(Xt,Yt,Kt),
dot_kernel(Xc,Yc,Kc),
K is Ka * Kt * Kc.

A useful kernel which can be selected is the functor equality kernel as defined in Equa-
tion (22). For example, by writing

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

at the end of the configuration file it is possible to force the default behavior for all remaining
terms to functor equality, where the combination operator employed for internal nodes will
be the one specified with the compound_kernel statement.

Appendix C. Visitors and Kernels Used in Experiments

C.1 Bongard Problems

visit(X):-
inside(X,A,B),polygon(X,A),polygon(X,B).

compound_kernel(product).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

336

Kernels on Prolog Proof Trees

C.2 M-of-N Problems

visit(X):-
string(X,S),substr([A,B],S),comp(A,B).

leaf(substr(_,_)).

compound_kernel(sum).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

C.3 Protein Fold Classification

visit_global(X):- visit_unit(X):-
normlen(X,Len), sec_struc(X,A),
normnb_alpha(X,NumAlpha), unit_features(A).
normnb_beta(X,NumBeta).

unit_features(A):-
visit_adjacent(X):- normsst(A,B,C,D,E,F,G,H,I,J,K),

adjacent(X,A,B,PosA,TypeA,TypeB), has_pro(A).
normcoil(A,B,LenCoil),
unit_features(A), unit_features(A):-
unit_features(B). normsst(A,B,C,D,E,F,G,H,I,J,K),

not(has_pro(A))).

leaf(adjacent(_,_,_,_,_,_)).
leaf(normcoil(_,_,_)).

compound_kernel(sum).

type(normlen(ignore,num)).
type(normnb_alpha(ignore,num)).
type(normnb_beta(ignore,num)).
type(normsst(ignore,ignore,ignore,ignore,ignore,num,ignore,num,num,num,ignore)).
type(adjacent(ignore,ignore,ignore,cat,cat,cat)).
type(normcoil(ignore,ignore,num)).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

C.4 Mutagenesis

visit_global(X):-

lumo(X,Lumo),

logp(X,Logp),

ind1(X,Ind1),

inda(X,Inda).

visit_ring_size_5(X):-

ring_size_5(X,Atoms),

atoms(X,Atoms).

% ... etc.

337

Passerini, Frasconi and De Raedt

visit_benzene(X):-

benzene(X,Atoms),

atoms(X,Atoms).

visit_anthracene(X):-

anthracene(X,[Ring1,Ring2,Ring3]),

atoms(X,Ring1),

atoms(X,Ring2),

atoms(X,Ring3).

compound_kernel(sum).

leaf(benzene(_,_)).

leaf(anthracene(_,_)).

leaf(ring_size_5(_,_)).

% ... etc.

atoms(X,[]).

atoms(X,[H|T]):-

atm(X,H,_,_,_),atoms(X,T).

type(atm(ignore,ignore,cat,cat,num)).

type(bond(ignore,ignore,ignore,cat)).

type(lumo(ignore,num)).

type(logp(ignore,num)).

type(ind1(ignore,num)).

type(inda(ignore,num)).

term_kernel(X,Y,K):-

functor_equality_kernel(X,Y,K).

C.5 Biodegradability

visit_p1(X):-

sscount(X,_SSType,_SSCount).

visit_p2(X):-

p2countnorm(X,_P2Type,_P2Count).

visit_global(X):-

normlogP(X,_LogP),

normmweight(X,_Mweight).

visit_alcohol(X):-

alcohol(X,Atoms,Conns),

atoms(X,Atoms),

atoms(X,Conns).

visit_aldehyde(X):-

aldehyde(X,Atoms,Conns),

atoms(X,Atoms),

atoms(X,Conns).

visit_ar_halide(X):-

ar_halide(X,Atoms,Conns),

atoms(X,Atoms),

atoms(X,Conns).

% ... etc.

leaf(alcohol(_,_,_)).

leaf(aldehyde(_,_,_)).

leaf(ar_halide(_,_,_)).

% ... etc.

atoms(X,[]).

atoms(X,[H|T]):-

atm(X,H,_,_,_),

atoms(X,T).

compound_kernel(sum).

type(atm(ignore,ignore,cat,ignore,ignore)).

type(normlogP(ignore,num)).

type(normmweight(ignore,num)).

type(sscount(ignore,cat,num),product).

type(normp2count(ignore,cat,num),product).

term_kernel(X,Y,K):-

functor_equality_kernel(X,Y,K).

338

Kernels on Prolog Proof Trees

References

A.W. Biermann and R. Krishnaswamy. Constructing programs from example computations.
IEEE Transactions on Software Engineering, 2(3):141–153, 1976.

H. Blockeel and L. De Raedt. Top-down induction of first-order logical decision trees.
Artificial Intelligence, 101(1-2):285–297, 1998.

H. Blockeel, S. Dzeroski, B. Kompare, S. Kramer, B. Pfahringer, and W. Van Laer. Ex-
periments in predicting biodegradability. Applied Artificial Intelligence, 18(2):157–181,
2004.

M. Bongard. Pattern Recognition. Spartan Books, 1970.

M. Collins and N. Duffy. New ranking algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Proceedings of the Fortieth Annual
Meeting on Association for Computational Linguistics, pages 263–270, Philadelphia, PA,
USA, 2002.

C. Cortes, P. Haffner, and M. Mohri. Rational kernels: Theory and algorithms. Journal of
Machine Learning Research, 5:1035–1062, 2004.

C. Cortes and V.N. Vapnik. Support vector networks. Machine Learning, 20:1–25, 1995.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin (New
Series) of the American Mathematical Society, 39(1):1–49, 2002.

C. M. Cumby and D. Roth. Learning with feature description logics. In S. Matwin and
C. Sammut, editors, Proceedings of the Twelfth International Conference on Inductive
Logic Programming, volume 2583 of LNAI, pages 32–47. Springer-Verlag, 2002.

C. M. Cumby and D. Roth. On kernel methods for relational learning. In Proceedings of the
Twentieth International Conference on Machine Learning, pages 107–114, Washington,
DC, USA, 2003.

L. De Raedt, K. Kersting, and S. Torge. Towards learning stochastic logic programs from
proof-banks. In Proceedings of the Twentieth National Conference on Artificial Intelli-
gence (AAAI’05), pages 752–757, 2005.

P. Frasconi, A. Passerini, S. Muggleton, and H. Lodhi. Declarative kernels. Technical
Report RT 2/2004, Dipartimento di Sistemi e Informatica, Università di Firenze, 2004.

Y. Freund and R.E. Schapire. Large margin classification using the perceptron algorithm.
Machine Learning, 37(3):277–296, 1999.

T. Gärtner. A survey of kernels for structured data. SIGKDD Explorations Newsletter, 5
(1):49–58, 2003.

T. Gärtner, J.W. Lloyd, and P.A. Flach. Kernels and distances for structured data. Machine
Learning, 57(3):205–232, 2004.

339

Passerini, Frasconi and De Raedt

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-
10, University of California, Santa Cruz, 1999.

T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predictive graph min-
ing. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 158–167. ACM Press, 2004.

T. Horvath, S. Wrobel, and U. Bohnebeck. Relational instance-based learning with lists
and terms. Machine Learning, 43(1/2):53–80, April 2001.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In
Advances in Neural Information Processing Systems 11, pages 487–493, Cambridge, MA,
USA, 1999. MIT Press.

A. Karalič and I. Bratko. First order regression. Machine Learning, 26(2-3):147–176, 1997.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs.
In Proceedings of the Twentieth International Conference on Machine Learning, pages
321–328, Washington, DC, USA, 2003.

G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on stochas-
tic processes and smoothing by splines. The Annals of Mathematical Statistics, 41:495–
502, 1970.

A.J. Knobbe, A. Siebes, and B. Marseille. Involving aggregate functions in multi-relational
search. In Proceedings of the Sixth European Conference on Principles and Practice
of Knowledge Discovery in Databases, volume 2431 of LNCS, pages 287–298. Springer-
Verlag, 2002.

S. Kramer. Structural regression trees. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 812–819, Cambridge/Menlo Park, 1996. AAAI Press/MIT
Press.

S. Kramer. Relational Learning vs. Propositionalization: Investigations in Inductive Logic
Programming and Propositional Machine Learning. PhD thesis, Technischen Universität
Wien, Wien, Austria, 1999.

S. Kramer, N. Lavrac, and P. Flach. Propositionalization approaches to relational data
mining. In Relational Data Mining, pages 262–286. Springer-Verlag, NY, 2000.

T. K. Lakshman and U. S. Reddy. Typed prolog: A semantic reconstruction of the mycroft-
O’keefe type system. In V Saraswat and K. Ueda, editors, Proceedings of the 1991
International Symposium on Logic Programming, pages 202–220, San Diego, CA, October
1991. MIT Press.

C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel: a string kernel for svm protein
classification. In Proceedings of the Seventh Pacific Symposium on Biocomputing, pages
564–575, Lihue, Hawaii, USA, 2002.

340

Kernels on Prolog Proof Trees

J.W. Lloyd. Logic for learning: learning comprehensible theories from structured data.
Springer-Verlag, 2003.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification
using string kernels. Journal of Machine Learning Research, 2:419–444, 2002.

P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of marginalized
graph kernels. In R. Greiner and ACM Press D. Schuurmans, editors, Proceedings of
the Twenty-first International Conference on Machine Learning, pages 552–559, Banff,
Alberta, Canada, 2004.

S. Menchetti, F. Costa, and P. Frasconi. Weighted decomposition kernels. In Proceedings of
the Twenty-second International Conference on Machine Learning, pages 585–592, New
York, NY, USA, 2005. ACM Press.

T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli. Explanation based generalization:
a unifying view. Machine Learning, 1:47–80, 1986.

T. M. Mitchell, P. E. Utgoff, and R. Banerji. Learning by experimentation: Acquiring
and refining problem-solving heuristics. In Machine learning: An artificial intelligence
approach, volume 1, pages 163–190. Morgan Kaufmann, 1983.

S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special issue on
Inductive Logic Programming, 13(3-4):245–286, 1995.

S.H. Muggleton, H. Lodhi, A. Amini, and M.J.E. Sternberg. Support vector inductive
logic programming. In Proceedings of the Eighth International Conference on Discovery
Science, volume 3735 of LNAI, pages 163–175, 2005.

C. Nédellec, H. Adé, F. Bergadano, and B. Tausend. Declarative bias in ILP. In L. De Raedt,
editor, Advances in Inductive Logic Programming, volume 32 of Frontiers in Artificial
Intelligence and Applications, pages 82–103. IOS Press, 1996.

A. Passerini and P. Frasconi. Kernels on prolog ground terms. In Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, pages 1626–1627,
Edinburgh, Scotland, UK, 2005.

C. Perlich and F. Provost. Aggregation-based feature invention and relational concept
classes. In Proceedings of the Ninth SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 167–176. ACM Press, 2003.

T. Poggio and S. Smale. The mathematics of learning: Dealing with data. Notices of the
American Mathematical Society, 50(5):537–544, 2003.

J. R. Quinlan. Combining instance-based and model-based learning. In Proceedings of the
Tenth International Conference on Machine Learning, pages 236–243, Amherst, Mas-
sachusetts, 1993. Morgan Kaufmann.

341

Passerini, Frasconi and De Raedt

J. Ramon and M. Bruynooghe. A framework for defining distances between first-order
logic objects. In D. Page, editor, Proceedings of the Eighth International Conference
on Inductive Logic Programming, volume 1446 of LNAI, pages 271–280. Springer-Verlag,
1998.

S. Russell and P. Norvig. Artifical Intelligence: A Modern Approach. Prentice-Hall, 2nd
edition, 2002.

B. Schölkopf and M.K. Warmuth, editors. Kernels and Regularization on Graphs, volume
2777 of LNCS, 2003. Springer.

E.Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and R. D. King. Theories for mutagenicity:
A study in first-order and feature-based induction. Artificial Intelligence, 85(1-2):277–
299, 1996.

M. Turcotte, S.H. Muggleton, and M.J.E. Sternberg. The effect of relational background
knowledge on learning of protein three-dimensional fold signatures. Machine Learning,
43(1,2):81–96, April-May 2001.

W. Van de Velde. IDL, or taming the multiplexer. In K. Morik, editor, Proceedings of the
Third European Working Session on Machine Learning, pages 211–226. Pitmnann, 1989.

F. Van Harmelen and A. Bundy. Explanation based generalization = partial evaluation.
Artificial Intelligence, 36:401–412, 1988.

V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

A.C. Varzi. Parts, wholes, and part-whole relations: the prospects of mereotopology. Data
and Knowledge Engineering, 20:259–286, 1996.

S.V.N. Viswanathan and A. J. Smola. Fast kernels for string and tree matching. In S. Thrun
S. Becker and K. Obermayer, editors, Advances in Neural Information Processing Systems
15, pages 569–576. MIT Press, Cambridge, MA, 2003.

Y. Wang and I. Witten. Inducing model trees for continuous classes. In Proceedings of
the Ninth European Conference on Machine Learning, pages 128–137, Prague, Czech
Republic, 1997.

J. M. Zelle and R. J. Mooney. Combining FOIL and EBG to speed-up logic programs. In
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence,
pages 1106–1111, Chambéry, France, 1993.

342

