
24 July 2025

Model Based Testing and Abstract Interpretation in the Railway Signaling Context / D. Grasso; A.
Fantechi; A. Ferrari; C. Becheri; S. Bacherini. - STAMPA. - (2010), pp. 0-0. (Intervento presentato al
convegno Third International Conference on Software Testing, Verification and Validation (ICST2010)
tenutosi a Parigi nel Marzo 2010).

Original Citation:

Model Based Testing and Abstract Interpretation in the Railway
Signaling Context

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La data sopra indicata si riferisce all'ultimo aggiornamento della scheda del Repository FloRe - The above-
mentioned date refers to the last update of the record in the Institutional Repository FloRe

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
The webpage https://hdl.handle.net/2158/388244 of the repository was last updated on

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

https://hdl.handle.net/2158/388244

Model Based Testing and Abstract Interpretation
in the Railway Signaling Context

Daniele Grasso, Alessandro Fantechi
Department of Computer Engineering

University of Florence
Florence, Italy

grasso.dan@gmail.com, fantechi@dsi.unifi.it

Alessio Ferrari, Carlo Becheri, Stefano Bacherini
General Electric Transportation Systems

Florence, Italy
alessio.ferrari@ge.com, carlo.becheri@ge.com

stefano.bacherini@ge.com

Abstract—This article presents the experience of a railway
signaling manufacturer in introducing the technologies of
model based testing and abstract interpretation as part of
its development process. Preliminary results show the better
performance of these techniques with respect to the previously
employed structural coverage based testing.

Keywords-abstract interpretation; model based testing;
safety-critical; railway signaling;

I. INTRODUCTION

General Electric Transportation Systems (GETS) develops
embedded platforms for railway signaling systems. The
safety-critical nature of these applications makes the
verification and validation activities extremely crucial to
ensure dependability of the products and prevent failures.
It is well known that the role played by the software
in embedded systems is constantly growing, and railway
applications are not immune to this trend. In the company,
the size of the software for a single project has increased
by four times within the last two years, while the hardware
has remained basically stable. Alike many other safety-
critical industries, GETS has adopted the Model Based
Development (MBD) technology in an effort to deal with
the growing scale of its applications. MBD practices
consist in developing abstract models of the system and
automatically generate code from these models. GETS
employed MBD first for the development of prototypes
[1], and afterward for requirements formalization and code
synthesis [2].
Traditionally, unit testing is the main technique adopted
to detect errors in the code before integration1. With unit
testing the code is exercized by executing it and ensuring
that its behaviour is compliant to the requirements. Unit
testing activities normally require a high cost, and, on
the other hand, they do not ensure that the software is
completely free from errors, since exploring all the possible
behaviours of the code is practically unfeasible by means
of testing only.

1Extensive testing is performed on the integrated system before the actual
deployment, but we consider system testing out of the scope of this paper.

The novel development context driven by MBD practices
has opened the door to a new verification process to replace
traditional unit testing and ensure higher code safety and
cost effectiveness at the same time. In this article we
present the experience of the manufacturer in adopting
model based testing and abstract interpretation technologies
to address this goal.

II. MODEL BASED TESTING

Model Based Development (MBD) is a software develop-
ment approach where the fundamental artifacts are models.
Before getting into hand crafted code, the developer has to
produce one or more abstract specification of the system in
the form of models. Given this specification, software tools
can provide simulation of the model behaviour and auto-
matic code generation, this allowing a notable improvement
for the process productivity.
Model based testing makes use of the behavioural part of
these models, normally state transition systems or finite state
automata, to produce tests for the Implementation Under
Test (IUT), which is the actual software derived from the
models. Though the effort of building abstract models and
derive tests is not negligible, recent studies have shown how
this approach allows a greater effectiveness in terms of errors
detection with respect to the traditional approaches [3].

III. ABSTRACT INTERPRETATION

Abstract interpretation is a particular static analysis
method that allows to infer dynamic properties of the
code and to detect runtime errors and faulty states of the
program without executing the code. The theory beyond this
technology was presented by P. Cousot and R. Cousot [4]
in the 70s. The core idea of the theory is to define some
approximation of the semantics of a program to obtain an
abstract semantics. Formal proof of the program can be done
at this different level of abstraction in which irrelevant de-
tails are removed to reduce the complexity of the verification
process. The method defines an overapproximation of all the
program reachable states in order to check all the possible

program runs. If a property is satisfied for the analysed set
then it is satisfied for the real domain of the program, that
represents a subset of the one verified. As one can infer from
the theory, tools for abstract interpretation may lead to false
positives, caused by the analysis of runs that do not belong
to the real domain of the code, and normally these situations
have to be checked manually.

IV. UNIT TESTING PROCESS

The proposed process for unit testing is based on two
different phases, namely model based testing and abstract
interpretation. With the first phase we address the objective
of ensuring that the software is compliant with the require-
ments given for the code unit. The second phase aims at
detecting those runtime errors which may derive from buffer
overflow, dereferenced pointers, and other data-flow related
deficiencies of the implementation.

A. Phase 1: Model Based Testing

GETS adopted the Simulink/Stateflow platform to in-
troduce MBD within its development process. This is a
widely used tool-suite for the modeling and the simulation
of control systems.
The first phase of the verification process is described in
Figure 1. First, a behavioural model for the functional unit is
derived from the unit requirements, which are the functional
requirements apportioned to the unit itself. The model is
represented through Stateflow, which is a graphical tool
implementing a variant of Harel’s hierarchical statecharts,
a well suited language for representing behavioural models.
The Simulink environment supports the execution of State-
flow models, this allowing the possibility of actually running
the specification and verifing its behaviour.
In order to assess that the specification is compliant with the
expected behaviour of the system, a test suite is manually
derived for the Stateflow model, with a set of tests defined
according to the requirement coverage criterium: for each
unit requirement a unit test is provided in the form of an
input data sequence, in order to verify that the requirement
has been correctly translated into the Statefow formalism
through simulation and observation of the output.
From the Stateflow model, C source code is automatically
generated by means of Real Time Workshop (RTW) Embed-
ded Coder. A tool called Test Observer has been developed
to automatically translate the unit tests manually provided
for the Statefow model into test scenarios for the generated
code, which represents our IUT. The tool registers the test
execution during the simulation in terms of input and output
Simulink time-series (Simulink data objects made of (time,
value) tuples for each variable), and directly translates the
time-series into given input/expected output matrixes for the
generated module. The generated code consists of a single
file having a unique interface function for each module.
Another tool, called Test Integrator, creates a main file

embedding the registered given input, the expected output
and the model generated code. For each test case the tool
produces an executable file that checks if at all times the
current output equals the expected output. If the execution
is performed without errors, it can be stated that, for the
given unit test, the generated code is consistent with the
Stateflow specification.

StateflowUnit Requirements

Stateflow
Model

Simulink
Test Suite

RTW
Embedded

Coder
SimulinkTest

Observer

Generated
Test Suite

Test
Integrator

Generated
Code

Figure 1. Model Based Testing process

B. Phase 2: Abstract Interpretation

Abstract interpretation is performed by means of the
PolySpace tool [5]. PolySpace works on C code and pro-
duces its results concerning possible runtime errors through
chromatic marks on the code:

• green if the statement can never lead to a runtime error;
• orange if the statement can produce an error;
• red if the statement leads to a runtime error in every

analysed runs;
• grey if the statement is not reachable.

Usually, the critical issue in using PolySpace is the analysis
of the high number of orange warnings caused by over-
approximation. GETS has adopted a two step process (see
Figure 2) in order to significantly reduce the orange checks
that have to be manually reviewed. With the first step the
code is quickly verified using a large overapproximation set.
In the second step a finer approximation set is applied using
the information obtained from the previous step.
The first step is useful to detect systematic runtime errors
(red) and unrechable statements (grey). Since no constraints
are given in this analysis step, the set-up time spent is
negligible. On the other hand results are not selective enough
about the orange warnings, and, in order to define the

C
Code

PolySpace

Colored
Code

Human
Operator

Constraints

Least
Orange

Set

PolySpace

C
Code

Figure 2. Static Analysis Process

constraints for the subsequent step, each orange has to be
associated to the cause that could have produced it. An
analyst with a minimum proficiency with the tool can easily
evaluate the orange marks and quickly define the classes
of causes they belong to, although in this step it is still
difficult and time consuming to identify the oranges which
are actually false positives. The identified classes represent
input constraints to be given to the tool to restrict the
analysed abstract domain of the program. Examples of input
constraints are interleaving of function calls and range of
program variables.
The second verification step, performed with restrictive
settings, allows a finer approximation of the real domain of
the program and a reduction of the number of false positives.
The analyst can quickly check the small number of false
positives and in the end is able to state that the code is free
from runtime errors.
It should be noticed that the use of two verification steps
does not produce a high overhead. Our experience, as shown
by the results given in the next section, confirms that the
review performed on the first phase is simplified by the fact
that the generated code is characterized by a limited number
of orange classes, while the results obtained with the second
verification normally give a low number of warnings.

V. CASE STUDY

The approach described has been experimented in the
verification phase of a project concerning an Automatic
Train Protection (ATP) system developed by GETS in 2008.
ATP systems are embedded platforms aimed to control the
train speed according to the wayside signals and brake the
train in case of SPAD (Signal Passed At Danger), which is
known to be a common cause of railway accidents.

Behavioural models of the logic of the system have been
defined by means of 21 Stateflow models, each one formal-
izing a specific functionality. The code generated from these
models is about 150 KLOC in total in which some functions
reach a value of cyclomatic complexity of 60 and show more
than 700 paths2.
For each Stateflow model, unit test cases have been provided
according to the requirement coverage criterium. The overall
test-suite consists of 327 test-cases covering the 100% of the
modeled functional requirements and part of their negative
cases. With the test-suite provided, we have been able
to detect 42 errors at model level, mostly related to the
misinterpretation of the natural language requirements. How-
ever, the execution of the Test Observer did not found any
discrepancy between the model behaviour and the generated
code behaviour. Information on structural decision coverage
has been provided for both the Stateflow specification and
the generated code. The decision coverage resulted in being
around 97% for each model, and in most cases the model
coverage and the code coverage were coinciding.
After ensuring the compliance of the implementation with
the requirements through the model based testing phase, the
generated code is analysed through abstract interpretation to
enforce runtime error detection.
Results on the abstract interpretation phase are reported for
a representative set of project modules.

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400

87

41

46

78

5

212

738

368

359

345

394

1044

Green
Orange

ID
 M

od
ul

e

Number of checks

Figure 3. Results of the first PolySpace verification step

As shown in Figure 3, no systematic error (red) has been de-
tected during the first PolySpace verification. Nevertheless,
there is a relevant amount of orange marks for which it is not
possible to decide if they actually represent faulty states of
the program. These orange warnings have been classified
according to the kind of approximation that supposedly
produced them. Manual analysis of the first results has
detected only two classes of causes of oranges: wrong
interleaving of function calls and automatic initialization of

2Evaluated following boundary-interior method [6]

global variables and input function parameters (Figure 4).

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160

15

20

8

18

4

70

62

21

38

60

1

142

Interleaving
Automatic Ini-
tialization

ID
 M

od
ul

e

Number of checks

Figure 4. Orange classes associated to the approximations

The analysis of these causes has determined the constraints
for the second PolySpace verification. This step produced
only a few orange warnings, as shown in Figure 5.

1 2 3 4 5 6
0

1

2

3

4

ID Module

O
ra

ng
es

Figure 5. Results of the second PolySpace verification step

The remaining orange marks are due to complex inter-
actions of variables that cannot be constrained by finer
approximation bounds. However, an analyst with a sufficient
knowledge of the actual meaning of the variables can quickly
check if the warnings are false positives or not.
Table I compares the verification cost of the considered
project with the effort spent for traditional structural testing
of code (according to 100% boundary interior path coverage)
in a previous project of comparable size in terms of modules.

Verification Process Modules Paths Hours
Structural Testing 19 2274 728
MBT + Abs. Int. 21 >8000 227 (162 + 75)

Table I
COMPARISON OF VERIFICATION COST

Our first results show that the new approach reduces the

verification cost of 70%, even with code having a higher
complexity in terms of path number. At the same time we
obtain a verification accuracy that can not be achieved with
traditional testing.

VI. CONCLUSION

This paper presented the experience of a railway signaling
manufactuer in introducing the tecnologies of model based
testing and abstract interpretation as part of its development
process. The definition of the new approach required a
considerable effort of the team for understanding the tech-
nologies and merging them with the previously established
development process. According to the results obtained on a
pilot project, the new approach allows to significantly reduce
the verification cost in spite of the growing complexity of
the code, and therefore the effort of change actually paid
off.
The actual strength of our strategy is the abstract interpre-
tation phase: since the code is not executed but formally
analysed the approach allows to fully explore the state space
of the program that is a prohibitive goal for traditional
testing. At the same time, this technology determines the
exact statement in which an error occurs. Instead, traditional
testing entails an expensive report analysis to manually find
the statement that has triggered the uncorrect output.
The company is currently investigating strategies for extend-
ing model based testing from unit level to system integration
level. Concerning abstract interpretation, we have already
defined guidelines for using PolySpace at this level, but a
further analysis is required in order to completely settle the
approach.

REFERENCES

[1] S. Bacherini, et al., A Story about Formal Methods Adop-
tion by a Railway Signaling Manufacturer, FM 2006. LNCS,
4025/2006. Hamilton, Canada, 2006.

[2] A. Ferrari, et al., Modeling Guidelines for Code Generation in
the Railway Signaling Context, Proceedings of 1st NASA For-
mal Methods Symphosium (NFM). Moffet Field, CA, U.S.A.,
2009.

[3] A. Pretschner, et al., One evaluation of model-based testing
and its automation, Proceedings of the 27th International
Conference on Software Engineering (ICSE). St. Louis, MO,
U.S.A., 2005.

[4] P. Cousot, R. Cousot, Abstract Interpretation: A unified lattice
model for static analysis of programs by construction or ap-
proximation of fixpoints, Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming language.
Los Angeles, CA, U.S.A., 1977

[5] A. Deutsch, Static verification of dynamic properties,
PolySpace White Paper, 2004

[6] W. E. Howden, Methodology for the generation of program
test data, IEEE Trans. Comput., vol. C-24, no. 5, pp 554-559,
May 1975

