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ABSTRACT

Motivation:Microarray studies permit to quantify expression levels on

a global scale by measuring transcript abundance of thousands of

genessimultaneously.Adifficultywhenanalysingexpressionmeasures

is how tomodel variability for thewhole set of genes. It is usually unreal-

istic to assume a common variance for each gene. Several approaches

to model gene-specific variances are proposed. We take advantage of

calibration experiments, in which the probes hybridized on the two

channels come from the same population (self–self experiment). In

this case it is possible to estimate the gene-specific variance, to be

incorporated in comparative experiments on the same tissue, cellular

line or species.

Results:We present two approaches to introduce prior information on

gene-specific variability from a calibration experiment: an empirical

Bayes model and a full Bayesian hierarchical model. We apply the

methods in the analysis of human lipopolysaccharide-stimulated leuko-

cyte experiments.

Availability:The calculations are implemented inWinBugs. The codes

are available on request from the authors.

Contact: m.blangiardo@imperial.ac.uk

1 INTRODUCTION

In the framework of microarray analysis there are two main research

goals: one is the identification of differentially expressed genes

among several varieties (class comparison), while the other is the

discovery of clusters within a collection of samples (class discov-

ery) (Simon et al., 2003). Class comparison is related to the assess-

ment of exposure or treatment effects (i.e. comparison of gene

expression for a population of smokers and non-smokers) and

the comparison can be performed directly (i.e. loop design) or

indirectly (i.e. reference design). Class discovery is based on dis-

tances between gene expression profiles of pairs of samples (Dobbin

and Simon, 2002) and can be absolute or relative. To the aim of class

comparison the classical statistical approach is based on modified

Student t-test procedures where, for each gene, at the numerator

there is the difference between gene expression levels in two

conditions to be tested and at the denominator there is the square

root of the variance, divided by the number of replicates (Wit and

McClure, 2004, p. 183 and followings). In this context a crucial

point is how to obtain a suitable estimate of the variance. Actually,

when the number of replicates is very small the sampling distribu-

tion of the variance is very asymmetric, with higher probability for

small values and a strong instability of the pivotal t-value. For this
reason in the literature many authors proposed several procedures

to stabilize the variability measure (Speed, 2003, p. 51 and

followings). One possibility is to consider a unique variance estim-

ate for the whole set of genes or a function of the variance for all the

genes. This approach could be used for single array inference (e.g.

the Bayesian approach of Newton et al., 2001). Generally speaking

it implies a loss of power, because it tends to be very conservative

and to increase the number of false negative results. A better way to

proceed can be found in a parametric or not parametric framework.

In a parametric context, many authors consider gene-specific

variance estimates for the denominator of the t-test, but add a sta-

bilizing constant for the whole set of genes. Baldi and Long (2001)

use a full Bayesian hierarchical model for the log-expression. They

discuss point estimates for the parameters and hyperparameters

values. Regularized expressions for the variance of each gene are

derived combining the empirical variance with a prior variance s2
g0.

Several choices for the prior are proposed and among them the

variance of the neighboring genes contained in a window of pre-

defined size w (i.e. ranking the genes on the base of their expression

measure, the 50 genes immediately above or below the gene under

consideration). An additional hyperparameter n0 (prior degrees of

freedom) is necessary to determine the weight assigned to the

prior variance. It is tuned so that its sum is equal to a given constant

(n0 þ n ¼ K).
Lönnstedt and Speed (2002) propose a method that can be clas-

sified as empirical Bayesian: differently from a full Bayesian

approach, they do not define prior distributions on hyperparameters,

but substitute them by a frequentist estimate based on the marginal

distribution. In particular, the authors present a Bg-statistic (a Bayes

posterior logodds) instead of the classical t-statistic used to classify

the differentially expressed genes. Following the same philosophy,
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the variance has a gene-specific component s2g and a constant term

a0. Values of Bg are explicitly calculated assuming conjugate prior

on the gene expression mean and variance.

Other authors have worked on specific parametric models for the

errors, starting from the idea that the standard deviation for expres-

sion measure increases proportionally to the level of expression

(Newton et al., 2001), but does not tend to 0 for not expressed

genes. From this assumption Rocke and Durbin (2001) develop

an error model including a gene-specific additive component and

a gene-specific multiplicative one and propose several ways to

estimate the models, based on negative controls, or replicates.

In a non-parametric framework Tusher et al. (2001) work on

t-tests and assign a score tg to each gene on the basis of its change

in gene expression and relative to standard deviation calculated on

repeated measures. Permutations are used to identify significantly

altered genes and to estimate the false discovery rate. They intro-

duce a ‘fudge factor’ s0 to the denominator of t-test to avoid low

expression genes dominate the results. It is chosen to minimize the

coefficient of variation. This method is framed in a frequentist

approach, does not assume any distribution on the parameters.

Very similar to the previous, Efron et al. (2001) propose a simple

empirical Bayes model in which the fudge factor to be added at the

denominator is the 90th percentile of the standard deviation for all

the genes. Delmar et al. (2004) develop a finite mixture model for

the marginal gene-specific distribution (which can be classified as

non-parametric maximum likelihood). In particular, estimating

gene-specific variance can be seen as a classification problem,

where the number of components and the gene belonging are estim-

ated. Since the number of groups is much lower than the number of

genes, the estimates of group variance are very stable.

Heuristically, Comander et al. (2004) pooled genes to calculate

more reliable variance estimates by average of minimum intensity

values. There is no parametric statistical modelling of variance as

function of intensity, but instead a loess smoothed estimate of

variance is derived. Uncertainty in this procedure is not considered

and a Z-test is used.
All the previous approaches work with a classical comparative

experiment (with replications), where samples from two popula-

tions are compared. A different approach is introduced by Tseng

et al. (2001) who propose calibration experiments in which the

probes hybridized on the two channels come from the same popu-

lation (self–self experiment). Such experiments make possible to

incorporate the gene-specific variability information in comparative

experiments on the same tissue, cellular line or species, with a prior

ignorance on the remaining parameters and represent an alternative

way to face the problem of variance estimate.

We followed the Tseng’s approach and performed a calibration

experiment before doing the comparative one. We built a full Baye-

sian model and a simpler Empirical Bayesian model. We analysed

data on lipopolysaccharide (LPS) stimulated and un-stimulated

human leukocyte, obtaining prior knowledge on variability from

self–self experiment.

The structure of the paper is as follows. In Section 2 we describe

the calibration and comparative experiments (Subsection 2.1) and

the data preprocessing phase (Subsection 2.2); in Section 3 we

present the normalization procedure used, and then focus the atten-

tion on the full Bayesian model and on the Empirical Bayesian one;

model graphs and details on implementation follow; in Section 4

we describe the results in terms of differentially expressed genes; In

Section 5 a sensitivity analysis is reported and in Section 6 we

discuss the differences between the two models.

2 MATERIALS

2.1 LPS microarray experiment

2.1.1 Calibration experiment Mononuclear cells were obtained

from peripheral blood (PMBC) of 10 healthy subjects by density

gradient centrifugation on Ficoll-Hypaque. Cells from each subjects

were incubated in RPMI 1640 at 37� in a humidified atmosphere

with 5% CO2 for 3 h in standard conditions (absence of lipopoly-

saccharide). Total RNA was extracted and equal amount of total

RNA from different subjects was pooled. Total RNAs were split

into six aliquots and then retro-transcribed with amino-allyl-dUTP,

hydrolysed, purified and labelled with NHS-Cyanine dyes (three

aliquots with Cy3, probe A and three aliquots with Cy5, probe B).

Then, three arrays were produced having the two probes purified,

mixed and hybridized on the arrays. After incubation, the three

arrays were scanned by the 4000B scanner (Axon). Image analysis

was performed by GenePix 4.1 software.

2.1.2 Comparative experiment Mononuclear cells were obtained

from peripheral blood (PMBC) of the same 10 healthy subjects used

in calibration experiment by density gradient centrifugation on

Ficoll-Hypaque. Cells from each subjects were divided into two

aliquots; the first was incubated in RPMI 1640 at 37� in a humidified

atmosphere with 5% CO2 for 3 h in the presence of LPS (10mg/ml,

stimulated cells). The second was incubated in the same conditions

but in the absence of LPS (un-stimulated cells). Total RNA was

extracted and equal amount of total RNA separately, from stimu-

lated or un-stimulated cells, was pooled. Total RNAs were retro-

transcribed with amino-allyl-dUTP, hydrolysed, purified and

labelled with NHS-Cyanine dyes following th dye-swap design

(Cy3 and Cy5, coupled, to un-stimulated and stimulated speci-

mens). The two probes were purified, mixed and hybridized on

the arrays. After incubation, arrays were scanned by the 4000B

scanner (Axon). Image analysis was performed by GenePix 4.1

software. For the comparative experiment, two arrays finally

were printed according to the dye-swap design.

Therefore, the complete experiment consists in 5 arrays made up

22 · 21 spots grid, for a total of 14 784 spots. The 14 784 spots

included 13 971 oligonucleotides representing each one different

gene, 29 negative controls (mixtures of oligonucleotide of other

organisms), 2 positive controls (a mixture of all the human oligo-

nucleotides) and 872 blanks (only printing solution). Out of 14 784,

1502 (10.2%) spots were absent because of a failure during the

printing procedure.

2.2 Microarray data preprocessing

2.2.1 Quality control The process of microarray fabrication is

subjected to many sources of variability and could contain a

large amount of noise. In particular, it is possible that the noise

dominates the signal for some spots. We applied the quality control

present in GenePix Pro 4.1, with the aim of evaluating the presence

of artefacts (bubbles, hair, fibres). After GenePix Pro 4.1 quality

control and the visual inspection, the analysable spots resulted 80,

87 and 90% as concerned the 3 self–self experiments, and 83 and

87%, for the 2 arrays of the comparative experiment.
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2.2.2 Spots selection for the analysis of gene-specific variances
To the purpose of the present paper, we restricted our attention to a

subset of genes for which extraneous sources of variability can be

excluded. To select these spots all the five arrays were screened

following the criteria suggested by Simon et al. (2003). In particu-

lar, we excluded a spot if the number of pixels used to calculate the

intensity was less than 25 for the foreground intensity in either

channel, if the signal was lower than 200 for both the channels

or if the ratio between the average foreground intensity and the

median background intensity was smaller than 1.5 in either channel.

Spots with a large signal for one channel and low, undetectable

signal for the other were not eliminated, but modified to become

analysable, forcing the low intensity signal (defined as less than

200) to 200. In this paper we considered 2887 genes represented in

all the 5 arrays (3 calibration arrays and 2 comparative arrays).

3 METHODS

In this section we present the two methods we used to analyse the

data. The first model, is a full Bayesian hierarchical model while the

second, originally proposed by Tseng et al. (2001), is an instance of
the empirical Bayes approach.

3.1 Normalization

We performed two different types of normalization (Yang et al.,
2002): for each slide a local A-dependent normalization (loess),

considering all the genes present on the array, is used for empirical

Bayes model. For Bayesian hierarchical model, the normalization

step was part of the modelling phase.

3.2 Models

3.2.1 Bayesian hierarchical model The model is split into two

parts.

Calibration model. The first submodel is used to estimate gene-

specific variances from the calibration experiment. To this purpose

we specified the following model, which is in the same philosophy

of Lewin et al., 2005, for the unnormalized log-intensity

xigc � Nðmigc‚ xsgÞ, ð1Þ
where i denotes array (i ¼ 1, 2, 3), g denotes gene g ¼ 1, . . . , 2887
and c denotes channel c ¼ 1, 2, where as usual c ¼ 1 denotes Cy3

dye and c ¼ 2 denotes Cy5 dye. For notation simplicity we refer to

xsg as the variance.

The normalization procedure was achieved by an ANOVAmodel

(see Kerr et al., 2002 for a general introduction to the analysis of

variance approach to microarray data)

migc ¼ aig þ dc þ gg, ð2Þ
where aig denotes the gene-specific array–gene interactions, dc the

dye-effects and gg the normalized gene effects. gg � N(mg, sg) are

exchangeable, with mg non-informative Gaussian and 1/sg non-

informative Gamma hyperpriors. All the other normalization para-

meters were fixed effects modelled with non-informative Gaussian

hyperpriors. The gene-specific variances were assumed to follow a

Lognormal distribution xsg � logN(ms,ss) with ms � N(0, 10 000)
and 1/ss � Ga(0.001, 0.001) non-informative hyperpriors. This

assumption of a skewed distribution for variance is standard and

flexible enough to allow high variances for few genes.

Comparative model. The second submodel is specified for the

comparative experiment and incorporates relevant information from

the calibration experiment. The kernel likelihood is the same as for

the calibration model. For the i-th array (i ¼ 1, 2) the unnormalized

log-intensity

xigc � Nðmigc, xsgÞ ð3Þ
was modelled as Gaussian for gene g and channel c ¼ 1, 2. The

gene-specific variances were modelled as lognormal variables xsg �
logN(ms, ss) with informative parameters values obtained from the

self–self experiment. In particular, we assumed ms equal to the

mean of the appropriate posterior distribution on the self–self data:

E½ms j xself � ¼
R
ms f ðxself jmsÞpðmsÞdmsR

f ðxself jmsÞpðmsÞdms

¼
R
ms

R
f ðxself jms‚ssÞpðms‚ssÞdssdms

constðxselfÞ ‚ ð4Þ

Where xself are the self–self expression data and const(xself) is a

normalizing constant depending only on data. Analogously, for ss

we plugged in the posterior mean of the corresponding posterior

distribution f(ss | x
self ).

A linear model was assumed for migc as follows:

migc ¼ aig þ tg þ dc þ gg: ð5Þ

Here the model terms tg can be interpreted as a normalized log-ratio

and quantify the treatment (LPS) effects. Their distribution was

assumed Gaussian with gene-specific mean mtg
and variance stg

.

Summarizing, the prior distributions for tg, mtg
and stg

were

assumed as follows:

tg � Nðmtg
‚stg

Þ ð6Þ

mtg
� Nðmt‚stÞ‚ 1=stg

� Gaðnt‚btÞ‚ ð7Þ
with informative hyperparameters mt, st, nt, bt.

This formulation is sensible since a Gaussian distributed effect

parameter tg, on the log scale, is justified by most of the literature

on generalized linear mixed models (see Clayton in Markov

Chain Monte Carlo in Practice, 1996). The conjugate hyperpriors

[Equation (6)] are standard and assume an exchangeable structure,

i.e. same ignorance about the status of the gene (differentially or not

differentially expressed). More sophisticated mixture models could

be introduced (see Parmigiani et al., 2002).

Informative prior on log-ratio. Actually values formt, st, nt, bt

were obtained from the calibration experiment as follows. On the

calibration arrays we calculated a residual effect rigc ¼ xigc � migc

and reconstructed a ‘normalized log-ratio’ under the null hypothesis

for each slide as the difference between the residual effect of c ¼ 1

channel and the residual effect of c ¼ 2 channel is given as

tig ¼ rig1 � rig2‚ ð8Þ
where rigc was the residual for the c-th channel on the i-th array (i ¼
1, 2, 3).

Then for each gene we calculated the plug-in values for the mtg

prior as:

m̂mt ¼
1

G

X

g

t·g ð9Þ

ŝst ¼
1

G � 1

X

g

ðt·g � m̂mtÞ
2
‚ ð10Þ

where t·g ¼ 1
3

P
i tig (Fig. 1).
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Similarly, we obtained the plug-in values for the prior Gamma

parameters nt and bt from the mean and variance of

ŝstg
¼ ½1

2

P
i ðtig � t·gÞ2� :

n̂nt ¼ Aveðŝstg
Þ· b̂bt ð11Þ

b̂bt ¼
Aveðŝstg

Þ
Varðŝstg

Þ ‚ ð12Þ

where Ave(.) and Var(.) denote the average and variance

operator.

3.2.2 Tseng’s empirical Bayes model To adapt the model proposed

by Tseng et al. (2001) we reformulated it as follow. We normalized

the data externally by loess (Yang et al., 2002) through the MAAN-

OVA library implemented in R (www.r-project.org) (Wu et al.,
2003). The normalized log-ratio mig for g-th gene and i-th array

were modelled as

mig � Nðtg, msgÞ‚ ð13Þ
where tg was the mean and msg was the variance of log-ratio over

the replicates of the comparative experiment for the gene g. To
make easy compare it with the full Bayesian model and the like-

lihood can be written as follows:

mig ¼ normalizedðxig1 � xig2Þ ð14Þ
mig � Nðmig, msgÞ‚ ð15Þ

where mig ¼ tg. The distribution of tg was assumed Gaussian with

gene-specific parameters and all the hyperparameters had a classic

Bayesian non-informative distribution [compare with Equations 6

and 7]. The information pooled from the calibration experiment was

used to obtain an informative prior distribution for msg:

msg � wg

x2
k=k

‚ ð16Þ

where k was the number of degree of freedom of a x2-deviate;

wg was a weighted average of gene-specific and overall empirical

variance calculated on the calibration arrays (i ¼ 1, . . . , Iself) as

follows:

ŝsg ¼ 1

Iself � 1

XIself

i¼1

ðmself
gi � �mmg·

selfÞ2 ð17Þ

ŝs· ¼
1

G

XG

g¼1

ŝsg ð18Þ

wg ¼
½ðIself � 1Þ · ŝsg þ ŝs· �

Iself
· ð19Þ

In other words, in the Tseng model the information on the gene-

specific variability from the self–self experiment is utilized to derive

an informative inverse Gamma prior.

However, the two variance modelling are deeply different. The

empirical Bayes approach uses the information from the self–self

experiment to plug in values of parameters of the gene-specific

variance prior msg � ðwgkÞ=½Gð1
2
‚ 1
2
Þ�; the full Bayes approach

uses the posteriors given calibration data to obtain values for the

hyperparameters of the hyperpriors governing the gene-specific

variance priors stg
� 1=½Gðnt‚btÞ�.

3.2.3 Tseng’s prior with internal normalization To better address

model comparison we modified the empirical Bayes model pro-

posed by Tseng including the normalization step into the model

as follows:

xigc � Nðmigc, xsgÞ ð20Þ

migc ¼ aig þ tg þ dc þ gg ð21Þ

xsg � logNðms‚ssÞ‚ ð22Þ

where the parameters of the lognormal distribution on xsg

were informative coming from the calibration experiment (see

Subsection 3.2.1), and the normalization parameters were modelled

following standard ANOVA [see Equation (5)]. The hyperpriors

for tg were modelled following Tseng’s proposal ðstg
�

ðwgkÞ=½Gð1
2
‚ 1
2
Þ� (Fig. 2).

3.2.4 Bayesian hierarchical model with loess normalization We

also modified the Bayesian hierarchical model to carry out a loess

normalization instead of the linear one. We performed a loess nor-

malization through MAANOVA library and then we calculated the

normalized values for the two channels as follows:

nxig1 ¼ xig1 � 1
2

lig‚ nxig2 ¼ xig2 þ 1
2

lig‚ ð23Þ

where 1 is the red channel, 2 is the green one and l is the coefficient
used to scale the log-ratio in the classical global loess normalization.

The normalized channel intensity (on log scale) are

nxigc � Nðmigc, xsgÞ ð24Þ

and we perform a further normalization in calibration experiment

migc ¼ aig þ gg ð25Þ

–0.4 –0.2 0.0 0.2

0
1

2
3

4
5

6

Logratio

K
er

ne
l D

en
si

ty

Fig. 1. Kernel density plot of normalized log-ratios t·g for self–self

experiment.
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as well as in comparative experiment

migc ¼ aig þ gg þ tg ð26Þ

for eliminating the array effects that are not considered in the

loess normalization performed separately for each slide. The

model specification thereafter follows the structure defined in

Equations (3)–(12).

3.3 The graph of the model

A system of conditional distributions can be often represented

through the correspondent directed acyclic graph (DAG, directed

for the link between each pair of nodes, acyclic for the impossibility

of turning on the same node after leaving it, following the direction

of the arrows) (Gilks et al., 1996). In a DAG the circles denote

unobserved quantities, while single squares indicate observed

quantities and double squares indicate a mathematical quantity;

the arrows between the nodes are solid to mean a stochastic depend-

ence, while dashed arrow denotes functional relationships; solid

lines show stochastic undirected dependence. Repetitive structures

(arrays, for example), are shown as stacked rectangles. Figure 3

shows the graph for the Bayesian hierarchical model presented in

Section 3.2.1 while Figure 4 shows the DAG for Tseng’s model

presented in Section 3.2.2.

3.4 Implementation

To estimate the parameters of interest we use the marginal posterior

distributions approximated by MCMC methods implemented in

WinBugs 1.4 (Spiegelhalter et al., 2003); the Bayesian hierarchical

model with ANOVA normalization as well as with loess normal-

ization, and Tseng’s model with internal normalization are estim-

ated by Metropolis-within-Gibbs routine, a generalization of Gibbs

that can be used for non-log concave sampling (Tanner, 1996); the

Tseng’s empirical Bayes model can also be fitted by Gibbs sampling

in WinBugs. We have checked the convergence both visually by

Gelman-Rubin statistics (Gelman and Rubin, 1992) and using dif-

ferent starting points. We have performed 10 000 burn-initerations

followed by 4000 sampling iterations for all the models. Fitting the

Bayesian hierarchical model on calibration experiment takes 1 h to

do 100 iterations on a workstation HPXW6000 with 2GbRAM and

Intel Xeon CPU2. 8GHz processor, for the large number of pos-

terior distributions it has to store to be subsequently incorporated in

the comparative experiment analysis. Performing the comparative

experiment takes 380 s for 1000 iterations. Fitting Tseng’s model

takes 300 s to perform 1000 iterations.

4 RESULTS

We explored the posterior distribution of the treatment effects tg to

identify the differentially expressed genes taking 95% two sides

probability level. Genes found differentially expressed with at least

one of the two methods are shown in Table 1. Using the Bayesian

hierarchical model we found 26 differentially expressed genes. Out

of 26 genes IFI30 and PRKAG2 were under-expressed in LPS

stimulated leukocytes. Using the Tseng et al. one we found

46 differentially expressed genes. Out of 46 genes, 20 emerged

Fig. 4. Graph of Tseng’s et al. model for normalized log ratios mig.

Fig. 2. Kernel density plot of estimates of gene-specific variability wg and

ŝstg
from self–self experiment.

Fig. 3. Graph of hierarchical Bayesian model for treated samples (for

untreated ones the tg effects are absent).
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downregulated in LPS stimulated leukocytes. Out of 26 genes, 22

identified by the first model were highlighted also by the Tseng et al.
one (Fig. 5 and Table 1).

The LPS-induced transcripts identified by both models mainly

consist of gene encoding protein associated with cytokines and

chemokines including interleukin (IL)-1 beta, IL-1 receptor anta-

gonist (RA), macrophage inflammatory protein (MIP)-1 alpha,

MIP-1 beta, MIP-2 beta, MIP-3 alpha; cytoskeletal protein such

as vimentin and cofillin 2 (Mor-Vaknini et al., 2003); and plasmino-

gen activator inhibitor type 2 (PAI-2) (Pepe et al., 1997).
To facilitate the interpretation of our results, we reported the

results obtained by a classic analysis of the comparative arrays

only, without taking into account the calibration ones. The analysis

of the comparative experiment by Tusher’s SAM resulted in 18

significant differentially expressed genes, using a cut-off at p ¼
0.01. Fifteen were also identified by the Bayesian approaches. Due

to the limited sample size, a low sensitivity is expected compared

to the analysis which took into account the calibration arrays. The

Bayesian approaches provided also a more stable inference on genes

with small sample standard deviation, among which three were

significant by SAM but were not confirmed by the Bayesian ana-

lyses. No negative log-ratios emerged as significative by SAM.

5 SENSITIVITY ANALYSIS AND MODEL
COMPARISON

The results presented in the previous section are difficult to interpret

comparatively because the two models use different normalization

procedures. To gain insight on the behaviour of the different

approaches we need to evaluate differentially expressed genes tak-

ing fixed the normalization procedure (Subsection 3.2.3).

The largest differences were observed in the downregulated

genes. The full Bayesian models found two negative genes and

three negative genes. On the other side, by Tseng model 20

genes emerged as downregulated, but using the internal linear

Table 1. Differentially expressed genes: posterior mean and posterior cred-

ibility interval at 95%

ID Symbol Bayesian

flierarchical model

Empirical Bayesian

model

Post

mean

Post

CrI

Post

mean

Post

CrI

2064 VIM 0.32 (0.04,0.63) 0.28 (0.05,0.50)

2563 TAC1 0.20 (0.04,0.36)

2890 PRKCG 0.41 (0.14,0.70) 0.29 (0.03,0.57)

12183 KIAA0935 �0.20 (�0.37,�0.04)

14623 IFI30 �0.36 (�0.66,�0.09) �0.46 (�0.75,�0.19)

23672 LRP6 �0.29 (�0.53,�0.04)

42500 ARL5 0.26 (0.05,0.45)

43265 MLSN1 0.39 (0.10,0.70) 0.22 (0.05,0.40)

68879 BPM4 �0.20 (�0.36,�0.04)

73817 SCYA3 2.30 (2.01,2.61) 2.28 (1.95,2.59)

75356 TCF4 0.22 (0.02,0.44)

75498 SCYA20 0.92 (0.64,1.19) 0.75 (0.43,1.10)

75703 SCYA4 1.56 (1.27,1.86) 1.57 (1.27,1.88)

75716 SERPINB2 1.19 (0.91,1.47) 1.22 (1.03,1.42)

76095 IER3 0.87 (0.56,1.17) 0.68 (0.31,1.07)

78452 SLC20A1 �0.17 (�0.35,0)

81134 IL1RN 0.96 (0.64,1.26) 0.82 (0.62,1.02)

89690 GRO3 0.98 (0.68,1.27) 0.97 (0.74,1.19)

92381 — �0.17 (�0.35,�0.01)

99508 — �0.20 (�0.39,�0.02)

100015 HAB1 �0.33 (�0.55,�0.1)

103839 KIAA0987 �0.19 (�0.39,�0.01)

103931 DKF2P434B 0.28 (0.01,0.55) 0.27 (0.04,0.50)

118463 TTS-2.2 �0.23 (�0.39,�0.08)

126256 IL1B 2.57 (2.28,2.86) 2.55 (2.36,2.74)

129727 KIAA0464 �0.20 (�0.39,�0.01)

138263 — 0.31 (0.01,0.59)

166204 PHF1 0.19 (0.03,0.36)

169301 — 0.40 (0.11,0.65) 0.29 (0.04,0.53)

171185 P38IP 0.31 (0.04,0.60) 0.30 (0.07,0.53)

178078 GRM4 �0.28 (�0.48,�0.07)

179657 PLAUR 0.37 (0.09,0.67)

180141 CFL2 0.43 (0.16,0.69)

184434 AXIN1 0.41 (0.1,0.67)

184711 — �0.30 (�0.47,�0.13)

184776 RPL23A �0.30 (�0.59,�0.04)

195453 RPS27 0.32 (0.02,0.63) 0.30 (0.07,0.52)

198951 JUNB 0.27 (0.05,0.50)

240122 CDC14B 0.35 (0.06,0.63) 0.22 (0.04,0.40)

251928 NPIP �0.20 (�0.37,�0.03)

259842 PRKAG2 �0.37 (�0.67,�0.07) �0.47 (�0.7,�0.25)

266902 NTF5 0.32 (0.03,0.60) 0.31 (0.04,0.56)

270062 — �0.29 (�0.45,�0.14)

272205 FLJ10034 �0.23 (�0.39,�0.07)

272801 FLJ20464 0.36 (0.09,0.62) 0.25 (0.07,0.44)

272802 FLJ20499 0.21 (0.03,0.38)

274431 — 0.33 (0.04,0.59) 0.29 (0.08,0.49)

274535 SCYA3LI 1.82 (1.55,2.11) 1.80 (1.38,2.21)

278976 — �0.22 (�0.4,�0.05)

279886 RANBP9 �0.21 (�0.39,�0.03)
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Fig. 5. Posterior credibility intervals at 95% for differentially expressed

genes: full Bayesian model versus empirical Bayesian one.
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ANOVA normalization it found only 2 negative genes. Generally

speaking, as theoretically expected, the full Bayesian model seems

more conservative and robust with regard to the choice of normal-

ization procedure. The Tseng model seems less conservative and

more sensitive to the normalization procedure adopted. Since this

results is based on the analysis of only one dataset, we do not know

if one particular normalization procedure has to be recommended.

The reader should note that theoretically the EB model is more

sensible to normalization procedures. A full comparison among

different normalization approaches to be used in the EB approach

is outside the scope of the present paper.

6 DISCUSSION

The observed differences in number of differentially expressed

genes between the Bayesian hierarchical model and the Tseng

empirical Bayesian one are related to different factors, namely

normalization method and specification of prior information. In

the Bayesian Hierarchical method, the normalization step is per-

formed inside the model through a multi-slide linear normalization

(ANOVA). In the empirical Bayesian approach, data are normalized

outside the model, through a loess normalization performed separ-

ately for each array. When incorporating the normalization into the

model, the likelihood is based on single channel expression meas-

ures over replicates, while with an external normalization, the like-

lihood is based on an empirical measure of relative expression.

This is a very important point in modelling gene-specific vari-

ances. In fact, ‘many ratios with high variances result from spots

that have a medium or high intensity in one channel and a very low

intensity in the other’ (Comander et al., 2004, p. 4) and building a

model with single channel intensity can be much more sensitive

than modelling the empirical log-ratio. Coherently, using the Tseng

prior with the normalization step into the model (Subsection 3.2.3)

all the genes emerged downregulated in the previous analysis were

no more differentially expressed.

Using the Bayesian hierarchical modelling with loess normaliza-

tion (Subseection B.2.4) 27 genes were found differentially

expressed; 18 out of 27 overlap those obtained by the empirical

Bayes model and only 2 out of them were downregulated.

The full Bayesian model originates likely more conservative

estimates of relative expression with respect to the empirical

Bayes one. The sensitivity analysis performed in the previous sec-

tion shows that the Bayesian model is more robust to the different

normalization procedures adopted.

The empirical Bayesian model and the full Bayesian one insert

prior information on variability from the calibration experiment in

different ways. In the first the prior distribution for the variance of

the normalized gene log-ratio (msg) is a function of a weighted

average between the observed gene-specific variances (sg) and

their average among the set of genes (s·) on the calibration arrays

[Equation (16)]. It is not assumed a hyperprior distribution on the

prior parameters, but instead an estimate is plugged in, following the

empirical Bayesian approach. The proposed estimate in Tseng

model lies on the theory of the generalized estimator of James-

Stein (Efron and Morris, 1972) and has optimality properties

under a frequentist point of view.

The full Bayesian hierarchical model inserts information from

self–self experiment at the normalized log-ratio level for each gene,

as well as at the single channel intensity level (Fig. 3).

The gene-specific log-ratio (tg) probability density has inform-

ative distribution on its parameters mtg
‚stg

[Equation (7)]. The

single channel intensity likelihood has a gene-specific prior distri-

bution for the variance with parameters ms,ss estimated from the

self–self experiment [Equation (4)]. An alternative would be to

consider the whole posterior distribution of ms and ss from the

calibration experiment. The hierarchical structure of the model is a

robust answer to the problem of putting in prior knowledge. The

introduction of a supplementary layer in the model permits to filter

the available previous information in a sensible way.

As showed in Figure 2, in our data Bayesian posterior estimates of

gene-specific variances tend to be larger than the empirical Bayes

estimates. The reader can also appreciate that the distribution of log-

ratios (Fig. 1) from calibration experiment has a heavier tail for

negative values and a positive mode. Coherently, our Bayesian

analysis for the comparative experiment is more conservative

and gives more penalty to negative log-ratios.

Both models reveal a shrinkage effect: additional materials to

illustrate this point can be requested to the authors.

In conclusion, we showed how information from calibration

experiments can be utilized to improve inference on differentially

expressed genes in comparative experiments.

The approach presented is specific for two-channel arrays. How-

ever, our modelling is based on absolute gene expression level, the

log-ratio being a model parameter to be estimated. Therefore it can

be adapted to Affymetrix platforms.

We can point out that the calibration experiment is a good answer

to the problem of gene-specific variability estimate and allows us to

include prior information both working in a full Bayesian frame-

work and in an Empirical Bayesian one. It naturally extends to a

sequence of experiments (e.g. time course experiments): it permits

to update prior information and to take under control sources of

variations that can be introduced between different experiments.

Moreover, a calibration experiment can be used as baseline for

future experiments on the same tissue, cellular line or species.

Conflict of Interest: none declared.
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