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Abstract Many real applications can be formulated as nonlinear minimization prob-
lems with a single linear equality constraint and box constraints. We are interested
in solving problems where the number of variables is so huge that basic operations,
such as the evaluation of the objective function or the updating of its gradient, are
very time consuming. Thus, for the considered class of problems (including dense
quadratic programs), traditional optimization methods cannot be applied directly. In
this paper, we define a decomposition algorithm model which employs, at each it-
eration, a descent search direction selected among a suitable set of sparse feasible
directions. The algorithm is characterized by an acceptance rule of the updated point
which on the one hand permits to choose the variables to be modified with a certain
degree of freedom and on the other hand does not require the exact solution of any
subproblem. The global convergence of the algorithm model is proved by assuming
that the objective function is continuously differentiable and that the points of the
level set have at least one component strictly between the lower and upper bounds.
Numerical results on large-scale quadratic problems arising in the training of support
vector machines show the effectiveness of an implemented decomposition scheme
derived from the general algorithm model.
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1 Introduction

Let us consider the problem

min f (x), (1a)

s.t. aT x = b, (1b)

l ≤ x ≤ u, (1c)

where x ∈ Rn, f : Rn → R is a continuously differentiable function and a, l, u ∈ Rn,
with l < u, b ∈ R. We allow the possibility that some of the variables are unbounded
by permitting both li = −∞ and ui = ∞ for some i ∈ {1, . . . , n}. Moreover, we as-
sume, without loss of generality that ai �= 0 for all i = 1, . . . , n, thought our approach
can be extended with minor modifications to include the case where ai = 0 for some i.
We focus the attention on large dimensional problems. We suppose that the dimen-
sion n is so large that traditional optimization methods cannot be directly employed
since basic operations, such as the updating of the gradient or the evaluation of the
objective function, are too time consuming. There are many real applications that can
be modelled by optimization problems of the form (1). For instance, optimal con-
trol problems, portfolio selection problems, traffic equilibrium problems, multicom-
modity network flow problems (see, e.g., Refs. [1–4]) are specific instances of (1).
Further, a continuous formulation of a classical problem in graph theory, the maxi-
mum clique problem, is formulated as (1) with indefinite quadratic function (see, e.g.,
Ref. [5]). Moreover, an important machine learning methodology, called support vec-
tor machine (SVM) (Ref. [6]), leads to huge problems of the form (1) with quadratic
objective function. Different kinds of algorithms have been developed for large di-
mensional SVM training problems. Among them there are interior point methods
(Ref. [7]), semismooth algorithms (Ref. [8]), methods based on unconstrained smooth
reformulations (Refs. [9, 10]), active set methods (Refs. [11, 12]), projected gradient
methods (Ref. [13]), decomposition methods (see, e.g., Refs. [14–17]). Here we focus
our attention on a decomposition-based approach which, involving at each iteration
the updating of a small number of variables, is suitable for large problems with dense
Hessian matrix. In a general decomposition framework, at the generic iteration k the
components of the current feasible point xk are partitioned into two subsets Wk , usu-

ally called working set, and W
k = {1, . . . , l} \ Wk (for notational convenience from

now on we omit the dependence of W,W on k). The variables corresponding to W

are unchanged at the new iteration, while the components corresponding to W are set
equal to those of a stationary point x�

W of the subproblem

min f (xW ,xk

W
), (2a)

s.t. aT
WxW = −aT

W
xk

W
+ b, (2b)
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lW ≤ xW ≤ uW . (2c)

Thus, the new iterate is

xk+1 = (
xk+1
W ,xk+1

W

) = (
x∗
W,xk

W

)
.

In order to guarantee the global convergence of a decomposition method the work-
ing set selection cannot be arbitrary but must satisfy suitable rules (see, e.g.,
Refs. [14, 18, 19]). Up to our knowledge, the proposed convergent decomposition
algorithms (except the method presented in Ref. [18]) and their convergence analysis
are based on the assumption that, at each iteration, the computed point x∗

W exactly sat-
isfies the optimality conditions of the generated subproblem (2). This can be a strong
requirement, for instance whenever a stationary point of (2) cannot be analytically
determined, but an iterative method must be necessarily applied. Then, the aim of the
paper is the definition of a general decomposition algorithm model where, from one
hand, the above requirement is removed, from the other, a degree of freedom in the
choice of the variables to be updated at any iteration is introduced. In particular, the
general scheme that will be defined is characterized by the following features.

– At each iteration, a finite subset of sparse feasible directions having only two
nonzero elements is defined, provided that the current point has at least one com-
ponent where the box constraints are not active. This set has cardinality O(n), con-
tains the generators of the set of feasible directions and has a structure well-suited
for large scale problems.

– In the set mentioned above, a suitable direction is selected and an inexact line
search along it is performed by means of an Armijo-type method; in this way a
new candidate point is obtained without the need of computing an exact solution
of a subproblem.

– The candidate point provides a reference value for the objective function and a
new arbitrary iterate can be accepted if the corresponding function value does not
exceed the reference value previously determined.

– The global convergence of the algorithm is proved by assuming that the objective
function is continuously differentiable and that the points of the level set have at
least one component where the box constraints are not active.

The paper is organized as follows. In Sect. 2, we introduce some basic notation and
preliminary technical results. In Sect. 3 we state theoretical properties of a special
class of feasible directions having only two nonzero components and characterizing
our decomposition approach. In Sect. 4 we recall the well-known Armijo-type algo-
rithm and its properties. In Sect. 5 we describe the decomposition algorithm model,
whose theoretical properties are analyzed in Sect. 6. The numerical results obtained
on large-scale SVM training problems in comparison with LIBSVM of Ref. [21]
are reported in Sect. 7. Finally, in Appendix A we prove a technical result concern-
ing polyhedral sets which is used in our convergence analysis, and in Appendix B
we identify a class of SVM training problems which satisfy the assumption used in
Sect. 6 to guarantee the global convergence of the proposed algorithm.



110 J Optim Theory Appl (2009) 141: 107–126

2 Notation and Preliminary Results

In this section, we introduce some basic notation and definitions, and we report some
results proved in Ref. [19] that will be used in the sequel. Given a vector x ∈ Rn and
an index set W ⊆ {1, . . . , n}, we have already introduced the notation xW ∈ R|W | to
indicate the subvector of x made up of the component xi with i ∈ W . Given a set
Y = {y1, . . . , ym} ⊂ Rn, we indicate by cone(Y ) the convex cone of Y defined as
follows:

cone(Y ) =
{

y ∈ Rn : y =
m∑

h=1

μhy
h, μh ≥ 0, h = 1, . . . ,m

}

.

We indicate by F the feasible set of Problem (1), namely

F = {x ∈ Rn : aT x = b, l ≤ x ≤ u}.
For every feasible point x, we denote the sets of indices of active (lower and upper)
bounds as follows:

L(x) = {i : xi = li}, U(x) = {i : xi = ui}.
The set of the feasible directions at a point x ∈ F is the cone

D(x) = {d ∈ Rn : aT d = 0, di ≥ 0,∀i ∈ L(x), and di ≤ 0,∀i ∈ U(x)}.
We say that a feasible point x∗ is a stationary point of Problem (1) if

∇f (x∗)T d ≥ 0, for all d ∈ D(x∗).

Since the constraints of Problem (1) are linear, we have that a feasible point x� is a
stationary point of Problem (1) if and only if the Karush-Kuhn-Tucker (KKT) condi-
tions are satisfied, i.e. a scalar λ∗ exists such that

(∇f (x∗))i + λ∗ai

⎧
⎪⎨

⎪⎩

≥ 0, if i ∈ L(x∗),
≤ 0, if i ∈ U(x∗),
= 0, if i /∈ L(x∗) ∪ U(x∗).

The KKT conditions can be written in a different form. To this aim, the sets L and U

can be split in L−, L+, and U−, U+ respectively, where

L−(x) = {i ∈ L(x) : ai < 0}, L+(x) = {i ∈ L(x) : ai > 0},
U−(x) = {i ∈ U(x) : ai < 0}, U+(x) = {i ∈ U(x) : ai > 0}.

We report the KKT conditions in the following proposition.

Proposition 2.1 (Optimality Conditions) A point x∗ ∈ F is a stationary point of
Problem (1) if and only if there exists a scalar λ∗ satisfying

λ∗ ≥ −∇f (x∗)i/ai, ∀i ∈ L+(x∗) ∪ U−(x∗), (3a)

λ∗ ≤ −∇f (x∗)i/ai, ∀i ∈ L−(x∗) ∪ U+(x∗), (3b)

λ∗ = −∇f (x∗)i/ai, ∀i /∈ L(x∗) ∪ U(x∗). (3c)



J Optim Theory Appl (2009) 141: 107–126 111

In correspondence to a feasible point x, we introduce the index sets

R(x) = L+(x) ∪ U−(x) ∪ {i : li < xi < ui}, (4a)

S(x) = L−(x) ∪ U+(x) ∪ {i : li < xi < ui}. (4b)

Proposition 2.2 A feasible point x∗ is a stationary point of Problem (1) if and only
if, for any pair of indices (i, j ), with i ∈ R(x∗) and j ∈ S(x∗), we have

∇f (x∗)i/ai ≥ ∇f (x∗)j /aj . (5)

Proposition 2.3 Let {xk} be a sequence of feasible points convergent to a point x̄.
Then, for sufficiently large values of k, we have

R(x̄) ⊆ R(xk) and S(x̄) ⊆ S(xk).

3 Sets of Sparse Feasible Directions

In this section, we consider a special class of feasible directions having only two
nonzero components and we show their important properties that will be employed
in the decomposition approach presented later. Given i, j ∈ {1, . . . , n}, with i �= j ,
we indicate by di,j a vector belonging to Rn such that

d
i,j
h =

⎧
⎪⎨

⎪⎩

1/ai, if h = i,

−1/aj , if h = j,

0, otherwise.

(6)

Given x ∈ F and the corresponding index sets R(x) and S(x), we indicate by DRS(x)

the set of directions di,j with i ∈ R(x) and j ∈ S(x), namely

DRS(x) =
⋃

i∈R(x)
j∈S(x)

i �=j

di,j . (7)

The following proposition was proved in Ref. [15].

Proposition 3.1 Let x̂ be a feasible point. For each pair i ∈ R(x̂) and j ∈ S(x̂), the
direction di,j ∈ Rn is a feasible direction at x̂, i.e. d ∈ D(x̂).

The result stated below follows immediately from Proposition 2.2.

Proposition 3.2 A feasible point x∗ is a stationary point of Problem (1) if and only
if

∇f (x∗)T di,j ≥ 0 ∀di,j ∈ DRS(x∗). (8)

The next proposition shows that for any feasible point x the set DRS(x) contains
feasible directions and the generators of D(x).
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Proposition 3.3 Given x̄ ∈ F , we have

DRS(x̄) ⊆ D(x̄), (9)

cone{DRS(x̄)} = D(x̄). (10)

Proof Condition (9) is a consequence of Proposition 3.1. In order to prove (10), us-
ing (9), we must show that d ∈ D(x̄) implies d ∈ cone{DRS(x̄)}. Assume by con-
tradiction that the thesis is false, so that, there exists a vector d̄ ∈ D(x̄) such that
d̄ /∈ cone{DRS(x̄)}. Hence, we have that the linear system

d̄ =
|DRS(x̄)|∑

h=1

μhd
h,

μh ≥ 0, h = 1, . . . , |DRS(x̄)|,
has no solution, where dh ∈ DRS(x̄). Using Farkas’s lemma, we have that there exists
a vector c ∈ Rn such that

cT dh ≥ 0, ∀dh ∈ DRS(x̄), (11)

cT d̄ < 0. (12)

Now, consider the linear function F(x) = cT x and the convex problem

min F(x) = cT x, (13a)

s.t. aT x = b, (13b)

l ≤ x ≤ u. (13c)

Condition (11) can be written as

∇F(x̄)T dh ≥ 0, ∀dh ∈ DRS(x̄). (14)

Using (14) and Proposition 3.2, we get that x̄ is an optimal solution of Problem (13).
On the other hand, d̄ is a feasible direction at x̄, and by (12) we have ∇F(x̄)T d̄ < 0.
Then, d̄ is a feasible descent direction at x̄, and this contradicts the fact that x̄ is an
optimal solution of Problem (13). �

We observe that the set DRS(x̄) has cardinality, depending on R(x̄) and S(x̄),
which is in the worst case O(n2). Now, under a suitable condition on the feasible
point x̄, we show that it can be easily defined a set of feasible directions containing,
as DRS(x̄), the generators of D(x̄), but having cardinality O(n). In particular, let x̄

be a feasible point with at least one “free” component, i.e. such that

lh < x̄h < uh, (15)
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for some index h ∈ {1, . . . , n}. In correspondence to a point x̄ satisfying (15), we
define the following set of directions:

Dh(x̄) = {di,h ∈ Rn : i ∈ R(x̄)} ∪ {dh,j ∈ Rn : j ∈ S(x̄)}. (16)

Remark 3.1 We note that n − 1 ≤ |Dh(x̄)| ≤ 2(n − 1). In fact in correspondence to
each “free” index t �= h, the set Dh(x̄) must include the direction dt,h as t ∈ R(x̄),
and the direction dh,t as t ∈ S(x̄). Hence if R(x̄)∩S(x̄) = {1, . . . , n}, then |Dh(x̄)| =
2(n − 1). Conversely, for each index t /∈ R(x̄) ∩ S(x̄) there exists only one element
of Dh(x̄). Therefore, if R(x̄) ∩ S(x̄) = {h}, then |Dh(x̄)| = n − 1.

As an example concerning the definition of Dh(x̄), consider Problem (1) with n =
4, l = (0,0,0,0)T , u = (3,3,3,3)T , and a = (1,−1,1,−1)T . Let x̄ = (0,1,3,2)T

be a feasible point, so that R(x̄) = {1,2,4},R(x̄) ∩ S(x̄) = {2,4}, S(x̄) = {2,3,4}.
Setting h = 2, we obtain

D2(x̄) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

1/a1
−1/a2

0
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
1/a2

−1/a3
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
1/a2

0
−1/a4

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
−1/a2

0
1/a4

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

In the next proposition, we prove that the set Dh(x̄) defined in (16) is indeed a subset
of feasible directions and further that it contains the generators of the set of feasible
directions D(x̄).

Proposition 3.4 Let x̄ ∈ F and let h be an index such that lh < x̄h < uh. Then, we
have

Dh(x̄) ⊆ D(x̄), (17)

cone{Dh(x̄)} = D(x̄), (18)

where Dh(x̄) is defined by (16).

Proof Note that, by assumption, the index h is such that h ∈ R(x̄) ∩ S(x̄). Consider
any i ∈ R(x̄) (or any j ∈ S(x̄)) such that di,h ∈ Dh(x̄) (or dh,j ∈ Dh(x̄)). Then, di,h

(dh,j ) is such that i ∈ R(x̄) and h ∈ S(x̄) (h ∈ R(x̄) and j ∈ S(x̄)), so that, condition
(17) follows from Proposition 3.1.

In order to prove (18), using Proposition 3.3, it is sufficient to show that

cone{Dh(x̄)} = cone{DRS(x̄)}. (19)

Given any di,j ∈ DRS(x̄), we can write

dij = dih + dhj . (20)

On the other hand, by definition of Dh(x̄), we have necessarily dih, dhj ∈ Dh(x̄), and
hence (18) follows from (20) and (19). �

As a consequence of Propositions 3.2 and 3.4, we get directly the following result.
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Proposition 3.5 Let x̄ ∈ F be a point such that (15) holds and let h be an index such
that lh < x̄h < uh. The feasible point x̄ is a stationary point of Problem (1) if and
only if

∇f (x̄)T d ≥ 0, ∀d ∈ Dh(x̄), (21)

where Dh(x̄) is defined by (16).

4 Armijo-Type Line Search Algorithm

In this section, we describe the well-known Armijo-type line search along a feasi-
ble direction (see, e.g., Ref. [20]). The procedure will be used in the decomposition
method presented in the next section. We state also some theoretical results useful in
our convergence analysis. Let dk be a feasible direction at xk ∈ F . We denote by βk

F
the maximum feasible steplength along dk , namely βk

F satisfies

l ≤ xk + βdk ≤ u, for all β ∈ [0, βk
F ],

and (since −∞ ≤ l < u ≤ ∞) we have that either βk
F = +∞ or at least an index

i ∈ {1, . . . , n} exists such that

xk
i + βk

F dk
i = li or xk

i + βk
F dk

i = ui.

Let βu be a positive scalar and set

βk = min{βk
F , βu}. (22)

Assumption 4.1 Assume that {dk} is a sequence of feasible search directions such
that

(a) for all k, we have ‖dk‖ ≤ M for a given number M > 0;
(b) for all k, we have ∇f (xk)T dk < 0.

An Armijo-type line search algorithm is described below.

Algorithm 4.1 (Armijo-Type Line Search ALS(xk, dk,βk))

Data: Given α > 0, δ ∈ (0,1), γ ∈ (0,1/2) and the initial stepsize αk =
min{βk,α}.
Step 1. Set λ = αk , j = 0.
Step 2. If

f (xk + λdk) ≤ f (xk) + γ λ∇f (xk)T dk (23)

then set λk = λ and stop.
Step 3. Set λ = δλ, j = j + 1 and go to Step 2.

The properties of Algorithm ALS are reported in the next proposition, whose
proof can be obtained by repeating the reasonings used in Ref. [20] to prove Propo-
sition 1.2.1.
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Proposition 4.1 Let {xk} be a sequence of points belonging to the feasible set F and
let {dk} be a sequence of search directions satisfying Assumption 4.1. Then:

(i) For each k, Algorithm ALS determines, in a finite number of iterations, a scalar
λk such that condition (23) holds, i.e.,

f (xk + λkdk) ≤ f (xk) + γ λk∇f (xk)T dk. (24)

(ii) If {xk} converges to x̄ and

lim
k→∞(f (xk) − f (xk + λkdk)) = 0, (25)

then we have

lim
k→∞βk∇f (xk)T dk = 0, (26)

where βk is given by (22).

5 Decomposition Algorithm Model

In this section we describe a decomposition algorithm based on the employment of
the feasible directions having only two nonzero components. The results stated in
Sect. 3 show that, given any feasible point xk , the set D(xk) of feasible directions
at xk can be generated by finite sets of directions with only two nonzero compo-
nents. In particular, Proposition 3.3 shows that the set DRS(xk) contains the gen-
erators of D(xk), while Proposition 3.4 gives the same result for the set Di(k)(xk)

under the assumption that li < xk
i < ui for some index i = i(k). Thus both the sets

DRS(xk) and Di(xk) contain “sufficient” information. In the worst case DRS(xk)

has n(n − 1)/2 elements, while Di(xk) is made of 2(n − 1) vectors. Therefore, in
order to develop a feasible direction-based approach for large dimensional problems,
it appears to be more appropriate to exploit a set of directions of the form Di(xk).
More in particular, we illustrate the strategy underlying our approach. In the case that
the current feasible point xk is such that (15) is verified, we identify a “suitable” in-
dex i(k) (we highlight the dependence on the iteration counter k) corresponding to
a “free” component xk

i(k), and we consider the following problem:

min
β∈R,d∈Rn

β∇f (xk)T d, (27a)

s.t. 0 ≤ β ≤ βu, (27b)

xk + βd ∈ F , (27c)

d ∈ Di(k)(xk), (27d)

where βu is a given positive scalar and

Di(k)(xk) = {dh,i(k) ∈ Rn : h ∈ R(xk)} ∪ {di(k),h ∈ Rn : h ∈ S(xk)}. (28)



116 J Optim Theory Appl (2009) 141: 107–126

It is easy to see that problem (27) admits a solution. The rationale underlying the de-
finition of problem (27) is that of identifying, among the generators of D(xk) having
only two nonzero components, a feasible direction which locally may produce a suffi-
cient decrease of the function values. To this aim, besides the directional derivatives,
we must take into account the magnitudes of the feasible steplengths. Denoting by
(βk, dk) a solution of (27), we have that βk is the minimum between the maximum
feasible steplength along dk and the given positive scalar βu. Then, our strategy at
each iteration k is based on the following sequential steps:

– given the feasible current point xk satisfying (15), among the free indexes R(xk)∩
S(xk), we identify an index i(k) corresponding to a “sufficiently free” component,
that is such that

min{xk
i(k) − li(k), ui(k) − xk

i(k)} ≥ η̄ > 0,

where η̄ is a prefixed sufficiently small positive scalar; in the case that

min{xk
i − li , ui − xk

i } < η̄, ∀i ∈ {1, . . . , n},
we select an index i(k) ∈ {1, . . . , n} such that

min{xk
i(k) − li(k), ui(k) − xk

i(k)} ≥ min{xk
i − li , ui − xk

i }, ∀i ∈ {1, . . . , n},
that is i(k) corresponds to the “most free” component;

– given the subset of feasible directions Di(k)(xk) defined as in (28), we determine a
solution (βk, dk) of (27), which should produce a direction of “sufficient” decrease
of the objective function;

– we compute a feasible point x̃k+1 by means of the Armijo-type line search along
the direction dk to obtain a reference value f k

ref = f (x̃k+1);
– the current point xk is updated to a feasible point xk+1 such that (15) holds and

f (xk+1) ≤ f k
ref.

The algorithm is formally described below, where we denote by ηk the following
positive scalar:

ηk = max
h∈R(xk)∩S(xk)

{min{xk
h − lh, uh − xk

h}}. (29)

Algorithm 5.1 (Feasible Directions (FEDIR) Algorithm)

Data. A feasible point x0 such that lh < x0
h < uh for some h ∈ {1, . . . , n}; η̄ > 0,

βu > 0.

Initialization. Set k = 0.

While the stopping criterion is not satisfied, execute Steps 1–7 below.

Step 1. Select i(k) ∈ R(xk) ∩ S(xk) such that

min{xk
i(k) − li(k), ui(k) − xk

i(k)} ≥ min{ηk, η̄}.
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Step 2. Let Di(k)(xk) be the set of feasible directions of xk defined by (28); then,
select dk , βk such that

βk∇f (xk)T dk = min
β∈R,d∈Rn

β∇f (xk)T d, (30a)

0 ≤ β ≤ βu, (30b)

d ∈ Di(k)(xk), (30c)

xk + βd ∈ F . (30d)

Step 3. If ∇f (xk)T dk ≥ 0 then stop; otherwise, compute the stepsize λk using Al-
gorithm ALS(xk, dk,βk).

Step 4. Set x̃k+1 = xk + λkdk and f k
ref = f (x̃k+1).

Step 5. Find xk+1 ∈ F such that (15) holds and f (xk+1) ≤ f k
ref.

Step 6. Set k = k + 1.
Step 7. Return x∗ = xk .

The role of Step 1 and Step 2 is that of finding a descent direction dk ∈ Di(k)(xk)

whose two nonzero elements in position i(k), j (k), identify the two components of
xk that will be changed, by Step 3 and Step 4, to determine the reference point x̃k+1.
In other words, the pair (i(k), j (k)) identifies the working set Wk which leads, in
a traditional decomposition scheme, to subproblem (2). Concerning Step 3, in the
case that xk is not a stationary point, that is ∇f (xk)T dk < 0, we have that Algo-
rithm ALS performs an inexact one dimensional constrained minimization along the
search direction dk , thus computing a suitable stepsize λk . Note that Proposition 3.5
guarantees that dk is such that ∇f (xk)T dk < 0 whenever xk is not a stationary point.
Therefore, as dk has only two nonzero components of the form either 1/ai(k) and
−1/aj (k), or −1/ai(k) and 1/aj (k), we have ‖dk‖ ≤ √

2/{min1≤i≤n{|ai |}, it follows
that Assumption 4.1 is satisfied and hence the properties of Algorithm ALS (stated
in Proposition 4.1) hold. We remark that in the quadratic case (either convex or non
convex) Step 3 can be simplified. Indeed, the optimal feasible stepsize λ∗ along dk

can be analytically determined. In particular, denoting by Q the Hessian matrix of
the objective function, we have

λ∗ =
{

min{−∇f (xk)T dk/(dk)T Qdk,βk
F }, if (dk)T Qdk > 0,

βk
F , otherwise.

Then, at Step 4 we can set x̃k+1 = xk + λ�dk since the convergence properties of the
Armijo rule are preserved (see, e.g., Ref. [20]). Finally, we point out that at Step 5
we have the possibility of defining the updated point xk+1 in any way provided that
(15) holds and f (xk+1) ≤ f k

ref. Therefore, we can employ, in principle, a working set
of arbitrary dimension and arbitrary elements to compute the new point xk+1. This is
an important aspect both from a theoretical and a practical point of view.
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6 Convergence Analysis

Before analyzing the convergence properties of the decomposition algorithm model,
we need to introduce the following assumption, which guarantees that every point
produced by the algorithm has at least one “free” component and, hence, that condi-
tion (15) holds.

We denote by V the set of feasible points without “free” components, i.e. (see (4)),

V = {x ∈ F : R(x) ∩ S(x) = ∅},
and, for any feasible starting point x0, we introduce the following level set

L0 = {x ∈ F : f (x) ≤ f (x0)}.

Assumption 6.1 L0 ∩ V = ∅.

Note that Assumption 6.1 is automatically satisfied whenever at least one variable
is unbounded, namely li = −∞, ui = +∞ for some i ∈ {1, . . . , n}. In connection
with SVM problems where all the variables are bounded, we will prove (see Propo-
sition B.1) in the appendix that, under suitable conditions, Assumption 6.1 holds.

The convergence properties of the algorithm are stated in the next proposition.

Proposition 6.1 Let {xk} be the sequence generated by the algorithm and let As-
sumption 6.1 hold. Then, every limit point of {xk} is a stationary point of Problem (1).

Proof The instructions of the algorithm imply f (xk+1) ≤ f (xk) for all k ≥ 0, and
hence the sequence of points {xk} belongs to the level set L0. Let x̄ be any limit
point of {xk}, i.e. there exists an infinite subset K ⊆ {0,1, . . . , } such that xk → x̄

for k ∈ K,k → ∞. From Assumption 6.1, it follows that x̄ /∈ V and this implies that
there exists a scalar ε > 0 such that, for k ∈ K and k sufficiently large, we have

ηk = max
h∈R(xk)∩S(xk)

{min{xk
h − lh, uh − xk

h}} ≥ min{ε, η̄}. (31)

Now, we note that i(k) ∈ {1, . . . , n}, so that we can extract a further subset of K

(relabelled again K) and an index i ∈ {1, . . . , n} ∩ R(xk) ∩ S(xk) such that

Di(k)(xk) = Di(xk),

for all k ∈ K . Recalling the selection rule of index i at Step 1 and (31), we can write

min{xk
i − li , ui − xk

i } ≥ min{ηk, η̄} ≥ min{ε, η̄}.
Taking limits for k → ∞ and k ∈ K , we obtain

min{x̄i − li , ui − x̄i} ≥ min{ε, η̄} > 0,

from which we get that i ∈ R(x̄) ∩ S(x̄). Then, (18) implies that

cone(Di(x̄)) = D(x̄).
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Assume now, by contradiction, that x̄ is not a stationary point of Problem (1). Then,
by Proposition 3.5, there exists a direction d̂ ∈ Di(x̄) such that

∇f (x̄)T d̂ < 0. (32)

By definition (28), we have

Di(xk) = {dr,i ∈ Rn : r ∈ R(xk)} ∪ {di,s ∈ Rn : s ∈ S(xk)}.
Furthermore, from Proposition 2.3 we have R(x̄) ⊆ R(xk) and S(x̄) ⊆ S(xk) for
k ∈ K and k sufficiently large. Therefore, for k ∈ K and k sufficiently large, it follows
that Di(x̄) ⊆ Di(xk) and hence that

d̂ ∈ Di(xk). (33)

Let β̂k be the maximum feasible stepsize along d̂ starting from xk . From Proposi-
tion A.1, reported in the Appendix, we have

β̂ ≤ β̂k ≤ +∞, (34)

for some β̂ > 0. Note that, from (32) and (33), it follows that the direction dk and the
steplength βk selected at Step 2 are such that

βk∇f (xk)T dk ≤ min{β̂k, βu}∇f (xk)T d̂ < 0. (35)

Furthermore, we have ‖dk‖ ≤ √
2/{min1≤i≤n{|ai |} and hence Assumption 4.1 on

{dk} holds. Step 5 of the algorithm implies that

f (xk+1) ≤ f (x̃k+1) = f (xk + λkdk) ≤ f (xk) + γ λk∇f (xk)T dk, γ ∈ (0,1/2),

(36)
where λk is the stepsize computed by Algorithm ALS. The sequence {f (xk)} is
monotone decreasing and convergent to a finite value since, by the continuity of f ,
we have

lim
k→∞,k∈K

f (xk) = f (x̄).

Therefore, (36) implies that (25) holds. Thus, from assertion (ii) of Proposition 4.1
we obtain (26) for k ∈ K , where βk = min{βk

f ,βu}, and βk
f is the maximum feasible

stepsize along dk . Then, taking limits in (35) for k → ∞, k ∈ K , and using (26)
and (34), we obtain

∇f (x̄)T d̂ = 0,

but this contradicts (32). �

7 Numerical Experiments on SVM Training Problems

In this section we present a specific realization of FEDIR algorithm for the partic-
ular class of problems arising in large-scale SVM training. We report the numeri-
cal results obtained on standard test problems. Given a training set of input-target
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pairs (ui, ai), i = 1, . . . , n, with ui ∈ Rm, and ai ∈ {−1,1}, the SVM classification
technique (Ref. [6]) requires the solution of the following quadratic programming
problem:

min f (x) = 1/2xT Qx − eT x, (37a)

s.t. aT x = 0, (37b)

0 ≤ x ≤ Ce, (37c)

where x ∈ Rn, Q is a n × n symmetric positive semidefinite matrix, e ∈ Rn is the
vector of all ones, a ∈ {−1,1}n and C is a positive scalar. The generic element qij of
the matrix Q is given by aiajK(ui, uj ), where K(u, z) = φ(u)T φ(z) is the kernel
function related to the nonlinear function φ that maps the data from the input space
into the feature space. One of the most popular and efficient algorithm for SVM
training is LIBSVM algorithm (Ref. [21]). This is a decomposition method where,
at each iteration k, the working set W of subproblem (2) is determined by the two
nonzero components of the solution of problem

min
d

{∇f (xk)T d : d ∈ D(xk),−e ≤ d ≤ e,
∣∣{i : di �= 0}∣∣ = 2

}
. (38)

LIBSVM (version 2.71) algorithm can in turn be viewed as a special case of the
SVMlight algorithm (Ref. [22]), which is based on a specific procedure for choos-
ing the q elements of the working set, with q being any even number. In Sect. II
of Ref. [14] it has been proved that an optimal solution of problem (38) belongs
to DRS(xk), so that such a solution can be found by solving the following problem:

min
d∈Rn

∇f (xk)T d, (39a)

s.t. d ∈ DRS(xk); (39b)

further a solution of problem (39) is a descent direction for f at xk . The selection
of the two indices by solving problem (39) requires O(n) operations. The two in-
dices are those corresponding to the “maximal violation” of the KKT conditions (see
Proposition 2.2), and hence the selection rule is usually referred as the Maximal Vi-
olation (MV) rule (Ref. [23]). We observe that, in the case of working set W of
cardinality two, the optimal solution of subproblem (2) can be analytically computed
(see, e.g., Ref. [24]). We remark that we are assuming that the Hessian matrix can-
not be stored, and hence in computational terms the most expensive step of a general
decomposition method is the evaluation of the columns of the Hessian matrix, corre-
sponding to the indices in the working set W , not stored in memory. Actually, these
columns are needed for updating the gradient, given in the quadratic case by

∇f (xk+1) = ∇f (xk) +
n∑

i=1

Qi(x
k+1 − xk)i,
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where Qi is the i-th column of Q. To reduce the computational time a commonly
adopted strategy is based on the use of a caching technique that allocates some mem-
ory space (the cache) to store the recently used columns of Q thus avoiding in some
cases the recomputation of these columns. Algorithms based on the Maximal Vi-
olation (MV) rule have theoretical convergence properties and are efficient from a
computational point of view, but they are not designed to fully exploit the informa-
tion on the matrix stored in the cache. We define here a specific realization of FEDIR
algorithm for SVM training, called FEDIR-SVM, where a caching strategy can be
advantageously exploited. We recall that at Step 4 of FEDIR algorithm a reference
value f k

ref = f (x̃k+1) is determined by performing an exact line search along dk .
Different realizations can be derived from FEDIR scheme by specifying the rule to
select, at Step 5, the new iterate xk+1 for which it is required that (15) holds and
that f (xk+1) ≤ f k

ref. In our proposed approach, besides the reference point x̃k+1, two
tentative points, xk+1

a and xk+1
b , are analytically generated: the point xk+1

a is deter-
mined according to the MV strategy, the point xk+1

b is defined to try to exploit the
information in the cache memory thus reducing the computational time. Concerning
the vector xk+1

a , it is obtained as

xk+1
a = xk + λk

ad
k
a ,

where dk
a is the solution of (39) and

λk
a = arg min

λ∈[0,βk
a ]

f (xk + λdk
a ),

where βk
a is the maximum feasible steplength along dk

a (note that we have βk
a ≤ C

since C is the box size and the nonzero components of the search direction dk
a belong

to {−1,1}). Hence, as dk
a is a descent direction for f at xk , it follows that f (xk+1

a ) <

f (xk). As regards the definition of the point xk+1
b , let IC ⊂ {1, . . . , n} be the set of

indices (excluding ia and ja) of the columns of Q stored in the cache memory and let

Rc(x
k) = R(xk) ∩ I k

C, Sc(x
k) = S(xk) ∩ I k

C.

We apply the most violating strategy to the indices corresponding to the columns
stored in the cache memory so that we define, in the case that both the sets Rc(x

k)

and Sc(x
k) are not empty, the direction dk

b , with two nonzero components identified
by the indices ib and jb , as the solution of

min
d∈Rn

∇f (xk)T d, (40a)

s.t. d ∈ DRcSc (x
k), (40b)

where

DRcSc (x) =
⋃

i∈Rc(x)
j∈Sc(x)

i �=j

di,j .
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Note that it is not guaranteed that dk
b is a descent direction for f at xk . In the case

that ∇f (xk)T dk
b < 0, we find the value

λk
b = arg min

λ∈[0,βk
b ]

f (xk + λdk
b ),

where βk
b is the maximum feasible steplength along dk

b (we have βk
b ≤ C for the same

reasons explained above), and we set

xk+1
b = xk + λk

ad
k
a + λk

bd
k
b . (41)

The vector xk+1
b can be seen as the result of a simple procedure for inexactly solv-

ing the four-dimensional subproblem (2) with working set W = {ia, ja, ib, jb}. We
observe that the computation of dk

b and λk
b does not involve any additional gradient

evaluation since they are computed starting from xk , where the gradient ∇f (xk), nec-
essary to check the descent condition of dk

b and to determine the optimal stepsize λk
b,

is available (the reasonable choice of starting from xk+1
a should imply an additional

cost due to the evaluation of ∇f (xk+1
a )). Summarizing, at Step 5 of FEDIR scheme

we define xk+1 as the point whose function value corresponds to the minimum either
between f k

ref and f (xk+1
a ), or between f k

ref, f (xk+1
a ) and f (xk+1

b ) whenever the point
xk+1
b has been generated. At each iteration either two or four variables are updated.

In any case, the updated point is analytically determined. Note that the most expen-
sive task is the evaluation of the columns of the Hessian matrix, corresponding to
the modified variables, not stored in memory. Thanks to the information stored in the
cache memory, at most two columns of the Hessian matrix must be possibly recom-
puted. In order to make some fair computational comparison between LIBSVM and
FEDIR-SVM, this latter has been implemented by suitably modifying the available
code (written in C++) of LIBSVM. In our computational experiments the classifi-
cation test problems described below have been used. All the problems have been
taken from LIBSVM Database (Ref. [25]), except for the random problem, and n,m

denote the number of training pairs and the dimension of the input space respectively.

– a4a: n = 4781, m = 123;
– mushrooms: n = 8124, m = 112;
– w5a: n = 9888, m = 300;
– rcv1_train.binary: n = 20242, m = 47236;
– ijcnn1: n = 49990, m = 22;
– random: n = 50000, m = 20; it has been constructed starting from two linearly

separable sets of points by changing the classification of a certain number (equal
to 1% of the overall points) of randomly chosen observations (Refs. [7, 15]).

The experiments have been performed using in (37) the Gaussian kernel K(u, z) =
e−γ ‖u−z‖2

, with γ = 1, i.e., the generic element qi,j of the Hessian matrix Q is

aiaj e−‖ui−uj ‖2
, and setting the upper bound C of the box constraints equal to 5. The

initial point x0 in FEDIR-SVM has been determined starting from the feasible point
x = 0 and applying the MV strategy, which corresponds to performing the first iter-
ate of LIBSVM. Furthermore, we have set in FEDIR-SVM η̄ = 10−6, βu = C = 5,
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Table 1 Numerical results

Problem Algorithm ni Kev f ∗ CPU
(dimension n)

a4a FEDIR-SVM 5538 10331 −2358.74 34

(n = 4781) LIBSVM 6599 10714 −2358.74 34

mushrooms FEDIR-SVM 12193 24386 −1072.91 157

(n = 8124) LIBSVM 16083 32152 −1072.91 203

w5a FEDIR-SVM 9141 17272 −789.39 102

(n = 9888) LIBSVM 10217 19400 −789.39 113

rcv1_train.binary FEDIR-SVM 10460 20436 −2498.03 817

(n = 20242) LIBSVM 13570 24358 −2498.03 971

ijcnn1 FEDIR-SVM 12666 13128 −12986.54 354

(n = 49990) LIBSVM 26741 20196 −12986.54 544

random FEDIR-SVM 26435 52804 −7673.07 1430

(n = 50000) LIBSVM 40559 80822 −7673.07 2230

and we have used the same stopping criterion adopted by LIBSVM (Ref. [21]). All
the experiments have been carried out on a 2.60 GHz Pentium 4 with 512 megabytes
of RAM and cache size of 40 MB. The results are shown in Table 1, where we re-
port the number of iterations (ni ), the number of column evaluations of the matrix Q

(Kev), the attained function value (f ∗), and the required CPU time (CPU) expressed
in seconds. From the results reported in Table 1 we can observe that the number of
iterations and the number of matrix column evaluations required by FEDIR-SVM
are always lower than those required by LIBSVM. Concerning the comparison in
terms of number of iterations, we have that in many cases FEDIR-SVM accepts as
new iterate the point xk+1

b (see (41)) thus updating four variables, while LIBSVM
always updates two variables, and this motivates the better performances of FEDIR-
SVM. As regards the better behaviour of FEDIR-SVM in terms of number of matrix
column evaluations, from one hand it depends on the lower number of iterations,
from the other one it depends on the fact that FEDIR-SVM is designed to exploit as
much as possible the caching strategy. As consequence, FEDIR-SVM outperforms
LIBSVM in terms of CPU time in all the runs except for problem a4a. We can note
that the difference of the performances of the two algorithms becomes significant as
the dimension of the problem increases. Thus, the computational experiments per-
formed on a class of SVM large-scale quadratic problems show the effectiveness of
the implemented decomposition scheme derived from the general algorithm model
proposed in this work.

Acknowledgements The authors wish to thank the anonymous reviewer for helpful comments and con-
structive suggestions.
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Appendix A: Technical Result

We state here a theoretical result valid for polyhedral sets. This result is used in
the convergence proof of the general algorithm. More specifically, we consider a
polyhedron

� = {x ∈ Rn : Ax ≤ b},
where A is a m × n matrix and b ∈ Rm. Given x ∈ �, we denote by I (x) the set of
active constraints at x, that is,

I (x) = {i ∈ {1, . . . ,m} : aT
i x = bi},

where aT
i denotes row i of A. The set of feasible directions D(x) at x ∈ � is

D(x) = {d ∈ Rn : aT
i d ≤ 0 ∀i ∈ I (x)}.

Given d ∈ D(x), we denote by H = {i ∈ {1, . . . ,m} : aT
i d > 0}. The maximum feasi-

ble stepsize along d is

β =
{+∞, if H = ∅,

mini∈H{(bi − aT
i x)/aT

i d}, otherwise.
(42)

Proposition A.1 Let A ∈ Rm×n and b ∈ Rm. Let {xk} be a sequence of points such
that

Axk ≤ b, (43)

for all k. Assume further that

lim
k→∞xk = x̄. (44)

Then, given any direction d̄ ∈ D(x̄), there exists a scalar β̂ > 0 such that, for suffi-
ciently large values of k, we have

A(xk + βd̄) ≤ b, ∀β ∈ [0, β̂]. (45)

Proof Assume first that H = ∅. Then, recalling (42), it follows that (45) holds for any
β̂ > 0. Now, suppose that H �= ∅ and let β̄ be the maximum feasible stepsize along d̄

starting from x̄, i.e.,

β̄ = min
i∈H

{(bi − aT
i x̄)/aT

i d̄} > 0

(the inequality holds since d̄ ∈ D(x̄)). Then, we have

aT
i (x̄ + βd̄) < bi, ∀i ∈ H,∀β ∈ [0, β̄/2],

and hence there exists a scalar ε > 0 such that

aT
i (x̄ + βd̄) ≤ bi − ε, ∀i ∈ H,∀β ∈ [0, β̄/2]. (46)
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Moreover, we have

aT
j (x̄ + βd̄) ≤ bj , ∀j /∈ H,∀β ∈ [0,+∞). (47)

Recalling (44), for k sufficiently large, we can write

|aT
i xk − aT

i x̄| ≤ ε/2, ∀i ∈ {1, . . . ,m}. (48)

Finally, using (46) and (48), for k sufficiently large and ∀i ∈ H, we have

aT
i (xk + βd̄) = aT

i (xk + x̄ − x̄ + βd̄) ≤ bi − ε + ε/2 = bi − ε/2, ∀β ∈ [0, β̄/2]
(49)

so that, using (47), (45) is proved with β̂ = β̄/2. �

Appendix B: SVM Problem and Assumption 6.1

The next proposition identifies a class of SVM training problems which satisfy As-
sumption 6.1.

Proposition B.1 Consider the convex quadratic problem (37), and let x0 be a feasi-
ble point such that f (x0) < 0. Suppose that

λmin(Q) − 2/C ≥ 0, (50)

where λmin(Q) denotes the minimum eigenvalue of Q. Then, Assumption 6.1 holds.

Proof In order to prove the thesis, it suffices to show that, given any point x belonging
to the set

V = {x ∈ F : R(x) ∩ S(x) = ∅},
we have f (x) ≥ 0. For any x ∈ V , we have

‖x‖2 =
∑

i:xi=C

C2, eT x =
∑

i:xi=C

C,

and we can write

f (x) ≥ 1/2λmin(Q)‖x‖2 − eT x = C
∑

i:xi=C

(1/2λmin(Q)C − 1) ≥ 0,

where the last inequality follows from (50). �

Finally we remark that the requirement that the initial feasible point x0 is such
that f (x0) < 0 can be easily satisfied in the case of SVM problems. In fact, for such
problems, the point x̃ = 0 is feasible and, whenever this point is not a stationary
point, it is possible to find a feasible descent direction (see Propositions 3.2 and 3.3).
Therefore, a point x0 such that f (x0) < 0 can be found by starting from x̃ and by
performing a line search along this direction.
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