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Abstract

It is a well–known fact that solutions to nonlinear parabolic partial differential equations of p–laplacian
type are Hölder continuous. One of the main features of the proof, as originally given by DiBenedetto
and DiBenedetto–Chen, consists in studying separately two cases, according to the size of the solution.
Here we present a new proof of the Hölder continuity of solutions, which is based on the ideas used in
the proof of the Harnack inequality for the same kind of equations recently given by E. DiBenedetto, U.
Gianazza and V. Vespri. Our method does not rely on any sort of alternative, and has a strong geometric
character.
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1 Introduction and Main Result

Let Ω be a domain in Rn. For T > 0 let ΩT denote the cylindrical domain Ω × (0, T ]. In the cylinder ΩT
consider the quasi–linear parabolic differential equation

ut = div A(x, t, u,Du). (1.1)

The function A : ΩT × Rn+1 → Rn is a Carathéodory function satisfying

A(x, t, u,Du) ·Du ≥ Co|Du|p, (1.2)

|A(x, t, u,Du)| ≤ C1|Du|p−1 (1.3)

almost everywhere in ΩT for p > 2 and where Co, C1 are given positive constants.
A function

u ∈ Cloc(0, T ;L2
loc(Ω)) ∩ Lploc(0, T ;W 1,p

loc (Ω))
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is a local weak super(sub)solution to (1.1) if for every compact set K ⊂ Ω and for every subinterval [t1, t2] ⊂
(0, T ] one has ∫

K

uϕdx

∣∣∣∣t2
t1

+
∫ t2

t1

∫
K

[−uϕt + A(x, t, u,Du) ·Dϕ] dxdt ≥ (≤)0

for all nonnegative test functions

ϕ ∈W 1,2
loc (0, T ;L2(K)) ∩ Lploc(0, T ;W 1,p

o (K)).

We say that u is a local weak solution if it is both a local weak sub- and supersolution.
We say that a constant γ = γ(data) if it can be quatitatively expressed in terms of n, p, Co, C1. For

y ∈ Rn and ρ > 0 let
Ky
ρ = {x ∈ Rn : |xi − yi| < ρ/2, i = 1, . . . , n}.

For a given cylinder Q = Kx
ρ × [to − θρp, to] we denote 1

2Q = Kx
ρ/2 × [to − θ(ρ/2)p, to]. The main result

of this paper is the following

Theorem 1.1. Let u be a locally bounded weak solution of (1.1) in ΩT . Then, up to modification on a set of
measure zero, u is locally Hölder continuous in Ω× (0, T ]. The Hölder constants can be determined a priori
only in terms of the data.

Indeed, that locally bounded weak solutions to (1.1) are locally Hölder continuos is not a new result:
the proof of this fact was first given by E. DiBenedetto in [8] for the degenerate case p > 2, and by Y.Z.
Chen and E. DiBenedetto for the singular case 1 < p < 2 in [1], [2]. The book [3] contains the proof of the
Hölder continuity of solutions for equations with a very general structure. The main ideas underlying the
original proof by DiBenedetto, namely the so–called intrisic scaling method, are discussed in [7]. A thorough
presentation of this same set of techniques is given in the recent monograph [9].

Here the focus is on the degenerate case, i.e. when p > 2; the corresponding approach to the Hölder
continuity for the singular case, namely when 1 < p < 2, will be dealt with in [6].

The structure of the proof given in [8] is based on studying separately two cases. Either one can find
a cylinder of the type Kxo

ρ × [to − θρp, to] where u is mostly large, or such a cylinder cannot be found. In
either case the conclusion is that the essential oscillation of u in a smaller cylinder about (xo, to) decreases
in a way that can be quantitatively measured.

The actual technical implementation of the previous alternative is not an easy job; the point in giving a
new proof of the by–now classical result by DiBenedetto is to show how a certain set of ideas, which led to
the proof of the Harnack inequality in [5], can simplify the argument, and avoid any use of alternatives. We
believe that the new proof has a further significant feature, namely its strong geometric character.

Three final comments are due here:

• In order to present the essence of the approach, only the case of homogeneous–structure equations is
dealt with here, but with little further effort the full quasi–linear case could be considered too.

• In the following we deal with equations of p–laplacian type, but, with some care, the same kind of
arguments can be used to prove the Hölder continuity of quasi–linear parabolic differential equation of
the sort

ut = div A(x, t, u,Du),

where the function A : ΩT ×Rn+1 → Rn is a Carathéodory function satisfying the structure conditions

A(x, t, u,Du) ·Du ≥ Co|u|m−1|Du|2 (1.4)

|A(x, t, u,Du)| ≤ C1|u|m−1|Du| (1.5)

almost everywhere in ΩT for m > 1, Co and C1 being given positive constants. The prototype of this
kind of equations is the so–called porous medium equation, namely

ut −∆|u|m−1u = 0,
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which has been extensively studied in the last thirty years, in the context of non–linear diffusion
phenomena. For a thorough treatment of this very interesting topic, see for example [10]. The care we
were referring above, is due to the fact that if u is a solution to a porous medium equation, given a
generic constant c 6= 0, in general u+ c is not a solution. Therefore one has to take into account that
solutions are signed solutions, and this brings about some further technical difficulties.

• In the rest of the paper by solutions we will always mean weak solutions.

Acknowledgement: This paper was written during the INdAM Intensive Period Geometric Properties of
Nonlinear Local and Non local Problems. The authors thank INdAM for the support that made the event
possible.

2 Main Lemma and Proof of Theorem 1.1

As it will be clear at the end of this Section, the proof of Theorem 1.1 is a straightforward consequence of
the following lemma.

Lemma 2.1. Let u be a nonnegative solution to (1.1) in the cylinder Q = K0
4×(−2, T ]. There exist constants

0 < γ1 < γ2 and µ > 0, depending only on Co, C1, n, p, such that if T ≥ γ2 and

|{(x, t) ∈ K0
1 × (−1, 0] : u(x, t) ≥ 1

2
}| ≥ 1

2

then
ess inf
Q′

u ≥ µ, where Q′ = K0
1 × (γ1, γ2].

The proof of this lemma is the most technically involved part of the paper and we postpone its proof to
the last Section of the paper. Let

γ3 = γ2 − γ1, γ4 = 2 + γ2.

It is obvious that 0 < γ3 < γ4. The following proposition is elementary and we skip its proof.

Proposition 2.1. Let u be a solution to (1.1) in the cylinder Q = Kxo
4ρ × [to − γ4ω

2−pρp, to], where ω > 0.
Let β ∈ R. Set

z = ±u+ β

ω
, x = xo + ρy, t = to + (τ − γ2)ω2−pρp;

then z is a solution to the equation
zτ = div A1(y, τ, z,Dz)

in the cylinder Q1 = K0
4 × [−2, γ2], where A1 is a Carathéodory function satisfying

A1(y, τ, z,Dz) ·Dz ≥ Co|Dz|p,
|A1(y, τ, z,Dz)| ≤ C1|Dz|p−1

The following corollary of Lemma 2.1 is a classical step in the proof of the Hölder continuity of solutions
to degenerate and singular parabolic partial differential equations.

Lemma 2.2. Let u be a solution to (1.1) in the cylinder Q = Kxo
4ρ × [to − γ4ω

2−pρp, to], where ω > 0. Let
ess oscQ u ≥ ω. Let Q′ = Kxo

ρ × [to − γ3ω
2−pρp, to]. Then

ess osc
Q′

u ≤ ess osc
Q

u− µω,

where µ is the quantity given by Lemma 2.1
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Proof. Let
m = ess inf

Q
u, M = ess sup

Q
u, ξ =

M −m
ω

≥ 1,

and
z =

u−m
ω

, x = xo + ρy, t = to + (τ − γ2)ω2−pρp.

By Proposition 2.1, z is a non–negative solution to

zτ = div A1(y, τ, z,Dz)

in the cylinder Q1 = K0
4 × [−2, γ2], and the vector field A1 satisfies the same structural conditions as A.

One of the following statements holds:∣∣∣∣{z ≥ ξ

2

}
∩ K0

1 × [−1, 0]
∣∣∣∣ ≥ 1

2
, (2.1)∣∣∣∣{z ≥ ξ

2

}
∩ K0

1 × [−1, 0]
∣∣∣∣ < 1

2
. (2.2)

Let (2.1) hold: then
∣∣∣∣{z ≥ 1

2

}
∩ K0

1 × [−1, 0]
∣∣∣∣ ≥ 1

2
, and by Lemma 2.1 we obtain

z ≥ µ a.e. in K0
1×]γ1, γ2].

Hence
ess inf
Q′

u ≥ m+ µω.

and the assertion of the lemma easily follows.
Analogously, if (2.2) holds, then the function

ẑ = ξ − z =
M − u
ω

satisfies
ẑ ≥ µ a.e. in K0

1 × [γ1, γ2],

and
ess sup
Q′

u ≤M − µω.

The proof of the following energy inequalities can be found in [3].

Proposition 2.2. Let the cylinder Q = Ky
ρ × [t1, t2] ⊂ ΩT and ξ be a non–negative piecewise–smooth test

function vanishing on the lateral boundary of Q. If u is a subsolution to the equation (1.1) in ΩT , then for
any k ∈ R we have

∫
Ky
ρ

(u− k)2
+ξ

pdx

∣∣∣∣∣
t2

t1

+ Co

∫∫
Q

|D(u− k)+|pξpdxdt

≤ p
∫∫

Q

(u− k)2
+ξ

p−1ξtdxdt+ γ̃o

∫∫
Q

(u− k)p+|Dξ|pdxdt. (2.3)
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Proposition 2.3. Let the cylinder Q = Ky
ρ × [t1, t2] ⊂ ΩT and ξ be a non–negative piecewise–smooth test

function vanishing on the lateral boundary of Q. If u is a supersolution to (1.1) in ΩT , then for any k ∈ R
we have ∫

Ky
ρ

(u− k)2
−ξ

pdx

∣∣∣∣∣
t2

t1

+ Co

∫∫
Q

|D(u− k)−|pξpdxdt

≤ p
∫∫

Q

(u− k)2
−ξ

p−1ξtdxdt+ γ̃o

∫∫
Q

(u− k)p−|Dξ|pdxdt. (2.4)

Remark 2.1. The proof shows that in both cases

γ̃o = (2C1)p
(
p− 1
Co

)p−1

.

Assuming for the moment the validity of Lemma 2.1, we proceed with the

Proof of Theorem 1.1. Let (xo, to) ∈ ΩT and set

dx = dist(xo, ∂Ω), dt = to > 0.

Assume that supΩT |u| = M <∞. Let {ωj}∞j=0, {ρj}∞j=0 be the sequences of positive numbers defined by

ρj = ερj−1, ωj = δωj−1,

where δ ∈ (0, 1), ε ∈ (0, 1
4 ], ε < δ are to be chosen. Notice that the condition ε < δ guarantees that the

sequence of cylinders shrinks to a point. We also require that ρo ≤ dx and γ4ω
2−p
o

(
ρo
4

)p ≤ dt. Let

Qj = Kxo
ρj × [to − γ4ω

2−p
j

(ρj
4

)p
, to],

and denote
Aj = ess osc

Qj
u.

We want to show that there exists a constant Λ = Λ(data) > 1, such that

Aj ≤ Λωj ⇒ Aj+1 ≤ Λωj+1.

Suppose that ε and δ are such that γ4ε
pδ2−p ≤ γ3.

Assume first that Aj ≥ ωj . Then, in virtue of Lemma 2.2,

Aj+1 ≤ Aj − µωj ≤ (Λ− µ)ωj =
Λ− µ
δΛ

Λωj+1

≤ Λωj+1 if Λ− µ ≤ δΛ⇔ Λ ≤ µ

1− δ
.

On the other hand, if Aj ≤ ωj , then

Aj+1 ≤ Aj ≤ ωj =
1
δ
ωj+1 ≤ Λωj+1 if

1
δ
≤ Λ.

Hence, any Λ such that
1
δ
≤ Λ ≤ µ

1− δ
.
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will do. It is clear that the previous inequality is satisfied if

1
δ
≤ µ

1− δ
⇔ δ ≥ 1

1 + µ
.

Take δ = 1
1+µ and Λ = 1 + µ. Set

ε = min

{
1
4
,

(
γ3

γ4
δp−2

) 1
p

}
, ωo = 2M, and ρo = min

{
dx, 4

(
dt

γ4ω
2−p
o

) 1
p

}
.

Then it is immediate to see that ess osc
Qo

u ≤ (1 + µ)ωo, which implies

ess osc
Qj

u ≤ (1 + µ)ωj = (1 + µ)1−jωo.

Let
Qxo,tor,s = Kxo

r × (to − s, to] ⊂ ΩT ,

and
ϕ(xo, to, r, s) = ess osc

Qxo,tor,s

u.

Choosing j in such a way that Qxo,tor,s ⊂ Qj , we have

ϕ(xo, to, r, s) ≤ (1 + µ)2ωo max
{(

s

γ4(ρo/4)pω2−p
o

)α1

,

(
r

ρo

)α2
}
, (2.5)

with
α1 =

1
log1+µ

1
εpδ2−p

, α2 =
1

log1+µ
1
ε

.

Since εpδ2−p ≤ γ3
γ4

< 1, and by possibly reducing µ and enlarging γ1, we have that both α1, α2 ∈ (0, 1).
Notice that

α1

α2
=

1
logε εpδ2−p =

1
p+ (2− p) logε δ

>
1
p
.

The rest of the proof follows in a standard way.

3 Auxiliary Propositions and Technical Results

In the following we gather various technical results, which are used in the proof of Lemma 2.1. Some of the
statements will be given without proofs (and in such a case we refer the reader to [5] or [3]); others will be
explicitely proved, even if the arguments are mainly proper modifications of analogous results given in [5].

The first two lemmata, which we state for sub- and supersolutions separately, are one of the traditional
and most widely used tools in the regularity theory.

Lemma 3.1. Let u be a subsolution to (1.1) in the cylinder Q = Ky
2ρ × [t1 − θ(2ρ)p, t1]. Let µ+ ≥

ess supQ u(x, t). Then for any ω > 0 and a ∈ (0, 1) there exists a number s, which depends only on the
data, a, and θωp−2, such that if

|{(x, t) ∈ Q : u(x, t) > µ+ − ω}| ≤ s|Q|,

then we have
ess sup

1
2Q

u(x, t) ≤ µ+ − aω.
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Lemma 3.2. Let u be a supersolution to (1.1) in the cylinder Q = Ky
2ρ × [t1 − θ(2ρ)p, t1]. Let µ− ≤

ess infQ u(x, t). Then for any ω > 0 and a ∈ (0, 1) there exist a number s, which depends only on the data,
a, and θωp−2, such that if

|{(x, t) ∈ Q : u(x, t) < µ− + ω}| ≤ s|Q|

then we have
ess inf

1
2Q

u(x, t) ≥ µ− + aω.

The proof shows that the value of s in Lemmas 3.1 and 3.2 is the same for the same values of a and
θωp−2, namely

s =
(

1− a
γ(data)

)n+p [θωp−2]n/p

[1 + θωp−2](n+p)/p
.

Given a and ξ = θωp−2 we denote the corresponding value of s by s(a, ξ).

The next lemma is a variant of the previous result.

Lemma 3.3. Let u be a non–negative supersolution to (1.1) in the cylinder Q = Ky
2ρ × [t1 − θ(2ρ)p, t1].

Suppose that ess infKy
2ρ
u(x, t1 − θ(2ρ)p) ≥ k. Then there exists ν = ν(data) > 0 such that if θ < νk2−p,

ess inf
Ky
ρ

u(x, t1) ≥ k/2.

A consequence of the previous lemma is

Corollary 3.1. Let u be a non–negative supersolution to (1.1) in the cylinder Ky
2ρ × [t1, t1 + T ]. Let

ess infKy
2ρ
u(x, t1) ≥ k. Then for all t ∈ (t1, t1 + T ] we have

ess inf
Ky
ρ

u(x, t) ≥ k

2

(
1 +

t− t1
νk2−p(2ρ)p

) 1
2−p

, (3.1)

where ν is the constant from the statement of Lemma 3.3.

Proof. It is clear, that for any τ ∈ [0, 1] we have

ess inf
Ky

2ρ

u(x, t1) ≥ τk. (3.2)

If t−t1 ≤ νk2−p(2ρ)p, then Lemma 3.3 yields u(x, t) ≥ k/2 a.e. in Ky
ρ . Now assume that t−t1 > νk2−p(2ρ)p.

In (3.2) take

τ =
(
νk2−p(2ρ)p

t− t1

) 1
p−2

and apply Lemma 3.3 with k replaced by τk. This gives

u(x, t) ≥
(
νk2−p(2ρ)p

t− t1

) 1
p−2 k

2
a.e. in Ky

ρ .

The combination of the estimates for t ≤ t1 + νk2−p(2ρ)p and t > t1 + νk2−p(2ρ)p concludes the proof.

The next lemma is analogous to Proposition 6.1 of [5].

Lemma 3.4. Let v be a non–negative supersolution of (1.1) in the cylinder Q = K0
4 × [0, T ]. Assume we

have
|{x ∈ K0

2 : v(x, t) ≥ 1}| ≥ α|K0
2 |,

7



for all t ∈ [0, T ], where α ∈ (0, 1) is a given constant. Then for any ε > 0 there exist θ = θ(α, ε, data) > 0
such that if T ≥ θ2p+1, then for the cylinder Q1 = K0

2 × [θ2p, θ2p+1] ⊂ Q, we have

|{(x, t) ∈ Q1 : v(x, t) < θ
1

2−p }| ≤ ε|Q1|.

Moreover, θ is a monotone decreasing function of ε. Given α and ε we denote the corresponding θ by θ(ε, α).

Proof. Denote kj = 2−j for j = 0, 1, . . . , j∗, where j∗ will be chosen later, and let Q2 = K0
4 × [0, 2p+1θ],

where the constant θ will be specified later. Take the piecewise-smooth cut-off function ξ(x, t) such that
ξ = 1 on Q1, 0 ≤ ξ ≤ 1 on Q2, ξ vanishes on the parabolic boundary of Q2, |ξt| ≤ 2

2pθ and |Dξ| ≤ 1.
From inequality (2.4), we obtain∫∫

Q1

|D(v − kj)−|pdxdt ≤ γ|Q2|

(
k2
j

θ
+ kpj

)
.

Take θ = k2−p
j∗

. Then the last inequality yields∫∫
Q1

|D(v − kj)−|pdxdt ≤ γ|Q1|kpj .

Denote
Aj = {(x, t) ∈ Q1 : v(x, t) < kj} and Aj(τ) = {x ∈ K0

2 : v(x, τ) < kj}.
Using De Giorgi - Poincaré inequality (see [3], Chapter I, Lemma 2.2), thanks to the hypotheses we obtain

(kj − kj+1)|Aj+1(τ)| ≤ γ(n)
|K0

2 \Aj(τ)|

∫
Aj(τ)\Aj+1(τ)

|D(v − kj)−|dx

≤ γ(n)
α|K0

2 |

∫
Aj(τ)\Aj+1(τ)

|D(v − kj)−|dx.

Integration of the last inequality over τ ∈ [2pθ, 2p+1θ] yields

kj
2
|Aj+1| ≤

γ

α

∫∫
Aj\Aj+1

|D(v − kj)−|dxdt

≤ γ

α

(∫∫
Aj\Aj+1

|D(v − kj)−|pdxdt

) 1
p

|Aj \Aj+1|
p−1
p

≤ γ

α
kj |Q1|

1
p |Aj \Aj+1|

p−1
p .

Hence,

|Aj+1|
p
p−1 ≤

(γ
α

) p
p−1 |Q1|

1
p−1 |Aj \Aj+1|.

Summing the last inequality over j = 0, 1, . . . , j∗ − 1, we obtain

j∗|Aj∗ |
p
p−1 ≤

(γ
α

) p
p−1 |Q1|

p
p−1 ,

whence

|Aj∗ | ≤
γ

α

(
1
j∗

) p−1
p

|Q1|.

The lemma is proved with

j∗ =
( γ
εα

) p
p−1

, θ(ε, α) = 2(p−2)j∗ .

Now we prove the following
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Proposition 3.1. Let v be as in Lemma 3.4. Denote

Q(θ) = K0
1 × [(2p+1 − 1)θ, 2p+1θ].

There exists a constant θo = θo(data, α) such that

ess inf
Q(θ)

v(x, t) ≥ 1
2
θ

1
2−p

for all θ ≥ θo. Given α, we denote the corresponding value of θo by θo(α).

Proof. With reference to Lemma 3.2, let εo = s( 1
2 , 1). Correspondingly let θo = θ(α, εo) as given by

Lemma 3.4. Now choose ε < εo and let θ = θ(ε, α). Then in the cylinder Q1(θ) = K0
2 × [2pθ, 2p+1θ] we have

|{(x, t) ∈ Q1(θ) : v(x, t) < θ
1

2−p }| < ε|Q1(θ)|.

In the cylinder Q1(θ) apply Lemma 3.2 with µ− = 0 and a = 1
2 to conclude the proof.

Proposition 3.2. Let u be a non–negative supersolution to (1.1) in the cylinder Q = K0
1 × [−1, 0]. Let∣∣∣∣{u ≥ 1

2

}
∩Q

∣∣∣∣ ≥ 1
2

and ∫∫
Q

|D(u− 1
2

)−|dxdt ≤ γ̃.

Then for any σ ∈ (0, 1) there exist ηo = ηo(data, σ, γ) ∈ (0, 1) and (y, s) ∈ Q such that

Qσ ≡ Ky
ηo ×

[
s− ηpo

(
1
4

)2−p

, s

]
⊂ Q

and ∣∣∣∣{u ≥ 1
4

}
∩Qσ

∣∣∣∣ ≥ σ|Qσ|.
Proof. First, we show that there exists τ∗ ∈ [−1,− 1

16 ] such that∫
K0

1

|D(u− 1
2

)−|(y, τ∗) dy ≤ 16γ̃ (3.3)

and ∣∣∣∣{u(y, τ∗) ≥
1
2

}
∩K0

1

∣∣∣∣ ≥ 3
8
. (3.4)

It is obvious that the measure of the subset of [−1, 0] where (3.3) does not hold does not exceed 1
16 . Conse-

quently, (3.3) holds on a set of measure at least 15
16 . Next, it is easy to see that the set of τ ∈ (−1, 0] where

(3.4) does not hold has measure less than 14
16 . Hence, both (3.3) and (3.4) hold on a set of measure strictly

larger than 1
16 .

We apply the result of [4] to u(·, τ∗) in K0
1 , and deduce that, for any σ̄ ∈ (0, 1) there exist y1 ∈ K0

1 and
η̄ ∈ (0, 1) such that ∣∣∣∣{x ∈ Ky1

η̄ : u(x, τ∗) >
3
8

}∣∣∣∣ > σ̄|Ky1
η̄ |.

Let θ = 42−p, and set

τ ′∗ = τ∗ +
(

1
4

)2−p ( η̄
2

)p
(1− σ̄).
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Consider the cylinder
Q1 = Ky1

η̄ × [τ∗, τ ′∗].

Writing the energy inequality (2.4) over the cylinder Q1 with k = 3
8 and a proper cut–off function, we obtain

max
τ∗≤t≤τ ′∗

∫
K
y1
η̄/2

(
u− 3

8

)2

−
dx ≤ γ

(
(1− σ̄)

(
3
8

)2

|Ky1
η̄ |

+
(

4
η̄

)p(3
8

)p
|Ky1

η̄ |
(

1
4

)2−p ( η̄
2

)p
(1− σ̄)

)
.

Therefore, ∀ t ∈ [τ∗, τ ′∗]

|{x ∈ Ky1
η̄/2 : u(x, t) ≤ 1

4
}| ≤ 64γ1(1− σ̄) |Ky1

η̄/2|.

If we take σ̄ = 1− σ2−p

64γ1
, then in the cylinder Q2 = Ky1

η̄/2 × [τ∗, τ ′∗] we obtain

|{u ≤ 1
4
} ∩Q2| < σ2−p|Q2|.

Up to a zero measure set, decompose the base of Q2 into the 2ln congruent cubes Kzj
2−l−1η̄

, j = 1, . . . , 2ln.
Choose the smallest natural number l such that

(2−l−1η̄)p ≤
( η̄

2

)p
(1− σ̄).

There exists at least j such that in the cylinder Q̃j = K
zj
2−l−1η̄

× (τ∗, τ ′∗] we have

|{u ≤ 1
4
} ∩ Q̃j | < σ2−p|Q̃j |.

In the cylinder

Qσ = K
zj
2−l−1η̄

×

[
τ∗, τ∗ + (2−l−1η̄)p

(
1
4

)2−p
]

we have
|{u ≤ 1

4
} ∩Qσ| < σ|Qσ|.

We will use the following corollary

Corollary 3.2. Let u be as in Proposition 3.2. Then there exist a number ηo > 0 and a cylinder

Q3 = Kyo
ηo × [so −

(ηo
2

)p(1
4

)2−p

, so] ⊂ K0
1 × [−1, 0]

such that
ess inf
Q3

u ≥ 1
8
.

Proof. Take σ = s( 1
2 , 1) and apply Lemma 3.2 in the cylinder Qσ constructed in Proposition 3.2 with

µ− = 0, ω = 1
4 , a = 1

2 .
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4 Proof of Lemma 2.1

First, from the energy estimate (2.4) it follows that∫∫
K0

1×[−1,0]

|D(u− 1
2

)−| dxdt ≤ γ(data).

Next, use Corollaries 3.2 and 3.1 to obtain yo ∈ K0
1 , ηo ∈ (0, 1) and to ∈ [− 1

16 , 0] such that

ess inf
Kyo
ηo/2

u(x, t) ≥ 1
16

(
1 +

t− to
ν8p−2ηpo

) 1
2−p

, t ≥ to,

where ηo = ηo(data) > 0. Hence,

ess inf
Kyo
ηo/2

u(x, 0) ≥ µo :=
1
16

(
1 +

1
ν8p−2ηpo

) 1
2−p

.

Apply Corollary 3.1 again to obtain that

ess inf
Kyo
ηo/4

u(x, t) ≥ ψ(t) :=
µo
2

(
1 +

t

νµ2−p
o (ηo/2)p

) 1
2−p

, t ≥ 0.

Change the variables in equation (1.1) as

u(x, t) = v(x, t)ψ(t), t = t(τ),

where τ is a solution to the problem

dτ

dt
= ψp−2(t), τ(0) = 0.

One can see that

τ(t) =
ν

2p−2

(ηo
2

)p
ln
(

1 +
t

νµ2−p
o (ηo/2)p

)
,

ψ(t(τ)) =
µo
2

exp
[

2p−2τ

(2− p)ν(ηo/2)p

]
,

and for all τ ≥ 0 we have
ess inf
Kyo
ηo/4

v(x, τ) ≥ 1.

It can be verified that v is a supersolution to the equation

vτ = div A1(x, τ, v,Dv),

where
A1(x, τ, v,Dv) = ψ1−p(t)A(x, t, ψv, ψDv).

Moreover, A1 satisfies the same structural conditions as A. Applying Proposition 3.1 we obtain that

ess inf
K0

1

v(x, τ) ≥ 1
2
θ

1
2−p

with θ = θo(
(
ηo
4

)n) for all τ ∈ [(2p+1 − 1)θ, 2p+1θ].

11



Returning to the original variables we see that

ess inf
K0

1

u(x, t) ≥ µ :=
1
2
θ

1
2−p

µo
2

exp
[

22p−1θ

(2− p)ν(ηo/2)p

]
for all t ∈ [γ1, γ2] where we have set

γ1 = νµ2−p
o

(ηo
2

)p [
exp

(
2p−2(2p+1 − 1)θ

ν(ηo/2)p

)
− 1
]
,

γ2 = νµ2−p
o

(ηo
2

)p [
exp

(
22p−1θ

ν(ηo/2)p

)
− 1
]
.

Remark. One can see that the constant µ, and consequently, the Hölder constants α1 and α2 deteriorate
as p → 2. Indeed it can be shown that these constants can be stabilized. One only needs to repeat the
argument of Lemma 7.1 of [5] with obvious modifications.
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