
14 June 2024

Phase I/II study of single-agent bortezomib for the treatment of patients with myelofibrosis. Clinical and
biological effects of proteasome inhibition / Barosi G; Gattoni E; Guglielmelli P; Campanelli R; Facchetti F;
Fisogni S; Goldberg J; Marchioli R; Hoffman R; Vannucchi AM.. - In: AMERICAN JOURNAL OF HEMATOLOGY.
- ISSN 0361-8609. - STAMPA. - 85(8):(2010), pp. 616-619. [10.1002/ajh.21754]

Original Citation:

Phase I/II study of single-agent bortezomib for the treatment of
patients with myelofibrosis. Clinical and biological effects of

Published version:
10.1002/ajh.21754

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/395511 since: 2017-10-05T19:48:48Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



Phase I/II study of single-agent bortezomib for the treatment of
patients with myelofibrosis. Clinical and biological effects of
proteasome inhibition
Giovanni Barosi,1* Elisabetta Gattoni,1 Paola Guglielmelli,2 Rita Campanelli,1 Fabio Facchetti,3

Simona Fisogni,3 Judith Goldberg,4 Roberto Marchioli,5 Ronald Hoffman,6

Alessandro M. Vannucchi,2 for the Myeloproliferative Research Consortium

A phase I/II trial was undertaken to determine maximum tolerated dose

(MTD), toxicity, clinical efficacy, and biological activity of bortezomib in

patients with advanced stage primary or postpolycythemia vera/postessen-

tial thrombocythemia myelofibrosis (MF). Bortezomib (0.8, 1.0, or 1.3 mg/

m2) was administered on days 1, 4, 8, and 11 by intravenous push to

patients previously resistant to at least one line of therapy, or with an inter-

mediate/high-risk score of International Working Group (IWG) [1]. Therapy

was repeated every 28 days for six cycles. At 1.3 mg/m2 dose, one of six

patients experienced a dose limiting toxicity, and this was determined to be

the MTD. Neither remissions nor clinical improvements were recorded in

16 patients treated at this dose level, fulfilling the early stopping rule in the

Simon two-stage study design. Major toxicity was on thrombocytopenia. In

9 of 15 patients bortezomib proved that it is able to reduce bone marrow

vessel density. However, the agent was associated with worsening of

markers of disease activity, such as enhancement of hematopoietic CD34-

positive progenitor cell mobilization, WT-1 gene expression in mononuclear

cells, and downregulation of CXCR4 expression on CD34-positive cells.

Occurrence of both beneficial and detrimental biological effects claims fur-

ther investigation on the mechanisms of the drug in MF.

The proteasome inhibitor bortezomib (Velcade1, Millenniun Pharmaceuticals,

and Johnson & Johnson Pharmaceutical Research and Development, LLC,

Cambridge, MA) induces tumor cell death by inhibiting the degradation of sev-

eral intracellular proteins involved in cell cycle regulation, and inhibits degrada-

tion of IkB blocking the multifunctional transcription factor nuclear factor-kappa

B (NFkB) leading to reduced levels of transforming growth factor b-1 (TGF-b1).

In addition, bortezomib indirectly inhibits angiogenesis and prevents tumor

adaptation to hypoxia by functional inhibition of hypoxia inducible factor 1-alpha

(HIF-1a). In MF, several lines of evidence are in favor of a crucial role of the

TGF-b1, which is released by clonal proliferation of megakaryocytes or mono-

cytes via activation of NF-kB [2,3]. Moreover, MF shows enhanced bone mar-

row and spleen angiogenesis that has been documented to be associated with

worse prognosis [4,5]. Thus, NF-kB signaling pathway and angiogenesis are

candidate targets for bortezomib in MF. Based on these assumptions, in 2007

we initiated a phase I/II trial with the aim to evaluate the safety and efficacy of

bortezomib in patients with MF, to evaluate its effect on bone marrow angiogen-

esis and fibrosis, and on biomarkers of severity and progression of the disease.

Twelve patients were enrolled onto phase I of the study. The baseline

characteristics of these patients are listed in Table I. Three patients treated

at the 0.8 mg/m2 dose level, and three treated at the 1 mg/m2 dose level

had no dose limiting toxicity (DLT). One of six patients treated at the 1.3

mg/m2 dose level experienced acute severe pulmonary distress syndrome

during the first cycle of treatment and this dose level was defined as MTD.

Sixteen patients were enrolled onto the phase II portion of the study. One

patient did not complete the first cycle of treatment, 13 patients (81%) com-

pleted four cycles of treatment, and nine (56%) patients completed the six

cycles of treatment. The primary reason for early withdrawal from the study

was unacceptable adverse events (AEs) (three patients), patient’s refusal

(two patients), and physician’s decision (two patients).

At intention to treat analysis in which all patients who received at least

one dose of the drug in the phase II study were evaluable (16 patients), no

responses were recorded according the IWG response criteria [6]. At the

per protocol analysis in which patients who received at least four cycles of

treatment were evaluable, 13 of the 16 patients in the phase II study were

evaluable. No patient had clinical improvement. As a matter of fact, no

patient had Hb increasing >2 g/dL by the end of the study, and none of the

transfusion-dependent patients (n 5 4) had decrease in blood transfusion

need. One patient with absolute neutrophil count below 1 3 109/L at baseline

did not increase neutrophil count by at least 100%. None of the patients had

>50% spleen reduction. A patient with 4,448 3 109/L platelet count at base-

line decreased the platelet count by 67% by the end of the study, but this

response is not included in the criteria for clinical improvement. As depicted in

Table II, the most frequent Grade 3 or 4 toxicity was thrombocytopenia.

At analysis of individual changes in cellularity, CD341 cell content, and fibro-

sis in the 14 patients who completed the six cycles of treatment at any dose

and had serial bone marrow specimens available for review, no statistically sig-

nificant changes in none of the parameters resulted after therapy. At baseline,

the patients had a significantly higher level of TGF-b1 than our control normal

population (4738 pg/mL vs. 2404 pg/mL; P 5 0.015). No correlation was evi-

denced between baseline bone marrow fibrosis grade and plasma TGF-b1

level. Bortezomib treatment did not significantly decrease total TGF-b1 plasma

levels (TGF-b1 final, 4959.5 pg/mL) from baseline (Wilcoxon test, P 5 NS).

In the whole population of patients, bortezomib treatment did not significantly

reduce the median vessels density, vessels area, and vessels perimeter. How-

ever, a decrease in vessels density was evidenced in 9 of the 15 (60%) patients

studied (Table III). The percent decrease in vessels density ranged from 1.4% to

51%. Vessels area and vessels perimeter were reduced in 40% and 66% of

cases, respectively. At baseline, the median value of plasma vascular endothelial

growth factor (VEGF) in MF patients was 78.9 pg/mL (range, from 15.6 to 236.4

pg/mL), significantly higher than in normal controls (median, 30.16 pg/mL; range,

from 15.6 to 130.6 pg/mL; P 5 0.001). Bortezomib treatment did not significantly

decrease VEGF levels from baseline (Wilcoxon test, P5 NS).

At analysis of the 17 patients who completed at least four cycles of treatment at

any dose, and had serial measurements available, the median baseline hemato-

poietic CD341 cell number was 114.1 3 106/L (range, 15.5 to 3026 3 106/L),

whereas it was 143.1 3 106/L (range, 17.2 to 3688.3 3 106/L) at the end of the

study (Wilcoxon test, P 5 0.05). Increase in CD341 cells in peripheral blood at

the end of the study was detected in 11 of 17 (64.7%) patients, and the increase

at the end of the therapy ranged from 4% to 1125% of basal value.

At analysis of the 14 patients who completed at least four cycles of treatment

at any dose, and had serial measurements available, median WT1 expression

at baseline was 6,870.68 copies/104 ABL copies (range, 221.31 to 67,842.21

copies). After bortezomib, median WT1 expression did not significantly change

(Wilcoxon test, NS). However, WT-1 expression increased in 8 of 14 patients

(57.1%) with an increase ranging from 10% to 820% of basal value.

At analysis of the 18 patients who completed at least four cycles of treat-

ment at any dose, CXCR4 expression on circulating CD34-positive cells was

downmodulated at baseline in patients involved in this study (median, 22%;

range, 6.2–92%), as compared with our historical normal controls (median,

76.7%; range 37–97%; P < 0.001). By the end of the study, the value of

CXCR4 expression was significantly lower than at baseline (median, 15.2%;

range, 5.9–90%; Wilcoxon test, P 5 0.05). Reduction was documented in

10 of the 18 patients analyzed (55.7%). Granulocyte DNA-derived JAK2

617F allele burden was measured in 13 patients at baseline and after com-

pletion of at least four cycles of treatment. Twelve patients were JAK2V617F

mutated with a median allele burden of 42.5% (range 4–100%). In none of

the patients, the V617F burden variation was >10%. No significant changes

in plasma SDF-1, IL-8, IL-6, and TNF were revealed at the end of the study.

In summary, with this phase I/II study, we found that none of the

22 patients either treated with the MTD of 1.3 mg/m2, or with lower doses in

the phase I of the study, achieved a clinical response. Our results are in

agreement with the lack of any clinical efficacy described by Mesa et al.
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who reported the results of a pilot phase II study with bortezomib in nine

patients with MF and two with systemic mastocytosis or chronic myelomono-

cytic leukemia, showing lack of any clinical efficacy of the drug [7].

The results of this trial contrast with the 31–80% response rate in multiple

myeloma [8], mantle-cell lymphoma [9], amyloidosis [10], cutaneous T-cell

lymphoma [11], Waldestrom macroglobulinemia [12], or mucosa-associated

lymphoid tissue (MALT) lymphoma [13] when bortezomib was used as single

agent. In an attempt to clarify how bortezomib affects the pathogenetic

mechanisms that sustain MF, in this trial we evaluated bone marrow and

blood biomarkers variations as secondary endpoints of the study. In a great

proportion of patients, the density of bone marrow microvessels was less

after treatment than at baseline, reaching up to 51% reduction. The role of

proteasome inhibition in angiogenesis has been documented in several pre-

clinical studies [14–17] and one in vivo study in humans [18]. We were not

able to document that the effect on angiogenesis could be associated with a

decrease of plasma VEGF. This was in accordance with the results in multi-

ple myeloma [19].

In contrast with the potentially beneficial effect on angiogenesis, we docu-

mented that the therapy had the potential to exert detrimental effects on bio-

markers that mirror disease activity and progression. CXCR4 downregulation

seems to represent the most relevant biological consequence of bortezomib

therapy in patients with MF. Downregulation of cell surface proteins is a gen-

eral mechanism of bortezomib [20–22]. However, the decrease of CXCR4 on

CD341 cells of patients with MF seems to be an unique example of chemo-

kine receptor downregulation, because bortezomib has no effect on CXCR4

expression in multiple myeloma cells [23]. Furthermore, because the downre-

gulation of the above-mentioned receptors on the cell surface is potentially

beneficial, such as overcoming cell adhesion-mediated drug resistance for

VLA-4 downregulation [21], in MF CXCR4 downregulation exacerbates a detri-

mental disease characteristic that specifically is responsible for hematopoietic

cell mobilization and myelopoiesis derangement. We hypothesize that the

strong influence of bortezomib on the bone marrow microenvironment may

interact with the migration and adhesion mechanisms of hematopoietic stem

cells operating in MF, and disrupt a homeostatic equilibrium that is unique and

specific for the disease. A better understanding of these mechanisms is nec-

essary for planning a better targeted use of bortezomib in MF.

Methods

Study design

For the Phase I portion of the study, DLT was defined as any Grade 3 or

4 treatment-related nonhematologic toxicity (National Cancer Institute Com-

mon Terminology Criteria of Adverse Events, version 3.0); any Grade 4

treatment-related hematologic toxicity; or any Grade 3 treatment-related

hematologic toxicity requiring treatment delay of more than 2 weeks. Three

patients were to be enrolled at each dose level starting at dose level 1. If no

DLT was observed in cycle one, three patients were enrolled at the next

TABLE I. Baseline Characteristics of the Study Populations

Entering the Phase I and Phase II of the Study

Characteristic

Phase I (N 5 12) Phase II (N 5 16)

No of
patients
(%)

Median
(range)

No of
patients
(%)

Median
(range)

Age, years 57 (22–69) 58 (46–72)
Sex
Female 5 (41.7) 6 (37.5)
Male 7 (58.3) 10 (62.5)

Type of Myelofibrosis
Primary 11 (91.6) 10 (62.5)
Post-PV 1 (8.4) 4 (25)
Post-ET 0 2 (12.5)

Prior treatment for myelofibrosis
Hydroxyurea 8 (66.6) 13 (81.2)
Splenectomy 1 (8.4) 2 (12.5)
Danazol 1 (8.4) 2 (12.5)
Thalidomide 1 (8.4) 2 (12.5)

Duration of the
disease
(months)

44.5 (1–228) 35 (1–156)

Transfusion
dependent
patients

2 (16.6) 3 (18.7)

Transfusion-
independent
patients with
initial
hemoglobin
<10 g/dL

5 (41.7) 5 (31.2)

White blood cell
count (3109/L)

7.9 (3.7–71.3) 13.2 (1.7–71.3)

Myeloblasts in
peripheral
blood (%)

2 (0–7) 1 (0–7)

Immature
myeloid
cells
(nonblasts)
in peripheral
blood (%)

1 (0–12) 3 (0–15)

Erythroblasts
(% leukocytes)
in peripheral
blood

3 (0–45) 4 (0–45)

Platelet count
(3109/L)

302 (106–1066) 285 (70–3405)

Spleen size
below
the costal
margin, cm

15 (2–20) 15 (2–25)

Dupriez prognostic score
Score 0 4 (33.3) 7 (43.8)
Score 1 6 (50) 6 (37.5)
Score 2 2 (16.7) 3 (18.7)

Serum lactate
dehydrogenase
(mU/mL)

1486 (358–3024) 1408 (489–2658)

Chromosomal abnormalitiesa

Not available 5 (41.7) 7 (43.8)
No
chromosomal
abnormalities

5 (41.7) 4 (25)

Chromosomal
abnormalitiesb

2 (16.7)b 5 (31.2)c

a
In all patients, analysis of chromosomal abnormalities was performed on
peripheral blood; bdel5, del7; cdel20, t(x;20), del6/del14, del5, del7.

TABLE II. Toxicity Summary during Treatment with Bortezomib

Event
All adverse

events
Grade

3 events

Thrombocytopenia 8 3
Fatigue 4 0
Rash 2 0
Pyrexia 3 0
Dyspnoea with pulmonary distress syndrome 1 1
Dyspnoea with pulmonary hypertension 1 1
Cutaneous vasculitis 1 1
Peripheral neuropathy 1 0
Cutaneous infectious ulcer 1 1

TABLE III. Bone Marrow Vessels Density during Bortezomib Trial

in 15 Patients Who Had Serial Bone Marrow Specimens Available

for Review

Case
Bortezomib
dose mg/m2

Number of vessels
(31023m2)

Change from
baseline (%)Baseline Final

1 0.8 1.41 2.54 80.1
2 0.8 2.33 2.78 19.3
3 0.8 2.66 2.17 218.4
4 1 3.32 3.02 29.0
5 1 2.17 2.14 21.4
6 1.3 1.30 2.49 91.5
7 1.3 2.66 1.40 247.4
8 1.3 3.65 1.79 250.9
9 1.3 1.92 2.43 26.5
10 1.3 4.09 3.20 221.8
11 1.3 2.76 2.77 0.4
12 1.3 4.56 3.15 230.9
13 1.3 5.93 3.41 242.5
14 1.3 2.06 2.30 11.6
15 1.3 3.96 2.54 236.1
Median 2.66 2.53 29.03
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dose level. If one DLT was observed, the dose level was expanded to six

patients. If two DLTs were observed, the MTD was exceeded and the pre-

vious dose level was expanded to six patients. The recommended phase II

dose was the highest dose level at which one or less of six patients experi-

enced a DLT. Three dose levels were planned (0.8, 1, and 1.3 mg/m2). No

intra patient dose escalation was allowed.

For the Phase II efficacy analysis, we used an optimum Simon 2 stage

design to test the null hypothesis that the complete or major response rate

was �0.05 versus the alternative that this response rate was �0.20 at an

alpha level of 0.05 with 80% power. At the evaluation of response at

18 weeks, if there were no or one responses (complete or major) of first

16 patients, the trial would be terminated for lack of efficacy. If the trial con-

tinued to a second stage, a total of 30 patients would be studied.

Bortezomib was administered intravenously on days 1, 4, 8, and 11 of a

21-day cycle. A total of six cycles were planned while on study. Dose reduc-

tion was allowed for Grade 3 or 4 thrombocytopenia or any Grade 3 or 4

nonhematologic toxicity.

All patients provided written informed consent. The study protocol was

approved by the ethics committee of the IRCCS Policlinico S. Matteo Founda-

tion, Pavia, and of the Florence University Hospital, Florence. The study was

conducted in accordance with the policies of the MPD Research Consortium.

Bone marrow histology and microvascular proliferation

Bone marrow samples were obtained before treatment and at the patient’s

final evaluation. Cellularity and fibrosis were assessed using the EUMNET score

[24]. The rate of CD341 progenitor cells and degree of microvascular prolifera-

tion were evaluated on sections stained with antiCD34 (mouse monoclonal

Thermo Scientific, Fremont, CA). For microvascular proliferation, sections were

evaluated on five randomly selected fields and images digitally acquired using an

Olympus BX-60 microscope equipped with the DP-70 camera (Olympus Optical

Corporation, Japan). From the total area, the area occupied by bone or eventual

art factual spaces was subtracted, and the absolute number, the perimeter, and

the area of CD34 positive vascular structures, including small vessels but not

arterioles or sinusoids, were measured using CELL^F 2.5 software (Olympus

Soft Imaging Solution, Olympus). All the data were parameterized to 10,000 m2.

Biomarkers

Blood samples for the measure of biomarkers were obtained on day 0 of treat-

ment cycle one and at the patient’s final evaluation. The percentage of circulat-

ing CD34-positive hematopoietic progenitor cells was calculated according to

the guidelines from the International Society of Hematotherapy and Graft Engi-

neering [25]. For plasma TGF-b1 measurement, human TGF-b1 immunoassay

was used (Quantikine kit, R&D Systems). Plasma levels of SDF-1, VEGF, IL-8,

IL-6, and TNF were determined with the appropriate human Quantikine kits from

R&D Systems according to the instructions of the manufacturer. Samples were

assessed in duplicate. Seventeen normal individuals were used as controls for

the cytokine level assays. They were 10 men and 7 women, with a median age

of 49 years (range 32–65 years). Levels of WT1 mRNA were measured on

mononuclear cells according the previously reported method [26]. For CXCR4

expression measurement, cells were stained with specific monoclonal antibod-

ies and analyzed using flow cytometry (Becton Dickson, Oxford, UK) as

described earlier [27]. Analysis of JAK2V617F mutational status and mutated

allele burden was performed as described [28].
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