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Abstract. We present a new extension of Gompertz law for tumour growth and ant-tumour therapy. 
After discussing its qualitative and analytical properties, we show, in the spirit of (Kozusko and 
Bajzer,  2003),  that,  like  the  standard  Gompertz  model,  it  is  fully  compatible  with  the  two-
population model of Gyllenberg and Webb, formulated in (Gyllenberg and Webb, 1989) in order to 
provide a theoretical basis to Gompertz law. Comparisons with some experimental data confirm the 
practical  applicability  of  the  model.  Numerical  simulations  about  the  method  performance  are 
presented.

1   Introduction

In 1825 B. Gompertz (Gompertz, 1825) formulated his model for the mortality rate of a population, 
which later became one of the most frequently used laws to describe tumour growth (it is currently 
applied in other contexts, both in biology and in economics).
Gompertz differential law can be written for instance in the form 

(1.1) )ln( NbaNN −= , a>0, b>0 ,

where N(t) represents either the number of individuals in the population or any quantity associated 
with its size (for instance the volume). The requirement a>b must be fulfilled, if it has to express 
growth. Clearly a has to be interpreted as proliferation rate, while b is sometimes called the growth 
retardation factor. Of course the physical meaning of the parameters has to be adapted to the one 
assumed for N.
Adopting the normalization N(0) = 1, the integral of (1.1) is 

(1.2) ( )



 −= − )1exp)( bte
b
atN  .

with a typical double exponential structure. The normalized carrying capacity is baeN /=∞ , and the 
coefficient b determines the rate of convergence to it.
Gompertz  law  belongs  to  the  large  class  of  phenomenological  growth  models  based  on  the 
competition of two terms, one representing production and the other associated with death. The 
number of such models is amazingly large, including the ubiquitous logistic law  (with N replacing 
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ln  N  in (1.1))  and the generalized logistic  (the same term being now a power of  N  ),  the  von 
Bertalanffy  law (von Bertalanffy, 1957) with its generalizations, etc. A survey of many classical 
models, supplemented with an interesting comparative analysis,  is due to M. Marusic (Marušić, 
1996) (see also (Marušić and S. Vuk-Povlović, 1993),(Marušić et al., 1994)). The more recent paper 
by  one  of  us  (d’Onofrio,  2005),  on  modelling  tumours  and  immune  system  interaction,  also 
describes several growth models developed in recent years. Collecting a complete list of growth 
models seems however to be a hopeless task. In the paper (Marušić et al., 1994) fourteen models are 
tested  on  two  specific  sets  of  experimental  data.  In  (Mombach  et  al.,  2002)  for  logistic  and 
Gompertz laws and in (d’Onofrio, 2009) for the general family N  = f(N)N it has been showed how 
phenomenological models may be linked to inter-cellular inhibitory interactions.
Among the models reviewed in (Marušić, 1996) one can find the so-called hyper-Gompertz law:

(1.3) pNbaNN +−= 1)ln( ,

proposed in (Turner et al., 1976) as a limit case of a general class of three-parameter power-law 
models, which includes also the so-called hyper-logistic law (just put N in place of its logarithm in 
(1.3)). In (Laird, 1964) and (Turner et al., 1976) readers can find many more details and references.
Another interesting extension of the Gompertz law is the so called generalized Gompertz:

(1.5) )ln( NbaNN −= α ,

Note  that  same  name  is  attributed  to  an  extension  of  (1.2)  in  which  bte −  is  replaced  by  the 
exponential of a polynomial in t up to the 3rd degree (Amorim et al. , 1993). 

An extremely important question is whether Gompertz-like or logistic-like models are preferable. 
Quite opposite statements can be found in the literature and both the quoted surveys (as well as 
(Marušić and S. Vuk-Povlović, 1993),(Marušić et al., 1994)) deal with this delicate issue. Although 
we will not enter deeply such a debate, we make here some observations. First, it is not surprising 
that models of cancer growth can be so diversified, since apparently populations of cancer cells of 
different types and/or in different conditions may behave very differently. Indeed any macroscopic 
growth  law  has  to  mirror  a  set  of  phenomena  occurring  at  the  cellular  scale,  like  metabolic 
processes and inter-cellular interactions that may vary considerably from case to case, as recently 
stressed by (Mombach et al., 2002) and by d’Onofrio (d’Onofrio, 2009). Second, as pointed out by 
(Steel, 1977 ; Wheldon, 1988; d’Onofrio, 2005), all growth laws producing a relative growth rate N
/N tending to infinite as N (as volume or density) tends to zero (as for instance (1.1), (1.3), (1.5) for 
α<1) are not adequate to describe the growth of small aggregate of tumours, since the doubling time 
is  a  quantity  related  to  a  complex  set  of  biological  processes  such  as  cell  division  cycle  and 
apoptosis  and it  cannot  be arbitrarily small.  Moreover,  these laws are in contradiction with the 
possibility of immune surveillance (d’Onofrio, 2005). 

The above observations on the doubling time led T.E. Wheldon (Wheldon, 1988) to propose an 
important modification of (1.1) the so called Gomp-ex law:

(1.6)
( )( )







>−

<<−
=

CNifNbaN

CNifNCba
N

)ln(

0ln
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In this way Gompertz law (1.1) comes into play only for sufficiently large populations, but below 
some critical size one just has a simple exponential growth. Even if we identify N with the number 
of cells, the switch to (1.6) is motivated by the requirement of stabilizing the ratio N /N for small 
populations.
Finally,  the  parallel  history  between  Gompertz  and  logistic  models  has  produced  also  the 
Generalized-ex model (Mombach et al. , 2002) which borrows from the Gomp-ex system the initial 
exponential growth, followed by generalized logistic.

The aim of the present paper is twofold.
First we discuss a generalization of Gompertz law different from the ones reviewed in (Laird, 1964) 
and (Marušić et al., 1994), namely

(1.7) 





















−=

m

d
NbaNN

/1

ln ,

where  d, m are positive numbers (clearly the choice  d=1 m=1 reproduce (1.1)).  The role of the 
parameter  d is to discriminate populations which are large enough to be governed by (1.7), in the 
sense that we consider (1.7) to be valid when  N exceeds some critical value  C >= d. If instead 
0<N<C, (1.7) should be replaced by 

(1.8) NNAN )(= ,

where A(N) is a bounded continuous function defined in [0,C] and of course such that

( )
m

d
CbaCA

/1

ln 











−= .

Remark 1.1. The switch from (1.7) to (1.8) is in the spirit of the Gomp-ex model and has the aim of 
stabilizing the ratio N’/N for small populations. However, we must say that the choice of both  C 
and d is not so critical, just meaning that (1.7) is to be used only for sufficiently large populations. 
Moreover, it should be emphasized that it is not quite appropriate to describe the behaviour of too 
small  populations by means of differential  laws, because in that  case the discrete nature of the 
system prevails  and the continuum approach may become defective.  Thus the extension of the 
model to really small populations should in any case be taken with some reservation.

�

Equation (1.7) seems to provide a new generalization (at least within the literature consulted by the 
authors), somehow completing the already rich scenario of the Gompertz models, and it has some 
interesting features that will be illustrated in Sect.2. An appropriate name for it could be log-power-
Gompertz, but in the sequel it will be referred to just as (1.7). Its interest is not just limited to filling 
a hole in the collection of Gompertz-like models,  since it can be at least as useful as the other 
generalizations of (1.1), if not better. 

Of course one could combine some of the extensions above in various ways, but the price to pay is 
the increase of the number of parameters. For example, it would be possible to replace the factor N 
in (1.7) by some power Nα. We will not deal with such multi-parameter laws, though they may have 
some theoretical interest.

The second objective we want to pursue is to show that the two-population model by Gillenberg-
Webb (Gyllenberg  and Webb,  1989)  (in  the sequel  referred to  as G-W model)  is  always  fully 
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compatible with (1.7). In doing so we shall extend the analysis of Kozusko and Bajzer (Kozusko 
and  Bajzer,  2003)  who  addressed  this  same  issue  with  reference  to  the  standard  law  (1.1), 
completing the former study of (Gyllenberg and Webb, 1989) in this  direction,  whose aim was 
actually to provide a theoretical support to Gompertz law. Under this respect too (1.7) proves to be 
different  e.g.  from hyper-Gompertz  (1.3).  Indeed,  while  the procedure of (Kozusko and Bajzer, 
2003) applies to (1.3) in a straightforward way, a different technique is generally required for (1.7). 
It  is  interesting  to note  that  in  the paper  (Kozusko and Bajzer,  2003)  the way of  deriving the 
parameter  b in  (1.1)  is  based  on  a  slightly  incorrect  argument,  although  the  result  is  certainly 
correct. Therefore it will be appropriate to reconsider the whole question of the compatibility of the 
two models. In Section 3. we will discuss the question of the compatibility of the G-W model with a 
general  kinetic  law of the form  N = f(N)N .  Then in Sect.  4 we analyze  more specifically the 
relationship between G-W and (1.7) In order to check the practical applicability of (1.7) we have 
carried out the fitting of some set of experimental data (Sect. 6), showing that the method performs 
better than the standard model (1.1). 

Though we will not work out the whole analysis, we remark (Sect. 5) that the theory exposed by 
Kozusko and Bourdeau in (Kozusko and Bourdeau, 2007) concerning the compatibility with von 
Bertalanffy and Gompertz model of a two-population model (proliferating and quiescent cells) with 
an  exchange rate  between compartments  depending only on the  proliferating/total  fraction,  can 
agree with (1.7) too.

Finally,  we shall  easily show that model  (1.7) can be compatible  with a constraint  proposed in 
(d’Onofrio, 2009) for the compatibility between macroscopic phenomenological laws of cellular 
growth and microscopic laws of interaction between cells.

2     Qualitative and quantitative properties of the solutions of (1.4).

2.1 Some basic qualitative properties of the solutions

The asymptotic value of the population is easily deduced from (1.7):

(2.1) 














== ∞+ ∞→

m

t b
adNtN exp)(lim  .

Note that in a unperturbed in vivo and in vitro tumour the asymptotic size  ∞N  is of course very 
large so that )0(NN >∞  and is in the range of applicability of (1.7). According to the role assigned 
to the coefficient  d, we expect that the exponential factor in (2.1) is large. Therefore a minimal 
requirement on the parameters is 

a>b,
which will be tacitly assumed in the sequel, unless when dealing with tumours under continuous 
infusion therapy. In the latter case we may have )0(NN <∞ . Our model can be easily adapted to 
describe a constant continuous infusion therapy with log-kill rate θ :

(2.2) 





















−−=

m

d
NbaNN

/1

0 lnθ ,

4



where a0 refers to the unperturbed case. Let us define θ−= 0aa . If a>0, i.e. if the level of therapy 
is low or moderate, the behaviour is the same as the unperturbed case, provided the ratio a/b is large 
enough to keep the solution in the Gompertz regime. If a<0 it follows that:























−−=

m

d
NbaNN

/1

0 lnθ  < 0,

and in a finite time N(t) would drop below the applicability range of (2.2).

Finally,  in  (d’Onofrio,  2009)  it  has  been  shown  that  a  general  law  of  growth N =  f(N)N  is 
compatible with the hypothesis of inter-cellular inhibitory interactions if and only if  f ′′ (N)>0 , a 
constraint  that,  for  example,  is  fulfilled  by Gompertz,  von Bertanlaffy and also by generalized 
logistic law  ( ) ( )αcNNNf −= 1 , provided that α<1.  The same constraint in model (1.7) reads:

( ) 0
)ln(1)ln(

2

/12

>





 ++−







=′′

+−

mN
d
Nmm

d
Nb

Nf

m

,

As a consequence,  the growth of a tumour having initial  size  N(0) and following our model  is 
compatible with the hypothesis of inter-cellular inhibitory interactions (d'Onofrio, 2009) if 

(2.3) m> 




+

d
N )0(ln1

1
.

More in general, since N>C, if we choose 

m>





+

d
Cln1

1
,

which is a mild restriction in case C>>d. E.g. if C = 10 d  the above constraint reads m > 0.302.

1.1 Analytical properties of the solutions

We start supposing that we are dealing with an unperturbed tumour or with a tumour to which a 
moderate  therapy is  delivered  (modelled  by (2.2)),  so  that  a>0.  In  this  case,  by means  of  the 
transformations 

(2.4) t
a
b

d
N

a
bu m

m

m

m

1    ,  ln −=




= τ

we may rewrite equation (1.7) as follows:

(2.5) ( ) ( ) ( )





=−=

d
N

a
buu

d
du

m

m
m 0ln0     ,  1
1

τ
τ
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Remark 2.1. Note that ( ) 1<τu  for untreated tumours. If u(0)>1, as it may happen in presence of 
moderate therapy (a>0), the solution will be decreasing. �

Equation (2.5) has the following implicit solution:

(2.6) ( ) ( ) ( ) ( ) τττ +⋅=⋅ muGumuGu mm ;)0(0;)( /1/1 ,

where  G(z,m) is the Gauss hypergeometric function  ),,,( 32112 zpppF   (Abramowitz and Stegun, 
1972) evaluated at (1, m, m+1, z), and is the sum of the series

( ) ∑
+ ∞

= +
=

0

;
k

kz
mk

mmzG .

Thus:

(2.7) ( ) ( ) ( )( )mmuGuQu m ;;)0(0 /1 ττ +⋅= ,

where Q(u; m) is the inverse of the function  ( ) ( )muuGmuH m ;:; /1= .
Finally, coming back to the original variables N, t, we find

(2.8) ( ) 
























+




























= − mt

a
bm

d
N

a
bG

d
N

a
bQ

b
adtN m

mm

m

m

m

m

m

m

;;)0(ln )0(lnexp 1

/1

Note that the above results suggest that the parameter b enters the solution just through the ratio a/b. 
More precisely it will be convenient to use the triple

(2.9) ma
d

N
b
a m

  ,  ,1ln  >




=





= ∞ρ  ,

so that (2.8) reads:

(2.10) ( ) 
























+




























= m

a
tm

d
NG

d
NQdtN

m

;;)0(ln )0(ln*exp
/1

ρ
ρρρ  .

Now, let us suppose that the tumour is undergoing a continuous infusion therapy with θ sufficiently 
large to have a<0. We may still adopt a similar procedure, but the transformation replacing (2.5) is 
now

(2.11) t
a
b

d
N

a
bv m

m

m

m

1||
    ,  ln

|| −=




= τ

bringing (1.7) to the form
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(2.12) ( ) ( ) ( )





=





+−=

d
N

a
bvv

d
dv

m

m
m 0ln

||
0     ,  1

1

τ
τ

 .

Thus 0<
τd

dv
 and in a finite time Cτ  the solution takes the value ( )  ln

||





=

d
C

a
bv m

m

Cτ leaving the 

applicability range of (1.7). However, for Ct τ≤<0  , we may still express the solution implicitly by 
means of the Gauss hypergeometric function:

(2.13) ( ) ( ) ( ) ( ) τττ −−⋅=−⋅ muGvmvGv mm ;)0(0;)( /1/1  .

2.3 Assessing the influence of the three parameters on the solutions

In this section we shall shortly assess, both analytically and graphically, the influence of the various 
parameters.  We shall  show that  our  mathematical  model  correctly  describes  the biology of  the 
growth phenomena. Indeed, from a biological point of view the parameter a is the net rate of growth 
in absence of inter-cellular competition, thus the solutions of (1.7) have to be increasing with a. The 
parameter  b  is  somehow  related  with  self-competition  within  the  population.  The  increased 
apoptotic rate due to that competition is 

( ) m

d
NbN

1

ln 











=ϕ .

Thus, remembering that the Gompertz-like law (1.7) is valid for N>>δ, an increase of b makes the 
apoptosis rate increase, that, while an increase of m implies a lower apoptosis rate. Hence we expect 
solutions to be decreasing in b and increasing both with respect to a and to m. Let us prove it.

Proposition 2.1. The solutions of (2.5) are increasing in a, m and ρ (whereas they are decreasing in 
b). The same is true for the solutions of the model with continuous infusion therapy (with a now 
including the term −θ). 

Proof.  Let us consider a tumour with free rate a and another population with a1 >a . Then 























−−<






















−−=

mm

d
NbaN

d
NbaNN

/1

1

/1

lnln θθ

which, applying the elementary properties of differential inequalities, implies that:

( )( ) ( )( )θθ ,,,,0,,,,,0, 1 mbaNtNmbaNtN <

Similarly one can proof the same kind of monotone dependence with respect to m. On the contrary, 
considering the parameter b:
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( )( ) ( )( )θθ

θθ

,,,,0,,,,,0,

ln  ln

1

/1

1

/1

mbaNtNmbaNtN

d
NbaN

d
NbaNN

mm

>
⇒























−−<






















−−=

and similarly for the parameter θ.

Finally, concerning ρ, which is defined in absence of therapy via mba
1

ρ= , and also for moderate 

therapies replacing a by a−θ, rewriting (1.7) as follows:

(2.14) 





















−=

m

m

d
NNbN

/11

lnρ

and again applying differential inequalities, our claim easily follows. �

The next proposition points out the role of the parameter m, which is characteristic of model (1.7).
Proposition 2.2. Let us confine with the case a>0. The parameter m can be selected so to obtain a 
prescribed exponential convergence of N to its asymptotic limit N∞.
Proof. 
Given a>0 and the carrying capacity N∞ , let us impose that for large t 

))(1()( tNtN ε−= ∞  , 

with tet λε −≈)(  , λ>0. It is easily seen that, in combination of (1.7), the latter condition implies 

εε m

a
b

m
a )(−≈  ,

to the first order in ε. Therefore we obtain the desired value of m

∞

=
N

am
lnλ  ,

and of course b has to be chosen accordingly:

aNNab /)ln()(ln ∞−
∞= λ  .

Conversely, λ can be deduced from m. �

A classical  analysis  of  the  solutions  of  Gompertz-like  models  is  concerned  with  the  inflection 
points. Let us look for the inflection points of the solutions of (1.7). We confine to the case a>0 and 
N>C (Gompertz regime).

Proposition 2.2. As long as they stay in the Gompertz-like regime, the solutions of (1.7) may have 
at most one inflection point.
Proof. 
In (2.14) set 
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M = N/d,   y = ln M,   Y = my
1

.

The asymptotic value of Y is a/b.
Then it easy to see that 

(2.15) )(YaFMM  =  ,  with  mY
mc

Y
c

YF −−−= 1111)( ,

where m

b
ac

1

ρ== .

For m=1 the only zero of F is Y=c−1, meaning ∞= N
e
dN .

For  m<1 the function F is decreasing from F(0)=1 to  F(c)= 1)( −− mmc . Therefore it vanishes only 
once for some  Y=Y*. If we conjecture that we may write  Y*=c(1−η), with  η<<1 and we use in 
(2.15)  the  first  order  approximation  in  η,  then  we find  ( ) 11 −+−= mmcmη .  This  expression  is 
consistent with η<<1, provided m is not too small. Indeed, its analysis reveals that the condition for 
η to be small is that 1ln2 > >cm  (remember that c is large).
For m>1 the function F tends to −∞ at the origin, keeping the same value as above for Y=c.
We compute

c
Y

mc
mYF m 11)( −−=′ −  ,         11)( −−−−=′′ mY

c
mYF   .

The first derivative vanishes for  Y= m

m m
Y

1

11 




 −= . Therefore  F takes its maximum there. If the 

maximum  is  positive  there  will  be  two  inflection  points,  which  become  coincident  when  the 
maximum is zero. However, we remark that Ym takes values between 0 (m↓1) and 1 (m→∞). This 
corresponds to values of N/d between 1 and e. Thus the smaller inflection point is certainly outside 
the Gompertz range. In order to check whether the other inflection point  Y*  may or may not be 
observable  we  may  argue  as  follows.  First  compute  the  maximum  of  F,  namely 

m
m

m m
m

c
YF

1

1
11)(

−








−
−= , which in our conditions is positive, since the factor multiplying  

c
1

 is at 

most ee
1
, and c is supposed to be large. Next observe that for Y> Ym we have )()(0 mYFYF ′′<′′< , 

so  that  a  lower  estimate  of  Y* is  obtained  by  taking  the  largest  zero  of  the  function 

2))((
2
1)( mmm YYYFYF −′′+ .  After  some  algebra  we  deduce  that  m

m m
m

m
cYY

1

2 1)1(2)*( 




 −−>− . 

Remembering that c>>1, we see that the inflection point is observable unless m is very close to 1. 
The latter restriction can be removed using exactly the same argument as for the case  m<1, i.e. 
looking for Y*=c(1−η), with η<<1. �

3      On the compatibility of a general law N =f(N)N  with the Gillenberg-
Webb model.
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In (Gyllenberg and Webb, 1989) the following two-population model has been proposed for the 
evolution of a tumour

(3.1) [ ] QNrPNrP ioP )()( +−−= µβ

(3.2) QNrPNrQ Qio ])([)( µ+−=

(3.3) N = P + Q

where P and Q denote the number of proliferating and of quiescent cells, respectively. The initial 
conditions are such that 100 =+ QP .
In (3.1) β is the proliferation rate, QP µµ ,  are death rates, and the functions )(),( NrNr io  express the 
rates of the respective transitions P→Q , Q→P. 

The aim of this section is to show that model (1.7) is compatible with the Gyllenberg-Webb model, 
meaning that it is possible to find two meaningful function ro(N) and ri(N) such that the evolution of 
the total population N(t) is ruled by our model.
Before proceeding, we will illustrate some interesting results related to the compatibility with the 
G-W model of a general tumour growth law N =f(N)N , where f  is a continuous function for N>0 
and such that the product f⋅N tends to zero as N tends to zero. The null point (P=0,Q=0) is in all 
cases  an  equilibrium for  the  system (3.1)-(3.3).  Moreover,  note  that  adding  (3.1)  to  (3.2)  one 
obtains:

(3.4) QPN QP µµβ −−= )( .

As a consequence, by applying the LaSalle’s invariance principle it holds that:

Lemma 3. 1.  If  Pµβ ≤  then the cellular population is decreasing and will tend to zero and as a 
consequence (P,Q)  will tend to (0,0) , i.e. the null equilibrium is globally asymptotically stable.  �

Moreover, it is immediate to prove:

Lemma 3.2. If Pµβ >  then it exists a non trivial equilibrium ),( ∞∞ QP  such that:

(3.5)
( )

( ) ( ) ∞
∞∞

∞
∞ ++

+
= N

NrNr
Nr

P
Qi

Qi

0µ
µ

where the rates )(),( NrNr io  have to satisfy

(3.6) ))()(()( ∞∞ +−= NrNr iQPoQ µµβµ �

Before starting our compatibility analysis, it is convenient to eliminate the Q variable, so we shall 
study the system:

(3.7) [ ] NNrPNrNrP iioP )()()( +−−−= µβ

(3.8) NPN QQP µµµβ −+−= )( .
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We begin with the following generic properties that have to hold for the general model N = f(N)N 
to make it compatible with (3.7), (3.8).

Lemma 3.3  If  Pµβ >  then in order that system (3.7), (3.8) may be compatible with a generic 
model of he form N =f(N)N, it is necessary that

(3.9) )()( PNf µβ −< .

Proof. By inserting the relationship N =f(N)N in (3.8) it yields that:

(3.10)
QP

Q Nf
N
P

µµβ
µ

+−
+

=
)(

 ,

and since for all N it must  be P/N<1 our claim follows easily. �

Evaluating (3.8) at time t=0 we find

(3.11) )0()()0(' 000 NPQPN QQP µγµµβ −=−−= ,

with  QP µµβγ +−= , it follows that: 

Lemma 3.4. If the initial data are such that

(3.12) )0(
)0(

0 NP
NQ ≤<
γ

µ

then the tumour grows asymptotically to equilibrium. �

Remark 3.1. The obvious biological interpretation of Lemma 3.2 is that we must start with enough 
proliferating cells to allow a growth regime to set in. �

To finish this preliminary part, simple computations yield that:

Lemma  3.5  The  condition  (in  addition  to  (3.9))  for  a  general  growth  law N =f(N)N to  be 
compatible with the G-W model is that the functions )(),( NrNr io  satisfy

(3.13) [ ] [ ] [ ][ ] )()(')()()()()()( NfNNfNfNfNfNrNfNr PQQoPi ++−+=+−−− µβµµµβ .  
�

Note that (3.13) reduces to (3.6) when f=0, i.e. N=N∞ .

Now, let  us  go  back  to  model  (1.7). In  the  standard  Gompertz  case  (m=1,  d=1)  the  functions 
)(),( NrNr io  can be just supposed to be continuous for ∞≤≤ NN1 , but when we address the issue 

of compatibility with (1.7) we are forced to consider a larger class. Indeed for (1.7) we have 
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(3.14) m

d
NbaNf

1

ln)( 




−= ,    

11

ln)(
−






−=′

m

d
N

m
bNNf

and for m>1 the last term in (3.13) becomes singular if N is allowed to approach d. 

Remark 3.2. Even though in principle we have excluded that  N can approach  d, we remark two 
things: (i) from the modelling point of view there is a large flexibility in the way of performing the 
transition from (1.7) to (1.8), which amounts to the choice of d and C: one possibility would be to 
just identify the two constants (in the sense that d is increased to C) and this would bring the above 
singularity in the admissible range; (ii) the G-W model does not include any critical size of the 
population, so one could look for a global identification extrapolating the Gompertz regime to small 
populations.  In the spirit  of (i)  we can just  consider the equation for the rescaled quantity  N/d, 
which amounts to setting d=1 in (1.7). If we want to follow the strategy (ii) we may look at N as the 
number of cells and let it take values including N=1. Once more this is achieved by setting d=1 in 
(1.7). For this reason in the next  section we shall use the simplified version of (1.7) with d=1.

�

4      Making model (1.7) compatible with the Gyllenberg-Webb model.

According to the last remark, in this section we use (1.7) in the form

(4.1) ( ) 




 −= mNbaNN

1
ln

where N is meant as a rescaled quantity.
In (Kozusko and Bajzer, 2003) conditions are found to make the G-W model compatible with the 
standard Gompertz law, a question already considered in (Gyllenberg and Webb, 1989), but only 
for the case NNro ln1)( += . As we said, the same procedure applies with minor modification to the 
hyper-Gompertz but it does not in general for (1.7). Moreover, in (Kozusko and Bajzer, 2003) the 
equation  proposed  for  calculating  b is  presented  as  a  new  piece  of  information  but  indeed  it 
duplicates another equation previously derived. Therefore the whole matter is a bit confused and we 
prefer to fully reconsider the question of compatibility of (1.7) with the Gillenberg-Webb system 
(3.7),  (3.8),  so  to  clarify  even  these  details.  Of  course  our  analysis  will  include  the  standard 
Gompertz law as a particular case.
In the previous section we have seen that we must require conditions (3.9), (3.13) where we now 
put ( ) mNbaf

1
ln−=  . 

Let us look for more conditions with the aim of identifying the coefficients a, b. 

Proposition 4.1. The coefficients a, b in (4.1) can always be identified in terms of the data of the G-
W model.
Proof.
One very simple relationship is

(4.2) ( )( ) Q
m

N
PNLnbaNf µγ −=−=

0

0/1
00 )( ,  with   QP µµβγ +−= ,
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deducible from ( )00)0( NfNN =  and from (3.11). Thus the first relationship between a and b is  
expressed in terms of the initial data of the G-W model. Note that P0 is subjected to condition 
(3.12).
 
Concerning the parameter b, in (Kozusko and Bajzer, 2003) the authors deduce it for the standard 
case m=1 from the computation of )0(N , but their procedure has a defect that we are going to 
illustrate.
Proceeding as in (Kozusko and Bajzer, 2003), we compute )(tN  from (3.7), (3.8), (3.10), and 

)(/ NfNN =  obtaining

(4.4) frfrrNN QiQioP µγµµβ −++−−−= ))((/ ,

At the same time, from (4.1) we have

(4.5) )(/ fNffNN ′+= .

In (Kozusko and Bajzer, 2003) the authors observe that (4.5), with t=0, can be used  to get the 
coefficient b (since in the standard case bfN −=′ ), and therefore b is obtained by equating the right 
hand sides of (4.5) and of (4.4). However the equation coming out from this procedure is not a new 
piece of information. Indeed it can be checked that the equality

(4.6)   ( ) )())()(( NfrNfrr QiQPQioP µµµβµµβ −−−++−−− = ))(')()(( NNfNfNf +
(written for any t) is nothing but the compatibility condition (3.13). We conclude that using (4.6) for 
t=0 is the same as using (3.13). It means that all information we may get on b is already contained 
in (3.13), namely 

(4.7)    
( )( ) ( ) ( )0

0

0

0

0
0

0

0
)/11(

0

0

0 1 Nr
N
P

N
PNr

N
Pb

m
NLn

N
P

oi

m

Q γγγµγ −





+





−=





−−

+−

In the standard case the left hand side is simply ab and of course the result of (Kozusko and Bajzer, 
2003) is eventually correct. 

4.1 The case N(0)=1

It is worthwhile to note that if  N(0)=1  (i.e. in term of dimensional variables if the initial tumor 
burden is equal to d) for the model (4.1) then the l.h.s. of (4.7)  vanishes when m<1, while for m>1 
it is not defined since f ′  is singular for N→1. Thus, in this interesting case, the procedure fails for 
m ≠1. Nevertheless, we can still take advantage of (4.6), i.e. (3.13), to retrieve some information on 

b. For instance, suppose that 
m
1

=n >1 is an integer. If we differentiate (3.14) with respect to N and 

taking in account N(0)=1 we get

(4.8) iioQPQio rfrrfrrfNfffNf ′−′−−−−−+′+′+′+′=′′− γµµβµ )())((3 2

Therefore, if n=2 the left hand side evaluated for N=1 is  2ab and, since 0)1(,)1( =′= faf , we get 
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(4.9) )1()))(1()1((2 iQio rarrab ′−+′+′= γµ

If n>2, we differentiate until we can isolate the term )(nNff− , whose limit as N→1 is n!ab, so that 
once more we can solve for b. Of course we are now supposing that )(),( NrNr io  are n times 
continuously differentiable for ∞≤≤ NN1 .
The situation is very different when n<1, because at least one of the transition functions 

)(),( NrNr io  has to be singular, according to (4.6), which we recall to be the same as (3.13). Thus 
we write

(4.10) 1))(ln()()( −+= n
jjj NNNNr χρ  ,         j=o,i

where the ρj and the χj’s are continuous and bounded functions. In the limit N→1 we obtain from 
(4.6)

(4.11) )1()))(1()1(( iQio anab γ χµχχ −++= ,

thus determining b.
This same result shows how to complete our analysis by examining the case n>1 not integer.
For instance if n is between 1 and 2 we may go back to (4.8), where f ′′  is singular like 2)(ln −nN , 
and we realize that we have to attribute the same singularity to the first derivatives of the transition 
functions )(),( NrNr io . In general we must differentiate (4.6) [n] times ([n] is the largest integer less 
than n) and let the [n]-th derivatives of )(),( NrNr io  possess the singularity 1][)(ln −− nnN . In this way 
we can always identify b, just by matching the singular terms in (4.6). 

4.2 Behaviour of the population P and Q

We may add some considerations concerning the behaviour of the populations P, Q for a model 
compatible with (4.1). It suffices to deal with P.

Proposition 4.2. The function P(t) may be strictly increasing or have a maximum when m<1. For 
m>1 it may be strictly decreasing or have one minimum and one maximum before tending to its 
asymptotic limit.
Proof. The asymptotic limit of P is easily deduced from (3.10):

(4.12)
mcQ eP

γ
µ

=∞ .

Again from (3.10) we calculate the time derivative

(4.13) ( ))()()( NfNNfNNfP Q ′++= µγ 

Proceeding as in the proof of Proposition 2.2, we set ],0[
1

cYy m ∈= , thus writing the expression in 

brackets in the form
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(4.14) G(Y) = m
Q Y

m
bbYa −−−+ 1µ

For m<1 this function decreases from aQ +µ  to

 Z= m
Q c

m
b −− 1µ . 

Hence P has exactly one maximum when Z<0, otherwise it is always increasing. 
When m>1, G tends to −∞ as Y→0 and G(c)=Z. Moreover

mY
m

mbbG −−+−=′ 1

vanishes at m

m
Y

1

11 




 −= , i. e. the quantity Ym already introduced in the proof of Proposition 2.2, 

and 0<′′G . Thus we may distinguish the following cases:

(a) Z ≥  0  ⇒   P has exactly one maximum occurring before Ym

(b) Z < 0  and  0)( ≤mYG    ⇒   P is monotone decreasing
(c) Z < 0  and  0)( >mYG    ⇒   P has a minimum and a maximum occurring 

before and after Ym , respectively.
ÿ

5     The Kozusko-Bourdeau model

In this short section, we briefly deal with the relationship of (4.1) with the two population model 
considered  by  Kozusko  and  Bourdeau  in  (Kozusko  and  Bourdeau,  2007).  In  the  latter  the 
proliferating and the quiescent cells evolve according to the system

(5.1) ( ) 




Ψ−−=

N
PNPP Pµβ ,

(5.2) Q
N
PNQ Qµ−





Ψ= .

The initial conditions are still  100 =+ QP . The authors investigate the compatibility of the above 
model with standard Gompertz and with von Bertanlaffy models. 
Let us show how (5.1), (5.2) relates with any model of the form N = f(N)N .

Proposition 4.3. When f(N) is a continuously differentiable invertible function it is always possible 
to express the transition rate function Ψ in model (4.15), (4.16) in terms of the inverse function of f.
Proof. It is convenient to introduce ρ = P/N, whose asymptotic limit in our notations is γµρ /Q=∞  
Note  that  (5.1)  implicitly  introduces  the  constraint  )()( Pµβρρ −=Ψ ∞∞ .  From  (Kozusko  and 
Bourdeau, 2007) we recall that as a consequence of the equations above the total population evolves 
according to

(5.3) )( ∞−= ρργ
N
N .
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By comparison with N = f(N)N we deduce that

(5.4) )()( ∞−= ρργNf .

Hence,  with  the  assumption  0)( ≠′ Nf  we  may  define  the  inverse  function  )(ρGN =  and 
differentiating w.r.t. ρ we obtain 

(5.5) )('
)(

ρ
γ

G
Nf =′ ,

from which we deduce that 

(5.6)
1

)(ln)(
−





=′ ρ

ρ
γ G

d
dNfN

Differentiating (5.4) w.r.t. t and using (5.3), (5.6) we get

(5.7)
1

)(ln)(
−

∞ 



−= ρ

ρ
ρργρ G

d
d

 .

On the other hand (5.1), (5.2) imply

(5.8) )()()( ∞−−Ψ−−= ρργ ρρρµβρ P

and by comparison we deduce the desired link between the transition rate function Ψ in the model 
(5.1), (5.2) and the function G:

(5.9)
















+−−=Ψ

−

∞

1

)(ln1)()()( ρ
ρ

ρρρ γµβρ G
d
d

P .

In the specific case of (4.1), from (5.4) we get immediately

(5.10)
m

b
aG 



 −−= ∞ )(exp)( ρργρ .

�

6 Data Fitting

An essential feature of a mathematical model is its ability of reproducing not only qualitatively but 
also quantitatively the dynamics of the phenomenon that is described by it.  This is particularly 
relevant in applications of mathematics to biology. Thus, in order to assess the performance of our 
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model  in  replicating  the growth of tumours,  we present  in  this  section the  result  of  fitting  the 
parameters  of  (1.7)  to  some data  on the growth  of  the experimental,  although  in  vivo,  murine 
mammary carcinoma EMT6/R0 of athymic mice. These data regards the volume of the tumours, 
thus here N deniotes the volume. The measure units are cubic millimeters for the volume (i.e. for N 
and for d), and days for the time. Note that, for the ske of the notation simplicity, we set to 0 the 
instant of the first measurement.
We shall also fit the parameters of the classical Gompertz model to these data, with the aim of 
comparing our enhanced model with that venerable model.
The EMT6/R0 data were used as test case in the paper  (Marušić et al., 1994b), where an interesting 
comparison between various model of growth was proposed, and the problem of the fitting models 
of growth to data was  in depth faced.  In fact,  based on the observations on the nature of the 
measurement errors affecting this kind of data, that are characterized by standard errors that are 
proportional to the measured volume  (Marušić et al., 1994b),  Marusic and coworkers suggested 
that the method of least squares should not directly be applied to the data of tumour size, but to the 
logarithmically  transformed  data.  In  fact  in  the  transformed  data  the  standard  error  becomes 
constant since logarithm transforms multiplicative error into an additive error.
As a consequence the lest-squares objective function (i.e. the square of the Euclidean norm of the 
vector of residuals) to be minimized is:

(6.1) ( )( ) ( ) ( )( )( )( )∑
=

−=
n

i
ii NdmbatNLogNLogNdmbaLSSE

1

0,,,,,0,,,,

equivalently written as:

(6.2) ( )( ) ( )( )( )∑
=

−=
n

i
ii NdmbatfyNdmbaLSSE

1

20,,,,,0,,,,

where ( )ii NLogy =  and:

( )( ) ( )( )( ) ( ) ( )



























+== − m

d
NLog

a
btbafu

b
adLogNdmbatNLogNdmbatf

m
mm

m

,0,0,,,,,0,,,,, 1

where ( )mufu ),0(,τ  is determined, for each datum and value of the parametric vector, by solving 
the following equation in the variable u:

( ) ( ) τ=+−+ mm ummGuummuG /1/1 )0(,1,,1)0(,1,,1    (eqinv)

Thus,  independently  from  the  minimization  algorithm  one  can  choose,  at  each  evaluation  of 
f(t,a,b,m,d,N(0)) one has also to numerically solve n times (in our case n=32 ) the equation (eqinv). 
Moreover, the minimization of  LSSE(a,b,m,d,N(0)) is subject to some constraints. The first is the 
positivity  of   both  the  parameters  (a>0,b>0,m>0,d>0,  N(0)>0)   and  of  the  argument  of  the 
logarithm that implies:

( )0Nd ≤

Moreover, since we aim at investigating data on the growth of a untreated tumour it must also hold 
that:
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( ) ( )∞< NN 0

implying the nonlinear constraint:

(6.3)
( ) m

b
a

d
NLog 





<





 0

We performed the constrained minimization by using the Nelder-Meade Algorithm with penalty 
functions. To get initial guesses for the parameters, we performed two preliminary linear fittings 
based on the first 8 and on the last 8 data.
We obtained the following minimizing values:

9848301481360
6081501773550703490

minmin

minminmin

. ),N(. d
, . ,  m. ,  b. a

==
===

to which it corresponds the minimal value 0.4996 for LSSE. The corresponding asymptotic value is 
2243.  Note that, for these values of the parameters and of the initial condition, constraint (2.3) 
holds  since  it  reads  0.60815  >  0.231.  Corresponding  to  these  optimal  values  we  assessed  the 
normality of the residuals:

( )( )( )0,,,,, NdmbatfLogyr ii −=

by means of the Bera-Jarque test (Jarque and  Bera, 1980) whose null hypothesis Ho is : the data are 
normal.  We  obtained  as  p-value  p=0.4856>0.5  that  confirms  a  posteriori the  hypothesis  of 
normality of the errors in the logarithmic transform of data. 

In  order  to  calculate  the  asymptotic  standard  error  and  confidence  intervals,  we calculated  the 
covariance matrix of the function LSSE at the optimal vector of parameters, but unfortunately the 
problem  seems  badly  conditioned  so  that  the  asymptotic  standard  errors  were  huge  and  the 
confidence  intervals  included  negative  values.  Numerical  approximate  algorithms,  such  as 
bootstrap, to obtain trustable (and non-asymptotic) confidence intervals might be used, but this was 
outside the aims of this work.

Then we minimized, by using the same method, the Gompertz model:

( )( ) ( ) ( )btExpyyyyybtyG −−−= ∞∞∞ )0(0,,,

where ( )( ) ( ))(0,, tNLogytyG =β  and )/( bay =∞ ,
so that we had to minimize:

( ) ( )( )∑
=

∞∞ −=
n

i
iGi yybtyyyybJ

1

2)0(,,,)0(,,

by obtaining that the minimum occurs at:
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3471.3N(0) 1.20817 y(0)
7.6228,   0.112169, 

minmin

minmin

=⇒=
== ∞yb

and the minimum of J is is equal to 0.689594. The corresponding asymptotic value for N is 2043. 

In figure (1) we plotted, for the parameters estimated in this section, in the left panel the logarithm 
of Gompertz model and the logarithmic data;  in the right panel the log of model (1.7) and the 
logarithmic data. 

Figure 1. Experimental data taken from (Marušić et. Al, 1994) with logarithmic transform. 
Comparison with 

 logarithm of standard Gompertz (left panel), and with model (1.7) (right panel).

Thus by simple eye inspection one might say that both the curves fit well the data. However, such 
an empirical comparison is not satisfactory. Thus, to compare the two models we performed the 
well known F-test based on the f statistics:

2

21

21

2

LSQ
LSQLSQ

pp
pnf −

−
−=

which follows approximately the F-distribution (for n sufficiently large, as in our case) and where n 
is the number of data,  21 pp >  are the number of parameters of two models "1" and "2" to be 
compared, and the symbol LSQ denotes the least-square functions. In our case "2" is our model and 
"1" is  the  Gompertz  model.  We obtained  f=+5.2246 corresponding to  a  p-value  p=0.01<0.05, 
which implies that the difference of the two models is statistically significantly different. In other 
words the positive difference between the two values of LSSE is not due to the chance, so that we 
may say that the ability of fitting the EMT6/R0 data of  (Marušić et. Al, 1994)  by our model is 
better than that of Gompertz model.
Finally, in in figure 2 we show the model (1.7), the Gompertz model and the non-transformed data. 
From this figure it is possible to better  catch how the model (1.7) is better  able to capture the 
tumour dynamics.
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Figure 2. Experimental data taken from (Marušić et. Al, 1994) . Comparison with 
standard Gompertz model (dashed line), and with model (1.7) (solid line).

 

7  Conclusions

In  this  work  we proposed a  new model  for  describing  the  growth  and response  to  therapy of 
macroscopic tumours that extends the well-known Gompertz model. The proposed model, which 
tends the Gompertz model, has some features that may be of interest both from the mathematical 
and from the biological point of view. 
The model preserves some key features of the Gompertz model, including the fact that analytical 
solution can be calculated by means of inverse of the Gauss hypergeometric function, including in 
the case where a constant continuous infusion therapy is delivered.  
Although it is a ode model based on a single scalar ODE, our model is fully compatible with finer 
bi-compartimental descriptions of tumour growth as (Gyllenberg and Webb, 1989: Kozusko and 
Bourdeau,  2007)  that  take  in  account  that  in  all  macroscopic  tumours  both  proliferating  and 
quiescent cells are present.  
This compatibility is a sign of realism of the proposed model, which, indeed, well performed in the 
fitting of some relevant experimental data for murine mammary tumour, by giving results that are 
comparable, and slightly better, than the classical Gompertz model.
Finally, we have to stress that we well specified that the validity of our model and of the related 
biological inferences are focused on macroscopic tumours, whereas for the initial phases of growth 
we adopted a Gomp-Ex – like modelling, which allow to circumvent the major problems of the 
Gompertz-like models, namely the unboundedness of their relative growth rate. 
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