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SOME PROPERTIES OF THE SOLUTION SET
FOR INTEGRAL DIFFERENTIAL EQUATIONS

1 Introduction and Notations

In this paper we are concerned with the solution sets for Volterra integral
equation and integrodifferential equations like:

z(t) = h(t) —I—f(f k(t,s)g(s,z(s)ds
z(0) = o, (1)

or

{x((é; = Ft,x(t), [y k(t,s)g(s, x(s))ds) (2)

where h: [ =[0,7) — R", k: I x IR"* — IR" are continuous functions,
xg is a given vector of IR, I a (possible unbounded) interval of R.

In the following B(zo,r) will denote an r— ball (in the metric space
(X,d)) i.e. theset {x € X : d(z, ) < r} where x, is any point in X; B(0, )
wil denote the closed ball centered in xy = 0.

Let now consider the (Hilbert) space L?(I,IR") normed, as usually, by
x|l = (f; 22(t)dt)? and its (affine) subspace E = {z € L*(I,IR") : z(0) =
zo}. Let X be some some Banach space; f V' C X is some subset then (V)
will denote its (topological) closure and V¢ will denote the complement of V.

Finally B(X') will denote the set of all nonempty and bounded subsets of X.

Definition 1 : Let X be a Banach space and A C a subset. A measure
p: By(X) — IR" defined by u(V) = inf{e > 0: V € B(X) admits a finite
cover by sets of diameter < e} where diameter of V' is the sup{||z —y|| : z €
V,y € V}, is called the (Kuratowski) measure of noncompactness.

A measure like p has interesting properties, some of which are listed in
the sequel:



a) (V) = 0if and only if V is compact;

b) u(V)=uV); wulconv(V)) = u(V);(conv(V) = convex hull of V);

) wla(Vi)+ (1 -a)Vz) <ap(Vi)+ (1 —a)u(Va), a€l0,1];

d) ifVi CVy then p(V1) < p(Va);

e) if{V,} isanestedsequence of closed setsof By(X)
and if 1121 u(Vy) =0 then N2, V, #0.
n—-+0oo

The analogous measure of noncompactness for an operator is defined by
w(E(V)) =inf{k > 0: u(F(V)) < ku(V)} for all bounded subsets V' C X.

When X is a complete metric space and f : X — X is a continuous
mapping f is called an
mu—set contraction if there exists k € [0, 1) such that, for all bounded non-
compact subsets V' of X, the following relation holds: u(f(V)) < ka(V) (
7], pag 160).

A continuous operator F': X — X such that u(F(V)) < u(V), for any
bounded V' C X, is called condensing or densifying.

(The concept of measure of noncompactness is considerably dealed with
in the references [?], [?] or [?].)

Let S and S be topological spaces and let f : S — S;. Then f is
said to be proper if, whenever K; is a compact subset of Sy, f~!(K;) is a
compact set in S. It is also known ( [?], pag 160) that if X is a Banach space
and f: X — X is a continuous k—set contraction, then I — f is a proper
mapping.

The following result, due to R.K. Juberg ([?]), will be useful in the proof
of our main result:

Proposition 1 : Let (a,b) be any real (possible unbounded) interval and let
LP(a,c), 1 < p < 400 be the Lebesque’s space of (the power p) summable



functions over (a,c) for every ¢ € (a,b). For u € LP(¢,b), v € Li(a,c),
where Il?—l— % =1, we set

a+e 1 T 1
p=timsupfl [ fu()Pdy) | Pl <o <ot

+tim s |u<y>\pdy1i[/bir () odyl} b — 6 < x < b},

Let D be the linear operator defined by: D(f(y))(x) = [3 u(z)v(y)f(y)dy;
in the sequel wh shall assume that D is a bounded operator in the space
LP(0,T). We want to recall that the operator D is bounded (in the L?(a,b)
space) if and only if the function

f lu(y |pdy L7 Jo(y)|7dy]s q is bounded on (a,b). This operator
is not necessarlly a compact operator; as matter of fact it is well known (see
7], for istance), that D is a compact operator if the functions u(-) e v(+)
belongs to L?(a,b).

Furthermore the measure of noncompactness of D, i.e. u(D) satisfies
(%)H% < u(D) < p%q%p; in the special case when p = ¢ = 2, i.e. when the

(Lebesgue) space LP is a Hilbert space L?, we obtain p\/g < u(D) < 2p.

Definition 2 : An Rs;—set is the intersection of a decreasing sequnce {A,}
of compact AR (metric absolute retracts; see [?] or [?], for a reference.)
Moreover it is known (see [?] for istance) that an Rs—set is an acyclic set in
the Cech homology.

The following result also will be crucially used in teh sequel:
Proposition 2 : ([?], pag 159). Let X be a space and let Y, ||-|| be a Banach
space and f : X — X be a proper mapping. Assume further that for each

€n > 0,n >0 € IN a proper mapping f, : X — X is given and the couple
of conditions is satisfied:

o [[fu(z) = f(2)]] < en, Vo€ X;

e for any e, >0 and y € E such that ||y|| < €,, the equation f., (z) =1y
has exactly one solution.



Then the set S = f~1(0) is an Rs;—set.
Remark: a sequence f, is called an €, approximation (of the function f).

Proposition 3 : ([?], pag ?%%). Let F,F, : B(0,r) — Y be condensing
operators such that

i 5nzsup{
F.(z) — F(2)||, z € B(0,r)} =0, as n — +o0;

e the equation x = F,(z) +y has at most one solution if ||y|| < &,.

Then the set of fixed points of F' is an Rs—set.
Main result

We are ready to establish out (main) existence result for the (initial value
problems for) integral equations of the type here introduced.

First of all let F': B(0,7) — E be defined as follows:

F(y) = h(t) + fy k{t, s)g(s, y(s)ds
where 7 is a real number (suitably defined below) and put mg = || F(0)||2.

Theorem 1 : Let p the number defined in Proposition 1; then we assume
that:

1. i) there are functions a,¢,: I — TR belonging to L*(I) such that
k(t,s) = a¢(s) for every (t,s) € I x I; moreover we assume that
[IK[l2 < 2p;

2. i) |lg(t 2)|| < Llell +b(t), for (t.x) € I x R, be LA(I), b(t) = 0

3. ii1) there is a ball B(0,r) such that r > %Z—fm%.

Then the set of solution of the integral problem (?7) is an Rs—set.
Remark: The first part of the assumption i) is satisfied in many cases:

for istance when k(t, s) is a Green function; see, for istance, [?] for similar
cases.

Proof: Clearly the above operator F' is a single value mapping and a
possible fixed point of F' is a solution of the integral problem (?77).

In order to prove the theorem the following steps in the proof have to be
established:



a ) F has a closed graph;
b) F is a condensing mapping;

c) The set of fixed point of F' is Rs—set.

Proof of Step a): in fact, let v, — yo and put G(y)(t) = g(¢,y(t)). Now, from
assumption ii), it follows that the superposition operator G mapping the
space L? into L? is condensing (see [?]); thus we have lim,, ||G(y,)—G(yo)||2 =
0. By using the Holder inequality, we get:

IIF(yn) (yo ||z = [ 1F(yn)(s) = Flyo)(s)[*ds]> =
LS ()95, yn(s)) = k(E,9)g(s, yo(s))ds]?dt]2 < [[k[[a]|[| G yn) —
(yo)Hz
and this quantity is gioing to zero whenever n — +oc.

Proof of Step b): Always working from B(0,r) into F, we have F(y) =
(HoG)( )) where

fo y(s)ds + h(t).
NOW by assumptlons z) and i7), we have (see [?]) wu(G(V)) < ﬁu(V)

) :
for any bounded set V' C L*(I x IR') and also u(H) < 2p; so (see [?])
p(F) = p(H o G)(y)) < p(H)p(G) < 1.

Proof of Step ¢): Finally we have to prove that the set of fixed points of
the operator F' is an Rs—set (in the sequel we assume that (a,b) = (0,7).)

Let us consider the mappings F), : L*(0,7) — L*(0,T) defined as:

h(t) = ifo<t<L
Fn<$)(t)_{ t+f0 (s)g(s,y(s))ds = L <t<T. )

The mappings F), are continuous mappings; by assumption ¢) and i) we

T 2T ... [EL (’f+1)T] :

have that they are also condensing. The intervals [0, %], = " =],
are now coming in one after the other: each time the mappings F), are bijec-
tive and their inverses F, ! are continuous. Moreover we have ||F,, — F|[; — 0
as n — +00. The latter fact allows us to say that the mappings I — F}, and
I — F are proper maps. Finally we can conclude that the set of fixed points
of F'is an Rs—set.

n Y
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