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SOME PROPERTIES OF THE SOLUTION SET
FOR INTEGRAL DIFFERENTIAL EQUATIONS

1 Introduction and Notations

In this paper we are concerned with the solution sets for Volterra integral
equation and integrodifferential equations like:

{
x(t) = h(t) +

∫ t

0
k(t, s)g(s, x(s)ds

x(0) = x0,
(1)

or {
x(t) = f(t, x(t),

∫ t

0
k(t, s)g(s, x(s))ds)

x(0) = x0,
(2)

where h : I = [0, T ) −→ IRn, k : I × IRn −→ IRn are continuous functions,
x0 is a given vector of IRn, I a (possible unbounded) interval of IR.

In the following B(x0, r) will denote an r− ball (in the metric space
(X, d)) i.e. the set {x ∈ X : d(x, x0) < r} where x0 is any point in X; B(0, r)
wil denote the closed ball centered in x0 = 0.

Let now consider the (Hilbert) space L2(I, IRn) normed, as usually, by

||x||2 = (
∫
I
x2(t)dt)

1
2 and its (affine) subspace E = {x ∈ L2(I, IRn) : x(0) =

x0}. Let X be some some Banach space; f V ⊂ X is some subset then (V )
will denote its (topological) closure and V c will denote the complement of V .
Finally B(X ) will denote the set of all nonempty and bounded subsets of X.

Definition 1 : Let X be a Banach space and A ⊂ a subset. A measure
µ : Bd(X) −→ IR+ defined by µ(V ) = inf{ϵ > 0 : V ∈ B(X ) admits a finite
cover by sets of diameter ≤ ϵ} where diameter of V is the sup{||x− y|| : x ∈
V, y ∈ V }, is called the (Kuratowski) measure of noncompactness.

A measure like µ has interesting properties, some of which are listed in
the sequel:
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a) µ(V ) = 0if and only if V is compact;

b) µ(V ) = µ(V ); µ(conv(V )) = µ(V ); (conv(V ) = convex hull ofV );

c) µ(α(V1) + (1− α)V2) ≤ αµ(V1) + (1− α)µ(V2), α ∈ [0, 1];

d) ifV1 ⊂ V2 then µ(V1) ≤ µ(V2);

e) if{Vn} is a nested sequence of closed sets of Bd(X)

and if lim
n→+∞

µ(Vn) = 0 then ∩∞
n=1 Vn ̸= ∅.

The analogous measure of noncompactness for an operator is defined by
µ(F (V )) = inf{k > 0 : µ(F (V )) ≤ kµ(V )} for all bounded subsets V ⊂ X.

When X is a complete metric space and f : X −→ X is a continuous
mapping f is called an
mu−set contraction if there exists k ∈ [0, 1) such that, for all bounded non-
compact subsets V of X, the following relation holds: µ(f(V )) ≤ kα(V ) (
[?], pag 160).

A continuous operator F : X −→ X such that µ(F (V )) < µ(V ), for any
bounded V ⊂ X, is called condensing or densifying.

(The concept of measure of noncompactness is considerably dealed with
in the references [?], [?] or [?].)

Let S and S1 be topological spaces and let f : S −→ S1. Then f is
said to be proper if, whenever K1 is a compact subset of S1, f

−1(K1) is a
compact set in S. It is also known ( [?], pag 160) that if X is a Banach space
and f : X −→ X is a continuous k−set contraction, then I − f is a proper
mapping.

The following result, due to R.K. Juberg ([?]), will be useful in the proof
of our main result:

Proposition 1 : Let (a, b) be any real (possible unbounded) interval and let
Lp(a, c), 1 ≤ p ≤ +∞ be the Lebesgue’s space of (the power p) summable
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functions over (a, c) for every c ∈ (a, b). For u ∈ Lp(c, b), v ∈ Lq(a, c),
where 1

p
+ 1

q
= 1, we set

ρ = lim
ϵ→0

sup{[
∫ a+ϵ

x

|u(y)|pdy]
1
p [

∫ x

a

|v(y)|qdy]
1
q , a < x ≤ a+ ϵ}+

+ lim
δ→0

sup{[
∫ b

x

|u(y)|pdy]
1
p [

∫ x

b−δ

|v(y)|qdy]
1
q , b− δ ≤ x < b}.

LetD be the linear operator defined by: D(f(y))(x) =
∫ x

0
u(x)v(y)f(y)dy;

in the sequel wh shall assume that D is a bounded operator in the space
Lp(0, T ). We want to recall that the operator D is bounded (in the Lp(a, b)
space) if and only if the function

ψ(x) = [
∫ b

x
|u(y)|pdy]

1
p [
∫ x

a
|v(y)|qdy]

1
q is bounded on (a, b). This operator

is not necessarily a compact operator; as matter of fact it is well known (see
[?], for istance), that D is a compact operator if the functions u(·) e v(·)
belongs to L2(a, b).

Furthermore the measure of noncompactness of D, i.e. µ(D) satisfies

(1
2
)1+

1
p ≤ µ(D) ≤ p

1
q q

1
pρ; in the special case when p = q = 2, i.e. when the

(Lebesgue) space Lp is a Hilbert space L2, we obtain ρ
√

1
8
≤ µ(D) ≤ 2ρ.

Definition 2 : An Rδ−set is the intersection of a decreasing sequnce {An}
of compact AR (metric absolute retracts; see [?] or [?], for a reference.)
Moreover it is known (see [?] for istance) that an Rδ−set is an acyclic set in
the Cȩch homology.

The following result also will be crucially used in teh sequel:

Proposition 2 : ([?], pag 159). Let X be a space and let Y, ||·|| be a Banach
space and f : X −→ X be a proper mapping. Assume further that for each
ϵn > 0, n > 0 ∈ IN a proper mapping fn : X −→ X is given and the couple
of conditions is satisfied:

• ||fn(x)− f(x)|| < ϵn, ∀x ∈ X;

• for any ϵn > 0 and y ∈ E such that ||y|| ≤ ϵn, the equation fϵn(x) = y
has exactly one solution.
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Then the set S = f−1(0) is an Rδ−set.
Remark: a sequence fϵn is called an ϵn approximation (of the function f).

Proposition 3 : ([?], pag ???). Let F, Fn : B(0, r) −→ Y be condensing
operators such that

• δn = sup{
Fn(x)− F (x)||, x ∈ B(0, r)} → 0, as n→ +∞;

• the equation x = Fn(x) + y has at most one solution if ||y|| ≤ δn.

Then the set of fixed points of F is an Rδ−set.

Main result

We are ready to establish out (main) existence result for the (initial value
problems for) integral equations of the type here introduced.

First of all let F : B(0, r) → E be defined as follows:
F (y) = h(t) +

∫ t

0
k(t, s)g(s, y(s)ds

where r is a real number (suitably defined below) and put m0 = ||F (0)||2.

Theorem 1 : Let ρ the number defined in Proposition 1; then we assume
that:

1. i) there are functions α, ϕ, : I → IRn belonging to L2(I) such that
k(t, s) = αϕ(s) for every (t, s) ∈ I × I; moreover we assume that
||k||2 < 2ρ;

2. ii) ||g(t, x)|| ≤ 1
2ρ
||x||+ b(t), for (t, x) ∈ I × IRn, b ∈ L2(I), b(t) ≥ 0;

3. iii) there is a ball B(0, r) such that r > 2m0ρ
2ρ−||k||2 .

Then the set of solution of the integral problem (??) is an Rδ−set.

Remark: The first part of the assumption i) is satisfied in many cases:
for istance when k(t, s) is a Green function; see, for istance, [?] for similar
cases.

Proof: Clearly the above operator F is a single value mapping and a
possible fixed point of F is a solution of the integral problem (??).

In order to prove the theorem the following steps in the proof have to be
established:
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a ) F has a closed graph;

b) F is a condensing mapping;

c) The set of fixed point of F is Rδ−set.

Proof of Step a): in fact, let yn → y0 and put G(y)(t) = g(t, y(t)). Now, from
assumption ii), it follows that the superposition operator G mapping the
space L2 into L2 is condensing (see [?]); thus we have limn ||G(yn)−G(y0)||2 =
0. By using the Holder inequality, we get:

||F (yn)− F (y0)||2 = [
∫
I
|F (yn)(s)− F (y0)(s)|2ds]

1
2 =

= [
∫
I
[
∫ t

)
(k(t, s)g(s, yn(s)) − k(t, s)g(s, y0(s))ds]

2dt]
1
2 ≤ ||k||2||||G(yn) −

G(y0)||2
and this quantity is gioing to zero whenever n→ +∞.

Proof of Step b): Always working from B(0, r) into E, we have F (y) =
(H ◦G)(y)), where

H(y)(t) =
∫ t

0
ϕ(s)α(t)y(s)ds+ h(t).

Now, by assumptions i) and ii), we have (see [?]) µ(G(V )) ≤ 1
2ρ
µ(V ),

for any bounded set V ⊂ L2(I × IRn) and also µ(H) < 2ρ; so (see [?])
µ(F ) = µ(H ◦G)(y)) ≤ µ(H)µ(G) < 1.

Proof of Step c): Finally we have to prove that the set of fixed points of
the operator F is an Rδ−set (in the sequel we assume that (a, b) = (0, T ).)

Let us consider the mappings Fn : L2(0, T ) → L2(0, T ) defined as:

Fn(x)(t) =

{
h(t) = if 0 ≤ t ≤ T

n
;

h(t) +
∫ t−T

n

0
ϕ(s)α(s)g(s, y(s))ds = if T

n
≤ t ≤ T.

(3)

The mappings Fn are continuous mappings; by assumption i) and ii) we

have that they are also condensing. The intervals [0, T
n
], [T

n
, 2T

n
], · · · [kT

n
, (k+1)T

n
], · · · [ (n−1)T

n
, T ]

are now coming in one after the other: each time the mappings Fn are bijec-
tive and their inverses F−1

n are continuous. Moreover we have ||Fn−F ||2 → 0
as n → +∞. The latter fact allows us to say that the mappings I − Fn and
I − F are proper maps. Finally we can conclude that the set of fixed points
of F is an Rδ−set.

5



Riferimenti bibliografici

[1] G. Anichini - G. Conti Existence of Solutions of a Boundary Value Pro-
blem through the solution mapping of a linearized type problem, Ren-
diconti del Seminario Mate. Univ. Torino, Fascicolo speciale dedicato
a Mathematical theory of dynamical systems and ordinary differential
equations, 1990, vol 48 (2), p. 149 – 160,

[2] G. Anichini - G. Conti - P. Zecca Using solution sets for solving bounda-
ry value problems for ordinary differential equations, Nonlinear Analysis
Theory Meth.& Appl., 1991, vol 5, p. 465–474,

[3] G. Anichini - G. Conti A direct approach to the existence of solutions
of a Boundary Value Problem for a second order differential system,
Differential Equations and Dynamical Systems, 1995, vol 3 (1), p. 23 –
34,

[4] G. Anichini - G. Conti About the Existence of Solutions of a Boundary
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