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In this article we provide a result that may be considered as an extension of
the Julia’s Lemma to the case of holomorphic self-maps in the intriguing
domain known as the symmetrized bidisc. Julia’s Lemma is a classical result
for holomorphic self-maps in the (poly)disc, and it turns out to be one of
the starting points for the study of iterates of holomorphic self-maps. In the
setting of the symmetrized bidisc, this kind of study towards a description
of behaviour of iterates of holomorphic self-maps is of great interest and is
partially still under investigation. The techniques involved in this article
seem to be very well suited for the case of symmetric bidisc and resemble
most of the analogous properties in the case of the polydisc.

Keywords: Symmetrized bidisc; Julia’s Lemma; Busemann sublevel sets;
complex geodesics

AMS Subject Classifications: 32A40; 32A07

1. Introduction

Let G, be the symmetrized bidisc,' that is the image of the bidisc
D*={(z1,22) €C*: |z1| <1, |zl<1} under m=(m),7y), with 7;:D* =D, j=1,2,
and m(z1, z2) =z1+22:=s, wa(z1, z2) =21 -2z»:=p. The symmetrized bidisc can be
considered as a special case of the symmetrized n-disc (n > 2) which is defined to be
the image of the n polydisc D" under 7 = (7, ..., m,), where each m; is the symmetric
polynomial of degree j in n variables, namely

(21 ey 2Zy) = ( Z zZj, "'ij> .
k=1,...n

I < <jk=n -

.....

It can be proven (see, e.g. [1]) that, equivalently,

Gr={(5,0)eC?: [s—5p| +1pP < 1} = {(s,p)ec:2 . sup ‘@‘ < 1}. (1.1)
acid | 2 —as
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The symbols adopted as coordinates in G, remind us that m1(zy, z») gives the sum of
zy and z,, whereas m5(zy, z») is the product of z; and z».

After putting f,(s, p) = 22“f —, it is clear that f, is holomorphic in (C\{2/a}) x C and
that actually for any a € D the function f, maps G, in . Moreover, the following

important relation (see, e.g. [2]) can be found:
kg,((s1,p1), (52, p2)) = I‘Lllgi{m@(ﬁz(ﬁ,Pl),ﬁz(sz,Pz))}, (1.2)

where kg, is the Lempert function in G, and mp is the pseudo-metric in D.
In particular (see again [2]), the Kobayashi pseudo-distance® kg, can be obtained as
follows: kg, = tanh_l(k:f;z). Notice that, similarly, tanh™'(mp) provides the so-called
Poincaré distance in D which will be denoted in the sequel by w.

Finally, the Silov boundary of G, is defined as (3D x D) := 3G,. We recall that
oD x dD is precisely the Silov boundary of D?. Clearly 3G, C G, (the closure of G,
in €%, but notice that the condition |s—3p|+|p|*> <1 does not imply that
(s, p) € Gy, since (5/2, 1) € G,. The previous counterexample is made more precise in
the following Proposition [1].

ProrosiTioN 1

(i) (5p)eGy & [s—5pl+|pl> <1and|s| <2
(ii) (s.p)€ Gy < |fu(s,p)) =1 Vac oD '
Proof

(i) Clearly, if (s, p) € G, then |s —35p| + | p|> < 1 and |s] <2.
Viceversa, let (s, p) be such that |s —5p| + | p|> < 1 and |s| <2. Thus

(a) if s # ps, then (t5,p) € G, for 0<r<1;
(b) if s = p5, then (zs, *p) € G, for 0<r<1.

(i) We first observe that
(s,p) €3Gy & s=3p, |pl =1 and |s| <2; hence, from

2
fuls.p) =5

we make the desired conclusion. [ |

-5 ap(2 —as)
as 2 —as

We can therefore start with the following proposition [1].
ProrosiTioN 2 Let h be a holomorphic automorphism of D, then the relation
Hy(7(z1, 22)) = w(h(z1), h(z2))
defines a holomorphic mapping Hj,: G, — G, with the following properties:

(a) H,eAu(Gy);
(b) if h(z)= Az, (with || =1), then H,(s, p) = (As, A*p);
(c) for any acD, if hy(z) = (z — a)/(1 —az), then H), (7(a, a)) = (0,0).

Proof Clearly Hj,e€Aut(G,), since H;'= H,. Points (b) and (c) are then
straightforward to prove. |

To be more precise on point (a) of the previous proposition, one can actually
prove (see, e.g. [1]) the following proposition.
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ProrosiTioN 3 Aut(G,) ={H,:h € Aut(D)}.

This result has been recently extended to the case of the symmetrized n-disc of C".
Notice, furthermore, that if f:[D*— C is a symmetric holomorphic map, then a
holomorphic map H,:G,— C is defined by H/(m(zy,22))=/f(z1,22). We define
{(2z,25) =n(z,2) :zeD} ;=S8 to be the royal variety of G,.

Remark 4 1t has to be observed that Aut(G,) does not act transitively on G,.
However Aut(G,) acts transitively on the royal variety S of G, since, from (c) of
Proposition 2, it is easily seen that, for any point (2a,a°)€eS, we have
Hj, (2a, qz) =(0,0). In the same way, one can deduce that Aut(G,) acts transitively
on SN JG;. Furthermore, since Aut(D) acts doubly transitively on 9D, given two
points x,y € 3G, \ S, we can always find an automorphism Hj, € Aut(G,) such that
Hj(x)=y. This is so since if x =n(e™, '), with a# p, and y =n(e”, €®), with y #3,
then we can find /# € Aut(ID) such that h(e™)=¢" and h(e”)=¢®, which defines H,
as required.

We recall now the following general definition.

Definition 5 If X is a complex manifold, any ¢ € Hol(D, X') which is an isometry for
Poincaré and Kobayashi distance will be called a complex geodesic.

We remind here that, from the definition, in [ any complex geodesic is a
holomorphic automorphism of I and that in the polydisc D" a complex geodesic is
of the form I >z — (¢1(2), . .., @,(z)) where at least one of the ¢; is an automorphism
of D (see, e.g. [3.4]); in particular, this is the case if, for instance,
D>z~ (z,92),...,0,2)). A first link between complex geodesics in &, and
holomorphic automorphisms of G, is given in the following lemma (see [1]).

LEmMMA 6 Let ¢:D— G, be a mapping of the form

_(f 2
(P - R) R k)

with P, Q, R polynomials of degree <2 and such that R-'(0)ND = . If p(dD) C G,
and, for some &, n €D, p(&) = 2n, n°), then
_27Q—P
" 2R —7P
is an automorphism of D and ¢ is a complex geodesic. Furthermore, if g € Aut(D), then
Y= H,o @ satisfies the same assumptions of ¢.

h::fﬁogo

We finally recall that for any two points (s, p1), (52, p2) € G, there exists a
complex geodesic ¢ such that (s,p;), (s2,p2) €@(D) (see [1, p. 37]) and that a
complete description of complex geodesics in G, is given in [1]; it essentially depends
on the possible intersection of the complex geodesic with the royal variety S, namely

ProrositioN 7 Let ¢: D — G, be holomorphic. Then

@) if #@(D)NS)>2, then ¢ is a complex geodesic if and only if (z) =(—2z, %),
modulo Aut(D);

) if #He(D)NS)=1, then ¢ is a complex geodesic if and only if
¢0(z) = 1(B(/2), B(—+/z)), modulo Aut(D), with B a Blaschke product of
order <2 such that B(0)=0;



Downloaded by [Fabio Vlacci] at 03:15 05 November 2012

1124

(©

C. Frosini and F. Vlacci

if (D)YNS =, then ¢ is a complex geodesic if and only if ¢ = 7(hy, h»), where
hi, hy, € Aut(D) are such that hy — h, has no zero in D.

Notice that if ¢ is a complex geodesic in (3, such that #(p(D)NS)>2, then

p(D) =

S. In what follows we will be particularly interested in finding relationships

between complex geodesics in G, and in D?, which are also classified (see, e.g. [3]).

Thus,
(a)

(b)

(©

let ¢ :[D— G> be a complex geodesic:

if #((M)NS)>2, then, modulo Aut(D), ¢ =mwogp, with @(z) = (z,z),
modulo Aut(DD), and @ : D — D is clearly a complex geodesic;

if #(p(D) N S) =1, then, modulo Aut(D), ¢(z) = 7(B(y/z), B(—+/z)), with B a
Blaschke product of order <2 such that B(0) =0. Therefore, we can assume
¢(D)NS=(0,0) and so

0, —c3z) if B(z) = ¢z
o(z) = iz o V2R . z—a
(2(’\/_ l—Zlf ( —Z@)) 1fB(z)_clz~1_Z_IZ

with ¢g, ¢c; € C different from zero. In both cases, there is no complex
geodesic @ in D? such that ¢ = 7 o @, since for a complex geodesic in D” at
least one of its components belongs to Aut(D). Notice furthermore that there
cannot be any complex geodesic ¢(z) = n(B(y/z), B(—+/z)) passing through
any point of S and (2, 1) € Gy;

if p(D@)NS =, then 9o =n(hy, h»), where hy, h, € Aut(D) are such that i, — &,
has no zero in D. Finally, observe that for any a € R, —1<a<1, the map
hy(z):=(z —a)/(1 — az) belongs to Aut(D) and is such that 4,(1)=1. Hence,
for any a,b€R with a, b such that —1<a<1, —1<b<]1, a#b, the map
o(z) =m(hy(z), hy(2)) is a complex geodesic such that ¢(1)=(2,1); more in
general, since any automorphism of [ maps the boundary of D into itself,
then if #(p(D)NS) # 1, necessarily limps,—1- ¢(7) € 3G, and, in particular, if
@(1) = n(t, 1), then limps,1- () € 3G, N S.

Finally, since the above description of complex geodesics in G, is
provided as a projection of a pair of Blaschke products or automorphisms of
D modulo Aut(DD), and since (as observed in Remark 4) Aut(DD) acts
transitively on 9D and Aut(G,) acts transitively on S N 8G,, for the sake of
simplicity, if ¢(z) =m(hi(2), hx(z)) is a complex geodesic in G, with
hi,hy € Aut(D) and such that ¢(ID)N3S # ¢, we will often assume that
hi(z)=z and write ¢(z) = n(z,%(z)), with & = hy! o hp € Aut(D). Notice that
in this way ¢(1)=(2, 1).

It is worth noticing here that a geodesic in G5 is not necessarily a projection of a
complex geodesic in the bidisc 7.

2. Horocycles and Julia’s Lemma in G,

According to the analogous definition given in D? (see [5]), which generalizes the
notion of horocycles® in the unit disc I, we introduce the following definition.
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Definition 8§ 1f kg, is the Kobayashi distance in G, let ¢ be a complex geodesic in
G> such that*

lim  ¢(f) = x € 0Gs.
Rar—1-

We say that ze G, belongs to the Busemann® sublevel set of centre x € 3G, and
radius R>0 if and only if

1
i e, (2, ¢(1) — ke, (@(0), 9(1)] < 3log R

and summarize it — in symbols — by putting z € [Bjé2 (x, R).

In what follows, we will see that the functions f,: G, — D (defined in Section 1)
may be considered as the analogue in G, of the projections in D* given by (z, w) > z
or (z,w) — w.

ProprosiTioN 9 Consider x € G, and let ¢ be a complex geodesic in G, such that
limgs,—1- @(t) = x. Then z € Béz(x, R) if and only if f.,(z) € E(fa(x), Brop(1) - R) for
any a€D, where Bro,(1) is the boundary dilation coefficient at 1 of the holomorphic
self-map f, o ¢:D— D.

Proof We recall that z € Bg, (x, R) if and only if
1/210g R > _lim_[ke, = 9(1)) — ke, (9(0). (1)}

from (1.2), we deduce that

[k, (2. 9(1)) — ke, (9(0), (1))]

lim
R>t—1-

= lim {rzlli)lﬁ[w(ﬁz(Z),ﬁz(w(I))]—w(Oa Z)}

Rat—1-

Rat—1-

= lim {0 A0)] = 0. o) + 0. fu )~ 00,0 .
Hence, given qq € dD, we obtain that

1/2log R > lim (/o (2).fan (9(0) = (0. Loy ()]
im0, £y (0(1) — (0. 1) 2.2)

The second part of the limit in (2.2) is equivalent to

. 1
piim, 5 log

<1 RGO )

Since f,, o ¢ 1s a holomorphic self-map of [ such that

(2.3)

M fay (#(1)) 1= fay(x) € 3D,
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from the characterization of ﬁﬁ,oow(l)s the boundary dilation coefficient at 1 of the
holomorphic self-map £, o ¢ (see [3]), we can write

L= Va1 = O]

R> r l* 1 — ¢ T Rar—1- -1t '

:Bf,,o ow(l) =

thus the proof is completed. |

The reason why we adopted this general approach in defining subsets of G, which
resemble the definition of horocycles is related to the peculiar geometric properties of
the symmetrized bidisc G, which has no analogue in the case of the bidisc D”. Indeed,
the following example shows that a Busemann sublevel set cannot be always
obtained as the projection of a horocycle in the bidisc D

Example 10 Since for any z e D we have 0 < |z|> =|z°| < |z|, consider r € R such that
|z| <r<|z| and define R = ;=. Then there exists z€D such that z € E(1, R) and
1% e E(l R) for any AeD, but —z ¢ E(1,R). Clearly, n(z —z)=(0,—z%) and
0, —z2*) = —az?; since aeD, we conclude that f,(0,—z*)e E(1,R) and so
(0, —z%) e BE ((2,1), R) (with ¢ =n(z, 7)) even though (z, —z) ¢ E(1, R) x E(1, R).

The boundary dilation coefficient of a holomorphic self-map in D at a point of
dD is not necessarily finite and, actually, it is in general infinite (see [3]); this is not the
case if one considers x = (¢, ¢'f) € 0G, and ¢(z2) = 7(h,(z), hy(z)) with hy, hy € Aut(D)
such that limps,_1- A1(f) = €®, limps, - ho(f) = e and hy —h, #0 in D, that is
when ¢ is a complex geodesic in G, passing through x and such that #(p(D)NS) # 1.
Given a €D, we define

2aei@th) _ (eioz + eiﬁ)
2 —a(e™ + e'P)

Ju(e®,e?) =

Since
A0
R>r—1- 1—1¢
4a(e”" S(1) + PR (1) = 2a° (e, (1) + PR (1)) — 2(K, (1) + Ky(1))
[2 — a(e® + eP))?

is finite for any a € D, from Julia—Wolff—Carathéodory Theorem (see, e.g. [3]), so is
the boundary dilation coefficient of f,0¢ at 1. In particular, consider a complex
geodesic ¢:D— G, such that limgs,.1- (1) = (2,1) €3G, and #(@(D)NS)#1;

we can consider ¢ parameterized as ¢(7)=(z,9(¢)), with ¥ € Aut(D) such that
(1) =1. Hence, after some calculations, we deduce that

—2tat+ad(t)—2atd()+1+5(1)

lim -1 _fa((p([)) — lim 2—at—avd(t)
R>t—1- 1—1¢ Rar—1- 1—1t¢
— lim at(1 —v(0)) + (av(t) — 1) - (1 — 1) — (1 — K1)
T Roro 1o (1 =12 —at—ad)
_ ij if a1
219/(1) ifa=1.

IRETI0)
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Notice that the previous limit does not depend® on @ and actually implies (from the
Julia—Wolff—Carathéodory Theorem in D (see [3])) that

L%?Q ifa1
ﬂfhow(l) = 29/(1) .
m ifa=1.

Furthermore, from the above calculations, we can show that, if ¢(¢) =7(z, 9(¢)) is a
complex geodesic in G, passing through (2, 1), then, given any 4 € Aut(ID) such that
h(1)=1, we have

lim[kg, (0, ¢(1)) — (0, ] = lim[k, (0, ¢(h(1))) — (0, A(1))].

Indeed,
}i_r)rll[kcsz (0, p(n(1))) — (0, h(2))]
= }i_I)rll[kasz(O, @(h(1))) — (0, 1) + (0, 1) — (0, h(1))]
= limmax o(0, fu(p(h(1)) = (0. )] + lim{e(0, 1) = (0, A(D)].
Thus

lim{e(0, fu(g (A1) — (0, 1] + Ime(0, 1) = (0, A1)

I, "Hw'O)+1) 1 roy ] 2 .
—210g > +210gh(1)_210g1+ﬁ/(1) ifa#1
I, "Hw'O)+1) 1 py L 1+ ..

5 og 20 (1) +210gh(1)_210g 201) ifa=1.

Similarly,

]im[ﬁl[sz (Oa (p([)) - C()(O, l)] = limt»l[maxae oD a)(O,fu(go(l))) - C()(O, [)]

and
1 2
—log——— ifa#1
. 2 ¥(1 1
lim[w(0, fu(p(D)) — (0, 0] = { | 11%) :
g gy fa=1

Therefore we can always assume that a complex geodesic ¢ in G, passing through
(2,1) is parameterized as ¢+ 7(t,9(¢)), with ¢ € Aut(A) such that #(1)=1 and
¥ (1) < 1; indeed, if ®'(1)> 1, then we may simply consider ¢; =¢ o 9~ ' instead of ¢.
Notice that

149 2
2001) — 1+ 0(1)

and equality holds if and only if #/(1)=1. If Fis a holomorphic self-map of G, and
¢: D — G, is a complex geodesic such that limps,—,1- ¢() = x € dG,, then we give the
following definition.
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Definition 11

10ga o) = lim [k, (0, ¢(1)) — (0. fuFe(D))]

Remark 12 The definition of aa’q)(x) is independent from the parameterization of
the geodesic ¢. Before showing this we observe that, from the definition of boundary
dilation coefficient at 1,

Jlogal () = lim_ [k, 0, 6(1) ~ (0. fu(Fe{)))
= lim [k, 0. ¢(1)) = (0. 1) + (0. 1) = (0. fu(Fp(t))]
=£g;wgmwmy—mmm+ﬁggjmmn—mexﬂmmm

,Bf oFozp(l)
/3/ so(1)

Now consider 9 € Aut(D) such that ¥(1)=1 and ¥ =¢o ¥, then
giim [k, (0, (1) — (0. fu(F((D))]
= lim [k, (0, ¢(#(1)) = 0(0. o Fe@))]

= e (@(0), ¢(9(1))) — 0. Lo Fp(D(1))
o+ K, (0, 6(9(1))) — K, (9(0), ¢(P(0)]
= _lim [ke,(#(0), Y(1) — (0. fu Fl(¥(1)))

+ ki, (0, p((1)) — ke, ((0), (D). (2.4)
Since kg, (¢(0), p(9(1))) = (0, ¥(¢)) and Y =¢o ¥, we can actually write
i, kG, (9(0), ¥(1)) — (0. (F(@(9(D)) + ke, (0, (1)) — k. (#(0), ¥ (1))] =
i [(0,9() = (0, 1) + (0, 1) — (0. fo(Fe((N)) + ke, (0, p(0(1)) — (0, H(1))].

1

We remind that
1
Qgﬁ@ﬁm%wmmz—ywmm
" llm [@(0, 1) — (0, fu(F(p(3(1))))] = —log Br,oFopon(1)

For the remaining part in the limit 2.4, recall that Fkg,(0,p(D(?)) =
max, ¢ sp @(0, fu(¢(2)) and remember that, for any ¢ €D,

1
hm [(0, fu(@((1)))) — (0, 3(2))] = —Qlog Brop(1);
so we can conclude that

i [k, (0, ¥(1)) — (0, fa(FW()D] = lim [k, (0, ¢(1)) — (0. fu(F(@()))].
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We now want to show how to obtain explicit examples of holomorphic self-maps
in G, whose boundary dilation coefficients are finite and not zero.
Example 13 Consider a pair of holomorphic functions f, g € Hol(D, D) such that
K- lin}f(z) =1, K- lin} glz)=1

and with finite boundary dilation coefficients B,(1), B¢(1) at 1. For (s, p) € G», define

U= s+a/s2—4p s—a/$2—4p
=

and v:= 3 and consider the holomorphic map F in G, as
follows:

E(s,p) = (flu) + g), flw) - g(v)).

Clearly, F maps holomorphically G, into itself; furthermore, if ¢ is a complex
geodesic in G, passing through x=(2,1) and parameterized as ¢t — n(¢, 9(¢)), with
© € Aut(D) such that #(1)=1 and /(1) <1, then

i, Fle(0) = 2, 1) =: x.

Given
2ap — s
2—as’
the holomorphic map f, o Fo ¢ belongs to Hol(D, D) for any a €D and
2af (1) g(0(1)) — [ (1) — (1))
2 —af (1) — ag(¥(1))

In order to evaluate the boundary dilation coefficient of f,, 0 Fo ¢ at 1, one considers

Ja(s,p) =

Ja(F(p(1)) =

| — 208~/ ()—g(()

lim —1 —f.(F(1))) —lim 2—af (1) —ag(¥(1)
Rar—1- 1—1¢ Rst—1- 1—¢
— lim =2+ af (1) +ag(¥(1)) — 2af (1) g(H1)) +.f(1) + g(¥(1))
R>i—1- (1 =02 —af(t) — ag(¥(1))) ’
The above limit can also be written as follows:
) 1 — g(9(1)) 1—7(n)
ri [“f DT=0e a0 -awon "V T 00w () - ag@)
_ 1—7(2) B 1 — g(%(1)) }
(1 =02 —af(t) —ag(0)) (1 -2 —af(t) — ag(¥(1))) ]

which implies that B, p,(1) = ZOXDHED 50 4 21 1f g =1,
—1 —fiF((0)) _ (I —=/@)1 — g(¥(1)

lim =-2

Ror—1- 1—1¢ (1 =02 —f(1) — g(¥(r)))
— or, equivalently, —
— oGm0 1—g@@) 1-90) i

_ — . _ ’ — . 1=, 1—g@@) 1-9@1)°
R>r—1 1—1¢ 1 —9(¢) 1—1¢ 1/:[)-{- 15(19((1) 17[)
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which leads to the conclusion that

—1 /i) _ =281 - Be(D) - '(1)

li =
Rorol- 1 —1 B+ Be - (1)
Since — see Remark 12 and the calculations developed after Example 10 —
)
(XF (X) _ ,BonFozp( ,
“ Biop(1)
we can conclude that
BOPD BN
o (x) = 1 +9(1)
w VT B HOA+PD)
Br (1) + B, (&' (1) ’

hence of ,(X) 1s finite and not zero for any a € dD.

Remark 14 1f, for a given a, it turns out that of ,(X) < oo, then necessarily
lim,1- f,(F(¢(1))) € dD. Therefore, if of S(X) < +oo for any ae€dD, then
lim,1- | fu(F(p(1))| = 1 for any a € D but thls from Proposition 1, is equivalent
to saying that limgs,—,1- F(¢(?)) € 3G, .

IfxeSn 8(13:2, and the coefficient o’ () 1s finite for a complex geodesic ¢, we can
prove that « w(x) is also finite for any other complex geodesic v in G, passing
through x, namely the following lemma.

Lemma 15 Let F be a holomorphic self-map of Gy and ¢: D — G, a complex geodesic
such lhat limps,1- @(f) = xeSN G, . If, for a € dD, it turns out that of () is finite,
then of y(x) is also finite, where ¥ : D — G, is any other complex geodeslc in Gy such
that llmub,_)l Y(t)=x¢€ SN 8@2

Proof  Assume that x=(2, 1) and, as usual, ¢(z) = n(z, ¥(2)), ¥(z) = n(z, n(z)), with
?, n € Aut(D) such that ¥(1)=n(1) =1, then
ke, (0, ¢(1)) — (0, fa(F(@(1))) = ke, (0, ¢(1)) — ke, (0, ¥(1))
+ (0, fa(F((1))) — (0, fu(F((1)))
+ kG, (0, ¥(1)) — (0, fa(F(Y(1))). (2.5)
From the triangle inequality, we have

sz (O’ gO(t)) - sz (O’ w([)) =< k@z(w(t)’ (p(t))

and
(0, fo(F(Y(1))) — (0, fo(F(9(1))) = &(fa(F((1). fa(F(p(1)));
hence
k,(0, (1)) — ke, (0, (1)) < w(n(1), (1))
and

(0, fa(F(Y(1))) — (0, fa(F(@(1))) = w(n(2), 9(2)).
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Since

1 ‘M
1— W
Mm0ﬁ0»=§mg_7_mu1

n(H—=9()

1=n()9(1)

and

b

‘n(t);l‘/‘(t) :’ nO =1+ 1= 2(0)
=009~ [1=9(0) + 00) = (0

1— 1-n() 1—
lf(tt) + (1) - n()  1=n)

after some calculations, we easily deduce that

§0i$ if (1) = /(1)
Gim_otn.0m =17 T4 -
?%ﬁm if (1) < n/(1).

In any case limps,_. ;- w(n(f), ¥(¢)) is finite so that from (2.5) we conclude that
lim [k, (0, (1)) — (0, fu(F())] = ay, + 2 _lim _w(n(1), 9(1)) < +o00.
Rar—1- ? Rat—1-

We are now ready to prove the following version of the Julia’s Lemma in the
symmetrized bidisc G,.

ProrosiTioN 16 Let F be a holomorphic self-map of G, and consider a complex
geodesic ¢ in G, passing through x € 3G, such that ai () is finite for any a € 0D. Then
there exist y € 3G, and a complex geodesic ¥ in G, passing through y, such that, for any
R>0 (and with the notations so-far introduced)

FBE (x, R) € BE (3, e(x) - R),
where af(x) = max, csp Oli ().
Proof Take z € Béz(x, R) and consider F(z). From the inequality

ﬁfquoga(l)
/g.f;,ow(l)
proven in Remark 12, we deduce that, since ai ,(x) 1s finite for any a € dD), necessarily

Brorop(l) is finite for any a € dD. Thus, from Julia—Wolff-Carathéodory Theorem,
we conclude that, for any a € dD, the following limit exists:

lim S (F0) = .

1 1
Elogaiw(x) > Elog

Then
lim [o(f.(F(2), w) — o0, w)] = }gl}[w(.ﬂl(F(w(t))),/Z(F(Z)) — (0, fo(F(p(1))))]

W= Tay

since from (2.1), the definition of a horocycle in D of centre f,(y)edD is
independent of the way of approaching the centre of the horocycle. Hence, since the
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holomorphic map f, o F is a contraction,

JHm [o(fa(F(2)), w) = (0, w)] < lim[ke, (2, ¢(1)) — (0. fa(F(p(1)))]

4 a,p

- }1_1;1}[](@2 (Za (ﬂ(l)) - a)(O, l)] + &Erll[w(oj t) - sz (0’ 90(1))]

. 1
+ limlke, (0. ¢(1)) — (0. fu(Fp(0)))] < 5logal,,(x) - R
 lim[(0, 1) — ke, (0. (1)

because z € Bg (¥, R). Finally, from
lirrll[w(O, 1) — ke, (0, 9(1))] < lin}[w(O, 1) — (0, fu(@(1))]  Vae oD
— 1—

we conclude that

lim [w(w, f,(F(2)) — (0, w)] < %log aiw(x) "R Bro(1)

W=>Tay
or equivalently that
Ju(F(2)) € E(Tagr oty ,(X) - R+ Brop(1))  Vae oD

and so, using Proposition 9, we conclude that F(z) belongs to a Busemann sublevel
set Béz( ¥, c(gei (%), Brop(1)) - R)), where fo(y) = 7, We recall that, from Remark 14,
one has y € 3G, independent from the choice of ¢. Indeed, if ¢; is another complex
geodesic in G, passing through x € dG; such that ai 4, (x) 1 finite for any a € 9D, then
assume by contradiction that for a given ay 744 7 Tuy, - Since, for any R>0,

ﬁlo(B‘oz(x, R)) € E(t44,¢ - R)
and

f;l(] (Bgz (x9 R)) g E(T(l,(pl ’ C] : R)a

we can always find a suitable Ry>0 such that Bg (x, Ro) N Bg (x, Ro) # & but
E(t44, ¢+ Ro) N E(t4,,c1 - Ro) = . It is now left to determine a complex geodesic ¥
in G (passing through y) for the definition of the Busemann sublevel set
Béz(y, C(aiw(x), Brop(1)) - R). We will distinguish the possible cases:

(a) if x,yeadSnN 3G, then from Remark 4 and Lemma 6 we can assume that
x=y so that ¥ =¢;

(b) ifx,ye 3G, \ dS, then, again, from Remark 4 and Lemma 6 we can assume
that x =y so that ¢ =¢;

(c) ifxeadsSN 3G, and Ve G, \ dS, from Remark 4 we can assume x=(2, 1) and
y=(0,—1). We have seen that, Ya € dD,

Ja(F(2)) € E(Tugr @l o (X) - Brop(1) - R);
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if a1, Brop(l) = ”%/(1) so that we can also say (see the text after Example 10) that

JulFG) e E<TM,, ol LD, R)

c E(rw, of (%) [1%}(1) (1= %a) + (1 + s}m)} : R>.

Hence we can take a complex geodesic ¥ passing through (0,—1) of the form
Y(z)=m(z,n(z)) with neAut(D) such that n(l)=—1 and 7'(1) = w since
Brow(1) = 1/(1) - (1 —%Ra) + (1 + %a). Finally, if a=1, then By.,(1) =75 but
; 29'(1) " _ 149/(1) / :
since Ty < 5 for (1) <1, we can repeat the above argument.
(d) if x€edl,\dS and yedSNaiG,, from Remark 4 we can assume that
x=(0,—1) and y=(2,1). We have seen that (see endnote 6), Ya € dD,

Ju(F(2)) € E(Tag, 20, ,(x) - R)

and we can take a complex geodesic i passing through (2,1) of the form
Y(z) =n(z, n(z)) with n € Aut(D) such that n(1)=1 and (1) =2. |
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Notes

1. This domain (and its further generalizations) has been attracting the interest of many
mathematicians for several reasons. Among them, we want to recall here that in
Engineering Mathematics these domains have been investigated for robust stabilization
which is related to the so-called spectral Nevanlinna—Pick interpolation problem. More
recently, the domain G, (which is not convex, since (2,1)and (2i,—1)eG, but
(1414,0) ¢ G,) turned out to be not biholomorphically equivalent to a convex domain.
This is the first example known of a domain which actually cannot be exhausted by
domains biholomorphic to convex domains whose (M&bius) distance equals the Lempert
functions in the sense of (1.1).

2. For a definition of the Kobayashi (pseudo) metric and distance (see, e.g. [6,7]), we only
remind here that the Kobayashi distance in the unit disc D, kg coincides with the Poincaré
distance.

3. We recall that a horocycle in D of centre x € 9D and radius R >0 is (also) defined (see [3])
as follows:

E(x,R) = {z eD : lim[w(z,w) — o(0,w)] < %logR}. 2.1

4. In short, we will often say that the complex geodesic ¢ passes through or tends to the
point x of the Silov boundary of G,.

5. Sometimes the function B?(z) := limpsi-[ke,(z, ¢(1) — ke, (¢(0), ¢(7))] is called the
Busemann function.

6. This is not always the case. Consider, for instance, a complex geodesic v passing through
0,—1)=n(l,—1)=n(—1,1) of the form V¥(z)=n(z,n(z)) with ne Aut(D) such that
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n(1)=—1. Then, f,0,—1)=—a and so

I ey ZCA0) B § 70

(@a—17 (a+1y
Rorol- 1 —1 a1 2 —at — an(0)(1 — 1) - ’

=7'(1) 3 3

2 2
hence Broy(1) = —n’(l)%+%. Notice that (as expected) Broy(l) is a
positive real number since

w—w+m+w

=7'(D —Na) + (1 + Na)
2a 2a

—n'(1)

and —1 <MNa < 1. Finally we observe that, for any a € o,
27(1) = 7/ (1)(1 — %a) + (1 + Ra)

and
7()(1 = Ra) + (1 + Ra) > 7/(1)

if (1)<l
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