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Analysis of metal deposit distribution in ants
(Crematogaster scutellaris) at the Florence
external scanning microbeam
E. Gramigni,a S. Calusi,b,c∗ G. Chelazzi,a,d F. Del Greco,e G. Delfino,a N. Gelli,b

L. Giuntini,b,c M. Massib,c and G. Santinia,d

Metals are one of the major classes of environmental contaminants and raise concerns for their adverse effects on ecosystems.
Ants are good candidates as bioindicators for metal contamination assessment; previous studies indeed showed that ants are
able to selectively accumulate some metals within their tissues. Available works provide only whole-body burdens of these
contaminants, with scarce information on the fine-scale localisation in tissues and organs, although this information is important
to better understand the behaviour of metals in living organisms and to clarify their effects in ecosystems. At the Florence
external scanning microbeam, we are carrying on a Particle Induced X-ray Emission (PIXE) study on a common ant species
sampled from sites with different environmental metal availabilities. Measurements were carried out on resin-embedded,
self-standing sections for a direct localisation of metal deposits and an easy determination of their content. The combined use of
the PIXE and the external scanning microbeam made it possible to map element distributions with good spatial resolution and
sensitivity, restricting quantitative analyses to the metal accumulation regions. To determine in which tissues/organs metals
concentrated, we compared PIXE maps with histological images on sections contiguous to the analysed slices. Measurements
in the external set-up allowed us to avoid sample damaging. Differences in metal concentrations in ants from different sites
resulted from quantitative PIXE analyses. Copyright c© 2011 John Wiley & Sons, Ltd.

Introduction

Heavy metals are considered one of the major classes of
contaminants, in both terrestrial and aquatic environments, and
their noxious effects have been described for all ecosystem
components.[1]

Biological monitoring of metal contaminants is a promising
approach, which has recently made considerable progresses.
Several types of organisms have been used as bioindicators of
environmental metal content.[2,3] Available studies[4] showed that
ants are able to selectively accumulate metals within tissues,
making these elements detectable even when their environmental
concentration is very low: ants therefore can be properly addressed
as bioindicators of environmental contamination.[5] Furthermore,
ants possess several other ecological and biological features, such
as worldwide distribution, key role in ecosystem functioning and
strengthening their choice as bioindicators.[6]

Despite these attractive features, examples of the use of
ants in biomonitoring are still scanty, if compared with other
arthropods.[2] In addition, only whole-body burdens of these
contaminants have been usually reported in the literature, thus
little is known about the accumulation of metals within specific
organs or tissues.[7] This information is however of the utmost
importance to point out the behaviour of metals within living
organisms and clarify their toxicity mechanisms.[8,9]

This article aims to explore the potentialities of the external
micro-PIXE analysis in determining accumulation of metals within
tissues and organs of a common ant species, Crematogaster
scutellaris, widespread throughout the Mediterranean basin, in
both natural and human-managed ecosystems.

Micro-PIXE studies on the biological samples have normally
been carried out adopting in-vacuum set-ups,[10,11] although

the use of external-beam analyses in the biological field is
reported since the mid-1970s ( [12] and references therein). In
general, ex vacuo analyses offer the advantage of lower sample
damage, thanks to heat dissipation in atmosphere; this feature is
especially important for biological samples, normally characterised
by considerable sample degradation when analysed in vacuum.[13]

External-beam studies allow avoiding sample drying (widely used
in sample preparation for in-vacuum analyses), which could
induce redistribution of elements in tissues. Ex vacuo set-ups are
characterised by a spatial resolution, which can be as good as a few
microns, typically adequate for many biological applications.[14]

Notwithstanding the favourable characteristics of the nuclear
microprobe for eco-biological applications, only a few papers
are dedicated to in-vacuum studies on metal distributions in
insects[11,15,16,17 – 20] and no work at all exploits the advantages of

∗ Correspondence to: S. Calusi, Department of Physics and Astronomy and
National Institute of Nuclear Physics (INFN), via Sansone 1, 50019 Sesto
Fiorentino, Florence, Italy. E-mail: calusi@fi.infn.it

a Department of Evolutionary Biology ‘Leo Pardi’, University of Florence, via
Romana 17, 50125 Florence, Italy

b National Institute of Nuclear Physics (INFN), via Sansone 1, 50019 Sesto
Fiorentino, Florence, Italy

c Department of Physics and Astronomy, University of Florence, via Sansone 1,
50019 Sesto Fiorentino, Florence, Italy

d CESPRO, University of Florence, via Galcianese 20H, 59100 Prato, Italy

e Experimental Physics Department, University of Torino, Via Giuria 1, 10125
Torino, Italy

X-Ray Spectrom. 2011, 40, 186–190 Copyright c© 2011 John Wiley & Sons, Ltd.



1
8

7

PIXE investigation on metal deposit in ant organs

an external microbeam. In addition, to the best of our knowledge,
no study with ion beam analysis techniques has been carried
on to obtain information about elemental accumulation in ant
tissues/organs. For this task, at our external scanning micro-PIXE
set-up,[21] we analysed samples of C. scutellaris from sites with
different metal concentrations.

Materials and Methods

Samples and preparation procedure

C. scutellaris is a monomorphic ant species, with limited or null
differences in size of foraging workers. Ant samples were collected
from three different sites around Prato (a town in northern Tuscany,
Italy), chosen to represent different level/types of exposure to
metal contamination:
1. Urban site: an urban boulevard with heavy vehicle traffic;
2. Ophiolitic site (Galceti), naturally characterised by excess

concentrations of several metals (e.g. Fe, Cu, Zn, etc.)[22];
3. Control site (Travalle), far from roads and sources of pollution.

Prior studies[8,9], exploiting combined transmission electron
microscope observations and X-ray microanalyses, revealed that
within arthropod cells, excess metals may accumulate as insoluble
deposits in discrete granules (known as electron-dense granules).
In this study, the analysis was focussed on such insoluble deposits
within organs and tissues in the abdomen, where excess metals
are stored and detoxification mechanisms are carried out.[7] Other
storage sites are however possible; for instance, several metals
are known to accumulate in the exoskeleton, particularly on
mandibles, tarsi or ovipositors, where they contribute to enhance
the toughness of these body parts.[23] Although such structures
may contribute to total body burdens, it is less clear whether and
how they contribute to metal detoxification in adult insects and
have not been taken into account in our work.

Samples were prepared according to standard histological
methods using chemical fixation, known not to affect metals stored
in a non-soluble form (e.g. [8,9,24,25] and references therein).

The first step consisted of cryo-cutting: to facilitate the
penetration of fixative and embedding medium (see below)
into the tissues, a Leica-CM1510 was used to remove a small
slice of the cuticle from the abdomen. Fixation was carried
out by immersing the frozen samples in cold (∼3 ◦C) 10%
aqueous formalin for 3 h, then rinsing in de-ionised water and
successively dehydrating in ethanol series at low temperature
(∼3 ◦C), according to standard procedure. Chemical (aldehyde)
fixation has proved to be suitable for preserving metal deposits
in their specific storage organelles.[8,9] Samples were soaked in
propylene oxide and embedded in Spurr resin (Spurr low viscosity
embedding kit, Polysciences Inc.).

Using an ultra-microtome (LKB, type: 4801A) and glass knives,
we obtained:
1. 2-µm-thick (nominally) sections, stained with toluidine blue

and used for organ identification under light microscope (LM);
LM images provided valuable help for identification of the
regions of interest in the thicker, contiguous sections (see next
point) and improved the micro-PIXE analysis;

2. 15-µm-thick (nominally) sections, contiguous to the previous
ones, for micro-PIXE analyses.

The sections to be analysed by PIXE were glued onto plastic
holed tiles to avoid contributions to the spectra from the support.
Due to the low thickness of the sections, contributions from

various tissues at different depths were excluded. Target cooling
was carried out by blowing He both on the front and the rear
sides of the specimen. The combined use of the holed tiles, thin,
self-supporting samples and He blows proved to be very efficient
in limiting target warming.

Micro-PIXE set-up

Measurements were carried out exploiting 3-MeV proton beams,
0.5–2 nA typical intensities, in He atmosphere, for 30–50 min (50
for quantitative measurements). Actual beam dimensions were
∼10 µm on sample surface as well as throughout ant sections,
as the beam spread inside the sections produces a negligible
beam enlargement (less than 1 µm, SRIM code simulation[26]).
For the PIXE analyses, we used our standard two detectors set-
up, optimised for low (D1) and medium-high (D2) energy X-rays
detection. Subtended solid angles were 6 msr for D1 and 250 msr
for D2; D2 was equipped with a 450-µm thick Mylar absorber.
Beam charge on sample was measured by exploiting the yield of Si
X-rays produced by the beam in the exit window.[21] Spectra and
map acquisition was carried out exploiting the new OMDAQ 2007
hardware and software, adapted by Oxford Microbeam Ltd.[27] for
our external set-up and recently installed at the microbeam.

Both the target viewing and the sample positioning systems
described by Giuntini et al.[21] proved to be crucial features for
these analyses: typical areas of interest are tiny and very difficult
to find, as they are similar to the surrounding environment, and
require frequent position adjustments.

Results and Discussion

The study of the many tens (>60) of samples allowed us to
document some characteristic correlations between elemental
deposit sites and specific organs/tissues, identified in the maps,
thanks to the availability of the histological images contiguous
with the analysed slices. In view of the use of ants as bioindicators,
the knowledge of the accumulation sites for the different elements
is of course a mandatory requirement.

The first evidence concerns the gut, where we pointed out a
consistent and noticeable association of P and Zn as well as Ca and
S in the wall throughout all samples. Cu, when detected, was also
correlated with the previous elements in the gut wall. A typical
accumulation pattern of Ca, P, S, Sr, Zn and Fe is presented in
Fig. 1, together with the LM image of the contiguous histological
section.

In many sections, we also found the Malpighian tubules
(excretory and osmo-regulatory organs), where a significant
correlation of Ca, P, Zn and Sr (when present) was observed
(see e.g. Figure 1).

The second evidence concerned Fe, whose accumulation sites
always coincided with the fat body. This tissue was recognised
on account of the typical round/polyhedral shapes of component
cells (adipocytes) containing transparent lipid droplets. The fat
body is a metabolically active tissue, storing lipids, proteins and
carbohydrates and is in charge of detoxification and excretion
of foreign elements.[28] An example of the apparent correlation
of Fe with the fat body is shown in Fig. 2, where the metal
deposits appear as discrete spots fitting adipocytes in both size
and locations.

Evidence of tissue-specific localisation of metal accumulation
in ants represents a notable advance with respect to previous
mean-body contents reported in the literature. The occurrence of
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Figure 1. Left: histological image of ant’s abdomen section (bottom) and blow up of the gut region, with the fat body surrounding the gut wall (top);
right: Ca, P, S, Sr, Zn and Fe deposit maps corresponding to the analysed region, delimited by the red line on the histological image (red = maximum
counts, black = minimum counts); the region corresponding to Malpighian tubules is also highlighted.

Figure 2. Ant’s abdomen section and related Fe deposits (red = maximum counts, black = minimum counts).

deposits of several elements in the gut, fat body and Malpighian
tubules supports the role of these organs as primary targets
for metal accumulation and suggests their possible role as
active defence sites, where toxic metals are stored in a non-
biologically active form ( [8,9] and references therein). Little
is known on tissue/organ bioaccumulation of metals in ants,
with the only notable exception of the study by Rabitsch[7]

where, however, metal contents were obtained through standard
chemical techniques on excised organs, an approach possible
only for large bodied species. Interestingly, although metal
accumulation was reported in the gut and Malpighian tubules, this
study did not put into evidence metals in the fat body, suggesting
a difference in metal metabolism between C. scutellaris and the
three Formicinae species analysed in the quoted investigation.

These qualitative results on metal accumulations gave a funda-
mental guidance for further analyses. A subsequent, mandatory
step to test the reliability of this species as a possible bioindicator of
environmental contamination is the demonstration that metal ac-
cumulation differs in specimens sampled from differently polluted
sites. To this purpose, we made possible the inter-comparison of
the Mn, Fe, Cu, Zn and Sr contents within the gut and the fat body

for selected samples from three sites with different metal concen-
trations. OMDAQ software allowed us to select off-line the portion
of the scanned area most suitable for the elemental concentration
determination.

To obtain quantitative results, it is necessary to know matrix
composition and areal density, which determine proton stopping
power and X-rays absorption. In our case, the aim was to compare
the metal concentrations in the same tissues from different
samples, so that the absolute values were not necessary; as a
consequence, we adopted conventional matrix and density for all
the samples:

1. Matrix composition: C 75%, H 3%, O 8%, N 12% and Cl 2%, based
on standard Inductively Coupled Plasma Mass Spectrometry
(ICP-MS) analyses and on the elements introduced by our
sample preparation procedure.

2. Areal density: we assumed a 1 g/cm3 for the mass density
(plausible for tissues and resin); by means of optical mea-
surements, we found an unexpected wide distribution of the
sample thickness (14–20 µm) for the same nominal value. For
quantitative analyses, we thus assumed 17 ± 3 µm; the wide
thickness indetermination leads to consistent errors on the

View this article online at wileyonlinelibrary.com Copyright c© 2011 John Wiley & Sons, Ltd. X-Ray Spectrom. 2011, 40, 186–190
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Table 1. Metal concentration in the gut and in the fat body in the
ants from the three sites

Element Control (ppm) Ophiolitic (ppm) Urban (ppm)

Gut tissue

Mn 0–60 26 ± 8 90 ± 30

Fe 100 ± 30 110 ± 30 160 ± 50

Cu 28 ± 8 15 ± 5 61 ± 18

Zn 60 ± 20 80 ± 20 330 ± 100

Sr 10∗ <15 20∗

Fat body

Mn 10∗ 34 ± 10 0–20

Fe 110 ± 30 360 ± 110 380 ± 110

Cu 0–10 10∗ 56 ± 17

Zn 47 ± 14 52 ± 16 90 ± 30

Sr <20 <15 <10

When the peak of an element does not occur in the spectrum, the
concentration is indicated by < MDL (minimum detection limit value);
when detected quantities are of the order of the MDL, values are
reported with ∗ ; when an element is present only in some samples,
the interval of the measured concentrations is reported. The errors
originate from the wide indetermination on the sample thickness, as
explained in the text.

metal concentrations (∼30%), which is the only contribution
to the error relevant to the inter-comparison of the metal
content.

PIXE spectra were analysed by using GUPIXwin[29]; measured
average metal concentrations in the gut tissues (five samples for
each provenance) and fat body (six samples for each provenance)
are reported in Table 1; the errors are by far dominated by the
above-mentioned thickness indetermination.

To verify that no damage to the samples was occurring during
the measurements, we compared the elemental concentrations
obtained replaying just the initial and the final part of some runs;
measured concentrations were identical within the fit errors (not
greater than 10% even for the less abundant elements).

Despite the considerable uncertainty on the concentration
values, the urban site is almost always characterised by higher
content of metals, both with respect to the control and to the
ophiolitic sites. The most significant comparisons involve the Zn
content in the gut wall and the Fe content in the fat body.
Regarding the gut tissue, we noticed that ants from the urban
area present an exceedingly higher concentration of Zn (∼5 times
higher) with respect to those from the control site (Travalle). In
the fat body, Fe shows a much higher concentration (∼3 times
higher) for the urban and ophiolitic provenances with respect to
the control site; also, the Zn content seems to differentiate the
urban from the other sites.

In the Malpighian tubules of the urban insects, we found a
Zn concentration ∼3 times higher than in those of the control
site; however, due to the limited number of analysed tubules, our
conclusions need to be confirmed by further analyses.

The observed differences in metal contents are broadly in
line with their availabilities in the environment. Both Zn and
Fe concentrations (higher in urban with respect to rural ants)
are known to increase owing to environmental pollution. Zn, for
example, is released during tyre wear and mixed combustion and
is considered a good indicator for traffic pollution.[30 – 33] Similarly,
the remarkable amounts of Fe in the fat body of the ants collected

in the ophiolitic site, much higher than in the control site, reflect
the presence of Fe in the soil in overwhelming percentage.[22]

Samples from the ophiolitic site appeared however poorer in Zn
and Cu with respect to urban samples. Further investigation is thus
needed to fully interpret the metal accumulation patterns and will
involve direct measurement of metal soil contents, determination
of its actual bioavailability and a full description of uptake paths in
ants. Such a detailed analysis is however beyond the scope of this
study.

Conclusions

The external scanning micro-PIXE analyses proved to be effective in
describing the compartmentalisation of selected elements within
ant tissues. We prepared the samples following plain and low-cost
histology protocols, which may allow the diffusion of this kind
of analysis. Although it is known that chemical fixation may not
be sufficiently fast to fully prevent the loss of electrolytes and
mobile elements,[24,25] the adopted sample preparation protocol
is routinely followed for the detection and proper quantification
of metals stored in non-soluble grains, which are retained within
insect tissues.[8,9]

Coupling histological imagery and PIXE maps allowed us a
fast and reliable identification of organs and tissues, so that the
biological interpretation of element deposit maps was strongly
simplified. We identified as accumulation sites the gut wall (Zn), the
Malpighian tubules (Zn and Sr) and the fat body (Fe), confirming
the role of these organs as detoxification sites (e.g. [7,8] and
references therein). Beyond the morphological and topological
identification of the accumulation sites, we made possible the
inter-comparison of the Mn, Fe, Cu, Zn and Sr contents within the
tissues. Notwithstanding the heavy indetermination (arising from
the crude method for the determination of the sample thickness)
on the measured elemental concentrations, we were able to put
into evidence differences in metal concentrations in ants from
different sites: as expected, ants from habitats with different metal
availabilities have greater metal concentrations in gut tissues and
fat body than ants from unpolluted sites.
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