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“Sow your seed in the morning and do not be idle in the evening, for you do
not know whether morning or evening sowing will succeed, or whether both of them
alike will be good.” (Book of Ecclesiastes, chapter 11, verse 6)
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Preface

The research on the possible applications of Chemical Vapor Deposited (CVD) Di-
amond became very popular in the 80s of the last century, when the progress in
the CVD technique of diamond growth seemed to fulfill the requirements necessary
to allow an industrial scale-up. At that time diamond high power high frequency
electronics was believed to be within reach in a few years. Even 3D stacked elec-
tronics was foreseen in the short term. Other appealing applications exploiting the
extreme properties of diamond were envisaged, as thermal infrared windows, syn-
thetic diamond dosimeters, diamond coatings for medical tools, diamond trackers
in high energy physics experiments, UV solar blind diamond detectors sensors for
space applications. After some decades some of these expectations were found to be
too optimistic.

A true development of diamond electronics is heavily hampered by the fact that
no viable n-doping has been achieved so far, whilst boron doping makes diamond a
p-type semiconducting material, nonetheless the acceptor levels are as deep as 0.37
eV from the valence band. Other drawbacks to the applications of this outstanding
material are:

• the polycrystalline nature of CVD diamond and, as a a consequence, the de-
fects related to grain boundaries;

• the single-crystal CVD diamond can be grown homoepitaxially on diamond
substrates with excellent quality, but it is limited to an area the order of 1
square centimeter;

• the cost of the material remains high, unless until the use of this material
becomes so widespread to allow for mass production, and the reproducibility
of the final product of the CVD growth is still an issue.

At present it seems clear that:

• diamond-based electronic devices will require a long term research effort;
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• radiation tolerant, high speed, radiation sensors are still an appealing solution
in future high energy experiments and space experiments;

• biological devices, taking advantages of the superior biocompatibility of dia-
mond and of its very favourable electrochemical properties is the most viable
and interesting application of CVD diamond in the short term.

• several luminescent centers in diamond have been identified to be of great
potential in integrated photonics.

All the items listed above but the first are dealt with by my Ph. D. work.

The first part of this dissertation is dedicated to the study of a silicon-on-
diamond bonding technology which was invented and developed in my research
group during the last three years. The Silicon-on-Diamond (SOD) material that we
developed promises to be a stepping stone to the integration of silicon electronics
and diamond devices operating in various fields as bio-sensing and particle detection.
In the second part, in the framework of the possible monolithical integration of
photonic devices in diamond, I present a work on the modification of the optical
characteristics of diamond by means of ion implantation and on the integration of
waveguiding structures in bulk diamond, to which I collaborated with several italian
research groups during my Ph.D course.

In spite of the highly-applicative character of this works, my contribution was
mainly theoretical. The optimization of the Silicon-on-Diamond bonding, based on
a pulsed laser technique, required the study and the modelization of the physical
processes involved, which represent the main, although not the exclusive, part of my
work. On the other hand, the interpretation of the optical data obtained from the
ion-implantation of diamond was conditioned by a sub-lying modelistic effort which
represented my principal contribute to the research programme of the modifications
of optical characteristics of diamond by ion implantation.



Part I

Silicon On Diamond laser bonding
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Chapter 1

Why bonding silicon to diamond

and how

1.1 Motivations of the research on the subject

Mono-crystalline silicon and diamond, the cubic crystalline forms of silicon and
carbon, underwent different developments both in research and industry. High-
efficiency purification techniques and crystallization methods allow to obtain, in
form of silicon ingots, the biggest and most defect-free mono-crystals at a moderate
cost. At the same time, the development of scalable electronic integration techniques
on large-area silicon wafers has determined a 50-years enduring exponential growth
of the microelectronic technology in terms of performance. Progresses in Chemical
Vapor Deposition (CVD) of synthetic diamond has been, in comparison, much slower
and problematic. The mono-crystals available at present on the market are limited
in size to the square centimeter area and to the millimeter thickness, with a rela-
tively high cost, and in spite of their very good chemical purity, they often present
structural defect densities (mainly dislocations) not comparable with the standard
electronic-grade silicon wafer. Moreover, even if the availability of diamond as a
new wide band-gap, low dielectric constant semiconductor of IV group seemed to
open the way, at the beginning of the 1980s, to important progresses especially in
power electronics, the actual applications of diamond in research and industry has
remained limited to some niche sectors, discouraging the investments and slowing
down progresses in the production techniques. Nevertheless, the exceptional char-
acteristics of diamond, which, in principle, could make it a decisive tool for current
issues in several research fields, justify the efforts made until now to avoid the ob-
stacles to its wider employment. In this context, the development of a composite
material which combines the versatility of silicon as base material for electronic in-
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12 CHAPTER 1. WHY BONDING SILICON TO DIAMOND AND HOW

tegration and the extreme characteristics of diamond, as heat spreader, radiation
detector, or bio-sensor, remains a prominent interest for the scientific community.
Here I report on some of the motivations for the research on the subject of Silicon-
on-Diamond (SOD) bonding, moving from the traditional thermal application of
diamond to more recent and challenging issues.

1.1.1 Silicon-On-Diamond as heat spreader

The exponential growth in integration capability of silicon industry is believed to
be about to reach, in the next decade, the limits imposed by the physics. These
are determined not only by the atomic dimensions [1] but, quite before it, by the
dissipation capability [2] both of the silicon substrate and (much more) of the SiO2

layers which insulate the electronics from the substrate in Silicon-On-Insulator (SOI)
structures. The SOI concept is at present the commonly adopted solution to the
latch-up problems limiting the velocity of the last-generations of digital processing
chips [3] , but the thermal budget weighs upon further increases in integration
capacity of this devices. Since diamond yields extreme performances both as electric
insulator and as heat spreader (see Tab. 1.1.I), and possesses also the advantage
of a relatively low dielectric constant, it has been only natural to suggest that
diamond could be the ideal substrate in a SOI structure joining together high thermal
dissipation capability (i.e.: high integration capacity) and high operational speed
[4, 5, 6, 7] . Moreover, the advantage of the employment of diamond could remain
very strong also with a very poor-quality nanocrystalline material, being its thermal
conductivity, and, much more, thermal diffusivity (the principal figure of merit
during transients) at least three times higher than that of silicon or copper, letting
alone the SiO2 employed in SOI devices whose thermal performance is three orders
of magnitude worse.

1.1.2 Silicon-On-Diamond as radiation detector

As a radiation detector, diamond has a number of interesting characteristics (see
Tab. 1.1.II for this and other data relative to diamond in comparison to silicon).
Low dielectric constant and high saturation velocity of the charge carriers deter-
mine very fast response times. High electrical resistivity enhances the signal to
noise ratio, largely compensating the disadvantage of a smaller number of electron-
hole couples generated per unit energy, with respect to silicon. Blindness to visible
light, due to one of the highest band-gaps (5.5 eV) among semiconductors, makes
diamond interesting in space physics [11]. Being an allotrope of carbon, diamond
is nearly tissue-equivalent for radiation absorption (equivalent atomic number is 7.2
for soft tissue, compared with 6 for diamond and 14 for silicon), and the calibration
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Table 1.1: Thermal conductivity and diffusivity of some types of mono and poly-
crystalline diamond, in comparison with silicon, SiO2 and Copper.

Thermal conductivity Thermal diffusivity
(Wcm−1K−1) (cm2s−1)

Diamond mono-crystal 20 11
Poly-crystalline [8] ⊥ to the wafer: ≈ 20 ⊥ to the wafer: ≈ 11
diamond wafer ‖ to the wafer: ≈ 18 ‖ to the wafer: ≈ 10

Poly-crystalline diamond [8] ‖ to the wafer: ≈ 35 ≈ 20
wafer (isotopically enriched)

Nano-crystalline diamond film [9] 5÷ 14 3÷ 7
Silicon 1.49 0.9

SiO2 thin films [10] 0.005÷ 0.015 0.003÷ 0.009
Copper 4 1.2

of a diamond device is less problematic than for other semiconductors, making it a
promising material in clinical dosimetry [12] . But the most interesting character-
istic of diamond as detector, the one which drew the attention of the high energy
physics community from the very beginning of the CVD fabrication technology, is
its radiation tolerance, i.e., the possibility to remain operative after high radiation
fluences with no significant increase of leakage current, no need of increasing the
polarization bias or lowering the operating temperature, which for diamond can
equal or exceed room temperature. Looking forward to the next hadronic collid-
ers (SLHC) and to their high beam luminosity and necessity of increased radiation
tolerance of the inner trackers, several R & D activities are ongoing [13, 14, 15].
Solutions to increase the resistance of silicon are under study, but also the diamond
option has arisen an increasing interest (see [16] and relating references). For all
these applications, the development of high resolution diamond pixel sensors should
require suitable architectural solutions for the electrical connections to the read-out
electronics. The common hybrid flip-chip technique, employed for instance in the
inner trackers of LHC, could be a viable solution. Nevertheless, a monolithic silicon-
on-diamond device, with the read-out electronics integrated on the silicon-side and
the detectors fabricated on the diamond side, could be much more convenient with
regard both to fabrication costs and to set-up reliability (at the moment, flip-chip
technology presents a very high failure ratio).

1.1.3 Silicon-On-Diamond as bio-electrode

The electrochemical properties of diamond and its bio-compatibility[17] make this
material of absolute interest as an electrode for measuring and evoking extracellular,
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Table 1.2: Comparison between relevant properties of diamond, silicon carbide (4H
allotrope) and silicon, as radiation detectors

Property Diamond 4HSiC Si
Bandgap (eV) 5.5 3.3 1.12

Breackdown field (Vcm−1) 107 4× 106 3× 105

Resistivity (Ω cm) > 1011 1011 2.3× 105

Electron mobility (cm2V−1s−1) 1800 800 1350
Hole moblility 1200 115 480

Saturation velocity (kms−1) 220 200 82
Relative dielectric constant 5.7 9.7 11.9
Displacement energy (eV) 50 25 13÷20
Enenergy per e-h pair (eV) 13 8.4 3.6

Radiation length (cm) 12.2 8.7 9.4
Average signal per 100 µm (e) 3600 5100 8900

electro-physiologic activity for both in-vivo and in-vitro applications. Although for
these applications the most typical probe materials are at present the noble metals
and some nano structured materials such as TiN and black-Pt, interest rose recently
in the unique interface properties between a diamond electrode and the electrolyte,
superior to any other material used nowadays[18, 19]. Semiconducting boron-doped
diamond possess a large potential window between the oxygen and hydrogen peaks
[20] . This results in a wider range of applied potential between diamond and elec-
trolyte, which does not result in redox reactions and allows the application of stimuli
to neurons in a more effective and non-toxic way. Other appealing characteristics
of diamond are the low background current during electrochemical measurements,
due to its adsorption inertia, the low interface capacitance with aqueous solutions
and the independence from pH. Moreover, a p-type conduction, which can be ob-
tained in bulk diamond by B-doping both during growth and by post-growth ion
implantation, is not the only way to obtain conductive paths in diamond. Surface
p-type conductivity can also be achieved, in humid environment, by hydrogen ter-
mination of the diamond surface, being also possible to modulate it down to the
micro [21] and nano-scale [22] . Conductive graphite channels can be fabricated in
bulk diamond both by laser graphitization [23] and by heavy ion-damaging followed
by thermal annealing [24] . If we also consider the possibility of diamond surface
functionalization for cells adhesion by a suitable termination of superficial carbon
bonds [25], we can explain the strong interest manifested in the last years for di-
amond in living cells sensing and stimulation (e.g. in neuro-prosthetics). Also in
this field, Silicon-On-Diamond technology can play a major role especially in ap-
plications where it is advisable, both regarding to band-passing and to electrical
noise reduction, to process part of the signal-information as close as possible to the
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electrodes. A Reliable SOD technique can be, in this context, an ideal approach to
implement biosensors with integrated micro-electrodes on the diamond side and the
electronics on the silicon side.

1.2 Methods for Silicon-on-Diamond fabrication

Several techniques have been employed, until now, in the search for a reliable proce-
dure to bond together silicon and diamond in a way to obtain interfaces with suit-
able mechanical, thermal and electrical characteristics. Some of them did not lead
to industrial implementation of the Silicon-on-Diamond concept due to unavoidable
drawbacks of the fabrication methods, detrimental of the material quality, others
seems to be more promising but, till now, have not gone beyond the R& D stage. In
the next paragraphs I refer about the two main techniques employed in Silicon-On-
Diamond fabrication, emphasizing their advantages and disadvantages with regards
to material quality, easiness of employment and versatility. My research group has
invented and developed a fourth method which promises to join together many of
the advantages of the formers, avoiding most of the drawbacks, the next chapter
will be dedicated to its exposition.

1.2.1 Diamond growth on silicon substrates

Silicon is one of the first and, till now, most widely employed substrates for CVD
polycrystalline diamond growth, so that diamond growth on silicon substrates has
been the first natural option for SOD fabrication. The growth process, generally,
begins with the formation of a silicon carbide layer [26] , upon which randomly dis-
persed nucleation seeds grow and coalesce determining the formation of a columnar-
arranged polycrystalline matrix. Due to the difference in growth speed of the various
crystalline plains, some grains grow faster than others, determining competition and
selection of the grain orientations in the first stages of the film growth. In order to
determine the electrical, mechanical and thermal properties of the silicon-diamond
interface and of the diamond bulk, several factors are under control of the growers.
Tribologic treatments with diamond-powders can enhance nucleation density, with
advantages for mechanical adhesion and thermal conduction of the SOD interface,
but high nucleation density means also high grain-boundary concentration, which
is detrimental of the electrical characteristics of the bulk diamond material. Bias-
Enhanced nucleation [27] , on the other hand, prevents SiC formation and permits
to exploit the almost-rational ratio of diamond and silicon lattice constants (2/3)
for etero-epitaxial growth of diamond on silicon. Also in this case, though, the not
perfect matching of silicon and diamond crystalline constants does not result in a
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monocrystal growth, but at most in a highly oriented polycrystalline material, thus
not avoiding the presence of a high density of grain boundaries.

Figure 1.1: fabrication steps of a Silicon-On-Diamond wafer by CVD poly-crystalline
diamond on a SOI wafer[28]

Silicon-on-Diamond wafers suitable for electronic integration have been fabri-
cated [28, 4] growing highly oriented diamond on a SOI structure, removing after-
wards the silicon substrate in potassium hydroxide (KOH), then the SiO2 layer in
fluoric acid (HF) leaving a 1.5 µm thick layer of silicon on top of the 75-100 µm
thick diamond film (see 1.1). The authors soldered the rough diamond surface to
a copper heat sink to perform thermal conductivity measurements across the di-
amond layer, without needing any smoothing of the growth side of diamond, but
in order to substitute a diamond film for the SiO2 Buried Oxide (BOX) layer in a
SOI structure, the problem of planarization of the poly-crystal diamond layer and
of its bonding to a silicon handler have to be faced. Recently, a new planarization
process has been developed [29] based on the covering of the diamond surface with a
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relatively thick Oxide layer and its conventional chemical-mechanical planarization
(CMP). This process is followed by a reactive ion etching (RIE) performed on the
surface, adjusting the SF6/O2 ratio, in a way to accomplish a same etch rate for
oxide and diamond (see Fig.1.2). The roughness of the obtained surface is greatly

Figure 1.2: Schematic view of the diamond planarization process[29] and AFM scans
made on a 200 nm C* surface for the as-deposited C* layer (RMS = 9 nm, PV = 70
nm), after the oxide planarization step (RMS = 0.43 nm, PV = 4.2 nm), and after
the total process (RMS = 1.2 nm, PV = 10 nm).

decreased (down to 1.2 nm) but doesnt reach the level of 0.5 nm required for di-
rect bonding of diamond to a silicon handler. In order to overcome this problem,
Widiez et al. deposited a polysilicon layer on the polished diamond, smoothed it
with a CMP technique and finally used a hydrophilic wafer bonding technique to
bond poly-silicon to the handler (see Fig.1.3). The measurements performed by
Aleksov et al. on their Silcon-On-(highly oriented)Diamond to assess the thermal
diffusive properties of the diamond layer grown on the silicon one, were made by
comparison of the temperatures of identically build heaters (see Fig.1.4) on top of
the SOD and of the SOI structure, respectively. Measurements show remarkable
improvement of the thermal properties, confirming the potential of diamond (also of
the poorest crystalline quality) for thermal application. The main drawback of the
diamond-on-silicon growth techniques is the inherent very poor electrical quality of
most of the polycrystalline material including the highly oriented diamond material
obtainable by epitaxial growth. This prevents applications aimed to exploit the
characteristics of diamond as radiation detector. For instance, measurements with
a UV pixel sensor obtained by deposition of micro-crystalline diamond on top of
the silicon read-out electronics evidenced very poor performances [30] , most likely
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arising just from the very high structural defect density of diamond. It is worth

Figure 1.3: Process description of the SOD substrates fabricated by technology
described in ref.[29]. 1 C* deposition on SOI wafer. 2 C* planarization by the DPE
process. 3 PolySi layer deposition. 4, 5 Hydrophilic wafer bonding (polySi——Si)
on Si report wafer. 6 Final SOD substrate.

mentioning that also the concept of silicon growth on diamond substrates has been
exploited in recent years [31] . Obviously, the poor quality of polycrystaline silicon
prevents, for this material, any application in electronic integration.

Figure 1.4: Optical micrograph of a fabricated metal strip micro heater (a) and a
schematic cross section of the heater on an SOD wafer (b). (c) Results of the R(T)
self heating measurements of the micro heaters on SOD and SOI; the applied power
density was 250 and 560 kW cm2, Respectively[28].

1.2.2 High temperature and pressure method

Since it is not possible to grow on silicon a diamond material qualified for appli-
cation as detector, the only alternative for the use of SOD as monolithic radiation
sensor could be the bonding of independently obtained silicon and diamond wafers
with suitable characteristics. Though conventional bonding methods are somewhere
believed to be applicable also to silicon-diamond bonding in the future [29], under
the condition of the improvement of the diamond polishing, neither research nor
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industrial application of such a technique is reported up to now. As a matter of
fact, the only attempt to bond directly silicon and diamond [32, 33] was based on
heating a diamond and a silicon sample under uniaxial pressure. The samples were
pressed together at about 30 MPa in a ultra-high vacuum chamber, and heated from
850 to 1200C. Contact between samples and heaters were assured by a buffer layer
of graphite or borum nitride, to avoid fractures. Heating and cooling was performed
in 2 and 5 hours, respectively, and the maximum temperature was maintained for
about 15 hours. The quality of the obtained interface was tested by scanning acous-
tic microscopy (SAM), to verify effective adhesion and possible formation of cracks,
and with transmission electron microscopy (TEM), to investigate the nature of the
bonding between silicon and diamond. SAM images of the bonded samples (see
Fig.1.5) show that the quality of the bonding strictly depends on the processing
temperature.

Figure 1.5: SAM images of polished HOD diamond bonded to Si at 850C (a) and
1050C (b). White regions of the sample in image (a) represent unbonded areas;
cracks (C) and polishing defects (P) are observed in the image (b)[32, 33].

For temperatures below about 950C large areas of the samples (brighter in
the SAM images) remain unbonded (40-60% of the surface at 850C). On the other
hand, for temperatures above this limit, complete adhesion is achieved, but diamond
presents cracks propagating along the bulk, only at the peripheral region of the
sample at lower temperatures, along all the interface at higher ones. This fact
can be easily explained by observing that although diamond has a linear expansion
coefficient lower than that of silicon at room temperature, an inversion of the two
coefficients holds at about 700 K, so that a diamond sample having the same length
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of a silicon one at room temperature, will be longer once above about 1300K (See
Fig. 1.6). From this temperature on, if adhesion holds, it will result in a tensile
force in diamond after cooling. Polycrystalline diamond, as the one employed by
Yushin et al., has only a little tensile strength resistance in the direction parallel to
the wafer, due to the easiness of crack propagation along grain boundaries so that
a failure of the bonding process at the higher temperatures was quite expectable.
TEM images of the silicon-diamond interface, in the points where they adhere, shows
two different kind of Si-diamond transition: abrupt transition, with a good matching
of crystal planes of the two materials, and smooth transition, with an amorphous
20-30nm thick amorphous layer containing oxygen (see Fig. 1.7), probably related
to the roughness of the diamond surface (tens of nanometers).
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Figure 1.6: Linear expansion coefficients of silicon (black) and diamond (red) from
0 to 1500K [34, 35] . In the inset, the integrals of the linear expansion coefficients of
silicon and diamond calculated from 300K to the temperature T, as a function of T.
This last plot represents the relative increment in length for two samples having, at
room temperature, the same dimensions. It can be seen that at temperatures above
1300K a diamond sample should be longer than the silicon one.

The state of the art of the direct, thermal bonding of silicon on diamond
suggests the following conclusions:

• At least at the pressure under consideration of about 30 MPa, the temperature
which is necessary for the adhesion determines rupture of the polycrystalline
diamond material during cooling. Practical implementation of this method
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Figure 1.7: (left) TEM image of the abrupt diamond-silicon transition, the inset
shows a FFT image of this area. (center) smooth transition, with the interface layer
that (right) clearly shows its amorphous nature at higher resolutions[32, 33].

should require, thus, either the use of mono-crystals (desirable, anyway, for
many applications), or the use of lower temperatures and higher pressures or
both.

• In order to obtain an interface with good properties of thermal conductivity
and electrical insulation, an abrupt diamond-silicon transition is probably de-
sirable. To this aim, a better polishing of (especially) the diamond surface is
required.

• The temperatures involved with this method, in any case, prevent the possibil-
ity of a pre-processing of the silicon electronics: any integration of electronics
on the free surface of the silicon wafer has to be performed after the bonding
process.

This last point, particularly, is worth of attention. If it could be ever possible
to bond diamond not to a bare silicon wafer, but to a conventional integrated chip,
without damaging the electronics, this could open the way to exploit the presently
available small-sized diamond mono-crystals without the need of developing expen-
sive small scale electronic-integration techniques. Such a room-temperature bonding
technique is now disposable, thanks to the efforts of the research group with which
I have worked during my Ph.D. program. To the results of our work, with emphasis
on my personal contribution to it, is devoted the next chapter.



22 CHAPTER 1. WHY BONDING SILICON TO DIAMOND AND HOW



Chapter 2

Silicon-on-Diamond by pulsed

laser irradiation

The concept of Silicon-On-Diamond (SOD) bonding which I worked on during my
doctorate program is based on the simple consideration that while diamond is a
transparent material from the microwave well into the deep ultraviolet region of the
spectrum, down to about 225 nm of wavelength, the penetration length of visible
and UV radiation in silicon ranges only from 10 to 1000 nm. That is, if a light
pulse of suitable energy and duration passes through a diamond film in close con-
tact with a silicon substrate, it releases all its energy (to the net of the reflection)
in a thin interface region, melting silicon and, possibly, a carbon layer, resulting in
the adhesion of the two samples. This simple idea has been exploited during a three
year experiment of the Italian Institute For Nuclear Physics (INFN) called RAPSO-
DIA (Radiation Active Pixel Silicon On DIAmond) to assess the feasibility of the
process and to test the quality of the obtained material in view of future applica-
tion in monolithic active pixel detectors for particle physics. The members of the
collaboration belong to several italian institutions, namely the University and the
INFN of Florence, the European Laboratory for Non-Linear Spectroscopy (LENS)
of Florence, where all the bonding experiments and the spectroscopic diagnostics
of the resulting material were performed, the Institute of Applied Optics (INOA)
of Florence, where we studied the morphology of the diamond samples, the Uni-
versity of Perugia and the Institute for Microelectronics and Microsystems (IMM)
where silicon devices have been realized and the tests have been performed for the
thermal characteristics of the interface. The work is still in progress under a new
project called CHIPSODIA (CHIPs by Silicon On DIAmond), whose focus has been
enlarged to encompass also biological applications in neuronal interfaces, with the
involvement of the Italian Institute of Technology (IIT) of Genova. I participated to
the creation of the project since its beginning and collaborated to all the phases of

23
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the experimental activity performed in Florence. Moreover, I have performed the-
oretical studies for the optimization of the process, whose results will be presented
in the next chapters. In this chapter, after an illustration of the bonding apparatus
and experiments, results are presented in term of mechanical, structural and thermal
analysis of the interface between diamond and silicon in our SOD samples.

2.1 Bonding apparatus and experiments

The simple concept of pulsed laser bonding of Silicon-On-Diamond illustrated in
the previous paragraph involves several issues which have to be carefully taken
into account. First, which are the most suitable wavelength and pulse duration
of the laser source, in order to obtain adhesion (in the first place) and favorable
characteristics of the silicon-diamond interface? Which is the most favorable energy
density (that is, how much have we to focalize the laser beam) and which is the
right number of pulses for each welded point? And last, how close has to be the
contact between diamond and silicon before irradiation to be sure that adhesion
holds after the treatment? All these questions will be carefully and quantitatively
addressed in chapters 4 and 5, which are dedicated to the optimization of the process.
Nevertheless, the choice of the laser source and the project of the irradiation chamber
had obviously to deal such problems at least in a preliminary, qualitative or semi-
quantitative way, in order to have a reasonable probability to obtain some workable
results since the first experiments. Thus, I will first expose a semi-quantitative study
of the bonding process, then I will describe our set up for the bonding experiments.

2.1.1 Preliminary study

During the irradiation of the silicon-diamond interface two kind of processes occur,
namely the release of radiation energy to matter, which occurs in silicon on a scale-
length dependent both on the wavelength (shorter for shorter wavelengths) and on
thermal diffusion both in silicon and in diamond, at a rate dependent on thermal
diffusivity. Since the heat diffusion length is proportional to the square root of the
time, at the end of a single light pulse the energy released can be divided into two
contributions, the first proportional to the absorption length and to the attained
temperature, and the second proportional to the square root of the pulse duration
and to the interface temperature itself. Roughly, but effectively, we can write down
the relation:

E ≈ SwλcSiT + ScSiT
√
DSiτ + ScDiaT

√
DDiaτ (2.1)

where E is the energy of the single pulse (to the net of reflections), τ is its duration, S
is the cross-sectional area of the laser beam on target, T is the temperature reached
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at the end of the pulse, cSi,Dia is the specific heat for unit volume of the material,
wλ is the penetration length of the radiation (of wavelength λ) and DSi,Dia is the
thermal diffusivity (see Fig. 2.1 for an intuitive illustration). Application of Eq. 2.1

Diamond Silicon

wltDiaD tSiD

T

z

Iincident

Ireflected Itransmitted

Figure 2.1: Black: approximative temperature profile at the end of the laser pulse.
Blue: approximative incident, reflected and transmitted light intensity.

permits to estimate, for a laser source of given wavelength, pulse width and energy,
the level of focalization (that is, the cross section S) which is necessary to reach a
given temperature T , say, the melting point of silicon. The same relation permits to
infer that, in order to reduce the thermal budget in charge of the interface (related
with the width of the layer damaged by the process), short pulse durations and
absorption lengths are preferable. More difficult is to evaluate the thickness of the
damaged layer. An over-estimated limit can be taken as the energy per unit surface
divided by the silicon heat of fusion per unit volume:

wmelt. =
E

Scf
, (2.2)

supposing that all the energy impinging on the sample is dissipated in silicon melting.
In this way, we neglect the thermally diffused heat during re-solidification, which is
dependent on the time employed by the melting front to reach it maximum extension,
and the heat absorbed by diamond during carbon melting, which comes from thermal
conduction both from melted silicon and from melted carbon, this latter on its turn
absorbing energy from radiation. It is not possible to evaluate these contributions
by means a ”rule of thumb” method.

Under these assumptions we can evaluate, by means of Eq. 2.1 and 2.2, the
energy density necessary to reach the melting temperature of carbon and the corre-
spondent thickness of the damaged layer. We compare three typical light sources: A
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Table 2.1: Comparison between typical operating parameters for three different
sources, calculated as in Eqs. 2.1 and 2.2, with cf = 4180J/cm3, cSi = 1.64
J/(cm3K),cDia = 1.78 J/(cm3K), DSi = 0.9 cm2/s, DDia = 11.2 cm2/s and with
T which has been taken as 4000 K.
Wavelength Penetration Pulse Threshold Energy Spot Damaged

length width energy per pulse surface layer
(nm) (nm) (s) (Jcm−2) (J) (mm2) (µm)
280 5 20 n 8.5 1 12 10
355 10 7 n 5.1 0.1 2 6
355 10 20 p 0.28 0.01 3.5 0.34

280 nm radiation from an excimer laser, with 20 ns pulses of 1 J, the third harmonic
of a Q-switched NdYAG laser at 355 nm, with 7 ns pulses of 0.1 J, and the same
wavelength of a mode locked NdYAG, with 20 ps pulses of 0.01 J. All the energies
have been multiplied by a factor about 2 to take into account the reflectivity of a
diamond-liquid silicon interface. Results are shown in table 2.1, where, on the basis
of the energy density the surface of the spot is evaluated. In all the calculations, the
room temperature parameters were adopted. It can be seen that the energy density
required for the carbon fusion in the picosecond range is of the order of tenths of
J/cm2, while the nanosecond range requires one or more J/cm2, with a damaged
layer one order of magnitude thicker. Since we are interested to applications of SOD
in the field of micro-electronics integration, with desirable interface thicknesses of
tens of nanometers or less, we avoided form the start to choose a more widely avail-
able and less expensive nanosecond pulsed laser and moved toward the choice of a
mode locked laser source.

Because the thicknesses involved in the bonding process have to be of the
order of one hundred nanometers or less, it is natural to require that, in order to
obtain adhesion, most of the two silicon and diamond surfaces have to be in close
contact during the irradiation. This can be achieved in two ways: either polishing
the two surfaces down to a sub-nanometric scale, or pressing them together with a
sufficient uni-axial pressure. Very well polished, detector-grade mono-crystals are
now available on the market at quite a high cost (order of 1k$ per typically 5×5mm2

samples), but we programmed to define the process with bonding tests performed
on polycrystals whose price is one order of magnitude lower, with a roughness of the
order of tens of nanometers and a peak to peak horizontal distance of order tens of
micrometers. Thus, we had to evaluate, in the first place, the order of magnitude of
the pressure which deforms the silicon lattice (whose elastic constants are 5-10 times
lower than that of diamond) in a way to obtain a contact as close as possible. A
full-quantitative theoretical treatment of the problem will be given in chapter 4, but
at the beginning I started with a simple dimensional consideration, exploited also in
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ref.[36] for the study of the contact between rubber and a hard, rough surface: the
only physical quantities intervening in the phenomenon, under the assumption that
the silicon thickness is much greater than the mean peak-peak horizontal distance
l, are the roughness h, l itself, and the bulk modulus J , and the simplest consistent
way to obtain a pressure with this three quantities is to pose:

P ≈ J
h

l
. (2.3)

We will see later that Eq. 2.3, in its simplicity, catch the essence of the physics
involved. Equation 2.3 tells us two important things: first, roughness, intended as
the rms value of the deepness of the asperities on the diamond surface, is not the
only scale involved in the problem. That is, a waved surface with a long distance
between peaks can perform better than a well polished one but with a higher depth
over width aspect ratio. Secondly, sicne the silicon bulk modulus is about 100 GPa,
about 100 MPa are required with our present samples to obtain a good pre-bonding
adhesion. This value has been our reference for the project of the bonding chamber
described in the next paragraph

2.1.2 Experimental set-up

The project of a steel chamber for the compression and the irradiation of the silicon-
diamond interface had to satisfy these requirements:

• To press together samples of 5×5 mm2 at a pressure of about 100 MPa in a
reproducible way.

• To ensure transmission of a 355 nm light pulse on the whole surface of the
sample.

• In order to avoid oxygen and other contaminations, it has to be possible to
keep the samples in inert atmosphere during irradiation.

To these aims, we realized the chamber whose scheme is shown in figure 2.2. The
light penetrates in a 8 mm-diameter hole through a 1.5 cm thick, 2 cm wide fused
silica window (a in Fig.2.2), onto which the samples (b) are pressed by a piston
(c) pushed by a screw (f) and a spring (e). The samples are adjusted in a central
position by means of a shaped ring (g). The silicon surface, when necessary, has
been protected against damage due to compression by a 3 µm thick graphite buffer.
The spring is coupled to the piston by a sphere (d) in order not to communicate
to the piston any rotational motion with associated shear solicitation. The maxi-
mum force exerted by the spring is 200 kgp, with a compression of 15 mm length.
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Figure 2.2: Scheme of the irradiation chamber. Letters are referred to in the text.

In order to avoid oxygen contamination the chamber has been mounted in argon
atmosphere. While a Viton O-ring (h) seals the space between the piston and the
cylinder, an aluminum ring (i) covered by a thin layer of vacuum grease is inter-
posed between the fused silica window and the back of the cylinder. The mounting
of the samples requires a special care to the cleaning of the two plates, which are
cleaned in ultrasonic bath with solvents, rinsed in deionized water and finally blowed
with dry nitrogen. Since one of the two diamond surfaces, the growth side one, can
be possibly much better than the other in term of roughness, both the sides are
previolusly tested by a white-light Vygo profilometer, in order to press the silicon
plate onto the smoother diamond surface. The polishing is easily tested observing
the fringes created by the interference of the light reflected by the diamond and the
silicon surfaces in reciprocal contact: with a good cleaning they disappear also with
a relatively small pressure.

The main laser source used in our bonding experiments was an EKSPLA
PL2143 Nd:YAG mode-locked laser, operating at the 1064 nm wavelength of the
fundamental mode, with a set of non-linear crystals offering the possibility to oper-
ate in the second harmonic at 532 nm or at the frequency mixing of the fundamental
and the second harmonic at 355 nm wavelength. The pulse duration is 20 ps, rep-
etition rate is 10 Hz, and the single pulse energy at 355 nm ranges up to about 16
mJ (optimal 10 mJ). The 355 nm harmonic of another Nd:YAG mode-locked laser
of about 60 ps pulse width, 15 mJ per pulse, was occasionally employed, as well as
the same harmonic of a Q-switched laser operating at 7 ns pulse width and about
100 mJ energy per pulse.

An image of the second harmonic laser beam of the EKSPLA PL2143 laser, at
532 nm, has been taken with a Thorlabs DCx camera, and it is shown in Fig. 2.3.
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Figure 2.3: (a) Image of the 532 nm 2nd harmonic laser beam. (b,c) Intensity
distribution along the x and y direction (blue and magenta, respectively), along
with the best fit in term of Eq.2.4

For a given overall energy per pulse E0 of the laser beam, and a reduction
factor ρ of the optics, we can evalutate the highest energy density per unit surface
EM and the minimum one Em(A) which we could obtain irradiating the surface with
a square matrix of spots with a pitch R. The profile represented in Fig.2.3 is well
described, to the net of the diffraction profile, by a quasi-Gaussian distribution of
kind:

E (x, y) =
E0

2πρ2σxσy
∫∞

0
e−zαdz

e
−

(
x2

2ρ2σ2
x
+ y2

2ρ2σ2
y

)α

, (2.4)

with σx = 2.3 mm, σy = 2.0 mm, α = 1.51 and
∫∞

0
e−zαdz = 0.902 (with the

errors smaller than the less significant figures). Taking into account Eq.2.4 we have
straightforwardly:

EM =
E0

2πρ2σxσy
∫∞

0
e−zαdz

and Em = EMe
−

[
R2

(
1

8ρ2σ2
x
+ 1

8ρ2σ2
y

)]α

(2.5)

The beam has been focused on the diamond-silicon interface by means of a 1”
diameter fused silica lens with a 50 mm focal length, in a way to control the spot
size. If f is the focal length of the lens, s the thickness and n the refraction index
of the fused silica window, the distance x between the optical center of the lens (in
the thin lens approximation) and the window surface in order to obtain a reduction
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factor ρ is simply:

x = (1− ρ) f − s

n
. (2.6)

Each bonded point has been exposed to 1 to 50 pulses in our bonding experiments,
and the whole surface of the sample has been exposed to the laser light by translation
of the irradiation chamber in the xy plane by means of a micrometric setup.

The maximum and the minimum irradiance can be calculated by Eqs. 2.4. As
a typical example, the energy density per pulse on the irradiated surface, assuming
E0 = 10 mJ, ρ = 1/6 and R = 0.75 mm, ranges in the interval Em = 0.44 Jcm−2

÷ E0 = 1.3 Jcm−2.

2.1.3 Samples and bonding experiments

We performed our bonding experiments exploiting standard 5×5×0.3 mm3, highly
resistive silicon dies and 5×5×0.5 mm3 poly-crystalline detector-grade diamond films
produced by Element SixTM . Three different batches of diamond were exploited,
exhibiting decreasing roughness (Ra) from about 6 to less than 2 nm. A deeper
insight in the surface properties and in their influence on the bonding process will be
given in chapter 4. Bonding experiments were performed with the set-up described
in the previous paragraph, varying several parameters under our control, namely:

• Reduction factor ρ of the optics, which ranged mainly between 0.13 and 0.17,
with a single experiment at ρ=1.

• Pulse energy, with values between 10 and 16 mJ per pulse.

• Number of pulses, between 1 and 50.

• Pulse width: one experiment has been performed with a Q-switched Nd:Yag
laser with 7 ns pulse duration and about 100 mJ pulse energy.

In all the experiments the 355 nm wavelength was exploited, and the uni-axial
pressure imposed was the maximum exerted by the spring: 200 kgp/0.25cm2, that
is about 80 MPa. In Tab. 2.2 a survey of the bondings performed is given, with
indication of the process parameters and of the diagnostics exploited in the interface
characterization.

2.2 Functional tests

Whichever application Silicon-On-Diamond is designed for, the interface between the
two materials has to fit certain demands: mechanical resistance is crucial in every
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Table 2.2: Table of the bonding experiments with indication of the process param-
eters and of the performed diagnostics.

Sample Batches Shot matrix Pulse energy Diagnostics
Silicon red. factor duration

Diamond interdistance number
SOD 1 < 100 > 300µm 3×3 16 mJ RAMAN

Batch 2007 0.17 20 ps FTIR
1 mm 50

SOD 2 < 100 > 300µm 3×3 16 mJ FTIR
Batch 2007 0.17 20 ps shear test

1 mm 20
SOD 3 < 100 > 300µm 5×5 16 mJ RAMAN

Batch 2007 0.23 20 ps FTIR
1 mm 10

Unnamed < 100 > 300µm 5×5 16 mJ not
Batch 2007 0.23 20 ps adherent

1 mm 1
SOD 4 < 100 > 300µm 5×5 16 mJ only

Batch 2007 0.23 20 ps one point
1 mm 10 adherent

SOD 5 < 100 > 300µm 5×5 16 mJ RAMAN
Batch 2007 0.23 20 ps tens. str.

1 mm 10 test
SOD 6 < 100 > 300µm 5×5 16 mJ RAMAN, FTIR

Batch 2007 0.23 20 ps section & SEM
1 mm 10 heated 400C

SOD 7 < 100 > 50µm 7×7 16 mJ Tensile
Batch 2007 0.23 20 ps strenght

1 mm 10 test
SOD 8 < 100 > 50µm 7×7 10 mJ thermal

Batch 2007 0.17 20 ps conductivity
0.75 mm 20 STEM, TEM

SOD 9 < 100 > 300µm 7×7 100 mJ RAMAN
Batch 2007 0.17 7 ns

0.75 mm 10
SOD 10 < 100 > 300µm 2×2 5 ÷ 10 mJ (with.

Batch 2007 width 1mm 20 ps diffuser)
3 mm 2 ÷ 10

SOD 11 < 100 > 50µm 7×7 10 mJ thermal
Batch 2007 0.17 (nom.) 20 ps conductivity

0.75 mm 10 STEM, TEM
SOD 12 < 100 > 50µm 7×7 10 mJ thermal

Batch 2007 0.13 20 ps conductivity
0.75 mm 5 STEM
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SOD 13 < 100 > 480µm 10×10 10 mJ electrical
Batch 2007 0.14 20 ps measurements

0.5 mm 5
SOD 14 < 100 > 480µm 10×10 10 mJ electrical

Batch 2009 0.22 20 ps measurements
0.5 mm 5

SOD 15 < 100 > 300µm 3×3 3.3-10 mJ
Batch 2010 0.06-0.33 20 ps

1 mm 10

post-bonding processing, thermal shock safeness should be a must if current pho-
tolithographic processes have to be performed on the silicon side after bonding, good
thermal conductance properties is obviously mandatory for silicon-on-”diamond as
thermal spreader”. In this section the functional characterizations performed on our
SOD samples are described in some detail.

2.2.1 Tensile strength tests

Mechanical strength of the bonding between the two silicon and diamond dies is
important in a double respect: first, it is an index of closeness of the physical contact
between the two materials, hopefully both from thermal and electrical point of view.
Secondly, for any post-bonding mechanical processing as polishing and planarization
the need for a resistant interface is prominent. We performed tensile strength tests

Figure 2.4: (left) Tensile strength test set-up along with the scheme of the two cylin-
drical holders running inside the gauged hollow cylinder. (right) The two samples
SOD 5 (up-left), SOD 7 (up-right) and SOD 14 (down) after detachment, pho-
tographed by the silicon side.
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on the samples SOD 5, SOD 7 and SOD 14, with a home-made setup whose core
is shown in Fig.2.4. Two steel cylindrical holders, running inside a gauged hollow
cylinder to assure axial coincidence, are fixed to the opposite sides of the bonded
sample with an epoxidic resin. The two holders are drawn by means of a spring and
a screw, in order to dose the strain stress, which is measured by means of a load
cell. The samples were found resistant to strain stress up to 13 kgp (SOD 5), 29
kgp (SOD 7) and 60 kgp (SOD 14). Taking into account the spot diameter (which
is about the beam diameter of 6 mm times the reduction factor of the optics) we
found that the maximum specific strain stress tolerated by the interface was about
5, 12 and 24 MPa, respectively. The rupture behavior was quite different for the
three samples: SOD 5 and SOD 14, (300 µm silicon thickness) were broken mainly
inside the silicon bulk, apparently for crack propagation from the silicon surface;
SOD 7 (50 µm silicon thickness) was detached by the holder mainly for failure of
the epoxidic resin, with only a limited amount of the silicon sample being damaged
(see Fig. 2.4 ).

2.2.2 Thermal conductivity tests

In order to test the thermal conductivity of the silicon-diamond interface, resistive
devices integrated on 50 µm-thick silicon dies were bonded to 500 µm-thick diamond
films, and electrical power-resistance measurements were performed and compared
with a finite-element model of the resulting device, including thermal conductance of
the interface as a free parameter. The device consisted of planar resistors obtained
by sputtering of a 10 nm-thick TiN adhesion layer and a 150 nm-thick platinum
one, on a silicon substrate obtained removing the silicon handler and the SiO2 layer
from a bare Silicon-on-Insulator wafer. A picture of the silicon wafer on which
several devices were integrated is shown in Fig. 2.5. Two types of devices were
fabricated at the CNR-IMM laboratories, the first with two W-shaped resistances
of about 12 mm of length and 0.125 mm of width (Fig.2.5.b), the other with 25
micrometric coils arranged in a 5×5 square matrix (Fig..c). At the moment, only
the first type of device was utilized in our thermal conductivity measurements. Four
samples were bonded in this way, namely SOD 8, 9, 11 and 12. Since the metal-
izations was not passivated, mechanical adhesion of the platinum resistors to the
silicon substrate was very sensitive to the mounting procedure before bonding and
to the diseases caused by transportation after bonding. A graphite 2.5 µm-thick
buffer layer was interposed between the metalizations and the the steel cylinder
exerting the uniaxial pressure, but other special precautions had to be adopted
during preparation and transportation, in order to avoid failure of the procedure.
SOD 8 and 9 were seriously damaged before electrical measurements, and prac-
tically destroyed during wafer level measurements. SOD 11 seemed mechanically
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Figure 2.5: (A) Mask and the different dies of the mask: (B) wide structure and
(C) narrow structure

integral, but a first temperature-ramp evidenced an abnormally high thermal resis-
tance probably due to a not perfect platinum-silicon adhesion, confirmed also by a
pronounced non-repeatability of the power-temperature characteristics. Only SOD
12, till now, has presented reproducible characteristics, probably due to the refine-
ment of the bonding and transportation procedure. The resistors were designed to
the aim of performing 4-probes measurements of injected current-voltage drop, in
order to test the thermal resistance between the heat source (the resistor) and a
copper sink thermally connected to the back of the sample by means of a silicon
paste. During the measurements it appeared evident that the thermal resistance
of the silicon-diamond interface was completely masked by the overwhelming resis-
tance of the silicon paste. Consequently, two 4-probe contemporary measurements
were performed on two adjacent resistors, the first used as a heater, with an injected
current between 20 and 80 mA, the second used as a sensor, with a current of 1 mA.
In this way, the high resistance of the back interface make the sensor more sensitive
to the temperature drop across the silicon-diamond interface, allowing a relatively
good estimate of the thermal resistivity of the interface created by the bonding pro-
cedure. A 2-dimensional finite-element simulation of the thermal behavior of the
device was performed, in which thermal and geometrical characteristics of silicon
and diamond were taken as known, as well as the thickness of the silicon-diamond
interface (about 150 nm, from TEM measurements) and of the back interface (about
150 µm). Thermal conductance of the interfaces were left as free parameters, in or-
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der to reproduce, as a function of the current in the heater, the behaviors both of
heater and sensor temperatures. In Fig.2.6 a scheme of the simulation grid and the
temperature field across a section of the sample are represented, as well as the best
fit of the two temperatures as a function of the current in the heater. The best fit is
obtained with a value of the conductance of the silicon-diamond interface of about
200 Wm−1K−1, which is intermediate between that of silicon (148 Wm−1K−1) and
silicon carbide (490 Wm−1K−1).

In conclusion, at present, the thermal behavior of the silicon-diamond interface,
in our devices, appears to be fully compatible with applications of SOD as silicon-
on-”diamond as thermal spreader”.

Figure 2.6: (left-up) Finite element simulation grid (left-down) Cross section of
the simulated structure showing the temperature distribution. (right)Comparison
between measured and simulated results for the temperature of the heater and of
the sensor at various heater currents.

2.3 Structural characterization of the interface

To the aim of determining the structural and microscopical characteristics of the
silicon-diamond interface, several microscopic (and destructive) techniques, as well
as spectroscopic (and non-destructive) methods have been employed. All these tech-
niques give a consistent picture of an interface resulting from melting of both a sil-
icon and a carbon layer, followed by inter-diffusion of the two specie and the final
formation of an amorphous-nanocrystalline layer whose stoichiometry depends on
the grade of inter-diffusion at the moment of re-solidification. In this section the
characterisation techniques and the results are presented in some detail.
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2.3.1 Electron Microscopy

Three SOD samples, namely SOD8, SOD11 and SOD12 have been prepared for
transmission electron microscopy (TEM) and for scanning transmission electron mi-
croscopy(STEM) with the same procedure, involving first a mechanical polishing on
the silicon side until reaching a 20-30 µm thickness on the silicon die, then the prepa-
ration of a sharp slice with three electron-transparent zones by means of focused ion
beam (FIB) and in situ lift-out. The preparation of each slice involves deposition of
a protective layer on the sample by means of ion beam induced deposition (IBID),
high current cut of the slice with 30 keV Ga+ ions, extraction of the slice by means
of micro-manipulators, welding on a TEM holder by IBID and finally low-current
polishing of three zones 5 µm large and 50-80nm thick. Figure 2.7 shows a SEM
and a bright field STEM image of the slice cut from SOD8. The samples have been
prepared with a workstation Dual Beam FEI Strata 235M, which was used also for
low energy SEM and STEM analysis, while TEM analysis has been performed with
a TEM/STEM 200 keV Jeol 2200 workstation.

Figure 2.7: Bright field, 15 keV STEM image of the slice cutted from SOD8.

The STEM analysis of the three samples under consideration shows inter-
faces whith similar characteristics, quantitatively related to the process parameters.
Figure 2.8 evidences an interface with quite a constant thickness for SOD8, which
appears brighter than silicon and diamond, in dark field, due to the higher stop-
ping power for electrons of the silicon carbide phases. In comparison, SOD11 (not
shown) and SOD12 have interfaces of increasing and less uniform thicknesses, which
are probably due to the higher energy density employed for these samples. The
decreasing number of pulses per point of SOD11 and SOD12 doesn’t seem to have
an effect on the interface thickness, except perhaps the lower uniformity. All the
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Figure 2.8: Dark field, 15 keV STEM images of SOD8 (up) and SOD12 (down).

samples under consideration present cavities, which are quite dispersed in the inter-
face in SOD8 and more concentrated near the diamond side in SOD11 and SOD12.
Cavities take up roughly 10% of the overall interface volume, and this suggested
their origin to be due to the contraction of the silicon-carbide phases in comparison
with an equivalent molar quantity of diamond and silicon. In fact, amorphous and
crystalline silicon carbide have from 6 to 19% less volume than that of the diamond
and the silicon from which they are formed. Other hypotheses for the formation of
the cavities will be taken under consideration in chapter 4.

X rays microanalysis of the interface zone (see Fig. 2.9)shows a graded stoi-
chiometry passing from carbon to silicon-rich zone in 20-30 nm (SOD8) or 40-50 nm
(SOD11-12). Also a little amount of oxigen is detected, probably originated from
the oxigen termination of the diamond surfaces.
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High resolution TEM analysis evidences mainly an amorphous structure of
the interface, with traces of crystals of nanometric size only in sample SOD8 (see
Fig.2.9).

Figure 2.9: (left) Electron dispersion spectroscopy profile X ray profile of the in-
terface of SOD8. (center) TEM image of a detail of the same sample, between two
cavities. (right) Fourier transform image of the same TEM field from which results
traces of nanocrystalline structures.

In conclusion, microscopic STEM and TEM analyses of the interfaces evidence
an amorphous or nano-crystalline layer whose thickness seems to be related to the
surface energy density per pulse of the laser beam and whose uniformity is perhaps
better for a larger number of pulses per welding point. The interface appears to
be carbon-rich on the diamond side with increasing depths at increasing energy
density, and is affected by voids whose total volume is roughly around 10% of the
overal interface volume.

2.3.2 Micro-Raman analysis

Raman analysis was performed in back-scattering configuration on the samples
SOD1, SOD3, SOD5 and SOD6 with a micro-Raman apparatus, in order to in-
vestigate the chemical and structural nature of the obtained SOD interface. The
back-diffused spectra, after passage through a notch filter, were analyzed with a sin-
gle monochromator, and a CCD array, with a spectral resolution of about 1 cm−1.
Measurements were performed, in the range from 100 cm−1 to 3500 cm−1, with the
647.1 nm and the 752.5 nm Kr laser lines: the two red emissions were used to evi-
dence possible sp2 bonds[37] and to minimize contributions of diamond fluorescence.
Only in some of the points of all the samples under consideration, signature from sp2

carbon[38] was found (see Fig.2.10) while a sensible amorphous silicon signature[39]
was ubiquitously detected in all the investigated samples (see Figure 2.10).
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By inspection of the Raman profile, the thickness of the amorphous layer
can be evaluated by comparison of the intensity of the silicon Raman peak at 520
cm−1 with that of the broad band of amorphous silicon[40] between 400 and 550
cm−1. Their ratios can be related to the Raman cross-section per unit volume of
amorphous (1/λa) to crystalline silicon (1/λcr), and to the absorption coefficients of
the amorphous (αa) and crystalline phase (αcr) in the following way. The radiance
of the Raman scattered radiation from a layer of thickness dz at the depth z is given
by

dL = L0
dz

λ
exp

[
−2

∫ z

0

α (z′) dz′
]
, (2.7)

where the absorption coefficient of the Raman radiation was assumed to be about
equal to that of the incident light. It follows that, if silicon is amorphous up to the
depth d and crystalline in the deeper layers, the ratio between the radiance from
the amorphous and that from the crystalline silicon is given by:

ra−cr ≡
La-Si

Lcr-Si

=

∫ d

0
dz
λa

exp (−2αaz)

exp (−2αad)
∫∞

d
dz
λcr

exp (−2αcrz)
= 2αcrd×

λcr
λa
f (2αad) ; (2.8)

where f (x) = (ex − 1) /x approaches 1 for small values of x. It is worth noting that
the ratio ra−cr is not dependent on the presence of a possible silicon carbide layer
above the amorphous silicon one. In order to exploit equation2.7 for measurement of
the amorphous layer thickness, an evaluation of the ratio λcr

λa
is necessary. This ratio

depends on the grade of silicon amorphization, in fact it ranges from about 10 for
completely amorphous phases[39], to about 1 in cases of nanocrystallites whose size
greatly exceeds about 25 nm. According to ref.[41], the behavior of the ratio λcr

λa
as

a function of the crystallite size s is well described by λcr

λa
= 1 + 10 exp (−s/25nm),

thus, the thickness of the amorphous layer could be calculated by:

d× (1 + 10 exp (−s/25nm)) =
ra−cr

2αcr
≡ deff.. (2.9)

Unfortunately, in Eq.2.9, the size s ranges a priori, in its very nature, from 0 to
d, which implies a considerable uncertainty on the esteem of d itself for a given
deff.. For example, with ra−cr = 0.05, given αcr = 2.1 × 103cm−1 (relative to the
wavelength of 753 nm), we have deff. = 120nm, which gives a range of uncertainty
for d from 10 to 100 nm. Also the TEM analysis performed on some of the samples
gives a limited information on the size s of the crystallites, being their presence non
uniformly assessed on all the samples surface. Nevertheless, to the aim of disposing
of a non destructive, semi-quantitative estimate of the amorphous damaged layer,
the length deff. gives a good upper limit easily deduced from the Raman profile.

Back diffused spectra were fitted, in the range 400-580 cm−1, with a sum of
three contributions: a Gaussian distribution centered at 480 cm−1 with standard
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deviation 25 cm−1, reproducing the Raman spectrum of amorphous silicon as indi-
cated in ref.[40], a pseudo-Voight profile centered at 520 cm−1 taking into account
the contribution of crystalline silicon, whose form is given by

Lcr (x) = Lcr-Si




1− η

σG
√
2π
e



−
(x−520 cm−1)

2

2σ2
G





+
ησL
2π

1

(x− 520 cm−1)2 + (σL/2)
2




(2.10)
and a linear function reproducing, in the relatively limited range under considera-
tion, the luminescence of diamond, whose characteristics are widely variable also in
a single sample at different positions. The fit parameters were the two luminescences
Lcr-Si and La-Si, relative to crystalline and amorphous silicon respectively, the width
of the Gaussian and Lorentzian contribution σG and σL, and the relative weight η
in the pseudo-Voigt profile, the relative weight η of the Lorentzian part. Several
points in the four samples under consideration were analyzed and compared with
three spectra acquired in points where silicon were hit by radiation. In figure 2.10
an histogram of the relative frequency of the values of the ratio ra−cr for irradiated
and non irradiated points is shown, together with a typical spectra from which the
linear contribution of luminescence has already been subtracted. The negative value
of ra−cr for un-irradiated points can be attributed to a slight convexity of the lumi-
nescence profile, correction to this effect can be acquainted taking as effective values
for the irradiated samples the difference between the fit value and the mean value
of the un-irradiated points. It is evident from the histogram the significance of the
yet weak feature attributed to amorphous silicon.

It was not possible to correlate definitely the ratio ra−cr to the different energy
density per pulse or to the different number of pulses with which the samples under
consideration were irradiated. In fact, the uniformity of the irradiation, at this
level, is still too poor to allow such an analysis. Nevertheless, a feature we can
usefully extract from these measurements was that the effective thickness deff., a
good superior estemate of the physical extension of the amorphized layer, never
exceeded 170 nm, with a mean value of about 85 nm.

2.3.3 Fourier Transform Infrared Analysis

A Fourier transform infrared analysis set-up with a principal Michelson arm of 3
meters, and a frequency resolution of 0.3 cm−1, utilizing a thermal source and a
cooled InSb photoconductor as sensor, has been employed in the infrared transmit-
tance analysis of the samples SOD1, SOD2, SOD3 and SOD6, in the range 570-5000
cm−1. Both silicon and diamond show important features in the range under con-
sideration, mainly due to 2-phonon absorption. Thus, a possible signature from the
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Figure 2.10: (right) Raman SOD profile (after subtracting the diamond lumines-
cence background) fitted to a sum of a c-Si pseudo-Voigt profile and an a-Si broad
Gaussian, centered at 480 cm-1 with a 25 cm-1 sigma. (left) frequency distribution
of the ratios a-Si/c-Si compared to that of unirradiated samples.

polar bonds C-Si needs to be revealed by comparison of bounded and un-bounded
samples. To this aim absorbance of different areas of a same sample, either invested
by the laser pulses or left un-exposed, has been subtracted, in a way to have about
the same absorption by crystalline silicon and diamond and to reveal, by the ratio of
the signal I/Iref,(proportional to the difference in absorbance), the contribution of
the silicon-carbon (or silicon carbide) layer. In this way, we extracted the absorbance
of the interface layer in term of

Abs = − log10

(
I

Iref

)
= αx log10 e, (2.11)

where α and x are respectively the absorption coefficient and the layer thickness.

A typical result in shown in Fig.2.11, were a definite, wide feature centered at
about 800 nm emerges from a weak oscillating background due to multiple reflections
between the parallel-plane faces of the sample. Comparison with literature[42] allows
to assign this signature to stretching-modes of an amorphous or nano-crystalline
form of silicon carbide. Since the thickness of the nanocrystalline layer in ref. [42]
is known, the analysis gives straightforwardly the equivalent thickness of our silicon
carbide layers. By a closer inspection, the peak at 800 cm−1 shows a shoulder at
the lower wavenumber side whose height is not proportional to the intensity of the
principal peak. For this reason, this feature has been assigned to a different, not
yet understood mechanism of absorption, and has been subtracted from the signal
in order to extract the contribution of the silicon-carbide absorption alone.
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The analysis of the spectra was performed fitting the profiles before 700 cm−1

and between 950 and 1250 cm−1 with a linear profile, plus a sinusoidal one, plus
a Gaussian one centered at 700 cm−1, reproducing the shoulder at the left of the
principal peak. The difference AbsSiC, between the spectrum and the sum of all
these contributions, has been assumed to be due to the silicon carbide layer, and its
integral over the frequency has been compared with that of the reference[42] whose
thickness of 35 nm was independently assessed. Two plots of AbsSiC, together with
the reference one, are shown in figure 2.11. Since some points of the samples with
the lower number of pulses per point (10) give no detectable signal, it is important
to determine the limit of sensitivity of the method. This was done by varying some
of the fitting parameters of the background (e.g. the frequency, or the amplitude)
in a way not to alter significantly the adherence to the experimental profile, then re-
calculating AbsSiC, and finally assuming the error of the measure (and the sensitivity
of the method) equal to the difference with the previous value. We found a limit of
sensitivity of about 3 nm of equivalent silicon carbide thickness.

The evaluated thickness of the silicon-carbon layer, yet not uniform over the
sample surface, shows a loose correleation with the number of pulses per point,
ranging from about 50 nm at the higher number of pulses (50) to the limit of
sensitivity or below at 10 pulses per point.
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Figure 2.11: (left) FTIR profile of the absorbance for irradiated and un-irradiated ar-
eas of the sample SOD1, along with the difference between them. (right) Absorbance
profiles of two different irradiated areas of the same sample, to be compared with
the reference profile[42] also shown in black.
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2.4 Conclusions and perspectives

Functional and structural tests of the silicon-on-diamond samples obtained by pulsed-
laser bonding give indications about the validity of this technique for the applications
of interest, moreover, they also put in evidence some limits and drawbacks which un-
derline some possible directions toward the optimization of the process. It is evident
that a mechanically stable and thermally conducting interface has been obtained,
which opens the way toward post bonding processing and thermal applications, but
the damaged silicon layer, at present, seems slightly too thick for the most large
integration scales, which requires, in the SOI concept, silicon thicknesses of a few
tens nanometers. Moreover, the presence of nano-cavities inside the interface volume
is undoubtedly detrimental of its thermal characteristics, and should be avoided if
possible. Another weak point of the process is the very high pre-bonding pressure
that is necessary, with the present silicon and (mostly) diamond surfaces, to make
the contact close enough to assure success of the bonding process. A substantial
reduction of the pre-bonding uni-axial stress seems mandatory for the scaling-up of
the bonding process from the die (5 mm) to the wafer (5 cm) scale.

A thorough theoretical investigation of the physical processes that take place
during irradiation and also before it, in the compression phase, is highly desirable in
order to make progresses in the optimization of the bonding process. In fact, the huge
number of process-parameters which are in our control make unworkable in term
of time and costs an exhaustive experimental investigation, involving independent
variations in laser wavelength, pulse width, energy density, number of pulses per
point, degree of polishing of the surfaces, uni-axial exerted pressure. To such an
investigation the next two chapters are devoted.
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Chapter 3

Modeling of laser bonding

Microelectronics applications of the Silicon-on-Diamond concept, possibly with di-
amond directly bonded to a pre-integrated silicon chip, requires on one hand a
damaged layer as thin as possible, on the other, a low thermal budget in charge of
the integrated electronics. Thus, the optimization of the process has to deal with
modeling of the laser heating, in a way to predict, at a specific power density and
wavelength, the evolution of the temperature field and of the fusion front during
and after laser irradiation.

To this aim, I developed a numerical model of the bonding process which
takes into account three process parameters, that are wavelength, energy density
per unit surface, and pulse width, and gives predictions about the energy threshold
for the silicon-diamond adhesion and about the minimum thickness of the dam-
aged layer which corresponds to this threshold [43]. I limited the analysis to the
first pulse, without taking into account the further ones, because their dynamics
depends strictly on the optical characteristics of the amorphous layer left behind
by the first one, which are believed to be strongly dependent on the amorphization
conditions, whose determination should require an additional experimental effort.
Nevertheless, this limitation doesn’t alter the validity of the conclusions, because the
carbon-melting threshold depends much more on the absorption-reflection charac-
teristics of the melted silicon than on those of the pre-existing solid phase. Moreover,
I concentrated on the carbon-melting threshold, without considering the dynamics
of carbon fusion and inter-diffusion in silicon, avoiding further considerable ther-
modynamic complications also because, in order to optimize the process, it is of
prominent interest to remain as close as possible to the threshold conditions. This
is particularly true for the issue of cavity formation in the diamond-silicon interface
(described in chapter 2) which, if ascribable to the contraction of the carbon-rich
phases, can be partially avoided by the minimization of the thickness of the melted
carbon layer.

45
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Theoretical modelization of the laser bonding method can take advantage of
a huge amount of experimental and theoretical studies on the interaction between
matter and light under extreme conditions, but has to deal also with certain un-
explored issues. Silicon was one of the first and better studied targets for pulsed laser
irradiations, particularly since, in the late seventies, laser annealing of ion implanted
silicon came to the attention of the researchers (see ref.[44] for a comprehensive re-
view). Nevertheless, in our experimental conditions, with a very rigid and thermally
conductive diamond layer in front of the silicon one, the temperature field acquires
some peculiar characteristics: variations in pressure fields can no more be neglected,
moreover, melting begins inside silicon while two melting-recrystallization fronts
propagates in opposite directions during and after the pulse. Moreover, if we want
to follow the behavior of the interface until carbon begins to melt, in such a way
that silicon carbide phases can be formed, as suggested by infrared spectroscopy[45],
we have to model the behavior of carbon at high temperatures and pressures, in a
regime which has been intensively studied but yet not clearly understood, remaining
significant uncertainty in some key-parameters as thermal conductivity of the liquid
phase (see ref.[46] for a review).

In this chapter, after an extended survey of the physical phenomena and rela-
tive time and length scales occurring at the interface of silicon and diamond (section
3.1), a description of the analytical model is given in section 3.2, while in section
3.3 details are given about the numerical solution of the equations. In section 3.4
several key parameters as energy thresholds, interface reflectance and thickness of
the damaged layer are determined by calculation, as functions of the parameters
under our control. Finally, in section 3.5, I compare the results of calculation with
the data available so far, in order to underline strategies for the optimization of the
process.

3.1 Phenomena involved and their time and length

scales

3.1.1 absorption, transmission, reflection of radiation

If we follow the heating process before diamond reaches its graphitization condi-
tions, transport of radiation is mainly ruled by the contrast in refraction index both
between diamond and silicon and between solid and liquid silicon (determining re-
flection of the radiation), as well as by the absorption coefficient of silicon in the
solid and the liquid phase. At a wavelength of 355 nm (for instance), the reflection
coefficient of the diamond-silicon interface varies from about 0.25 to 0.5 passing
from room temperature to the melting condition of silicon. The absorption length,
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at the same wavelength, ranges from 19 nm in the solid phase to 13 nm (at longer
wavelengths the difference is much sharper, for instance, at 532 nm it passes from
970 nm in the solid to 17 nm in the liquid phase). The optical properties of silicon
are also significantly affected by the presence of the electron-hole plasma generated
by laser irradiation, which has to be properly taken into account. Moreover, during
the fusion process, while the melting front propagates in silicon, internal reflection
and refraction play a relevant role, requiring the implementation of a full multilayer
model of light propagation, in order to calculate the power absorption at each layer
inside the material. The presence of a rigid diamond layer in contact with silicon
determines significant differences in the behavior of silicon at high temperatures. In
heating experiments, for which the volume of a liquid metal can freely expand, one
expects that in proximity of the critical temperature the resistivity drops several
order of magnitude and the material becomes transparent[47, 48]. This is not the
case of silicon if it is confined by a rigid material like diamond, because liquid silicon
cannot reach the volume that is necessary for the metal-dielectric transition. In this
case we expect that, in the diffuse liquid-gas transition taking place well above the
critical pressure (530 atm) of silicon, the optical characteristics of the material do
not undergo dramatic variations.

3.1.2 generation, diffusion, recombination and energy re-

laxation of electron-hole plasma

In the solid phase, light absorption does not determine a direct thermal release to
the lattice, but a hot electron-hole plasma, generated by the over band-gap irradi-
ation, diffuses across the silicon bulk, recombining and releasing its energy to the
lattice. Thus, the width of the heated layer is not limited only by the absorption
length of the radiation and the thermal diffusion length, but it extends to the car-
rier diffusion length, which on its turn depends on the ambipolar diffusion coefficient
and the recombination time. For the high power densities under interest, recombi-
nation is expected to occur mainly by the Auger mechanism, with a lower limit to
the recombination time of about 6 ps imposed by screening effects[49]. Ambipolar
diffusion depends both on plasma and on lattice temperatures (see subsection 3.2.3)
with values ranging over several hundreds of cm2s−1, giving a diffusion length of
several hundreds of nanometers, much more large than the simple absorption length
in the UV range. Since Auger recombination does not affect the energy balance of
the plasma, because the energy of each electron-hole recombining couple is relaxed
to the plasma itself, the only significant way of relaxing energy to the lattice is
electron-phonon interaction, which occurs with a time constant of a few hundreds
femtoseconds[50] if plasma densities does not exceed about 1021 cm−3. On the other
hand, for electron densities much above this value the population of electronic bands
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dramatically weakens covalent bonds, resulting in a melting transition to a metallic
state[51]. In our modelization we will not consider silicon in such a transformation,
thus limiting ourself to pulse width of no less than some hundreds of femtoseconds
and energies not exceeding about 10 J/cm2.

3.1.3 Temperature, pressure and phase fields

Before melting, the pressure field is influenced by temperature by means of a source
term depending on bulk modulus and on the thermal expansion coefficient of the
media. On the other hand, also the pressure is involved in temperature evolution
trough the associated TdS equation. During melting, pressure is also strongly af-
fected by the change in volume of the melting material. There is in general a time
scale much above which these reciprocal influences of temperature and pressure can
be neglected, which is given by the ratio of the typical lengths involved in heat re-
lease over the sound velocity. This time scale amount to some tens of picoseconds,
being sound velocity in silicon about 8400 m/s and the typical thickness of the layers
interested by the heat release ranging over tens to hundreds of nanometers. Since
we are also interested in pulse durations of this order of magnitude or below, we are
forced to consider all the possible interactions of temperature, pressure and a phase
field representing, for each layer in the media, the fraction of the melted material.
In this way, important pressure-dependent parameters, such as the graphitization
temperature of diamond, can be taken into account.

After the laser-pulse duration, two solidification fronts propagates in the me-
dia in opposite directions, instead of only one as in silicon laser annealing or any
other case in which irradiation takes place in air or vacuum. The velocity of these
solidification fronts strongly influences the solid phase observed, thus the model has
been applied to the simulation of the solidification phase too.

3.2 The model

The model takes into account five mutually interacting fields: electron-hole plasma
density n, its kinetic energy density E, the lattice temperature T and pressure P ,
and the phase field φ, defined as the mass fraction of the material which is melted in
a “small” neighborhood of the point under consideration. The power released to the
unit volume of the material by the radiation is indicated with w, and it is calculated
taking into account also the internal reflections between different layers inside silicon,
considering, for each layer in the media, the energy released by a progressive and a
regressive wave, with the appropriated boundary conditions between each layer and
the neighbor ones. Details about the calculation of w are given in subsection 3.2.1.
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In order not to interrupt the development of the theory with necessary but minor
specifications, proofs of equations employed in the theory and details about physical
parameters intervening in calculations are also contained in the subsections 3.2.2,
3.2.3 and 3.2.4.

Electron-hole plasma dynamics is taken into account adopting a set of equa-
tions which are basically those adopted by Lietoila and Gibbon[52] and Agassi[53],
but considering that in the partially melted layers (0 < φ < 1), the energy is released
to the plasma and to the atoms of the melted phase in parts which are proportional
to (1− φ) and φ, respectively. The equations for the n and for E are then:

∂n
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In Eq. 3.1 and 3.2, Da is the ambipolar diffusivity, ke is the plasma thermal con-
ductivity, τA and τe−ph are the Auger recombination time and the electron-phonon
relaxation time, respectively, n0 is the equilibrium carrier density, Eg is the band-
gap width, ν is the radiation frequency, while h, kB and e are the Planck constant,
the Boltzmann constant and the value of the elementary charge, respectively. The
factor ψ, in the equations, represents the ratio between the energy absorbed in the
electron-hole generation and the overall energy absorbed by the free carriers too. It
has been calculated as shown in section 3.2.1, dedicated to the study of the energy
transfer from the radiation to the matter.

The fields T , P and φ are bounded by the thermodynamic conditions, by the
law of motion and by a constraint condition which is different for a mono-phase
(φ = 0 or 1) and a bi-phase (0 < φ < 1) layer. The second equation of TdS implies
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In Eq.3.3, ρ, α, λ, c and kth represents, respectively, density, thermal expansion
coefficient, latent heat of fusion, specific heat at constant pressure and lattice thermal
conductivity. The subscript 0, here and in the following, indicates the values at room
temperature and pressure, while the subscript φ, appended to any physical quantity
f , means a weighted average between the values of f for the solid and the liquid,
that is fφ = (1− φ) fS +φfL. The equation of motion of the system is the following
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50 CHAPTER 3. MODELING OF LASER BONDING

where B is the bulk modulus. Proofs of Eq.3.3 and 3.4 can be found in subsection
3.2.2. The constrain condition for the mono-phase layers is simply

∂φ

∂t
= 0; (3.5)

while for the bi-phase layers pressure and temperature are bounded by the melting
curve, and the differential relation between their derivatives is

(
dP

dT

)

melt.

× ∂T

∂t
− ∂P

∂t
= 0. (3.6)

During silicon melting, since the density of the liquid phase of silicon is higher than
that of the solid one, pressure undergoes a dramatic decrease, eventually reaching
the triple point conditions. In this state a second phase field taking into account the
relative proportion of the vapor phase could be necessary. Nevertheless, the density
of the vapor phase is so low, and the volumes involved so small, that the energy
balance is not affected by the assumption that the mass fraction of the vapor phase
is zero. In this conditions, the equation that rules the evolution of the system is Eq.
3.3, with the constraints

∂T

∂t
= 0 and

∂P

∂t
= 0. (3.7)

When, in a melting layer at the triple point, all the solid mass is disappeared,
then the material follows the vaporization curve. Also in this case, the vapor mass
fraction is negligible due to its small extension in volume, and the pressure is so low,
compared to that of the solid and liquid heated layers, that the constraints to the
Eq. Eq. 3.3 can be assumed to be the following:

∂φ

∂t
= 0 and

∂P

∂t
= 0. (3.8)

Layers which lies along the vaporization curve remain on it until the volume of the
liquid v, which can be traced by means of the equation of state ρ(P, T ), fills the space
vext left void by the surrounding layers. At this point the system begins to move
across the liquid area of the phase diagram, eventually reaching the gas phase with
a diffuse, over-critical liquid-gas transition. Numerical solutions of Eq.3.1 to Eq.3.8
was found following a backward Euler scheme for the diffusion equations3.1-3.3, and
a forward Euler one for the wave equation 3.4. The equations 3.3 to 3.8, which couple
the fields P , T and φ, require the simultaneous inversion of a system involving the
three fields. At each time step, when the state of a given layer changes between
a mono-phase and a multi-phase situation, also the structure of the equations has
to change accordingly, due to the different constraint (Eq.3.5 to 3.61) imposed to
the material. In section 3.3 details about calculations are given. In figure 3.1 a
schematics of the tests performed on the state of each layer is drawn.
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Figure 3.1: Flux diagram of the tests (arrows) which, at each time step, decide
the transitions between the various areas, or lines, or points, in the phase diagram.
In parentheses an indication of the procedure performed on each layer and at each
time step, according to the state in which a given layer is found. In grey, states and
transitions which are irrelevant for this work.

3.2.1 Energy transfer to matter

I have performed the calculation of the energy released by the electromagnetic radi-
ation for each one of the N layers of thickness δi (1 ≤ i ≤ N), of the finite element
calculation grid, taking into account the complex refractive index n̂i ≡ ni + iki of
each layer. Both the real and the imaginary part of n̂ depends on the “intrinsic”
contribution n(0)+k(0), due to atomic ionization, and on the contribution of the free
carriers. The latter is taken into account, as in ref.[52], considering that the effec-
tive (real) index of refraction ne and the extinction coefficient kp of the electron-hole
plasma are bounded by

ne
2 − k2p = n(0)

2 −
(ωp

ω

)2
and 2nekp =

e

2

ω2
p

ω3

(
1

µeme

+
1

µhmh

)
g, (3.9)

where ωp =

√
n e2

ǫ0

(
1
me

+ 1
mh

)
is the plasma pulsation (n is the plasma density), ω is

the radiation pulsation, µe,h andme,h are the electron and hole mobility and effective
mass, respectively, e and ǫ0 are the elementary charge and the vacuum dielectric
constant, while g is a factor depending on the scattering mechanisms, evaluated as
g ≈ 1.13 for the phonon scattering. The effective extinction coefficient ke is given,
as in ref [52], by the sum of the intrinsic value k(0) and the extinction coefficient kp of
the plasma, but with a weight depending on the proportion of the solid phase: ke =
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k(0) + kp (1− φ). The values of n(0) and k(0), on their turn, are given by a weighted
sum of kind n(0) = n(0)S (1− φ)+n(0)Lφ and k(0) = k(0)S (1− φ)+k(0)Lφ, where n(0)S,L

and k(0)S,L will be specified in section 3.2.3, dedicated to the physical parameters
employed in the simulation. On the base of k(0) and kp, also the proportion ψ of
the energy absorbed by ionization respect to the overall energy absorbed by the free
carriers too has been calculated as ψ = k(0)/

(
k(0) + kp

)
.

Once given the optical functions of each layer, we can calculate, for a given
intensity of the incident radiation, the energy released to each layer. Let the electric
field inside the ith layer be given by

Ei (x, t) = Ei (x) e
−iωt with Ei (x) = E+

i e
i 2π
λ0

n̂i(x−xi) + E−
i e

−i 2π
λ0

n̂i(x−xi) (3.10)

where E±
i are complex amplitudes of a progressive and a regressive wave, xi is the

central coordinate of the layer, and λ0 is the wavelength of the radiation. The field
in diamond before the 1st layer is expressed as

E0 (x, t) = E0 (x) e
−iωt with E0 (x) = Eince

i 2π
λ0

n̂0x + Erefe
−i 2π

λ0
n̂0x, (3.11)

while the electric field in silicon after the N th layer is

EN+1 (x, t) = EN+1 (x) e
−iωt with EN+1 (x) = Etre

i 2π
λ0

n̂N+1x. (3.12)

Continuity both of transverse electric and magnetic fields at the layers interface is
assured by continuity of the electric field and of its first derivative, which results
in two conditions for each boundary between adjacent elements of the grid. Taking
also into account the boundary between the first simulated diamond layer and the
diamond layer in front of it (boundary between i = 0 and i = 1) and between the
last simulated silicon layer (i = N) and the rest of the material we have 2 (N + 1)
conditions. Considering Einc as a known quantity, and ǫ±i ≡ E±

i /E
inc as unknown,

as well as ǫref,tr ≡ Eref,tr/Einc, we have the following linear system of 2 (N + 1)
equations in the 2 (N + 1) unknowns:

1 + ǫref = ǫ+1 e
−i π

λ0
(n̂1)δ1 + ǫ−1 e

i π
λ0

(n̂1)δ1 ;

1− ǫref = n̂1

(
ǫ+1 e

−i π
λ0

(n̂1)δ1 − ǫ−1 e
i π
λ0

(n̂1)δ1
)
;

ǫ+i e
i π
λ0

(n̂i)δi + ǫ−i e
−i π

λ0
(n̂i)δi = ǫ+i+1e

−i π
λ0

(n̂i+1)δi+1 + ǫ−i+1e
i π
λ0

(n̂i+1)δi+1;

n̂i

(
ǫ+i e

i π
λ0

n̂iδi − ǫ−i e
−i π

λ0
n̂iδi
)

= n̂i+1

(
ǫ+i+1e

−i π
λ0

n̂i+1δi+1 − ǫ−i+1e
i π
λ0

n̂i+1δi+1

)
;

ǫ+Ne
i π
λ0

n̂NδN + ǫ−Ne
−i π

λ0
n̂N δN = ǫtr (3.13)

n̂N

(
ǫ+Ne

i π
λ0

n̂N δN − ǫ−Ne
−i π

λ0
n̂NδN

)
= n̂N+1ǫ

tr

The sistem has been solved reducing it at the superior triangular form and then
calculating the unknowns by consecutive substitutions.
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At this point the power wi released at each layer i has been calculated first
considering the Poynting vector at a given position x in the material, whose compo-
nent along the propagation direction has a value, averaged on the radiation period,
given by:

S =
1

2
ℜ
(
~Ei ∧ ~B∗

i

µ0

)
· ~ux with (3.14)

~Ei (x) = ~e

(
E+

i e
i
2πn̂i
λ0

x
+ E−

i e
−i

2πn̂i
λ0

x

)
and

~Bi (x) =
n̂i

c
~ux ∧ ~e

(
E+

i e
i
2πn̂i
λ0

x −E−
i e

−i
2πn̂i
λ0

x

)
.

With these notations, it is easily shown that the average power per unit surface wi

is

wi = S

(
xi −

δi
2

)
− S

(
xi +

δi
2

)
= (3.15)

2

[
ni

n0

(∣∣ǫ+i
∣∣2 +

∣∣ǫ−i
∣∣2
)
sinh

(
2π

λ0
kiδi

)
+
ki
n0

(
ǫ+∗
i ǫ−i + ǫ−∗

i ǫ+i
)
sin

(
2π

λ0
niδi

)]
I0,

were I0 ≡ n0

2µ0c

∣∣Einc
∣∣2 is the incident power per unit surface. In the same notations,

the reflected and the transmitted power densities wref and wtr are, respectively:

wref =
∣∣ǫref
∣∣2 I0 and wtr =

ntr

n0

∣∣ǫtr
∣∣2 I0. (3.16)

3.2.2 Energy balance and equation of motion

Here we give a proof of the equation of energy balance Eq.3.3 and of the equation
of motion Eq.3.4.

Let us first consider, for a unit mass of the material, two states i and f ,
characterized by the values of the phase field φ and φ + dφ, with pressure P and
P + dP , and volume V and V + dV . We want to evaluate the heat dQ released to
the unit mass in the transformation from i to f . The two liquid and solid phases,
of masses φ and 1 − φ respectively, perform a transformation, exchanging a heat
quantity per unit mass given by the second TdS equation:

dQS,L = cS,LdT − T
βS,L
ρS,L

dP. (3.17)

An infinitesimal variation dφ of the phase field, on the other hand, involves a heat
absorption λdφ. Thus, the heat exchanged in the transformation i− f is

dQ = cφdT − T

(
β

ρ

)

φ

dP + λdφ, (3.18)
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remembering the notation fφ = (1− φ) fS + φfL. From equation 3.18, taking into
account the three channels of heat release to the material (heat conduction, direct
radiation heating of the liquid phase, plasma heat relaxation), equation 3.3 follows
straightforwardly. It has to be noted that in the case of a mono-phase layer, posing
φ = 0 or φ = 1 and dφ = 0, Eq.3.18 follows immediately from the TdS equation.

The equation of motion of the system derives from the Newton law applied to
the displacement field r (x):

ρ0
∂2r

∂t2
= −∂P

∂x
, (3.19)

performing a space derivative at both sides of Eq.3.19 and considering that the
time derivative of the divergence of the displacement field r equals that of the
product ρ0 × v, where v = 1/ρ is the specific volume of the material at rest at
room temperature:

∂2v

∂t2
= − 1

ρ20

∂2P

∂x2
. (3.20)

Let us consider first a mixed phase state for whom v = v (P, φ). An infinitesimal
variation dv of the specific volume is

dv =

(
∂v

∂P

)
dP +

(
∂v

∂φ

)
dφ. (3.21)

The partial derivatives of Eq.3.21 are readily calculated taking into account that the
specific volume at a given pressure is given by (see also Fig.3.2, left)

v (P, φ) = vS (P ) (1− φ) + vL (P )φ, (3.22)

where vS,L (P ) is the specific volume of the saturated solid or liquid as function of
the pressure. Consequently:
(
∂v

∂φ

)
= vL − vS ≡ 1

ρL
− 1

ρS
and

(
∂v

∂P

)
=

(
dvS
dP

)
(1− φ) +

(
dvL
dP

)
φ. (3.23)

Now, the total derivative of vS,L (P ) (volume of saturated solid and liquid),
can be expressed in term of the equation of state of the solid and the liquid phase
vS,L (P, T ) in this way (see also Fig.3.2, right):
(
dvS,L
dP

)
=

(
∂vS,L
∂P

)

T

+

(
∂vS,L
∂T

)

P

(
dT

dP

)

fus.

= − 1

ρS,LBS,L
+
αS,L

ρS,L

(
dT

dP

)

fus.

(3.24)

By substitution of Eq.3.23 and 3.24 in Eq.3.21, rememebering the notation fφ =
fS (1− φ) + fLφ:

dv = −
(

1

ρB

)

φ

dP +

(
α

ρ

)

φ

dT +

(
1

ρL
− 1

ρS

)
dφ. (3.25)
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Figure 3.2: (left) Schematics of the volumes involved in a multi-phase layer. (right)
Volume variations of the solid phase along the saturated solid curve.

From Eq.3.25, by a further differentiation and substitution in Eq.3.20, if we can
neglect the variations of the coefficients of the differentials in Eq.3.25, we obtain
Eq.3.4. If the coefficients cannot be neglected we have a more complicated equation
wich is not linear in the first time derivatives. Nevertheless, the nonlinear terms
do not involve prohibitive complications in the numerical equation (Eq.3.61) that
solves the system. Also in this case, as for the energy balance equation, if we pose
φ = 0 or φ = 1 and dφ = 0 we obtain from Eq.3.4 an equation which is valid for the
mono-phase layers.

3.2.3 Physical parameters

In the following, we report the expressions for the physical parameters which were
utilized in the simulations. For the solid phase of silicon we mainly adopted the ex-
pressions found in two fundamental works of Lietoila and Gibbons[52] and Agassi[53]
and to the references cited in their works. The intrinsic refraction index and extinc-
tion coefficient n(0)S and k(0)S of the solid phase of silicon, at different temperatures
T and wavelengths λ, are interpolated by the results in ref.[54], by the functions

n(0)S = aλ (T − 273) + bλ and k(0)S = cλ (T − 273)2 + dλ (T − 273) + eλ; (3.26)

The values of the constants, are given in Tab.3.1 for the wavelengths under consid-
eration. The optical constants n(0)L and k(0)L of the liquid phase has been extracted
from ref.[55], which gives, at the wavelengths of 355 and 532 nm, the values also
reported in Tab.3.1.
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Table 3.1: Values of the coefficients in Eqs. 3.26, and optical constants for liquid
silicon, at the wavelengths under consideration (Kelvin degree unit for temperature)

λ aλ bλ n(0)L

cλ dλ eλ k(0)L
355 nm −8.6× 10−4 5.62 2.13

6.8× 10−7 −5.61× 10−4 2.97 4.31
532 nm −5.18× 10−4 4.13 2.92

2.41× 10−7 8.31× 10−5 0.085 4.99

Table 3.2: Values of the coefficients in Eqs. 3.35, 3.37, 3.40, in cgs units for me-
chanical and calorimetric units, kelvin degrees for temperature.

ρ0 r α0 T ∗ a1 θ1
B0 α1 a2 θ2

a3
Diamond 3.51 3.5 −10−6 450 1.796× 107 1238

4.415× 1012 1.8× 10−5 5.42× 106 3390
0

Liquid 3.04 2 −10−6 450 2.424× 107 1400
carbon 3.378× 1012 2.4× 10−5 0

0
Solid 2.32 3 1.63× 10−6 212 6.22× 106 630
silicon 9.9× 1011 1.18× 10−5 2.73× 106 166

5.77× 10−5

Liquid 2.64 2 −8.35× 10−6 1300 1.07× 107 100
silicon 3.7× 1011 5.84× 10−5 0

0

The ambipolar diffusivity depends both on lattice and plasma temperatures.
We follow ref.[53] and write:

Da (T, θ) = 2kBθµa with

µa =
µn (T )µp (T )

µn (T ) + µp (T )
and θ =

E

3nkB
. (3.27)

Here, µn and µp are electron and hole mobility, respectively, which depends on lattice
temperature as reported in ref[52]:

µn = 1350 (T/300)−2.4 µp = 480 (T/300)−2.5

in units cm2/(Vs). (3.28)

For the band-gap width we adopted the expression proposed by O’Donnell and
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Chen[56]:

Eg (T ) = Eg (0) + EphS

(
coth

Eph

kBT
− 1

)
, (3.29)

were Eph is an average phonon energy (25.5 meV for silicon and 94 meV for dia-
mond), and S is a coupling constant chosen in such way to fit experimental profiles
(1.49 for silicon and 2.31 for diamond). The equilibrium plasma density in silicon,
n0, is[53]

n0 (T, θ) = 5× 1015
(
θ

K

)1.5

exp

(
−Eg (T )

2kBθ

)
cm−3. (3.30)

The Auger recombination time, for plasma densities not exceeding about 6.5× 1020

cm−3 is given by[53, 52]

τA =
2.5× 1030

n2
cm−6s, (3.31)

exceeding this value of charge density, screening effects limits it to not less than 6
ps. The electron-phonon relaxation time τe−ph has been assumed to be [50]

τe−ph = 240×
(
1 +

(
n

6× 1020cm−3

)2
)
fs. (3.32)

The temperature dependence of thermal conductivity of solid silicon and diamond
was fitted to the data of ref.[57] and ref.[58], respectively, with an expression of the
type

kth/
(
Wcm−1K−1

)
= exp

(
∑

n

kn ln
n (T/K)

)
, (3.33)

for which the values of the coefficients are reported in Tab.3.4. For liquid silicon
we adopted the value k = 0.9 Wcm−1K−1 as reported by ref.[59] Plasma thermal
conductivity, following ref.[53], is

ke =
[
−5.55 × 10−3 + 7.75× 10−5 (θ/K)

]
cm2s−1. (3.34)

Bulk modulus, expansion coefficient, specific and latent fusion heats at a generic
pressure and temperature, are bounded by the equation of state and the thermo-
dynamic functions of silicon and diamond. These quantities are comprehensively
taken into account in the following subsection.

3.2.4 Equations of state and thermodynamic functions

Since both materials, diamond and silicon, are stressed to condition of pressure
and temperature very far from ordinary ones, simple analytical expressions for the
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equations of state for silicon (liquid and solid) and for diamond are requested, ex-
trapolating the data available only for limited areas of the temperature-pressure
domain. These expressions will be also useful in the determination of the thermo-
dynamic functions of the material, in order to determine fusion curves and latent
heats. For the equations of state and the thermodynamic functions of carbon the
model of Fried and Howard[60] has been adopted. For silicon, I adopted the same
or similar expressions, fitting the experimental data in refs.[61, 59, 62, 63].

The dependence of the density of the materials involved, both in solid and
liquid phases, on temperature and pressure is expressed as

ρ = ρ0×η (P, T ) with η (P, T ) =

(
r
P

B0

+ f (T )

)1/r

and f (T ) = e−r(g(T )−g(T0));

(3.35)
where B0 and ρ0 are the bulk modulus and the density at standard temperature
(T0) and pressure (P0), r is a constant dependent on the phase under consideration
(see Tab. 3.2), and g (T ) is a function chosen in such way to reproduce the thermal
expansion of the material at standard pressure. The expression of the thermal
expansion coefficient, from expression 3.35, is found to be

α ≡ −1

ρ

(
∂ρ

∂T

)

P

= g′(T )
f (T )

r P
B0

+ f (T )
. (3.36)

If P << B0 the fraction multiplying g′(T ) approaches the unit value, thus it will be
sufficient, at standard pressure, to adopt an expression for g′(T )fitting the thermal
expansion coefficient. This can be done by means of an expression of kind

g′(T ) = α0 + α1

(
1− e−T/T ∗)2

that is (3.37)

g(T ) = α0T + α1

[
T − T ∗

2

(
e−T/T ∗ − 2

)2
]
. (3.38)

The values of the parameters T ∗, α0 and α1 for diamond phases has been found
in [60], for solid and liquid silicon I have fitted, with expression 3.37, the data of
ref.[35, 62]. All these parameters are reported in Tab.3.2. The equation of state
serves also to calculate the bulk modulus B as

B =
ρ(

∂ρ
∂P

)
T

= rP +B0f (T ) . (3.39)

The thermodynamical function can be evaluated on the basis both of the equation
of state, and of the specific heat at constant (and standard) pressure C0

p , evaluated
as a sum of two Einstein oscillators and a linear term:

C0
p = a1E (θ1/T ) + a2E (θ2/T ) + a3T with

E (x) = x2ex/ (ex − 1)2 . (3.40)
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For the carbon phases the values of ai and θi was taken by ref.[60], while for solid
silicon they was evaluated by fitting the data of ref.[61]. The value of C0

p adopted for
liquid silicon was constant and equal to 1.1 J/(g×K), as reported in ref.[59]. Now,
the Gibbs free energy G(P, T ) per unit mass can be written as

G (P, T ) = G (P0, T ) +

∫ P

P0

dP

ρ
= (3.41)

G (P0, T ) +
B0

ρ0 (r − 1)

(
η (P, T )r−1 − η (P0, T )

r−1) ,

due to the fact that, at constant temperature, the differential of G is given by
dG = vdP = dP/ρ. The Gibbs free energy at the pressure P0 is given by G (P0, T ) =
H (P0, T )− TS (P0, T ), with

H (P0, T ) = H (P0, T0) +

∫ T

T0

C0
p (T ) dT = (3.42)

H (P0, T0) +

2∑

i=1

aiθi

[
1

e
θi
T − 1

]T

T0

+ a3
(
T 2 − T 2

0

)
/2 and

S (P0, T ) = S (P0, T0) +

∫ T

T0

C0
p (T )

T
dT = (3.43)

S (P0, T0) +
2∑

i=1

ai

[
x

e
θi
T − 1

− ln
(
1− e

θi
T

)]T

T0

+ a3 (T − T0) .

Once determined the Gibbs free energy, the specific heat Cp is simpy evaluated by

Cp (P, T ) = −T
(
∂2G

∂T 2

)

P

= (3.44)

C0
p (T ) +

B0Tf
′ (T )2

ρ0r2
(
η (P, T )−r−1 − η (P0, T )

−r−1)−

B0Tf
′′ (T )2

ρ0r

(
η (P, T )−1 − η (P0, T )

−1)

The analytical expressions for the Gibbs free energy of each phase previously ob-
tained allows the determination of the fusion curves, along which the Gibbs functions
of the liquid and the solid phase have a same value. I considered the equilibrium
between diamond and liquid carbon phases as the limit over which, for the very fast
transitions which we are interested in, graphitization occurs. For slower transitions,
within hundreds seconds as order of magnitude, graphitization can hold also at rel-
atively lower temperatures, beginning with seeds corresponding to free surfaces or
other structural defects. In a pulsed laser experiment the situation is very different,
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Table 3.3: Values of the coefficients in Eq. 3.45, in cgs units for mechanical and
calorimetric units, kelvin degrees for temperature.

T0 a T1 P0

Carbon 4250 1.83× 10−9 15700 3.79× 1012

Silicon 1680 9.07× 10−9 293 5.77× 1010

Table 3.4: Values of the coefficients in Eq. 3.33, in cgs units for mechanical and
calorimetric units, kelvin degrees for temperature.

k0 k1 k2 k3
Diamond T < 1200 84.3 -35.8 5.35 -0.274
Diamond T ≥ 1200 10.8 -1.32

Solid Si 14.1 -3.15 0.138

because graphitization has to occur in a few picoseconds. In this case, I consider
that graphitization doesn’t occur until diamond “would” loose its structural stabil-
ity in favor of the liquid phase; at that point it ends up with finding a structural
equilibrium with a Gibbs free energy lower than both diamond and liquid carbon, so
that it graphitizes over the whole volume over which the threshold has been passed.
Since graphite has, at atmospheric pressure, a much lower density than diamond, it
can be argued that a huge increase in pressure holds at this point, transferring the
system in the proximity of the diamond-graphite-liquid triple point. At this point,
every further heat release to the system results in carbon fusion and (presumably)
carbon-silicon interdiffusion. It was found that, both for carbon and silicon, the
equilibrium line between solid and liquid phase is well fitted by the sum of a linear
and an exponential function, giving

T = T0 − aP + T1 (1− exp (−P/P0)) , (3.45)

with the values of the parameters given in Tab.3.3. Particularly, the parameters of
the state equation of silicon has been chosen in a way that the fusion curve fits the
experimental points in ref.[63]. Finally, the fusion curve and the equation of state
allow, via the Clapeyron equation, the determination of the latent heat of fusion:

λ = T

(
1

ρL(P )
− 1

ρS(P )

)
/
dT

dP
(3.46)

3.3 Numerical implementation

A one-dimensional finite-element algorithm was employed with a spatio-temporal
grid {(xi, tj)}0≤i≤N+1,0≤j . Temporal integration step was τ = tj+1 − tj, and the
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spatial matching δi = xi+1 − xi was choosen in a way to describe in more detail
the regions where the fields have highest gradients (tipically, near silicon-diamond
interface). The values taken in every position xi at the time tj by each field X (x, t)
are represented by the components of the vector Xj, in a way that X(xi, tj) =
(Xj)i. The equations which rule the system have to be solved taking into account
boundaries between solid, liquid and muli-phase zones. We define four diagonal
matrices χ(1) , χ(2), χ(3) and χ(4) whose elements are 1 if the corresponding i−th
layer is in a mono-phase state, or it is on the melting curve, or at the triple point, or
on the vapor curve, respectively, and 0 otherwise. With these notations, equations
3.3 to 3.8 can be translated in a finite difference formulation for which the diffusion
equation Eq.3.3 follows a backwards Euler scheme, while the wave equation Eq.3.4 is
solved with a forward Euler one. Since temporal derivatives of the fields T , P and φ
are coupled by Eqs. 3.3 to 3.8, these equations have to be integrated simultaneously.
According to this scheme, the fields at the time tj+1 are calculated as functions of
those at time tj and tj−1 inverting the following system:



(
1− χ(3)

)
A+ 1

(
χ(1) + χ(2)

)
a χ(2)b(

χ(1) + χ(2)
)
c 1 χ(2)d

χ(2)e χ(2)f 1− χ(2)


×




T j+1

P j+1

φj+1


 =




Cj
T

Cj
P

Cj
φ




(1 +C)nj+1 = Cj
n and (1+D)Ej+1 = Cj

E (3.47)

Where the column vectors Cj
X depends on the fields at the times tj and tj−1 in the

following way:

Cj
T = T j +

(
1− χ(3)

) (
gEj + A0

T +WT

)
+
(
χ(1) − χ(2)

)
aP j + χ(2)bφj,

Cj
P =

(
χ(1) + χ(2)

) [
2
(
cT j + P j + χ(2)dφj

)
−
(
cT j−1 + P j−1 + χ(2)dφj−1

)]
+

(
χ(1) + χ(2)

) [
−BP j −B0

P

]
+
(
χ(3) + χ(4)

)
P j,

Cj
φ =

(
1− χ(2)

)
φj + χ(2)

(
eT j + fP j

)
+ χ(3)b−1

(
gEj −AT j − A0

T +WT

)
,

Cj
n = nj +Wn and Cj

E = Ej +EN j +WE + hEj
gap + lEj−1

gap (3.48)

In Eq.3.48, lower case bold letters represent diagonal N×N matrices whose non-null
components are:

aii = −
(
α

ρ

)

φ

Ti
cφ
, bii =

λ

cφ
, cii = −

(
α
rho

)
φ(

1
ρB

)
φ

, dii = −
1
ρS

− 1
ρL(

1
ρB

)
φ

,

eii =
1

Bφ

(
dP

dT

)

fus.

, fii = − 1

Bφ
, hii = − (1− φ)ψ

w

hν
τ + (n− n0) q

(
τ

τA

)
− n,

gii =
aii

3nKB
, lii = n; with q (x) = (1− exp (−x)) . (3.49)
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In Eq.3.49 functions and physical parameters calculated at time tj in the point xi.
The factor 1

Bφ
, where necessary, was introduced only for dimensional coherence.

Higher case letters represent tri-diagonal matrices in the form

X =




x01 −x+1 0 ...
−x−2 x02 −x+2 ...
0 −x−3 x03 ...
... ... ... ...


 (3.50)

with

a±i =
τ

2

[
ρ0icφiδi

(
δi
kφi

+
δi±1

kφi±1

)]−1

and a0i = a−i + a+i +
3niKB

ρ0icφi
q

(
τ

τel−ph

)
; (3.51)

b±i =
τ 2

2

[
ρ20iδi

((
1

ρB

)

φi

δi +

(
1

ρB

)

φi±1

δi±1

)]−1

and b0i = b−i + b+i ; (3.52)

c±i =
τ 2

2

[
δi

(
δi
Dai

+
δi±1

Dai±1

)]−1

,

and c0i = c−i + c+i + q

(
τ

τA

)
; (3.53)

d±i =
τ

δi
2

(
δi
kei

+ δi±1

kei±1

) 1

3kBni±1
(3.54)

d0i =
1

3kBni

∑

l=±1

τ

δi
2

(
δi
kei

+ δi+l

kei+l

) + q

(
τ

τel−ph

)

e±i =
τ

δi
2

(
δini

DaiEi +
δi±1ni±1

Dai±1Ei±1

) and e0i = e−i + e+i (3.55)

The column vectors A0
T and B0

P , in Eq.3.48, represent vectors whose components
are all zero except the first one, respectively a−0 Troom and b−0 Pexternal, and the last,
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respectively a+NTroom and b+NPexternal. Each component of the column vectors WX ,
finally, depends on the fields at each position xi and time tj in the following way:

WT i = φw, Wni = ψ (1− φ)
w

hν
τ,

WEi = 3kBnTq

(
τ

τel−ph

)
+ (1− φ)wτ. (3.56)

The solution of the system 3.47, involving the inversion of a general 3N × 3N -
matrix, can be reduced to the inversion of a tri-diagonal N ×N -matrix and to three
cascade-substitutions involving only products and sums of N × N -matrices. This
substantial simplification is allowed by the application of a sort of Gauss triangu-
lation method applied to the 3 × 3-matrix of system 3.47, whose elements are nine
N ×N matrices, eight of which are diagonal, and one tri-diagonal. If we adopt the
convention to indicate with the capital Greek letter Λ the tri-diagonal matrix, and
with small Greek letters the diagonal matrices, system 3.47 can be written in the
most handy form




Λ α β
χ 1 δ
ǫ φ γ


×




T j+1

P j+1

φj+1


 =




Cj
T

Cj
P

Cj
φ


 . (3.57)

In order to apply the triangulation method, the pivot element has to be invertible.
Noting that β + γ is an invertible diagonal matrix, it is convenient to sum the first
and the third arrow and to reorder the therms of the system, obtaining:




γ + β φ+ α ǫ+ Λ
δ 1 χ
γ φ ǫ


×




φj+1

P j+1

T j+1


 =




Cj
φ + Cj

T

Cj
P

Cj
φ


 . (3.58)

At this point, multiplying the first row of the system by −δ and the second by γ+β,
and then summing the results, we can eliminate the unknown φj+1 in the second
row. With an analogous procedure applied to the first and the third row, we obtain
the subsystem involving only the two unknowns P j+1 and T j+1:

(
(γ + β)− δ (φ+ α) (γ + β)χ− δ (ǫ+ Λ)

βφ− αγ (γ + β) ǫ− γ (ǫ+ Λ)

)
×
(
P j+1

T j+1

)
= (3.59)

(
(γ + β)Cj

P − δ
(
Cj

φ + Cj
T

)

βCj
φ − γCj

T

)
.

We note that (γ + β)−δ (φ+ α) is a diagonal invertible matrix, so that if we multiply
the first row by − (βφ− αγ) [(γ + β)− δ (φ+ α)]−1, and we sum the results to the
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second row, we obtain the equation involving only the unknown T j+1:

{[(γ + β) ǫ− γ (ǫ+ Λ)]− (βφ− αγ) [(γ + β)− δ (φ+ α)]−1 × (3.60)

[(γ + β)χ− δ (ǫ+ Λ)]}T j+1 =

βCj
φ − γCj

T − (βφ− αγ) [(γ + β)− δ (φ+ α)]−1 [(γ + β)Cj
P − δ

(
Cj

φ + Cj
T

)]
.

The matrix which multiplies T j+1 in Eq.3.61 is in a tri-diagonal form, its inversion
permits to calculate T j+1, and the successive substitutions in Eq.3.60 and in Eq.3.58,
by inversion of the simple diagonal invertible matrices (γ + β)−δ (φ+ α) and γ+β,
allow the calculation of P j+1 and φj+1.

3.4 Results of calculations

The main issues addressed by our simulations were the determination of the energy
density threshold for Silicon-Diamond adhesion as well as the thickness of the silicon
layer damaged by the process, related to the maximum depth of the melting front.
Both these quantities show a definite dependence on the laser wavelength and on the
pulse width, parameters whose influence has to be investigated in order to optimize
the bonding process. In our simulations we employed wavelengths of 533 and 355
nm, corresponding to the second harmonic and to the frequency mixing of the second
and the third harmonic of a Nd:YAG laser, with pulse durations ranging from the
typical picoseconds of the mode-locked to the nanoseconds of the Q-switched lasers.
In order to obtain the dependence on time of quantities which could be important
in the on-line monitoring of the process, also the reflectivity of the Silicon-Diamond
interface was calculated during and after the pulse duration.

In figure 3.3 (left) typical temperature profiles are shown corresponding to
the threshold of the fusion temperature of silicon and of carbon at the interface,
for a pulse width of about 18 ps, at the wavelengths of 355 and 533nm. Due
to the different penetration lengths, the energy densities necessary to reach the
melting conditions are higher for the 533 nm radiation. For longer pulse widths the
temperature profile is much wider due to heat diffusion (see the inset of Fig.3.3),
and the penetration length of the radiation has a progressively minor role, such that
the difference between energy thresholds at different wavelengths tends to vanish for
very long pulse widths.

In figure 3.3 (right) the energy density thresholds for the melting of silicon
and carbon at the silicon-diamond interface are shown, as functions of the pulse
width, at the two wavelengths under consideration. Analytical fits of the numerically
calculated points are also drawn, pointing out a diffusive behavior (E ≈ k × τ 0.5)
for very long pulse durations. At the wavelength of 355 nm, for instance, the energy
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Figure 3.3: (Left) Temperature profiles correspondent to the reaching of the melting
temperature either of carbon or of silicon at the silicon-diamond interface. Solid lines
correspond to the wavelength of 355 nm, dotted ones to 533 nm. In the main panel,
pulses of about 18 ps are considered, in the inset, profiles correspondent at pulses
of about 640 ps are shown. (Right) Energy density thresholds for the melting of
carbon (full circles) and of silicon (void circles) as functions of the pulse width at
wavelengths of 355 nm (big circles) and 532 nm (small circles). Asymptotic behaviors
for very long pulse durations are reported as dotted lines.

thresholds QSi and QD as functions of the pulse width τ are very well fitted by the
expressions

QSi =

(
0.037 + 7700×

(τ
s

)0.47) J

cm2

QD =

(
0.062 + 38000×

(τ
s

)0.50) J

cm2
(3.61)

This point deserves a more careful consideration. If we suppose to release a certain
amount of energy at a constant rate to an infinitely thin layer at the interface between
two materials in close contact, it is a mere analytical exercise to verify that the energy
necessary to reach a given temperature is proportional to the square root of the pulse
duration. This is obviously a very poor approximation of the real system, but the
exponent very close to 0.5 in the expressions 3.61 indicate that these expressions
catch the physical essence of the phenomena involved, being the constants added to
the diffusive terms due to the near-interface effects related altogether to radiation
penetration, plasma diffusion and material melting. The behavior of the threshold
values at 532 nm, for short pulse widths, is more complicated, as seen in Fig. 3.4, due
to a sharper decrement of the penetration length during melting, which decreases
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of a factor about 60.

In section 3.5, I shows that all the bonding experiments that we performed up
to now are compatible with the thresholds found for the melting of carbon.
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Figure 3.4: (Left) Diagrams of the motion of the melting-recrystallization fronts in
silicon for several pulse widths, at the wavelength of 355nm and at the energies which
are just enough to obtain carbon fusion. The arrows indicate the instants of the
pulse-end. (Right) Thickness of the damaged layer as function of the pulse width, at
the energy threshold for the carbon fusion. Full circles: 355 nm wavelength, empty
circles: 532 nm. Big circles: maximum penetration depth of the melting front, small
circles: maximum penetration of the fast re-crystallization front. Inset: velocity of
the slow re-crystallization front, the boundary between amorphous and crystalline
re-crystallization is evidenced.

Figure 3.4 (left) gives information about another issue addressed by our sim-
ulations: the positions of the boundaries between melted and solid phase in silicon
during and after the pulse duration, taken as the depths z for which the phase field
φ has the value φ (z) = 0.5. The melting front positions are shown for different pulse
widths, at 355 nm wavelength and energy densities which are just enough to reach
the melting conditions of carbon. Note that after the pulse two opposite-propagating
re-crystallization fronts are present: a fast one from diamond and a slow one from
the silicon bulk. The maximum penetration depth of the melting front (e.g. point A
in Fig.3.4 (left)), for each pulse width, gives the correspondent minimum thickness
of the layer damaged by the process. In fact, during the cooling of melted silicon
we can assume that re-crystallization takes place in an amorphous form, as con-
firmed by the detection in the bonded SOD samples of an amorphous silicon layer
of the order of 100 nm [45]. As a matter of fact, for re-crystallization speeds below
about 15 m/s, solidification in mono-crystalline form is assessed[44], that is, if the
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re-crystallization front from the silicon side propagates slowly enough, the thick-
ness of the damaged layer could be limited to the maximum propagation length of
the fast front from the diamond side (e.g. point B in Fig.3.4 (left)). We verified
that, as shown in the inset of Fig. 3.4 (right), such a slow propagation velocity,
requiring low thermal gradients, is quite common at all pulse durations for the 532
nm wavelength, but holds only for the longest pulse widths at 355nm wavelengths.
Figure 3.4 (right) shows the maximum penetration depth of the melting front at
different pulse widths (at the energy threshold for the carbon fusion), for both the
wavelengths under consideration, and also the maximum penetration depth of the
fast-recrystallization front, for the pulse widths for which the re-crystallization speed
does not exceed about 15 m/s.

In Figure 3.4 (right), the minimum thickness of the damaged layer as a function
of the pulse width is reported for the two wavelengths under consideration. Also in
this case, a diffusive law as in Eqs.3.61 seems to take place, namely:

w355 nm =

(
18 + 3× 106 ×

(τ
s

)0.47)
nm

w532 nm =

(
54 + 3.5× 106 ×

(τ
s

)0.48)
nm.. (3.62)

In order to optimize the bonding process, the constants lengths (18 and 54 nm
for 355 and 533 nm of wavelength, respectively) are of great significance: they are
the minimum thickness which can be achieved for the damaged layer at a specific
wavelength, with the shortest pulse widths, and are somehow related to the average
penetration length of the radiation during the whole pulse duration.

The model can give predictions not only about off-line measurable quantities
like energy thresholds and damaged layer thicknesses, but also about some param-
eters which can suitably monitor the bonding process on-line. For example, the
reflectivity of the interface layer can be experimentally followed by means of a pump-
and-probe scheme exploiting part of the pulse power in a delay stage[64]. Thus, we
traced the reflectivity of the interface at the same wavelength of the heating pulse
during and after the process until it reaches its equilibrium value. In doing so, we
assumed that the optical characteristics of the re-solidification layer are the same
of the mono-crystal, this is only a rough approximation, a more realistic simulation
should require a thorough optical characterization of the amorphized layer left by
the re-solidification process. Figure 3.5 shows the reflectivity profiles for a pulse
duration of about 18 ps at the two wavelengths of interest, for pulses having just
the power sufficient for the melting of carbon. The shape of the reflectivity pulses
during the heating phase depends both on plasma effects (particularly the minimum
before silicon melting) and on a refraction index variation due to the melting itself.
During cooling, the propagation of the re-crystallization fronts determine also an
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interference pattern which could be particularly evident for very long pulse widths
(see the inset of Fig. 3.5).
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Figure 3.5: Reflectivity profiles for 6.5 ps pulses with energies at the carbon-melting
thresholds, during and after the pulse duration. In the inset: the tail of the 36
ns-pulse reflectivity profile at 532 nm, showing a clear interference pattern due to
the propagation of the re-crystallization front

3.5 Comparison with experiments

The principal feature for which a comparison is attainable between experimental
data and simulation results is the energy density threshold for carbon, related to
the effectiveness of post processing adhesion. As seen in chapter 2, the maximum
EM and the minimum energy density per pulse Em which impinges on the silicon-
diamond interface can be simply calculated by the overall energy per pulse E0, by
the reduction factor ρ of the optics and by the pitch R of the irradiation matrix by
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means of the relations:

EM =
E0

2πρ2σxσy
∫∞

0
e−zαdz

and Em = EMe
−

[
R2

(
1

8ρ2σ2
x
+ 1

8ρ2σ2
y

)]α

(3.63)

with σx = 2.3 mm, σy = 2.0 mm, α = 1.51 and
∫∞

0
e−zαdz = 0.902. So we can

have three different situations, depending on the position of the threshold Ethr. with
respect to the interval [Em, EM ]. If Ethr. < Em < EM , the two materials should
adhere on the entire surface extension, if Em < Ethr. < EM , we have adhesion only
on the central part of each spot, while if Em < EM < Ethr. lack of adhesion is ex-
pected everywhere on the sample surface. In figure 3.6 a survey of the positions
of the intervals [Em, EM ] is given with respect to the energy threshold, along with
the indication of the outcome of the related bonding experiment in term of par-
tial/total/null adhesion. Some images of the diamond-silicon interface taken by the
diamond side are shown too. The totality of the experiments support the theoretical
predictions, confirming the well-foundness of our analysis of the phenomena involved
in silicon-diamond laser bonding.
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Figure 3.6: (left) Position of the calculated thresholds for carbon and silicon melting,
compared with the ranges of energy density obtained in the experiments from SOD1
to SOD12, along with the indication of the partial (P) or total (T) adhesion obtained.
(right) details of the SOD6 and SOD12 interfaces, observed from the diamond side.

The other parameter on which our model can make predictions is the mini-
mum thickness of the damaged layer in silicon, exactly correspondent to the carbon
melting-threshold. Since the model doesn’t make predictions for energy densities
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much above the threshold and for the laser pulses following the first ones, it is only
expectable that this value is lower than all the measured interface layer thicknesses.
For comparison, the model gives a minimum thickness of about 50 nm, while all
measurements obtained with TEM analysis, Raman and FTIR spectroscopy give
results mainly between 85 and 150 nm, fairly in agreement with the analysis.

Although shorter pulse durations and wavelengths would be desirable in order
to obtain thinner diamond-silicon interfaces, the analysis shows that it is possible
to fully exploit the potentialities of the present laser source by lowering the overall
pulse energy E0 and decreasing the pitch R between welded points, in order to
get near the energy density threshold and to reduce the spread in energy density.
To this aim, a fully automated irradiation system is presently under production,
which should allow to irradiate the surface almost continuously with a micrometric
resolution. In this way, we expect to greatly increase the uniformity of the interface
thickness and to reduce it, on the average, of a factor two.



Chapter 4

Pre-bonding silicon-diamond

elastic contact

In chapter 2 we observed that, in silicon-on-diamond prepared by pulsed laser irradi-
ation, the quality of the interface can deteriorate for several reasons: the adherence
of silicon and diamond can be defective on surfaces several tens or hundreds microns
wide, but also in macroscopically adherent samples lenticular voids of some tens of
nanometers in diameter have been evidenced by transmission electron microscopy.
In chapter 3 I showed how the irradiation conditions strongly influences the post-
processing adhesion on the lengthscale of the beam-intensity variations. Uni-axial
pre-bonding compression is also important to define conditions of adhesion of the
two materials for several reasons. In order to obtain adhesion it is not enough to
reach a sufficient temperature of the melted silicon, because it is also essential that
diamond could be heated by contact with the fused phase of silicon. This is the only
way for melting carbon and forming a silicon-carbon interface. As a consequence, a
close contact between melted silicon and diamond surface before irradiation has to
be assured.

Now, it is well known that the effective contact even between well polished
surfaces is limited, in absence of a strong compressive stress of the two surfaces, only
to a very small area. Uni-axial compression can assist post-irradiation adhesion of
silicon and diamond in two ways.

First, the rough diamond surface can be plunged in the melted layer in a way
to put the whole surface of diamond in contact with liquid silicon. As a matter
of fact, laser assisted direct imprint technique [65] allows in this way to emboss
a transparent mould into an eccimer laser-melted silicon layer, in order to obtain
direct imprinting of nanostructures in silicon. This technique requires that silicon
remains in the melted phase for the whole time necessary for the “plunging” of the

71
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diamond profile. This can be evaluated as the time necessary to relax the stress of
a layer which is compressed of an amount that equals about the surfaces roughness.
This time is of the order of the layer thickness divided by the velocity of sound.
Now, if diamond peak-valley roughness is about 20 nm, and the uni-axial stress
about 100 MPa, the layer thickness to be relaxed in silicon is about 20 µm (bulk
modulus is about 100 GPa) thus the time required for plunging is more than 2 ns
(sound velocity in silicon is about 8400 m/s), one order of magnitude exceeding the
expected silicon-melting time with a tipical picosecond laser pulse (see chapter 3).

There is another way for uni-axial compression to enhance post process ad-
hesion, that is to put in contact before laser irradiation as much of the surfaces as
possible, by elastic deformation of the solid silicon and diamond profiles.

Pre-bonding compression of silicon and diamond samples can be related also
to the formation of the nanometric lenticular voids in the silicon-diamond interface
observed by TEM. Since the lifetime of the melted layer is too short to plunge the
diamond profile in the silicon melt, it is very likely that the voids existing between
silicon and diamond before irradiation remains substantially unchanged in volume
during the bonding process. Thus the observed voids in the interface are possibly
related, at least in principle, with pre-bonding compression.

From the considerations above, the study of the pre-bonding adhesion can-
not set aside the detailed observation of the surfaces profile. Obviously, contact
between two rough solid surfaces with a given profile can be defined only in depen-
dence on the resolution with which the profile has been observed. An apparently
smooth surface in the micrometric range could be very rough at the atomic scale,
so that the effective atomic rate of contact is quite small. For the observation of
the diamond and silicon samples at our disposition, we employed a white-light inter-
ferometric profilometer operating with a phase shift method, which is able to draw
two-dimensional maps with a sub-micrometric lateral and a nanometric vertical res-
olution. For the application to whom we are interested in, which involve, at least in
a first stage of the research, a not too small integration scale of the electronics, this
resolution seems to be sufficient.

For our bonding experiments, we dispose of three different batches of diamond
samples, on which I performed a theoretical analysis of the deformation of the sur-
faces under a given uni-axial pressure. By this analysis, an answer to the following
kind of questions can be obtained:

• for given surfaces profiles, how much do we have to press together a diamond
and a silicon sample in order to obtain, at the sub-micrometric scale, pre-
bonding adhesionon on, say, 95% of the area of the whole surface?

• for given surface profiles and at a given pressure, which is the overall volume
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of the voids remaining between silicon and diamond?

The problem of determining the rate of effective contact between two rough surfaces
under uni-axial stress is addressed in contact mechanics, with important implica-
tions in many fields (contact resistivity, heat transfer and slide friction between
solids in close contact), depend on the answear to the questions mentioned above,
which has also a major influence on the adhesive force between two solid blocks in
direct contact. The problem was treated first by Hertz in 1882[66] for two curved
surfaces of different radius. The names of Bowden and Tabor [67] and Archard [68]
are linked to the problem of contact between rough surfaces and to the first clarifi-
cation of the Coulomb empiric law of the proportionality between normal stress and
sliding friction forces, at the middle of XX century. The field has been in constant
development till the last decade, with the fundamental works of Persson [36, 69, 70],
facing the problem of how the true contact surface in rough materials is generally
proportional to the normal force, while the parameters of individual micro-contacts
(i.e. pressure, size of the micro-contact) are only weakly dependent upon the load.
Persson’s theory, at present the most advanced theoretical investigation in the field,
aspires to describe contact conditions under the whole range of uni-axial stresses,
from zero to infinity. Nevertheless, letting apart what I find somewhat ambiguous
in its mathematical framework (see appendix A), the theory limits itself, for its very
nature, to a statistical description of the contact mechanics between rough surfaces.
On the contrary, I developed a theory of contact between two surfaces with a given
profile which has a more limited field of application, being valid only in the high
pressures, almost-complete contact limit, but gives detailed information about where
and how large are the non-contact areas.

In order to compare the predictions of the model with the experiments, we are
implementing a set-up for the measurement of the shift of the silicon raman line at
521 cm−1 due to the distortion of the crystal lattice at the silicon-diamond contact
points. At the moment, preliminary results are available which are comparable with
the answer to another question addressable by the model:

• for given surface profiles and at a given pressure, which is the local pressure
applied, point by point, on silicon at the interface?

In section 4.1 data collection on the sample profilometry is presented. In
section 4.2 a theory of the elastic deformation of rough solids in close contact is
developed for the almost-complete contact case we are interested in. In section 4.3
predictions are made on the basis of the experimental profiles about contact ratios,
overall void volume and local stress at the silicon-diamond interface, for the three
batches of samples under consideration. In section 4.4 the Raman measurement of
the local stress is described and the available preliminary results are presented and
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compared with the theory. Finally, in appendix A, a detailed description of Persson’s
contact theory is reported, pointing out what I find to be some ambiguous and weak
aspects of the theory, with some suggestions on how overcome the difficulties of the
theory itself. A comparison with the results of the theory presented in section 4.2
is also presented.

4.1 Experimental diamond and silicon profiles

Diamond Detectors LTD, the producer of the diamond samples employed in the
context of the RAPSODIA experiment, provided us with three batches of diamond
samples. The first one was composed by diamond declared as “detector grade”, for
which no information about roughness was provided by the producer. The second,
also declared as detector grade, was guaranteed with a roughness (average absolute
deviation from the mean height) not exceeding 5 nm. The third was optical grade
and was declared with a roughness less than 2 nm and furnished with detailed two-
dimensional maps obtained with an optical profilometer VEECO NT9100. To the
aim of studying the deformation of the surfaces under uniaxial stress, the information
on the roughness alone is not of much significance, because, as it shall be proved
in the next sections, not only the depth or the height of the asperities, but also
their distribution in the plane is essential to define the rate of adherence of the two
surfaces. For this reason, since the beginning, we have employed a two-dimensional
optical profilometer in order to study and compare the surfaces at our disposition.
We employed a Zygo New View 6000 Vigo white light interferometer operating on
the basis of the phase-shift principle. A broad-band radiation is split in a way that
the light diffused by the sample can interfere with that reflected by a reference
mirror with an approximately equal optical path difference. The relative position of
the sample is varied with a piezoelectric actuator at a constant rate. The intensity,
recorded for each pixel by a CCD camera, varies with time, following a system of
interference fringes modulated by an envelope function depending on the coherence
distance of the light source (see Fig.4.1). The maximum of the envelope function,
detected by simple filtering techniques, corresponds to the instant when the optical
path difference between the two interfering radiations is zero. For each pixel, such
maximum is reached at different times tmax, depending on the height of the diffusing
point. Comparing the map tmax(x, y) with those of same reference surfaces the
instrument can be calibrated in a way that a vertical resolution of the order of one
nanometer or better can be achieved.

For the present study, we compared 640×480 pixel images of samples obtained
with the same field of observation of 351×264 µm2, corresponding to a horizontal
resolution of about 0.5 µm, while the vertical resolution is evaluated to be about
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20 1 3-1nm -2-3

Figure 4.1: (left) interference fringes in white light, the maximum contrast is reached
when the difference between the optical path of the diffused light and of the refer-
ence beam are equal. (right) profilometry of a typical silicon sample for electronic
applications, used in our bonding experiments. The field is 696 ×523 µm2 wide.

0.6 nm. Six typical images from the three batches of diamond samples are shown in
figure 4.2, from both sides of the diamond plate. The two sides are not equivalent,
because during diamond growth a selective growth of the grains takes place, in a
way that the size of the grains on the growth side is always larger than that on the
substrate size. While a marked improvement in smoothness is evident passing from
the first to the second batch of the “detector” grade samples, the “optical grade”
one, although declared with a roughness not exceeding 2 nm, does not seem to be
better than the first one. It is evident that a study of the deformation of the surfaces
under given uni-axial stress cannot be based only on roughness measurements, but
has to be founded on a detailed knowledge of the samples profilometry.

Also the silicon surface profile was considered in this study: figure 4.1 shows a
typical 351×264 µm2image of a detector grade silicon sample. The different vertical
scale of Fig. 4.1 and 4.2 puts in evidence how the major role is played by diamond
profilometry, as far as prevision on silicon-diamond contact is concerned.

4.2 Contact mechanics at high pressure

We want to study the contact between a diamond and a silicon surface under uni-
axial external pressure. Since the elastic constants of diamond are about one order
of magnitude higher than those of silicon, while the inverse relation holds between
the height of the asperities of the two materials (see figs. 4.1 and 4.2), it seems
quite reasonable to study the contact between a perfectly rigid, rough surface and
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Figure 4.2: Images of the two sides (up: growth side, down: substrate side) of three
samples from the three batches furnished by Diamond Detectors.

an elastic flat one. In this we are confirmed by the generally adopted approximation
of contact theory (see ref. [69]), that is, if two rough surfaces, whose profiles are
h1(x, y) and h2(x, y), with elastic moduli J1 and J2, are put in close contact, the
problem is studied as one of a rigid surface with a profile h = h2−h1 in close contact
with a plane elastic surfaces whose elastic modulus is J = 1/(1/J1 + 1/J2).

We will find the solution to the following problem (see also figure 4.3 for
explanation):

• A perfectly rigid surface with a given profile h (x, y) is pressed onto a cubic
crystal layer with thickness L → ∞ and elastic constants C11, C12 and C44.
We want to calculate the pressure which is necessary for the attainment of
a complete adherence and the local stress at the interface between the two
surfaces.

The problem is indetermined until we fix some condition on the forces between the
adherent points of the two surfaces. In practice, two cases can be treated in detail
with a reasonable mathematic effort:

1. No friction: on the whole surface, the stress in the x and y direction is zero.

2. Vertical displacement: on the whole surface, the lateral displacement of each
point is zero.
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Once solved the problem in case of full contact between the two surfaces, we will
suppose to slight diminish the uni-axial superimposed stress and we will determine
which parts of the two surfaces will lose their contact.

u x,y z( , )=

u x,y( ,0)=

u x,y h x,y B( ,0) =   ( )+ 0

u x,y z( , )

z

x

h x,y( )

Figure 4.3: Scheme of the general problem of the adhesion of two materials, the
first is elastic, infinitely extended in the z direction, with a flat boundary at z = 0,
the second is perfectly rigid, with a profile described by a function h(x, y), and is
pressed onto the flat surface of the elastic media.

First we solve the simplified problem of a sinusoidal profile h (x, y) = ℜ (h0 exp (ikx)),
then we extend the solution to the general case by fourier transformation. Let be v,
w and u the three components of the displacement vector in the x, y and z direction,
respectively. Since the system has a solution independent of the coordinate y and
with a null component in the y direction, it is described by the two equations:

C11uzz + C44uxx + (C12 + C44) vxz = 0,

C11vzz + C44vxx + (C12 + C44)uxz = 0. (4.1)

Let be u = ℜû and v = ℜv̂, with
û (x, z) = U exp (ikx− ρz) +B0 + bz, and v̂ (x, z) = V exp (ikx− ρz) . (4.2)

In these hypotheses, equations 4.1 imply:
(
ρ2C11 − k2C44

)
U − ikρ (C12 + C44) V = 0,

−ikρ (C12 + C44)U +
(
ρ2C44 − k2C11

)
V = 0. (4.3)
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The system 4.3 admits non-trivial solutions only if

ρ4 + 2

(
C12

C11

+
C2

12 − C2
11

2C11C44

)
k2ρ2 + k4 = 0. (4.4)

Equation 4.4 has four solutions, two of which have negative real part and have no
physical significance, implying divergent displacements for z → ∞. The two other
solutions have the form ρ = ρ1,2 = kα1,2, with

α1,2 =

√√√√C12

C11

+
C2

12 − C2
11

2C11C44

±

√(
C12

C11

+
C2

12 − C2
11

2C11C44

)2

− 1. (4.5)

The most general forms of the functions û and v̂ are then

û =
(
U1e

−ρ1z + U2e
−ρ2z

)
eikz +B0 + bz,

v̂ =
(
V1e

−ρ1z + V2e
−ρ2z

)
eikz, (4.6)

with Vi = AiUi ≡ ρ2iC11−k2C44

ikρi(C12+C44)
Ui.

A complete adherence of the rigid and the elastic media is attained if the elastic
surface follows exactly the profile of the rigid one, as in

û (x, 0) = (U1 + U2) exp (ikx) +B0 = h0 exp (ikx) +B0, (4.7)

where the term B0 summed to h(x) takes into account the vertical displacement
necessary to adequately compress the elastic media. Condition 4.7 is not sufficient
to determine the solution of the problem, it is also necessary to fix a condition
on the horizontal displacement v̂(x, 0). As mentioned above, the two alternatives
of zero horizontal displacement or zero horizontal stress have particularly simple
mathematical expressions. The first is simply

V1 + V2 = 0, that is A1U1 + A2U2 = 0, (4.8)

the second implies vanishing of the term C44

(
∂v̂
∂z

(x, 0) + ∂û
∂z

(x, 0)
)
, that means

ρ1V1+ρ2V2−ikU1−ikU2 = 0, that is (ρ1A1 − ik)U1+(ρ2A2 − ik)U2 = 0. (4.9)

The real case, due to the static friction forces between the two surfaces, is probably
an itermediate solution between the two extreme cases.

The solutions in case of vertical displacement are easily found:

û = h0

(
A2

A2 − A1
e−ρ1z − A1

A2 − A1
e−ρ2z

)
eikx +B0 + bz,

v̂ = h0
A1A2

A2 − A1

(
e−ρ1z − e−ρ2z

)
eikx. (4.10)
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The proportionality constant b is found observing that the vertical stress at very
long distances from the surface (z → ∞) equals the superimposed external pressure
P∞, thus

P (x,∞) = −C11
∂u

∂z
(x,∞)− C12

∂v

∂z
(x,∞) = −C11b = P∞. that is b = −P∞

C11

.

(4.11)
At the interface between the two media, we have

P (x, 0) = −C11
∂u

∂z
(x, 0)−C12

∂v

∂z
(x, 0) = ℜ

[
C11h0

ρ1A2 − ρ2A1

A2 −A1
eikx
]
+P∞. (4.12)

If we can neglect any possible attractive or repulsive force between the two surfaces,
a complete adherence will imply a non negative value of P (x, 0) everywere, that is
P∞ ≥ P0, with (see also Eq.4.5)

P0 = C11 |h0|
∣∣∣∣
ρ1A2 − ρ2A1

A2 −A1

∣∣∣∣ = |h0| |k|
α1 + α2

1 + α1α2
C11

C44

≡ |h0| |k| Jvert. disp.. (4.13)

Now, it easily verified that α1α2 = 1 and α1 + α2 =

√
2
(

C2
11−C2

12

2C11C44
− C12

C11
+ 1
)
, thus

Jvert. disp. =
C11C44

C11 + C44

√
2

(
C2

11 − C2
12

2C11C44
− C12

C11
+ 1

)
. (4.14)

In the case of silicon, Jvert. disp. is about 93 GPa, while for diamond its value is 713
GPa. As anticipated in chapter 2, the simple dimensional relation 2.3, P ≈ J h

l
,

where h is the typical height and l the typical distance between the peaks of the
distribution, catches the essence of the physics involved in the phenomenon.

If we assume no friction and no horizontal stress occurring, a similar, even if
more involuted algebra, gives a result analogous to Eq. 4.14, but with a modulus
Jno fric. which equals

Jno fric. =

C2
11−C2

12

C11√
2
(

C2
11−C2

12

2C11C44
− C12

C11
+ 1
) , (4.15)

that equals 82 and 559 GPa for silicon and diamond, respectively.

Now, it is possible to solve the general problem, with a generic shape H(x, y)
of the rigid surface. Developing H(x, y) in its Fourier components, we have

H (x, y) =
1

4π2

∫ 2π

0

dφ

∫ ∞

0

kdkh (k, φ) exp (ik~uφ · ~r) , (4.16)
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with ~r = x~ux + y~uy, r =
√
x2 + y2 and ~uφ = ~ux cosφ + ~u sinφ. The reality of H

implies h(r, φ) = h∗(r, φ + π). If we suppose, for the displacement field ~s(x, y, z), a
solution of type

~s (x, y, z) =
1

4π2

∫ 2π

0

dφ

∫ ∞

0

kdk [uk,φ (z) ~uz + vk,φ (z) ~uφ] exp (ik~uφ · ~r)+(B0 + bz) ~uz,

(4.17)
we find uk,φ(z)e

ik~uφ·~r and vk,φ(z)e
ik~uφ·~r to be bounded to h(k, φ), for every direction

and spatial frequency, in the same way that û and v̂ were bounded to h0 in the
simple sinusoidal case. In this case, the vertical stress at the height z = 0 depends
on the applied external pressure P∞ in the following way:

P (x, y, 0) = π (x, y)J + P∞ with

π (x, y) =
1

4π2

∫ 2π

0

dφ

∫ ∞

0

kdk · h (k, φ) eik~uφ·~r

= 2π

∫∫ ∞

−∞

dµdν
√
µ2 + ν2h (µ, ν) e2πi(µx+νy), (4.18)

where J can be read Jvert. disp. or Jno fric. according to the boundary conditions on
the plane z = 0. If πm is the minimum of the function π(x, y), a complete adherence
is guaranteed if P∞ ≥ −πmJ .

If the externally superimposed pressure is not enough to obtain complete ad-
herence, one can evaluate the detaching area as the area AΩ of the region Ω over
which π(x, y)J + P∞ < 0. Obviously, since π(x, y) assumes both negative and pos-
itive values (and has, on the average, a null value ) this evaluation is exceedingly
rough as P∞ → 0. In fact, in this case π(x, y)J + P∞ < 0 for AΩ ≈ 0.5Aoverall,
while the real rate of contact should tend to zero as P∞ → 0. Nevertheless, for
P∞ / −πmJ , the ratio AΩ/Aoverall should approximate the effective detaching ratio,
which in no case should exceed the double of AΩ/Aoverall.

Having solved the problem of the determination of the pressure at the interface
and of the detaching ratio for a given external pressure, we can face the determi-
nation of the overall volume of the voids between the two surfaces. We consider
the particular case of the contact between a plane and an indented smooth surface.
If a sufficient pressure P∞ is applied, adhesion is complete and the pressure at the
bottom of the dent is positive or null. If the pressure is too small, the elastic media
come up until it reach a height hP∞

. Now, if the profile of the surface were hP∞
,

the pressure on the bottom of the dent, with a pressure P∞, would be zero, so that
the difference hP∞

− h is likely to be proportional to the difference P∞ + π(x, y)J
between the applied pressure and the minimum pressure necessary to the adhesion,
so that

π (x, y)J + P∞

π (x, y)J
=
hP∞

(x, y)− h (x, y)

h (x, y)
. (4.19)
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In the practical cases the difference hP∞
(x, y)−h (x, y) should not be compared with

the absolute value h (x, y), but to the heigh referred to a mean value around the in-
dentation. This can be done by Fourier-transforming the function h (x, y), applying
a filter which smooths the shape of the indentation and finally anti-transforming,
to obtain hsmooth. At this point the depth of the voids left between the two surfaces
before irradiation, at every point (x, y), is given by:

∆h (x, y) = χΩ (x, y) [hP∞
(x, y)− h (x, y)] =

χΩ (x, y) [hsmooth (x, y)− h (x, y)]
π (x, y)J + P∞

π (x, y)J
, (4.20)

where χΩ is the characteristic function of the set Ω which, as just said above, is the
region over which P∞ + π(x, y)J is negative.

In conclusion, the three problems of the calculation of the pressure at the
interface of the two surfaces, of the detaching area and of the voids depth is reduced
to the calculation of the function π(x, y) in Eq.4.18, given the experimental profile
of the surface h(x, y).

In our case, we dispose of matrices ∆h × Hij, with 1 ≤ i ≤ N and 1 ≤
j ≤ M , representing a sampling of the surface on the two-dimensional lattice with
elementary rectangular cells of dimensions Lx/N and Ly/M .

Now, if hrs =
∑N−1

i=0

∑M−1
j=0 Hij exp

[
−2πî

(
ir
N
+ js

M

)]
, is the discrete Fourier

transform of the matrix Hij, it follows:

π (x, y) = π (iLx/N, jLy/N) = 2π
1

NM

∆h√
LxLy

ηij with

ηij =
N−1∑

r=0

M−1∑

s=0

√
r2

Lx/Ly

+
s2

Ly/Lx

hrs exp

[
−2πî

(
ir

N
+
js

M

)]
. (4.21)

Equation 4.21 permits to calculate the value of the function π(x, y) with the hori-
zontal resolution characteristic of the profilometer.

4.3 Contact mechanics of the diamond and sili-

con samples

The three batches of diamond samples which were purchased for our bonding exper-
iments were characterized with the method which has been described in the previous
section.
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In figure 4.4 the map of a sample of the first batch is shown, along with three
maps where the non contact areas of the sample are drawn in black, identified as
those giving a negative pressure P (x, y, 0) in Eq. 4.18, for three values of the external
uni-axial stress P∞: 80, 160 and 240 MPa (in our experiments we have applied 80
MPa). The value adopted for the modulus J was J = 1/( 1

Jdiamond
+ 1

Jsilicon
), with

Jsilicon,diamond taken as in the vertical displacement case. For each sample of the three
batches, the non-contact rate was calculated for different values of the pressure. In
figure 4.5 (left) the detachment rate of six samples of the third batch is shown as a
function of pressure (in unit J), both for the front and for the back side of the sample.
The better behavior of the growth side of each sample is evident. In figure 4.5 (right)
it is also shown the mean value of the detachment rate for the three batches as a
function of pressure. It result that, in spite of its nominally lower roughness index,
the third batch has a performance comparable with the first one. Moreover, a
feature, not discernable from the simple knowledge of the roughness index, clearly
emerges from inspection of the figure: even if at relatively low pressures the roughest
first batch performs quite badly, its adhesion to silicon is comparatively better than
that of the second one at high pressures, because polishing creates scratches with a
high depth-to-width ratio, which enhance the high spatial frequency components of
the Fourier transform of h(x, y) and, consequently, the values of π(x, y).

In order to calculate the depth of the possible voids left in the interface as
an effect of a non perfect pre-adhesion of the two surfaces, I evaluated, for a sam-
ple of each of the three batches under consideration, the function ∆ (x, y) and its
distribution Φ (d), defined as

Φ (d) =
1

A

∫

A

δ (∆ (x, y)− d) dxdy. (4.22)

In figure 4.6 the three distributions are shown. It is quite evident that only a very
small fraction of the overall area exhibits a voids depth greater than 1 or 2 nm,
that is, the voids ubiquitously found in all the TEM images, extending to a depth
of several nanometers, are certainly due to other causes than lack of pre-bonding
contact.

The last issue addressed by the theory is the local stress distribution at the
silicon-diamond interface. Since the local stress is described by the function P (x, y, 0) =
Jπ(x, y) + P∞ of equation 4.18, it is very convenient to plot the distribution Φ(p)
of the function π(x, y), defined as in equation 4.22, but with the function π(x, y)
instead of ∆(x, y). The distribution of the local stresses, for values of the uni-axial
pressure sufficiently high, is obtained, in unit of the modulus J , simply by transla-
tion on the right of the distribution, of an amount P∞/J . In figure 4.7 the map of
the function π(x, y) is drawn, for the same sample of figure 4.4. On the right, the
plot of the distribution Φ(p) is given.
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4.4 Measurement of the local pressure

It is known from measurements on silicon crystals under uni-axial tension that
the silicon Raman peak at 521 cm−1 is subject to a shift toward lower or higher
wavenumbers, according to the positive or negative sign of the stress tensor com-
ponent, of an amount proportional to the stress with a proportionality constant of
0.0023 cm−1(MPa)−1 [71, 72].

This fact suggests a method to measure the local stress of the silicon plate
when pressed onto the diamond sample and the quartz window. If a high-spatial
and spectral resolution micro-Raman measurement is performed through the quartz
window and the diamond, it should be possible to measure the local uni-axial stress
and, within the spectral resolution, to detect the non contact areas. A set up for a
micrometric, computer assisted xy movement of the samples and a new irradiation
chamber with possibility of pneumatic application of high pressures without risk of
horizontal displacement are presently under study. Once such an apparatus will be
implemented, the Raman apparatus available within our collaboration will allow us
both to perform local stress measurements point by point as function of the uni-axial
stress, and to draw maps of the local stress with a resolution of a few micrometers.
At present, we have performed a preliminary study to assess the feasibility of the
measurement. We employed a sample of the second batch, and we measured the
position of the silicon Raman line in 14 points of the sample before and after the
compression. Unfortunately, during the compression of the spring it was impossible
to avoid a slight rotation of the irradiation chamber, which made it impossible to
measure the stress exactly in the same points (within a 3-5 µm of resolution) after
the compression, so that the two distributions has to be considered as independent.

The results of the measurements are represented if figure 4.8 (left), both be-
fore and after compression. Two features of the local pressure distribution are
comparable with the theory: the average value is equal to the external super-
imposed uni-axial compression, while the standard deviation, if the non-contact
area is relatively low, should be equal to the standard deviation of the distribu-
tion Φ(p) (see section 4.3) times the value of the modulus J. The distribution Φ(p)
has been evaluated by the analysis of four different images of the sample under
consideration, in different regions of the sample. The resulting mean distribu-
tion of the local pressure is shown in figure 4.8 (right). It has a standard devia-
tion of 0.0010, which corresponds, with a value of J conventionally assumed to be

J ≡
√

1/
(
1/JSi

vert. disp. + 1/vert. disp.D
)
1/
(
1/JSi

no fric. + 1/no fric.D
)
= 77 GPa, to

about 77 MPa.

Now it is possible to compare the information from the Raman measurement
with that deduced from the profilometry. The difference in the mean position of
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the Raman line after and before compression, divided by the constant k =0.0023
cm−1(MPa)−1, gives a pressure of 112 MPa, with a standard error sp evaluated by the

standard deviations s1 and s2 of the two distributions sp = k
√

s21+s22
N−1

=35 MPa. This

value is compatible with the known value of the external uni-axial stress of about 80
MPa. If one considers the distribution of the peak positions after the compression
as a convolution of the original one (before compression) and of the local pressure
distribution, it results that the standard deviation of the local pressure distribution
can be evaluated as ǫp = k

√
s22 − s21=112 MPa, the standard error on this value, this

time, is given by sǫ = k
√

s42+s41
(N−1)(s22−s21)

=36 MPa. Also this value is fairly compatible

with the calculated one of about 77 MPa.

Although it is worth to perform further experiments to assess the foundation
of the theory, the present results suggest that its employment in the evaluation
of the diamond profiles and in the choice of the uni-axial pressure to be exerted
is well motivated at least at a preliminary level. The instruments offered by the
theory could be particularly useful whenever a scale-up of the experimental set-up
will impose stringent limits to the exerted local pressure. In this case, an acceptable
contact ratio will be reached only if the surface profile of the diamond samples will
be sufficiently smooth, and in this case the numerical analysis of the surfaces will
be of crucial importance.
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Figure 4.4: Profilometry of a sample of the first batch (field sizes 351×264 µm2)
along with the detachment areas for several values of the uniaxial pressure P∞. The
Fourier analysis of the surface has been performed by multiplying the height map
by the square of a normalized sinc function, in order to minimize spurious effects
on the boundaries. In this way, the detachment areas result overestimated at the
center and undersestimated in the external frame of the image. The detachment
ratio at each pressure is indicated in percent.
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Figure 4.5: (left) Non-contact rate as a function of uni-axial stress (in unit of the
modulus J) for six samples of the third batch, both for the growth side (in black)
and for the substrate side (in red). (right) Average non-contact rate for the three
batches employed in the bonding experiments.
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Figure 4.6: Distribution of the voids depth for three samples of the three batches at
our disposition. In the inset, the same distribution on a larger scale.
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Figure 4.7: (left) Map of the function π(x, y) for the sample whose profilometry is
shown in figure 4.4. (right) Distribution of the values of π(x, y).
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used in the experiment. The asymmetry in the distribution is due to the presence
of scratches with high depth-to-width ratio.
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Chapter 5

Why diamond as a photonic

devices substrate

The last two decades have seen increasing effort in the attempt to control and
manipulate the interaction of atomic systems at the quantum level, to the aim of
disclosing a viable way toward quantum computation. Several solutions for storage,
transport and elaboration of quantum information has been proposed: atoms in an
ion trap[73], or atom-like systems like point-defects in solids can perform pretty well,
in principle, for storing and computing quantum information, but in order to en-
sure transport without degradation photons are a better choice, since photon-matter
and (even more) photon-photon interaction can be easily kept under a reasonable
threshold. For the same reason, photons perform very well in storage of quantum
information, but conventional optical non-linear mediums don’t assure a photon-
photon coupling strong enough for quantum elaboration purposes. Miniaturization
and scalability are other requirements that should be satisfied in future quantum-
computer architectures, which seems to limit the “optical breadboard”-approach to
photon technology[74, 75], as well as the conventional quantum cavity[76] experi-
ments, to no more than the proof of concept stage of the research. Even if other
substrates are currently under study, like superconducting media[77] and optical
lattices [78], and even if efforts are made to conceive integration techniques avoiding
obstacle toward scalability in systems which can be manipulated at the quantum
level at the small scale, e.g. for ion-trap architectures[79], the envision of some
kind of solid state quantum computer seems highly motivated. These could employ
point-like centers as quantum dots[80, 81] or lattice defects[82] in semiconductors.

In this context, the concept of quantum computation by interaction of photons
and point-like defect in diamond is attracting a growing interest[83, 84], for a number
of reasons: The null nuclear spin of the C12 isotope makes very long the coherence
time of the spin state of several among the many tens of its color centers, even at

91
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room temperature[85, 86]. That is, quantum information can be stored for relatively
long times in defect centers in diamond, in the form of quantum superposition of spin
states. Some of the defect centers in diamond exhibit a very high dipole momentum,
ensuring a strong coupling with photons and ultimately fast reading-writing and
commuting times[87, 88, 89, 90]. Last, but not least, high refractive index and
broad transparency of diamond makes it operative in photonic transport from far
infrared to deep ultraviolet, and currently available micro-fabrication techniques
makes reachable the integration of photonic devices into diamond[91, 92, 93, 94, 95,
96, 97, 98].

The experimental effort of our group was addressed toward the modification
of the optical property of diamond by means of micro-beam ion implantation and
the fabrication of buried micro-written waveguides. This chapter is intended to ex-
plain how diamond can fulfill the demands for a solid state substrate for quantum
computation and how our research can represent a significant step toward the en-
gineering of diamond bulk for photonic applications. In the first section, some of
the main concepts of quantum computation are resumed. My principal reference in
this section is the classical text of Nielsen and Chuang[99]. In the second section,
physical implementation of quantum gates for a Λ atomic system in a quantum cav-
ity is discussed, with a focus on the employment strategies of diamond in practical
communication and elaboration protocols. The third section is devoted to underline
the demand of a reliable refraction index modulation technique, in order to dispose
of a tool for the tailoring of photonic devices.

5.1 Quantum information and quantum compu-

tation

Quantum information and quantum computation differ very basically from the cor-
respondent “classical” concepts. Classical information can be ultimately encoded in
the form of a string of bits, that is a finite, ordered set of two-valued variables. Quite
differently, one “bit” of quantum information (quantum bit, qubit) is a normalized
vector of a two-dimensional Hilbert space on the complex field of kind

|q〉 = a0|0〉+ a1|1〉 =
1∑

k=0

ak|k〉, (5.1)

where the pair {|0〉, |1〉} is usually referred to as the “computational basis”. More-
over a string of N qubits “lives” in a 2N -dimensional Hilbert space given by the
tensor product of the N 2-dimensional spaces, and cannot be generally factorized in
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the form |q1〉|q2〉 . . . |qN 〉, being representable as

|ψ〉 =
1∑

k1...kN=0

ψk1...kN |k1〉 . . . |kN〉. (5.2)

where {|k1〉 . . . |kN〉}k1,...,kN=0,1 is the computational basis in the 2N Hilbert space.
Also quantum computation rests on principles very different from classical ones.
Classical computation, applied to a string of bits, can be reduced to the applica-
tion of a suitable truth-table to the input string, in order to obtain the desired
output. Quantum computation operates on the input vector performing a unitary
transformation, which corresponds to the dynamics determined by some kind of
hamiltonian interaction between the qubits themselves or between them and rest of
the computer. As a very noticeable example of unitary transformation, employed as
a sort of “subroutine” in many important quantum algorithms, I mention here the
quantum Fourier transform, which performs the discrete Fourier transform of the
coefficients of a given input vector along the computational basis |0 . . . 00〉, |0 . . . 01〉
, |0 . . . 10〉 . . . |1 . . . 11〉. If we indicate with k ≡ k1 . . . kN (with ki = 0 or 1)the
number k12

N−1 + · · ·+ kN2
0, the quantum Fourier transform operates in this way:

2N−1∑

j=0

xj |j〉
QFT
−→

2N−1∑

k=0

yk|k〉 with yk ≡
1√
2N

2N−1∑

j=0

xje
2πîjk

2N . (5.3)

One of the most striking differences between classical an quantum computa-
tion is that even if the input vector is prepared as a product of |0〉 and |1〉 kets of
kind |kI1〉 . . . |kIN〉, a measurement on the output vector can give generally different
strings of kind kO1 k

O
2 . . . k

O
N (kOi = 0 or 1), with a probability |ψkO1 ...kON

|2 (see Eq.5.2)
depending on the unitary transformation performed. For instance, the application
of the quantum Fourier transform doesn’t allow direct evaluation of the discrete
Fourier transform itself; at most, with a high number of calculation iterations, one
can hope to measure the square modulus of its elements, which is the probabilities
of occurrence of any given kO1 k

O
2 . . . k

O
N . Practical employment of a quantistic algo-

rithm requires one to be more subtle. The art of quantum computing is to build
a unitary operation which performs, at least on a specific subset of possible base
vectors, a transformation, in a way that for any allowed input of kind |kI1〉 . . . |kIN〉,
all the probabilities |ψkO1 ...kON

|2 are zero except one, so that the measurement output
is strictly deterministic.

The fascination of quantum computing depend on the fact that some problems
whose solution is considerably demanding, in terms of computing time, in classical
computation, would be exponentially faster with a quantum computer. If the unitary
operator resolving one of this problems is implemented by subsequent application
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of operations involving only one or two qubits, the number of the operations grows
only polynomially with the length of the input string, while the number of logic
mono or binary operations of a classical computer to perform the same task would
grow exponentially.

The next three subsections shows how it is possible to build the quantum
Fourier transform with 1 and 2 qubit gates, and to employ it to perform a task
of considerable importance: the factorization of an integer number, a problem of
great practical relevance which is known to be of exponential complexity for the
best known classical algorithm.

5.1.1 Quantum Fourier Transform

It is possible to perform the quantum Fourier Transform (QFT) of a given state
vector disposing of two kind of unitary transformations operating only on 1 and
2 qubits respectively: the Hadamard gate, which act over a 1-qubit state in the
following way:

H =
1√
2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|) , (5.4)

and a controlled-Rk phase shift, which acts over a 2-qubits state according to

cRk = |0〉〈0| ⊗ I + |1〉〈1| ⊗
(
|0〉〈0|+ e

2πî

2k |1〉〈1|
)
. (5.5)

Eq.5.5 is an example of controlled-U operator, which acts over the tensor product
of a 1-bit and an N -bit space, in a way to leave unaltered the vector of the N -bit
space if the first qubit is |0〉, and to apply U if it is |1〉:

cU = |0〉〈0| ⊗ I + |1〉〈1| ⊗ U. (5.6)

A useful graphical representation of the H and cU gates is found in figure 5.1,
where horizontal lines represent the flux of quantum information, each line labeling
a specific q-bit of the computational basis. Figure 5.2 represents the diagram of

Figure 5.1: Graphical representation of the Hadamard gate and of the cUN gate.
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an operator which is able to perform a QFT. In the diagram, we assume to have
an input given by the tensor product of single qubit states, |j1〉|j2〉 . . . |jN 〉, being
the general case obtained with a linear combination of such a kind of vectors. The
swap-block perform a simple inverse re-ordering of the indexes. Each H gate, applied
to the nth bit, transforms it according to

|jn〉 −→
1√
2

(
|0〉+ eπjn î|1〉

)
, (5.7)

while the succession of controlled transformations gives a final result:

cRN−n (. . . cR3 (cR2 (H|jn〉) |jn+1〉) . . . |jN〉) =
1√
2

(
|0〉+ e2πî0.jnjn+1...jN |1〉

)
|jn+1〉 . . . |jN〉, (5.8)

where we have defined 0.j1j2 . . . jk ≡ j1 × 2−1 + j2 × 2−2 + · · ·+ jk × 2−k. Thus, the
overall result of the transformation is

1√
2N

(
|0〉+ e2πî0.jN |1〉

)(
|0〉+ e2πî0.jN−1jN |1〉

)
. . .
(
|0〉+ e2πî0.j1j2...jN |1〉

)
(5.9)

This is proved to be the QFT of the initial state vector by the following chain of
equalities:

1√
2N

N∏

l=1

(
|0〉+ e2πîj2

−l|1〉
)
=

1√
2N

N∏

l=1

1∑

kl=0

e2πîj2
−lkl|kl〉 =

1√
2N

1∑

k1k2...kN=0

e2πîj
∑N

l=1 2
−lkl

N∏

l=1

|kl〉 =
1√
2N

2N−1∑

k=0

e
2πîjk

2N |k〉 (5.10)

The necessary time for an algorithm to be performed is usually estimated by count-
ing the number of logical gates involved in the algorithm itself, by this assuming
each gate to require a finite time to accomplish its task. Noticeably, the number of
gates which are necessary to perform the quantum Fourier transform is n (n + 1) /2,
that is, an O (n2). In contrast, the fastest classical algorithms for computing the
discrete Fourier transform on 2n elements, like the fast Fourier transform algorithm,
compute it by means of an O (n2n) classical gates. As just mentioned, it is not
possible to use the QFT algorithm to compute directly the Fourier transform of a
classical function, because no measurement process can give the amplitudes of the
QFT components. Nevertheless, it is possible to use the QFT to efficiently perform
tasks which could be much hardly fronted by any classical algorithm. A typical ex-
ample of such a task is the factorization of an integer number, whose best, presently

known, solving algorithm takes a time proportional to O
(
exp

((
64
9
n
)1/3

(logn)2/3
))
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Figure 5.2: Graphical representation of a circuit performing quantum Fourier Trans-
form.

[100], where n is the number of digits of the number to be factorized. This prob-
lem is solved, in quantum computation, with a number of ports growing whith a
power of n, by performing of three steps: phase estimation, order finding, and the
factorization itself. The next two subsections are devoted to this problem .

5.1.2 Phase estimation

The first step in the solution of the factorization problem is the determination of
the eigenvalue e2πiφ of a given unitary transformation U relative to the eigenvector
|u〉. It is possible to determine the phase φ with the desired precision (i.e. with the
desired number N of binary digits) disposing of a physical model of the eigenvector
|u〉 and of two kind of operators, an Hadamard gate and a controlled-UN operator.

Consider the unitary operator whose graphical representation is illustrated in
Fig. 5.3. Given an input vector of type |0〉1 . . . |0〉N |u〉, the state vector at the end
of the operation is |ψ〉|u〉, where

|ψ〉 = 1

2N/2

(
|0〉+ e2πî2

N−1φ|1〉
)(

|0〉+ e2πî2
N−2φ|1〉

)
. . .
(
|0〉+ e2πî2

0φ|1〉
)
=

1

2N/2

N∏

i=1

1∑

ki=0

e2πî2
N−iφki|ki〉 =

1

2N/2

1∑

k1...kN=0

e2πîφ
∑N

i=1 2
N−iki

n∏

i=1

|ki〉 =

1

2N/2

2N−1∑

k=0

e2πîφk|k〉 (5.11)

If the phase φ has exactly N binary digits φ = 0.φ1φ2 . . . φN , by comparison of Eq.5.7
we realize that |ψ〉 is the quantum Fourier transform of the vector |φ1φ2 . . . φN〉.
Consequently, the inverse quantum Fourier transform QFT+ gives as an output
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|φ1φ2 . . . φN〉, and a projective measurement performed on the state vector at this
point gives, for each qubit, the results |0〉 if φi = 0 and |1〉 if φi = 1.

If we cannot dispose of the physical realization of a specific eigenvector |u〉,
it is yet possible to measure the phase of the U eigenvalues giving whatever an
input pure vector state |χ〉, which is decomposable in term of eigenvectors of U
as |χ〉 =

∑
s cs|us〉. In this case, the output will be the phase φs of one of the

eigenvalues with a probability |cs|2.
In any physical situation, phases can be defined with a number of significant

digits greater than the size N of the output binary string, but it is possible to prove
that the procedure gives accurately the first n phase digits with a failure probability
lesser than ǫ = 1

2(2N−n−2)
.

Figure 5.3: Graphical representation of a circuit performing phase estimation.

5.1.3 Order-finding and factoring

An important step in the determination of a nontrivial factor for a given number
is the solution of the order-finding problem. If x < N are integer numbers with no
common factors, the order of x modulo N is the least positive integer r such that
xr mod N = 1. An order finding algorithm can be employed in the factorization of
number N thanks to the theorem which states that if z is a not trivial solution of
the equation z2 mod N = 1 (that is, with z mod N 6= ±1) then z − 1 or z + 1 and
N have a common nontrivial factor.

As a consequence, given a random number 1 < x < N − 1, having no other
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common divisors whith N than 1 (i.e. co-prime to N), if the order r of x modulo
N is even and xr/2 mod N 6= −1 , then at least one of the numbers xr/2 ± 1 has a
common nontrivial factor with N, that is, the factorization reduces to the calculation
of the greater common divisor between xr/2 ± 1 and N (a task easily performed by
means of a classical algorithm).

Unfortunately, the order finding problem is a difficult classical computational
problem, with exponential complexity, but the phase estimation quantum algorithm
allows its solution if one can perform the unitary operation controlled-Ux, with Ux

defined by

Ux|y〉 ≡
{

|xy mod N〉 if y ≤ N − 1
|y〉 if y ≥ N

(5.12)

Now, a simple calculation shows that the eigenvectors of Ux, with eigenvalues

e
2πîs
r , are

|us〉 =
1√
r

r−1∑

k=0

e−
2πisk

r |xk mod N〉, (5.13)

and more importantly that the trivially obtainable vector |1〉 = |0〉1|0 . . . 〉L−1|1〉L is
given by

|1〉 = 1√
r

r−1∑

k=0

|us〉. (5.14)

The application of the phase estimation algorithm to the vector |1〉 gives, with
equal probability, the first L digits of the binary fractional expression of s

r
, with

0 ≤ s ≤ r − 1. At this point, a classical algorithm serves to the calculation of the
integer r.

5.1.4 Universal quantum gates

In classical computation, any truth table can be obtained assembling a limited set
of logic gates acting on one or two bits only. A similar result is valid also for
quantum computation. It can be proved [99] that every unitary operator on a set
of N qubits can be obtained to the desired degree of approximation by means of
two on-qubit gates and one two-qubit gate. Moreover, the approximation can be
performed efficiently, in the sense that the required number of elementary gates
grows with the accuracy ǫ = sup | (U − Uapprox.) |ψ〉| of the approximation only as
an O (− log ǫ).

As well as for classical circuits, several choices are possible as elementary sets
of quantum gates. One is given by two gates acting over one qubit, and one gate
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which makes interact two qubits. The 1-qubit gates are the Hadamard and the T
gate, the latter being defined by:

T = |0〉〈0|+ eî
π
4 |1〉〈1| = eî

π
8

(
e−î π

8 |0〉〈0|+ eî
π
8 |1〉〈1|

)
, (5.15)

The 2-qubit gate is the controlled-NOT gate, defined by

cNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗ (|1〉〈0|+ |0〉〈1|) . (5.16)

For instance, the controlled-Rk gate employed in the QFT algorithm is given by the
product

(
I ⊗R+

k+1

)
cNOT (I ⊗Rk) cNOT

(
I ⊗R+

k+1

)
(see also figure 5.4) with

Rk = e
2πî

2k |0〉〈0|+ |1〉〈1|. (5.17)

On the other hand, any 1-bit operator, including Rk itself, can be represented in
term of products of rotations around two non-parallel given axis. Now, it is easy
to see that the operators (TH)2 and (HT )2 represent rotations around the direc-
tions (cos π

8
,± sin π

8
, cos π

8
) of an angle θ = 2 cos−1

(
cos2 π

8

)
, an irrational multiple of

π whose multiples can approximate, modulo 2π, whatever given angle. As a con-
sequence, Rk as well as any other 1-qubit operator, up to a global phase, can be
approximated in term of suitable products of (TH)2 and (HT )2.

Rk Rk Rk+1Rk+1

+ +

Figure 5.4: Realization of a controlled-Rk gate employing one Rk and two R+
k one-

qubit gates, and two cNOT 2-qubit gates.

5.2 Physical implementation of quantum gates

In principle, any ensemble of two-level, distinguishable and interacting quantum
systems is a candidate for the realization of a quantum device for computing ap-
plications. But since we are interested to the implementation of quantum gates in
diamond solid-state devices, we will focus on the interaction between one or two
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photons in a micro-cavity and a point defect whose relevant level structure is of Λ
type, strictly analogue to that of the negative nitrogen-vacancy center (NV−) which
is the most studied color center for quantum computation applications, due to its
favorable characteristics of phase-stability of the two lower levels (|a〉 and |b〉 in
Fig.5.3) separated by about 2.9 GHz, and to the high dipole moment of the transi-
tion to the excited state |e〉, at 637 nm wavelength. Information can be encoded by
photons in several different ways. Two orthogonally polarized modes pa and pb at
the same frequency can serve as the two possible states of a same qubit, in this case
|0〉 = |1a0b〉 and |1〉 = |0a1b〉. On the other hand, the 0 and the 1 population level of
each mode can serve as well, in a way that the two modes can support two qubits.
In the latter case the four computational base states are |0a0b〉, |0a1b〉, |1a0b〉 and
|1a1b〉. It is also possible to pass from one coding to another arranging suitably cav-
ities and defect centers, in a way to make them communicate by means of photons
whose propagation directions have definite orientations respect to the defect axes.

Figure 5.5: Cavity-atom interaction scheme for a Λ atomic system. The ground
state is splitted in two states |a〉 and |b〉, separed by a RF energy much less than
the cavity resonance frequency ω0, which is de-tuned from the transition energy of
an amount δ. ga and gb are the coupling constant between two ortogonal modes of
the cavity and the two transitios a− e and b− e, respectively.

We will study the interaction between a Λ point defect and a system of one or
two differently polarized photons pa and pb, each one inducing a different transition,
|a〉 → |e〉 or |b〉 → |e〉. We will assume that the ground state level can be prepared,
with radio-frequency stimulation, in the mixed state |θ〉 = cos θ|a〉 + sin θ|b〉. The
Jaynes-Cummings Hamiltonian of the interaction HJC , in the base given by |0a0bθ〉,
|1a0bθ〉, |0a1bθ〉 , |0a0be〉, |0a1be〉, |1a0be〉, |1a1bθ〉, has a block diagonal form of kind

HJC =




H1×1
1 01×3 01×3

03×1 H3×3
+ 03×3

03×1 03×3 H3×3
−


 ; (5.18)
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whose significant blocks are the following ones:

H1×1
1 = −δ;H3×3

± =




∓δ 0 ga cos θ
0 ∓δ gb sin θ

ga cos θ gb cos θ ±δ


 ; (5.19)

where δ is the de-tuning and ga,b are the photon-atom coupling constants. The
evolution operator of the system, directly obtained by exponentiation of −iHJCt,
can be also decomposed in block diagonal form, resulting U1×1

1 = eiδt and

U3×3
± = (5.20)


α2(cosΩt±î δ
Ω
sinΩt) + β2e±îδt αβ

(
(cosΩt±î δ

Ω
sinΩt)− e±îδt

)
−î ga cos θ

Ω
sin Ωt

αβ
(
(cos Ωt±î δ

Ω
sinΩt)− e±îδt

)
β2(cosΩt±î δ

Ω
sinΩt) + α2e±îδt −î gb sin θ

Ω
sin Ωt

−î ga cos θ
Ω

sin Ωt −îgb sin θ
Ω

sinΩt cosΩt∓ î δ
Ω
sin Ωt


 ;

where α = g2a cos2 θ

g2a cos2 θ+g2
b
sin2 θ

, β =
g2b sin2 θ

g2a cos2 θ+g2
b
sin2 θ

and Ω =
√
g2a cos

2 θ + g2b sin
2 θ + δ2.

The evolution operator U , by suitable choice of the parameters, can perform
the fundamental transformations both on one-qubit and on two-qubits states. If we
consider the states |10θ〉 and |01θ〉 as the one-qubit states |0〉 and |1〉 relative to
orthogonal polarizations of a same photon, we realize by inspection of the mathe-
matical transformation U that the block U3×3

+ acts on the subspace generated by
|10θ〉, |01θ〉 and |01e〉. But if the product between Rabi frequency and time is chosen
in such way that Ωt = kπ, U is closed respect to the space spanned by the 1-qubit
state, having the expression (with, say, k even)

U1 qubit (α, β, δt) =


 α2 + β2eîδt αβ

(
1− eîδt

)

αβ
(
1− eîδt

)
β2 + α2eîδt


 ; (5.21)

It is easy to verify that U1 qubit

(
0, 1, π

4

)
= T and U1 qubit

(
sin
(
3
8
π
)
, cos

(
3
8
π
)
, π
)
= H .

Thus, it is possible to build the fundamental 1bit quantum gates (among many
others) by suitable preparation of the atomic state (via the angle θ) and the product
between detuning frequency and sampling time.

On the other hand, the presence or the absence of a photon in each of the
two possible polarization states can be seen as values of a 2-qubits registers. In this
case, the states |00θ〉, |01θ〉, |10θ〉, |11θ〉 constitutes the computational basis of the
2-qubits gate. In general, U1×1

1 and U3×3
± mix these states with the others of the

representation, but if Ωt = kπ, the space spanned by the computational basis is
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closed respect to the evolution operator, whose expression on this basis is:

U2 qubit (α, β, δt, k) =




eiδt 0 0 0
0 α2 + β2eiδt αβ

(
1− eiδt

)
0

0 αβ
(
1− eiδt

)
β2 + α2eiδt 0

0 0 0 (−1)k


 . (5.22)

Now, if k is odd, we have that U2 qubit (0, 1, 2lπ, 2n+ 1) is a controlled-Z opera-
tor, where Z = |0〉〈0| − |1〉〈1|, by which a cNOT operator can be easily obtained
composing with two Hadamard gates in this way cNOT = (I ⊗H)cZ(I ⊗H). It is
conclusively proved that a Λ-type atomic system in a 1-2 photons cavity can perform
any fundamental quantum logic operation if parameters are suitably controlled.

5.3 Diamond and quantum computation

I have just proved that an atomic system in a one-two photons cavity can perform the
fundamental logical operations on quantum bits. Now I’ll show why color centers in
diamond, particularly the negative nitrogen-vacancy complex NV−, is so actractive
for the implementation of a quantum gate.

It has been shown that the minimum switching time for a logical operation to
be performed is of the order of Ω−1, where the Rabi frequency Ω is, in energy units,
substantially equal to the coupling strenght g between the field and the atom. In SI

units, and for a cubic cavity, we would have: g = e〈r〉
√

~ω0

2ǫV
, where e〈r〉 is the dipole

moment of the transition, ω0 is the cavity pulsation, V is the cavity volume and ǫ
is the dielectric constant. In order to the operation to be performed, the switching
time has to be much shorter than the mean lifetime of the photons in the cavity,
which is of order Q/ω0, where Q is the quality factor of the cavity. By comparison,
it is found that the inequality

Q

V 1/2
≫

√
2ǫ~ω0

q〈r〉 , (5.23)

has to hold. Equally important, the coherence time of the atomic states has to be
much higher of the photon mean lifetime too, since the operation to be performed
is specified by a precise determination of the superposition of the atomic states.

Now, the NV− center, arguably the most studied color center in diamond for
quantum computing application, fits both these requirements remarkably well, for
the following reasons:

• The ground state is a triplet, which means that, otherwise from other color
centers in solid, the coherence time is not limited by the lifetime of the elec-
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tronic level. Moreover, the null magnetic moment of the most abundant carbon
isotope makes the coherence time of the m=0 and m = ±1 sublevels as long
as milliseconds at room temperature [85, 86, 101].

• From the dipole moment of the transition at λ0 = 637 nm [87], 〈r〉 can be
estimated to about 2.3 × 10−8 cm, which is very long. The NV− centers
share this property with other very intense luminescent centers like Nickel
complexes[88], chromium [89] and silicon [90]. Taking into account a cavity
volume V ≈ (λ0/n)

3 = 1.85 × 10−14 cm3, such a high dipole moment limits
the minimum quality factor to about 8700. It is a quite reasonable limit,
considering that theoretical calculations with photonic crystal slab cavities
give from Q = 106 to Q = 107 [102] and that experiments performed on
nanocrystalline diamond slabs (highly absorbent) give values of Q as high as
585[103].

The valididty of the NV− centers as candidates for quantum computing appli-
cations has been recently demonstrated by an impressive series of results obtained in
proof-of-principle experiments performed in bulk single crystal with dispersed color
centers [104, 105, 106, 107], and a significant effort is being devoted to optimize
the fabrication of optical structures to integrate single color centers in scalable de-
vices. Different architectures are under development with this scope, ranging from
the fabrication of all-diamond structures in monocrystalline [108, 92, 93, 94, 95, 96],
polycrystalline [97] or nanocrystalline [103, 98] substrates, to the interfacing of dia-
mond color centers to hybrid devices [109, 110, 111].

Figure 5.6: (left) SEM image of a diamond membrane obtained by ion beam
graphitization of a buried layer, followed by focused ion beam cutting and graphite
etching[108]. (right) (a) A SEM image of a suspended photonic crystal cavity in
nanocrystalline diamond. (b) An enlarged picture of air holes. (c) A cross sectional
image of the air holes. The thickness of the membrane is about 160 nm.[103]
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On the other hand, pointlike defect manipulation presents difficulties, only
some of whom are avoidable in principle. For the creation of highly localized single
NV centers in diamond two methodologies are available. The first rely on the cre-
ation of vacancies by ion or MeV electron implantation in a relatively nitrogen-rich
diamond, followed by annealing with subsequent diffusion of the vacancies which
eventually bind themselves to pre-existing substitutional nitrogen centers. 30 KeV
gallium focused beams have been employed in Ib-diamond, obtaining 15 nm-deep,
single NV centers with a lateral resolution of about 180 nm. Another technique is
based on direct implantation of nitrogen ions,at a very low implantation rate, in
almost nitrogen free diamond, followed by annealing in order to make the vacan-
cies created in the implantation process diffuse and finally bind themselves to the
implanted nitrogen. With this method, single NV centers were created, about 1
µm under the surface of diamond, with a lateral resolution of about 0.3 µm[112]
and with an efficiency ratio color-centers to implanted nitrogen approaching one.
Optimally annealing can be performed to maximize the total Yield of NV−[113].

Even if the creation of single color centers in a specific position into a diamond
resonant cavity seems to be feasible, the NV center itself can have four different
orientations in space. Hence, any architecture based on this color centers must in-
corporate defect-tolerant manifacturing approaches, having to cope with a maximum
yield of specifically oriented NV centers of 1/4.

An interesting architectural strategy is illustrated by Tomljenovic in ref.[102].
Here I report the principle in some detail, because it makes clear how a precise
modulation of diamond refractive index can serve to the design of diamond based
photonic modules. A photonic crystal slab (PCS), with a photonic band-gap mod-
ulated in a way to include the 637 nm zero-phonon line of the NV− luminescence,
presents two defect lines (see Fig.5.7, left) : the first one (Bus line) is designed
for distributing photons and effecting nonlocal cavity-cavity coupling, in the second
one single NV centers are implanted in specific locations. After determination of
the centers which have the desired orientation respect to the PCS axes, a resonant
cavity is realized around them by ion implantation of two areas at the two oppo-
site sides of the center (see Fig.5.7, top right), in a way that the refractive index
of the irradiated diamond is lowered respect to pristine diamond. The assumption
that refractive index lowers after implantation, at least in some range of fluence, is
critical for the feasibility of the device, and will have to be throughly discussed in
the following chapter.

The cavity realized in this way works according to the following principle: the
two low-refractive index slides provides lateral confinement and propagation of light
along the z direction ((see Fig.5.7, right)), the photonic crystal structure, on the
other hand, prevents propagation in the z direction and makes the light to reflect
forth and back on the “wall” of the cavity. In figure 5.7, bottom right, the major



5.3. DIAMOND AND QUANTUM COMPUTATION 105

electric field component, Ex, in the middle of the slab.

Figure 5.7: (left) Concept for heterostructure cavity array coupled to a common
control line[102]. (right) Schematic of the PCS considered here with a step-index
profile. The undamaged region in the centre has the largest refractive index, whilst
damage reduces the refractive index in the surrounding regions, defining the cavity.

The quality factors obtained with this kind of structures ranges from the order
of 106, with step index profiles, to 107, with graded index profiles obtainable either
trough masking or with a suitably adjusted raster scanning of the irradiation area.
These conclusions are affected by a considerable uncertainty due to absorption. In
fact, even if most of the field in confined in the undamaged region (see Fig.5.7, bot-
tom right), the part extending in the modified diamond can suffer attenuation if ion
damage affects the extinction coefficient of diamond. In figure 5.8 the degradation
of the quality factor with increasing extinction coefficients is shown for a step index
profile, from which is clearly apparent the necessity of a good control of this essen-
tial parameter. Only a few works were dedicated to the study of diamond optical
properties modifications induced by ion implantation [114, 115]. These studies were
performed with carbon ions in the range 0.02-1.5 MeV, with a dependence of the
results on the ion energy not clearly distinguishable. The requirement of damage
uniformity along the implantation direction, for this kind of device, suggest the em-
ployment of much lighter ions, as hydrogen or helium, for whom no data is available
in literature. Part of the work of our collaboration was addressed to the clarification
of this essential point, as will be seen in the following chapter.
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Figure 5.8: (left) The major electric field component, Ex, in the middle of the slab.
(right) Total Q as a function of the imaginary part of the refractive index for the
step-profile.



Chapter 6

Optical properties of proton

damaged diamond

The attracting properties of some very intense color centers in diamond for appli-
cation in photonic devices has been extensively dealt with in the previous chapter.
With the aim of exploiting these features, several diamond micro-fabrication meth-
ods are currently under study [92, 93, 103, 108, 98]. These methods promise to
offer a viable path towards the integration of monolithic photonic devices while
exploiting the broad-band transparency and high refractive index of this material.
Such methods are often based on the employment of ion-beam microfabrication
strategies[92, 103, 108] therefore uncontrolled variations of the refractive index due
to structural damage during the device fabrication process must be avoided (or pre-
dicted) with the highest accuracy. Moreover, in order to fabricate photonic devices in
bulk diamond, the low-contrast refractive index modulation, induced by ion implan-
tation, instead of merely being a side effect, could play an active role in the design of
the device. Particularly, there is a strong interest for the investigation of the optical
properties of diamond at very low implantation fluences: if the slight decrease in
refractive index at low damage levels, found in C-implanted diamond[115], could be
confirmed for lighter and more penetrating ions, an useful tool in the fabrication
of ultra high-Q photonic crystal cavities would be disposable[102]. In any case, a
suitable control of the optical properties of damaged-diamond is demanded also in a
broad range of more conventional micro optics applications, such as high-power laser
windows and lenses, optical MEMS, optical data storage, etc.[91, 116, 117, 118] The
effect of ion-beam induced structural damage on the refractive index in diamond
has been observed since the 60’s[114] and qualitatively reported in the following
literature[119]. In spite of this, remarkably, only few works were devoted to the
systematic investigation of the optical effects of ion damage[115]. One example is
reported in ref.[119], where carbon ions of different energies (50 keV 1.5 MeV)

107
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were successively implanted in the same area, in order to produce a homogeneous
damage profile over a depth of 1 µm; the refractive index was then measured on
the as-implanted samples as a function of the implantation fluence, by means of
reflectometric methods. In ref.[120] an ellipsometric study is reported in which the
refractive index is measured from heavily damaged buried graphitic layers produced
in diamond with 350 keV He+ ion irradiation. Monoenergetic implantations with
MeV light ions, such as hydrogen or helium, create damage profiles that are signif-
icantly different from those reported in the previous example, because they induce
the formation of modified regions lying deeper under the diamond surface, whose
characterization with reflectometric methods is much more difficult, due to the mi-
crometric thickness of the overlying material. Nonetheless, the employment of MeV
light ions can be an extremely versatile tool to locally modify the optical properties
of materials with micrometric spatial resolution both in the lateral and depth direc-
tions, thanks respectively to the above-mentioned peculiar damage profile and to the
possibility of focusing MeV ion beams at the micrometer scale with electromagnetic
lenses. The strong potential of MeV ion microbeam implantation for direct writing
optical structures has already been demonstrated in previous works in other mate-
rials of technological interest[121, 122], In our study, IIa monocrystalline diamonds
grown by Chemical Vapor Deposition (CVD) were implanted with a scanning mi-
crobeam of 2 and 3 MeV protons[123], at fluences in the 1015 - 1017 cm−2 range.
The damaged regions lie respectively 24 µm and 48 µm below the diamond surface
and extend for a few (i.e. 2-4) microns. The resulting range of the damage levels
induced in diamond, in term of vacancy density (6× 1019-3.5× 1021 cm−3), includes
the densities of about 7 × 1020 cm−3 which are supposed to be related to a nega-
tive variation of the refractive index[115]. In order to measure the damage-induced
variations of refractive index and absorption coefficient, an interferometric optical
transmission microscopy technique and a space-resolved transmission spectroscopic
setup were employed. The probe light wavelength was 632.8 nm, conveniently close
to the zero-phonon-line emission of the NV center (637 nm), arguably the most
widely investigated color center in diamond for applications in quantum optics. In
order to obtain estimations of the variation of the real and imaginary parts of the
refractive index as functions of the damage density, I developed a phenomenological
model for the interpretation of the measurement of the optical path difference (OPD)
and of the difference in absorption length (absorption length differences, ALD) be-
tween implanted and unimplanted regions. The model is based on the damage depth
profile obtained with Monte Carlo SRIM simulations[124], and adopts an optical-
geometric approximation, not taking into account the sharp variations in refractive
index occuring into the damaged layers. In order to validate this approximation,
the results of the model has been compared a posteriori with the predictions of a
full multilayer numerical model of light propagation.
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The employed samples are described in section 6.1.1, while section 6.1.2 is
devoted to the description of the ion implantation process. In section 6.1.3 the
measurement methods for the determination of the OPD and ALD are outlined,
together with the measurement of the surface deformation (swelling) due to the
expansion of the damaged regions[125, 126]. In section 6.2 the data analysis is
presented, along with the description of the interpretation model, and the final
results are presented in term of the dependence of the complex refractive index on
the damage level, i.e. the density of vacancies produced by ion irradiation.

6.1 Experimental

6.1.1 Samples

This study was carried out on two 3.0×3.0×0.5 mm3 single-crystal diamonds grown
with Chemical Vapour Deposition (CVD) technique by ElementSix . The crystals
consist of a single {100} growth sector and are classified as type IIa, with concen-
trations of nitrogen and boron impurities below 0.1 ppm and 0.05 ppm, respectively.
The crystals are cut along the <100> axes and the two opposite faces of the samples
are optically polished.

6.1.2 Ion implantation

The diamond samples were implanted at the external scanning microbeam facility
of the LABEC laboratory in Firenze[127, 123], (Fig. 6.1). The diamond to be
implanted mounted ouside the vacuum line, thus allowing its easy handling, posi-
tioning and monitoring [128]. Before hitting the target, the beam passes through a
thin silicon nitride (Si3N4) membrane, 100 nm thick and 1×1 mm2 wide (inset of
Fig. 6.1), sealing the final part of the vacuum line, and 2 mm of unenclosed helium
atmosphere. The extreme thinness of the Si3N4 window and the short external path
in helium allow to minimize beam widening and energy straggling; as a result, a
10-20 µm spot size on sample is obtained, with 10 keV of energy straggling for
MeV protons.

By means of a magnetic beam-scanning system, the position of the beam
impact point on the sample can be controlled within a 1×1 mm2 area, corresponding
to the exit window aperture. Moreover, a multi-axis linear motorized stage of a
25 mm range provides high resolution translation of the sample on the x-y plane
(normal to beam axis) under fixed beam, with a position reproducibility better than
1 µm. In the present work, proton beams were focused on the polished side of the
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Figure 6.1: (left) End of the ion microbeam line: (1) detectors for Ion Beam Analysis
(not used in this application) (2) X-ray detector for beam charge measurement, (3)
vista camera and micro camera; the arrow indicates the ion beam direction. Inset:
System for beam charge measurement. (right) Transmission optical image of several
125×125 µm2 implanted areas. Progressive darkening of the implantation regions,
along with fading of luminescence, allow a qualitative control of the implantation
progress

samples on a spot of 10 µm (3 MeV) and 20 µm (2 MeV). Different regions of
the samples were implanted at fluences ranging from 1015 cm−2 to 1017 cm−2.
For each implantation, the ion beam was magnetically scanned exploiting the same
raster frame of 125×125 µm2, much wider than the beam spot dimensions, in order
to deliver a homogeneous fluence in the central region. During the implantations,
fluences were determined by measuring the implanted charge (1) and setting the size
of the irradiated area (2), as described hereafter.

1. Implanted charge: we used the beam charge measuring system installed at
the LABEC microbeam, which exploits the yield of Si X-rays produced by the
beam in the exit window[128]. The total charge implanted into the sample can
be expressed as Qi = k×AX-Si, k being a proportionality factor and AX-Si the
number of Si X-rays counted by a dedicated detector, as reported in detail in
ref.[128]. The calibration factor k was determined by measuring the ratio of
the integrated charge (Qi), collected with a Faraday cup surrounding the exit
nozzle (Fig. 6.1(left)), to the Si X-ray yield (AX-Si). In the whole explored
range of beam currents (0.2 - 1.5 nA), k remained constant within 1%. As
a result, the overall precision on the implanted charge determination is ≈1%,
being the statistical error related to the Si X-rays counting typically well below
1%. Possible systematic errors in the charge determination, can amout to a
10% variation, commont to all the experimental points.
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2. On-line setting of irradiated area: In order to implant the ions in areas with
controlled dimensions, we calibrated the magnetic displacement of the beam on
the sample surface by exploiting a standard TEM Cu grid. The uncertainty
on the scanned area, which is basically due to the calibration procedure, is
≈5%. After ion implantation, the size of the irradiated area was measured on
the OPD maps as described in Section III, thus improving the precision on
the area determination up to ≈2% .

The visual aspect of the sample after the process is shown in figure 6.1(right). It is
apparent the darkening due to ion damage of the implanted areas.

6.1.3 Optical characterization

In order to evaluate the variation of the refractive index due to ion-induced damage,
the phase shift of a laser beam crossing the damaged diamond layer was determined
using a commercial laser interferometric microscope (Maxim 3D, Zygo Corporation,
Middlefield, CT, USA) with a 20× micro-Fizeau objective: the main characteristics
of the system are reported in Fig.6.2, along with the scheme of the instrumental
setup.
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Figure 6.2: (Left) Scheme of the principle of measurement of the micro-
interferometer Maxim 3D Zigo interferometer (see text for the explanation). (right
top) Map of the OPD profile of an area implanted with 3 MeV protons at a fluence
of 9× 1016 cm−2 (right down) Map of the swelling profile of the same implantation.

The s-polarized light produced by a He-Ne laser source (S in figure 6.2) is fo-
cused by the lens L1 on a diffuser disk (D), generating a spatially incoherent radiation
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which is focused by L2 on the back focus of the microscope objective O. After col-
limation, the radiation passes through the quarter-wave plate Q, whose last surface
reflects back about 10% of the incident beam intensity. After double passage across
the quarter-wave plate, the p-polarized reference-beam radiation passes through the
polarizing beam splitter and illuminates the CID camera sensors. The test beam,
after the double passage across the sample and the reflection on a high quality mir-
ror M, produces an interference pattern on the plane of the sensors. The diamond
is slightly tilted to avoid undesired internal reflections between the two opposite
surfaces of the sample. A piezoelectric micro-actuator is able to displace the system
of a distance λHe-Ne/8 during 5 consecutive intensity measurements on the CID, so
that a computerized system is able to reconstruct variation in the phase of the test
beam in each pixel with an accuracy of about 2π/1000 rad. The contributions of
the beam splitter and the high-quality mirror is accounted for and removed.

Measuring the diamond in correspondence of an ion beam damaged layer it is
possible to extract a microscopic map of the relative optical path difference (OPD)
(Fig.6.2, right top). The measured OPD is caused mainly by the refractive index
change of the damaged diamond with respect to the undamaged surroundings. There
is also a smaller contribution (about 15% of the OPD (see fig 6.2 right) due to the
expansion (swelling) of the highly damaged layer [126]. the latter was measured
with a white light interferometric profilometer (Zygo NewView, see chapter 4 for
further details). The swelling contribution to the OPD signal has been calculated
and properly deconvoluted from the contribution arising from the variation of the
sole refractive index, as reported in Section 6.2.1. Observing the maps of figure 6.2,
the swelling and the OPD profiles have opposite signs: this is because swelling gives
a shorter optical path in reflection, while damage produces a higher optical path
in transmission measurements. The optical absorption at the irradiated zones was
estimated by directly measuring their transmittance with a home-made set up for
measurements with enhanced spatial resolution (see Fig.6.3 left). The light of a Xe-
source is guided by a 5 µm optical fiber, forming a spot zone on the sample surface
of ≈50 µm, which determines the spatial resolution of the system. Subsequently, the
transmitted light is focused on a second optical fiber, connected to an Ocean Optics
spectrometer SQ2000 with a spectral resolution of 0.8 nm and spectral range of
400-1200 nm. The finite spot size of the incident beam may obscure narrow spectral
features if the transmittance varies very rapidly across the sample surface. However,
from the OPD measurements, the implanted region results to be uniform within an
area much wider than the beam spot, so that a spectral resolution of at least 1 nm
is guaranteed, provided that the spectra is acquired in the minimum transmittance
position, near the center of the implantation. A detailed description of the set up can
be found elsewhere[129]. In the present work the absorption values were estimated
at the same wavelength employed in the OPD measurement (λlaser = 632.8nm).
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Some full-spectrum transmission profiles of the irradiated samples are shown in Fig.
6.3, right.

Xe lamp Spectrometer

Figure 6.3: (Left) Scheme of the principle of measurement of the optical absorption.
(right) some full-spectrum transmission profiles of the irradiated samples.

6.2 Data analysis

6.2.1 Dependence on fluence of the OPD and the ALD

The optical path difference between the center of the implanted area and the sur-
rounding unimplanted region is estimated by the difference between the OPD mean
value both in a central square region and in a frame region located respectively well
inside and outside the irradiated area. The uncertainty of the OPD measurement,
evaluated by the fluctuations of the phase inside and outside each region, is between
3 and 10 nm, which is predictably of the same order of magnitude of the roughness of
the diamond surface (≈2 nm) multiplied by the refractive index difference between
diamond and air at the probed wavelength (∆n = 1.41). The absorption length
difference was evaluated, for each implantation, by the ratio between the transmit-
tance T0 of the un-implanted substrate, i.e. of the pristine diamond, and the value
T measured at a chosen damaged area:

ALD =
λHe-Ne

4π
ln

(
T0
T

)
. (6.1)
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Both the OPD and the ALD measurements are affected by swelling, i.e., the expan-
sion of the implanted material, which determines both a further phase shift of the
probe laser beam and an additional absorption contribution. Nevertheless, since the
gradient of the displacement of each layer in diamond dz′

dz
, and the relative variation

of refractive index ∆n
n
, are both small with respect to unity, it can be shown (see ap-

pendix B.1) that the values of OPD and ALD due to the variation of the refractive
index alone can be obtained by the measured ones (OPDm, ALDm), by the simple
equations:

OPD = OPDm − (n0 − 1)h,

ALD = ALDm − k0h. (6.2)

were n0 and k0 are the refractive index and the extinction coefficient of undamaged
pristine diamond and h is the swelling height. In our measurements, the product
kh is exceedingly small (well below 0.1% ) and its contribution has been neglected,
but the product (n0 − 1)h amounts to about 15% of the measured OPD, and it has
been properly subtracted. The fluence in the central region of each implantation
has been calculated simply by the ratio of the deposited charge Q to the area AΩ of
the raster scanning area. In appendix B.2 I prove this approximation to be justified
if the scanning is uniform and the dimensions L of the scanned area is much wider
than the beam width l (in our case, L = 125 µm ≫ l = 10-20 µm). The charge Q
is evaluated by means of the procedure outlined in section 6.1.2 with an accuracy of
the order of 1%, while AΩ is measured directly on the OPD maps by evaluating the
number of pixels whose OPD is above the average value between the OPD inside
and outside the implanted area. In this way, we verified the repeatability of the area
setting to be much better than the calibration uncertainty obtained with the TEM
Cu grid, allowing to keep the overall fluence uncertainty as low as about 3% . The
variation of the optical depth and of the absorption length differences, extracted
by the experimental data as illustrated before, reveals a clear correlation with the
implantation fluence and ion energies, as shown in Fig.6.4.

6.2.2 Simulation of the ion damage

In order to extract, from the fluence dependence of the OPD and ALD, the refractive
index variations with the ion-induced damage, we need a model which, for any given
ion-energy and fluence, gives a physical quantity expressing the entity of damage
at a given depth into the diamond. We assumed this quantity to be the induced
vacancy density ν (z), admitting this parameter to bring all the essential information
about the damage processes of a specific ion species and energy. We evaluated
ν (z) numerically with the aid of Monte Carlo SRIM simulations[124] , averaged on
ensembles of 50,000 ions, by setting the atomic displacement energy to 50 eV[130].
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Figure 6.4: Experimental OPD and ALD as functions of the fluence, along with the
best polynomial fit at 2 MeV (left) and 3 MeV (right).

The simulations give, for an ion of energy E, the number of vacances per unit
length at a depth z as pE (z) (see Fig.6.5). Then, we calculated the induced vacancy
density at a given fluence φ and energy E to be ν (z) = φ × pE (z), under the
assumption that non linear processes such as self-annealing, ballistic annealing and
defect interaction could be disregarded. In fact, it has been shown that at damage
densities that do not exceed the graphitization threshold (i.e. 1022 vacancies cm−3 for
shallow implantations[131] and 6 − 9 × 1022 vacancies cm−3 for deep implantations
[132, 133], such an approach provides an adequate description of the ion-induced
damage process in diamond in many respects[134].

6.2.3 Phenomenological model

We assume now the complex refractive index n̂ = n + ik to be directly determined
by the vacancy density ν (z); under this assumption, we can consider the general
polynomial expansions:

n̂ (z) = n̂0 +

∞∑

m=1

cm × [ν (z)]m . (6.3)

We make the assumption that the complex optical path difference COPD between
the irradiated and unimplanted areas is exclusively determined by the refractive
index as follows:

COPD =

∫ ∞

0

[n̂ (z)− n̂0] dz, (6.4)
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Figure 6.5: (right) Vacancy production per unit length, as a function of the pene-
tration depth, for hydrogen ions at 2 and 3 MeV. (left) Variation of the real and the
imaginary part of the refractive index as a function of the vacancy density

Table 6.1: Values of IEm coefficients for implantation of protons with energies of 2
and 3 MeV andm=1, 2, 3, as calculated by means of SRIM Monte Carlo simulations
based on 50,000 events.
IEm (cm2m+1) E = 2 MeV E = 3 MeV

m = 1 7.06 8.62
m = 2 9.18× 104 6.18× 104

m = 3 2.24× 109 8.59× 108

thus neglecting internal reflections between adjacent differently damaged layers in
diamond, and in general the interplay between the processes of refraction and ab-
sorption of the probe laser beam. This hypothesis will be validated a posteriori by
means of a full multi-layer optical calculation, as described in the following section.
From Eqs. 6.3 and 6.4 the complex optical path difference is given by :

COPDE (φ) =

∞∑

m=1

cmI
E
mφ

m with IEm =

∫ ∞

0

[
pE (z)

]m
, (6.5)

where the dependence from on ion energy and fluence has been highlighted. Since IEm
can be numerically calculated from the known profile pE (z) for the two ion energies
employed in the implantations (see Table 6.1), it is possible to fit the experimental
OPD and ALD data with the real and the imaginary part of Eq. 6.5, by employing
the fluence φ as independent variable and a convenient set of complex coefficients
(cm = am + ibm) as fitting parameters.
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Table 6.2: Values of am and bm coefficients resulting from the polynomial fitting of
the data relevant to 2 MeV and 3 MeV proton implantations.
E = 2 MeV am (cm3m) bm (cm3m)
m = 1 (4.0± 0.2)× 10−23 (3.2± 0.7)× 10−23

m = 2 (1.4± 0.4)× 10−44 (0.02± 0.04)× 10−44

m = 3 (−5.4± 1.1)× 10−66 (−1.7± 0.1)× 10−66

E = 3 MeV
m = 1 (4.2± 0.1)× 10−23 (2.9± 0.1)× 10−23

As shown, respectively, in Fig. 6.4, it is found that, for the 2 MeV proton
implantations, the data are well fitted by a third-degree polynomial, while, at com-
parable fluences, the data relevant to 3 MeV proton implantation are fitted by a
linear expansion. This difference is attributed to the fact that 3 MeV protons are
subject to a more pronounced longitudinal straggling, thus creating thicker damaged
layers, but with a lower defect density in comparison to 2 MeV proton implantations
(see Fig.6.5). As a consequence, at a same fluence level, the 3 MeV implantations
explore a more limited range of defect densities, allowing the dependence of the OPD
and ALD on the fluence to be well represented by a linear function. Nevertheless,
as reported in Table 6.2, the first degree coefficients of the 3 MeV implantations
are compatible, within the uncertainties, with those of the 2 MeV ones, confirming
that the linear parts of the two polynomials reflect a same dependence of the op-
tical properties on the local damage. Once the cm parameters are determined, the
variation of the real and imaginary parts of the refractive index can be expressed
as a function of the induced vacancy density employing the polynomial expansions
reported in Eq. 6.4. In Fig. 6.5 (right) the resulting trends are plotted for the third
degree polynomial whose linear term is determined on the basis of the two data
sets (2 MeV and 3 MeV proton implantations), while the second- and third-order
coefficients were evaluated from the first data set (2 MeV proton implantation). The
range of vacancy densities of Fig. 6.5 extends up to the values corresponding to the
highest damage level reached in our study.

6.2.4 Multi-layer model and validation of the phenomeno-

logical model

As mentioned above, Eq. 6.5 was derived under the assumption that the inter-
play between the processes of refraction and absorption of the laser probe can be
neglected, and in particular that internal reflections due to the variation of the
refractive index can be disregarded. In order to test this relevant assumption a pos-
teriori, we elaborated a complete multilayer model describing the propagation of the
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laser probe in diamond, thus considering all the processes of refraction and absorp-
tion associated with the variation of the complex refractive index in the implanted
material. We considered a simulation grid identical to that of the SRIM simulation,
with a constant vacancy density νi = ν (zi) (1 ≤ i ≤ 100, and a complex refractive
index n̂i = n̂0 +

∑∞
m=1 cmν

m
i , adopting for the parameters ci the values obtained in

the preceding section by the fitting of the experimental data. Our purpose was to
verify that the phase shift OPD and the attenuation distance ALD calculated with
a full multilayer model do not differ significantly from those measured. To this aim,
the normal propagation of a plane wave through the series of layers with complex
refractive indexes n̂i was derived by setting, at the layers interfaces, the appropriate
boundary conditions of continuity of the electric field and of its derivative, exactly
in the same way shown in chapter 3. Hence, we calculated the complex expression
of the waves crossing the sample, either in an unimplanted region or in a region
implanted at a fluence φ . By comparing the amplitude and phase shift of the trans-
mitted wave with the reference incident wave it is possible to estimate the values
of the optical path difference and the absorption length difference, for each value
of energy and fluence. The resulting estimations of OPDE (φ) and ALDE (φ) differ
from the polynomial fits shown in figure 6.4 no more than about 1% . This value is
well below the experimental errors, thus confirming, a posteriori, the correctness of
the initial assumption of negligibility of the inter-layer reflections and more generally
of the interplay of the refraction and absorption processes.

6.3 Discussion and Conclusions

The dependence of the refractive index and of the extinction coefficient on the
damage produced in diamond by 2-3 MeV H ions has been studied in the fluence
range 1015-1017 cm−2. Measurements indicate an increasing trend up to vacancy
densities of about 2.5-3×1021 cm−3, then suggesting a decreasing behaviour at least
up to the value of 3.5×1021 cm−3. For the refractive index, the decreasing trend as
the graphitization conditions are approached is not surprising, being the refractive
index of graphite less than that of diamond. We also note the similar and consistent
behaviour of the real and the imaginary part of the refractive index, which was
measured with completely unrelated methods. Interestingly, although the vacancy
densities interval which we were able to scan, ranging from about 6×1019 to 3.5×1021

cm−3, includes the damage levels referred to in ref.[115] for carbon ions in the
energy range 0.05-1.5 MeV, no initial decrease in refractive index with respect to
the undamaged diamond has been observed in our experiment. This could be due to
different damage mechanisms produced by heavier ions and/or much lower energy
levels. In any case, the suggestion of employing light MeV ions in order to obtain
thick, uniform areas with a relatively low refractive index with respect to pristine
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diamond[102] is not supported by our results. The methodology of measurements
and analysis which we have adopted for this study is of ease and versatile use, being
susceptible to be employed in any transparent material with very large ranges of
energies and fluencies.
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Chapter 7

Ion-beam writing of waveguides in

diamond

In the last chapter, the influence of hydrogen MeV ions on the optical properties
of diamond was throughly investigated. Particularly, an empirical relation between
the induced vacancy density, taken as an index of the radiation damage and the
variation of the complex refractive index of diamond was determined for the wave-
length radiation of 633 nm, and it was proved to be valid at least for protons in the
energy interval 2-3 MeV. The knowledge of such relation, along with the possibility
of a suitable modeling of buried damaged regions under the diamond surface, by
means of ion implantation, opens the way to the engineering of monolithic photonic
devices in diamond.

Proton beam writing is a well established tool for micro-photonics applications,
having been developed since the beginning of this decade in various laboratories[135,
136, 137]. The range of materials on which this technique has been applied includes
polymers [138] and glasses [121]. Two fabrication routes are commonly followed
using proton beam writing. The first involves the direct micromachining of the
microoptical components, usually in polymer. This method may typically require
some post-irradiation processing like resist development, additional coating steps or
thermal treatment in order to make the final device or component. Surface relief
gratings, microlens arrays, photonic crystal templates and waveguide cores are all
fabricated using this method. The second route that can be followed involves ion
beam modification of the material to form a region with a refractive index differ-
ent from that of the bulk. This is the chosen method when using non-polymeric
materials, which we demonstrated, in the previous chapter, suitable for diamond.
In fact, all the methods employed so far in the micro-fabrication of diamond for
photonic applications exploit the refractive index contrast between diamond and
air, and rely on material ablation to create structures such as photonic cavities and

121
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waveguides. Ion beam modification of bulk optical properties of diamond could offer
unique opportunities for a more rapid prototyping of microphotonic devices, exploit-
ing also a much lower refraction index contrast than that between diamond and air.
Moreover, since the same methodology (with much higher irradiation doses) can be
employed in diamond for fabrication of structure such as microfluidic channels, di-
rect beam writing could open the way to microfluidic devices with integrated optics
for biosensing applications (lab-on cells), with possibility of selective optical and
chemical stimulation of single cells.

In this chapter I report on a method to create optical waveguides in bulk
diamond by means of a 3 MeV proton beam, from which we obtained controlled
increments of the refractive index in rectilinear, 500 µm-long, 12 µm-wide structures
below the diamond surface, down to a depth of about 50 µm [139]. While, in other
contexts, measurements of near field profiles are employed to calculate the refraction
index modifications[121, 140], the work reported in the previous chapter permitted
us to calculate the mode profiles on the base of the refractive index variation and
to verify their adherence to the experimentally obtained mode shapes. These were
observed using a micro-interferometric set up usually employed in optical pathlength
measurements and previously described, in its main characteristics, in chapter 6; the
phase maps obtained will be proved to be directly interpretable as superpositions of
the previously calculated guided modes.

7.0.1 Experimentals: implantation and measurements

To perform this study, three adjacent faces of a 3.0× 3.0× 0.5 mm3 sample of type
IIa single-crystal chemical-vapor deposited diamond, cut along the 〈100〉 axes, were
optically polished down to a roughness of some nanometers, and then implanted at
the external scanning microbeam facility of the LABEC laboratory in Florence[123] .
The beam was focused on the small polished side of the sample to an approximately
Gaussian spot of 12 µm width, and scanned along a rectilinear path perpendicular to
the two polished faces of the largest size in order to obtain implantation fluencies of
2× 1016, 1× 1016, 5× 1015cm−2 in the central region, with an estimated uncertainty
not exceeding 5% (see Fig.7.2 for a schematics of the implantation set-up). The
as-prepared structures were then observed with a commercial laser interferometric
microscope (Maxim 3D Zygo, Connecticut, USA, www.zygo.com) along the longitu-
dinal direction of the guide. The setup used has been proven useful to characterize
refractive index variations by observation of the phase shift induced by thin planar
structures, in order to perform optical path difference (OPD) measurements. Here
I claim it to be useful for a different kind of measurement, since the phase informa-
tion of the field emerging from the narrow, long structures implanted in diamond
(see fig.7.2)can give indication about the amplitude of the guided modes. For this
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reason, it is useful to resume the principle of the measurement in relation to our
purposes (see also Fig.7.1).
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Figure 7.1: (left) Scheme of the principle of measurement of the micro-interferometer
(see text for the explanation). (right) Scheme of the contribution to the overall
electric field.

With reference to the description of the system in chapter 6 we only need to
remind the fact that the objective O focuses on the plane of the CID camera sensor
the light coming from the plane Π, at the upper surface of the diamond sample.
That is, each pixel of the camera sensor registers the superposition of the plane
wave reflected from the mirror M and of the image of the radiation coming from the
plane Π, then forming the interference pattern with the radiation back-reflected by
the beam splitter BS.

In figure 7.2 (left) an implantation scheme of the waveguides is drawn, pointing
out the sample position, the implantation direction and the sight direction of the
interferometer. The right side of the same figure reports an image of the interference
pattern produced on the CCD plane by the 2 × 1016cm−2 implantation, by two
1 × 1016cm−2 and by three 5 × 1015cm−2implantations (from the left to the right).
Fig. 7.3 represents the same areas in the false-color phase maps reconstructed by
the computerized system of the instrument.

7.1 Intepretation of the phase maps

We show now that the phase maps obtained with the micro-inteferometer can be
interpreted as a direct measurement of the amplitudes of the modes propagating
along the guide. Let the electric field on the plane Π (in the polarization direction)
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Figure 7.2: Scheme of the implantation geometry and interference pattern produced
by the implantation at (from left to right) 2× 1016cm−2 fluence (one implantation),
1× 1016cm−2 (two implantations), 5× 1015cm−2 (the last three implantations).

be described by the real part of the function

E = E (x, y) ei[ωt+φ(x,y)]. (7.1)

If the structures under consideration have a cross-sectional dimension comparable
to that of the wavelength of the radiation, the radiation emerging from the diamond
will be given by a principal plane-wave part plus a perturbation produced by the
structures themselves. Consequently, the field on the plane Π will be given by the
sum of three contributions: a principal part given by the back radiation reflected by
the mirror M

E0 = E0e
i(ωt+φ0), (7.2)

a secondary field deriving from the reflections on the surfaces of the sample, which
is

ER = ER (x, y) ei[ωt+φR(x,y)], (7.3)

and a perturbation given by the contribution to the field of the structures under
consideration. If the field can be considered as guided by the structures, this con-
tribution can be simply written as

EG = f (x, y) ei(ωt+φG), (7.4)

were the function f (x, y) is the amplitude map of the mode or a sum of different
amplitudes maps.
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Figure 7.3: Phase maps corresponding to the same implantations of fig7.2.

If ER and f are both small compared with E0, the phase difference ∆φ =
φ (x, y)− φ0, measured by the instrument, is given, at the lowest order, by:

∆φ (x, y) =
ER (x, y)

E0
sin (φR (x, y)− φ0)

+
f (x, y)

E0
sin (φG − φ0) , (7.5)

(see also Fig.7.1, right). Consequently, once the contribution of the reflections has
been fitted and subtracted, the map of ∆φ is simply proportional to the amplitude
map of one of the modes which can propagate in the structure, or to a linear com-
bination of several modes simultaneously propagating in the waveguide, each with
its appropriate phase value φG.

7.1.1 Finite element modeling of the waveguides

In order to compare the experimental phase profiles with a superposition of modes
propagating in the waveguides, a 2-dimensional finite element model (FEM) of the
irradiated regions was employed, taking into account the local modifications in the
refractive index induced by proton damage, quantified in terms of the induced va-
cancy density and calculated by means of a Monte Carlo simulation (SRIM) as
reported in ref.[141]. Once given the vacancy density at every cell of the simulation
grid, the local variation of refractive index at the He-Ne wavelength of 632.8 nm
is calculated on the basis of the simple relation 6.3 [141], with the values of the
parameters given in Tab. 6.2. The result is

∆n = (4.20 + 2.88i)× 10−23dNvacancies

dV/cm3
. (7.6)
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Figure 7.4: (top left) Map of the damage produced by the ion beam in term of
vacancy density. (rest of the figure) In the same spatial scale, amplitude maps of 9
simulated modes propagating in the waveguide irradiated at 2× 1016cm−2 fluence.

In figure 7.4 a map of the vacancy density, as calculated by SRIM, and an example of
nine different numerically calculated modes propagating in the structures irradiated
at the higher fluence are shown. At lower fluencies, progressively lower refractive
index modifications imply a lower number of propagating modes, whose amplitude
maps present fewer and wider lobes.

7.1.2 Fitting of the experimental maps

The experimentally obtained phase maps were compared with a superposition of the
calculated amplitude maps, by fitting them with a linear combination of the propa-
gating modes. Since the relative amplitudes of the modes excited in the waveguides
depend in a sensitive way from the illumination conditions, different positions of
the sample on the focal plane may imply different weights to be assigned at each
particular mode. In figure 7.6 two different images of the implantations at fluencies
of 2 and 1 × 1016cm−2 are shown along with the best fit obtained with 30 different
propagation modes (ten for each structure) and two plane sinusoids, taking into
account the reflections on the two planes. It is evident that the same set of propaga-
tion modes, though with different weights, fits the two images. The weight of each
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Figure 7.5: amplitude maps of 5 simulated modes propagating in the waveguide
irradiated at 5× 1015cm−2 fluence.

mode is not of much significance, since it is proportional to the sinus of φG − φ0,
an angle which is supposed to vary randomly from a mode to another. In the same
figure, an image of the 5× 1015cm−2 fluence waveguide is also shown, together with
its 21-mode fit.

From the inspection of these images we conclude that the adherence of the fit
to the experimental two-dimensional profiles is very good in the cap layer between 0
and about 45 µm in depth, where the relative damage is small, while at end-of-range
the structures seems to be more diffuse, probably due to the distortion induced by
diffraction on the highly opaque regions, which lies under the plane Π (see fig7.1),
in correspondence with the considered structures.

7.1.3 Conclusions

There is sufficient evidence that the ion-beam writing method proposed in this letter
gives the possibility to fabricate light-guiding structures in bulk diamond. Moreover,
the micro-interferometric measuring method briefly exposed here provides a mean
for a highly detailed study of the mode patterns propagating in the waveguides.
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Figure 7.6: Comparison of the measured phase shift maps (left) and of the fit (right)
obtained by linear superposition of modes amplitudes and a background taking into
account multiple reflections effects. (top and middle) Images obtained from three
adjacent guides irradiated at 2 × 1016cm−2 (the left one) and at 1 × 1016cm−2 (the
onthers). (bottom) Images obtained by three equally irradiated guides at a fluence
of 5× 1015cm−2.



Appendix A

Persson’s theory of contact

mechanics and applications

In this appendix Persson’s theory of contact mechanics is exposed in the part re-
garding the calculation of the rate of contact between a rough, perfectly rigid surface
and a flat elastic media. The theory is applied to the diamond surfaces studied in
chapter 4 and a comparison is made with the results of the theory of section 4.2.
Some weak aspects of Persson’s theory are also evidenced and possible ways toward
the solution of some difficulties are shown.

Consider a nominally flat surface of radius r0 and area A0, and let rζ = r0/ζ
be the resolution with which the rough surface’s profile h (x) and the stress contact
p (x) are observed. If p0 is the nominal surface stress on the area A0 and pζ is
the (average) stress on the effective contact area Aζ at the resolution rζ , we have
obviously

p0A0 = pζAζ , (A.1)

so that the rate of effective contact R(ζ) is given by

R(ζ) ≡ Aζ

A0
=
p0
pζ
. (A.2)

The purpose of the theory is find an analytical expression for the rate of contact
in dependence on the known quantities, essentially the surface profile h (x) and the
load p0 on the nominal area A0.

It is important to note that, up to now, the notion of “resolution” of the
observation is yet matematically not well defined. Persson doesn’t remove this
ambiguity even in the more extensive presentation of the theory[36]. We will try
to suggest a way to overcome this difficulty, underlining the passages were further
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mathematical work should be done. We begin noting that stress p (x) in a given
point x is given by

p (x) =

∫
p̂ (q) eiq·xd2q, (A.3)

and defining the complex quantity

pζ (x) ≡ pq (x) ≡
∫

|q|<q0ζ≡q

p̂ (q) eiq·xd2q, (A.4)

with q0 ≡ 2π
r0
. In this way, q ≡ q0ζ is interpreted as a cut-off spatial wavenumber for

the fourier analysis of our problem, dependent on the detail with which we are able
to observe the phenomena involved. At this point Aζ ≡ Aq can be defined as the
the total area on which the real part of pq (x) is “significantly” greater than zero
(the notion of “significance” is obviously yet non well defined) and saying that pq
is the average value of the real part of pq (x) on this area. We define also the area
Aq (p) on which the real part of pq (x) is greater than zero but lesser than p, so that
it is possible to express the probability distribution P (p, q) of having a pressure p
on the area Aq as:

P (p, q) =
1

Aq

dAq (p)

dp
=

1

Aq

∫

Γq,p

dl

|∇ℜpq (x)|
, (A.5)

were Γq,p is the 1-dimensional profile over which ℜpq (x) = p. Now we can express
the mean value pq as

pq =

∫∞

0
pP (p, q) dp∫∞

0
P (p, q) dp

, (A.6)

and the rate of contact R (q) as

R (q) =
p0
∫∞

0
P (p, q) dp∫∞

0
pP (p, q) dp

. (A.7)

It is worth noting that the distribution P (p, q) is not normalized. To the aim of
finding an expression for the rate of contact R (q), we will determine a differential
equation for the distribution P (p, q). Let us start from equation A.5, and write

P (p, q) =
1

Aq

∫
dp′
∫

Γp

dl

|∇ℜpq|
δ (p− p′) =

1

Aq

∫

Aq

δ (p−ℜpq (x)) d2x. (A.8)

If we consider a statistical ensemble of surfaces with similar characteristics, we can
substitute the average on the area with an average over the ensemble, and write
(from this point on it is understood the sign of real part before pq (x) and similar
quantities):

P (p, q) = 〈δ (p− pq (x))〉 , (A.9)
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where x is whatever point of effective contact at the scale rq. Now we can find a
differential relation for the distribution P . We have

P (p, q +∆q) = 〈δ (p− pq+∆q (x))〉 = 〈δ (p− pq (x)−∆pq,∆q (x))〉 , (A.10)

which can be re-written as

P (p, q +∆q) =

〈∫
dp′δ (p′ −∆pq,∆q (x)) δ (p− p′ − pq (x))

〉
. (A.11)

Now, statistical independence of averages at different scales permits to infer, from
this relation and from Eq.A.9:

P (p, q +∆q) =

∫
dp′ 〈δ (p′ −∆pq,∆q (x))〉P (p− p′, q) . (A.12)

Noting that

〈δ (p′ −∆pq,∆q)〉 =
1

2π

∫
dw
〈
eiw(p

′−∆pq,∆q)
〉
≈ δ (p′) +

1

2

〈
∆p2q,∆q

〉 ∂2

∂p′2
δ (p′) ,

(A.13)
we have finally, substituting in Eq.A.12, the following:

P (p, q +∆q) = P (p, q) +
1

2

〈
∆p2q,∆q

〉 ∫
dp′P (p− p′, q)

∂2

∂p′2
δ (p′) , (A.14)

that is

∂

∂q
P (p, q) = f (q)

∂2

∂p2
P (p, q) , with f (q) =

1

2

〈
∆p2q,∆q

〉

∆q
. (A.15)

Equation A.15 is a diffusion type equation, in which the “temporal” coordinate
is q and the “spatial” one is the stress p, with a diffusion constant dependent on q
itself. The diffusion constant f (q) is defined on the basis of a statistical ensemble of
surfaces, on which the square of the (real part of the) difference pq+∆q (x)−pq (x) ≡
∆pq,∆q is averaged. The boundary conditions and the initial values for the equation
A.15 are respectively

P (0, q) = P (∞, q) = 0 and P (p, q0) = δ (p− p0) . (A.16)

The solution of Eq.A.15, with the boundary and initial conditions A.16, can be
straightforwardly verified to be

P (p, q) =
2

π

∫ ∞

0

sin (sp0) sin (sp) exp

[
−s2

∫ q

q0

f (q′) dq′
]
ds. (A.17)
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This expression defines the dependence of the distribution P (p, q) on the statistical
characteristics of pq.

Now, multiplying both terms of Eq.A.15 by p and integrating we have

∂

∂q

∫ ∞

0

pP (p, q) dp = −f (q) |P (p, q)|p→∞
p=0 = 0. (A.18)

Thus
∫ ∞

0

pP (p, q) dp =

∫ ∞

0

pP (p, q0) dp =

∫ ∞

0

pδ (p− p0) dp = p0. (A.19)

On the other hand, integrating Eq.A.15 directly, we have

∂

∂q

∫ ∞

0

P (p, q) dp = f (q)

∣∣∣∣
∂

∂p
P (p, q)

∣∣∣∣
p→∞

p=0

= −f (q) ∂
∂p
P (0, q) , (A.20)

which implies:

∫ ∞

0

P (p, q)− δ (p− p0) dp = −
∫ q

q0

f (q′)
∂

∂p
P (0, q′) dq′. (A.21)

It follows, from Eqs.A.7,A.19 and A.21 that

R (q) = 1−
∫ q

q0

f (q′)
∂

∂p
P (0, q′) dq′. (A.22)

Now, substituting expression A.17 it is easy to find that

∫ q

q0

f (q′)
∂

∂p
P (0, q′) dq′ = 1− 2

π

∫ ∞

0

sin (sp0)

s
exp

[
−s2

∫ q

q0

f (q′) dq′
]
ds, (A.23)

which imply, changing the variable of integration:

R (q) =
2

π

∫ ∞

0

sin x

x
exp

[
−x2 1

p20

∫ q

q0

f (q′) dq′
]
dx. (A.24)

The solution of the problem requires, at this point, the determination of the
function f (q), defined in Eq.A.15, in dependence on the surface profile. First note
that

∆p2q,∆q (x) = (pq+∆q (x)− pq (x))
2 =

∫∫

q<|q|<q+∆q
q<|q′|<q+∆q

p̂ (q) p̂ (q′) ei(q+q
′)·xd2qd2q′

(A.25)
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Averaging over the whole area A0 and over a statistical ensemble of surfaces we
have, remembering

∫
ei(q+q

′)·xd2x = 2πδ (q+ q′):

f (q) =
1

2

〈
∆p2q,∆q

〉

∆q
=

π

A0∆q

∫

q<|q|<q+∆q

〈p̂ (q) p̂ (−q)〉 d2q. (A.26)

At this point we have to face the problem of determining a relationship between the
Fourier components of the local pressure and the surface profile. If we assume that,
at a given external pressure p0, the elastic surface profile is hp0 (x), we can solve the
problem exactly as we did in the perfect adherence case in section 4.2, in the no-
friction and in the vertical-displacement case, writing p̂ (q) = Jqĥp0 (q). Obviously,
this assumption only transform the problem into that of the determination of the
profile hp0 (x). Persson poses simply hp0 (x) = h (x), stating an approximation
which, in my opinion, is justified only in the limit p0 → ∞. In order to overcome
this difficulty, it may be convenient to state that the surface profile of the elastic
medium follows that of the rigid one “almost” exactly down to a resolution which
depends itself on the ratio of uni-axial stress p0 to the modulus J . In this case, The
Fourier transform of the profile ĥp0(q) obeys the relation:

ĥp0 (q) = ĥ (q)×Ψ p0
J
(q) , (A.27)

where the function Ψ p0
J
(q) can be an empirical function that operates a cut at fre-

quencies which are increasing with the ratio p0
J
. With this assumption, the Persson’s

development of the theory results only slight modified: keeping in mind that

〈
ĥp0 (q) ĥp0 (−q)

〉
=

Ψ2
p0
J

(q)

(2π)4

∫∫
〈h (x)h (x′)〉 e−iq·(x−x

′)d2xd2x′ =(A.28)

Ψ2
p0
J

(q)

(2π)4

∫∫
〈h (x+ x′) h (x′)〉 e−iq·xd2xd2x′ =

A0Ψ
2
p0
J

(q)

(2π)4

∫
〈h (x) h (0)〉 e−iq·xd2x,

from Eq.A.26 we finally have

f (q) =
1

2
J2q3Ψ2

p0
J

(q)C (q) with C (q) =
1

(2π)2

∫
〈h (x)h (0)〉 e−iq·xd2x.

(A.29)
Substituting Eq.A.29 in Eq.A.24 we find

R (q) =
2

π

∫ ∞

0

sin x

x
exp

[
−x2 1

2

(
J

p0

)2 ∫ q

q0

q′3Ψ2
p0
J

(q′)C (q′) dq′

]
dx. (A.30)

From this relation, it is evident that the rate of contact of the two surfaces depends on
the ratio between the normal stress p0 and the modulus J , of the order of the elastic
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constants of the material, multiplyed by a factor which depends on the statistical
characteristics of the rough surface and, via the factor Ψ2

p0
J

(q), on the pressure itself.

In figure A.1 the rate of contact and its complement to 100% are plotted as functions

of the product P =
√

1∫ q
q0

q′3Ψ2
p0
J

(q′)C(q′)dq′
× p0

J
. Following Persson approximation i)
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Figure A.1: (left) Behavior of the rate of contact and of its complement to 100% as
functions of normal stress p0. (right) Comparison of the predictions of the Persson’s
theory and of the theory developed in section 4.2 for the first and the second batch
of samples at our disposition.

Ψ2
p0
J

(q) = 1, and stating ii) p0 << J , it holds the noticeable approximation:

R (q) =

√
2

π
∫ q

q0
q′3C (q′) dq′

× p0
J
, (A.31)

which states the proportionality between the rate of contact and the normal stress
in case of small loads. In my opinion the two statements i) and ii) are mutually
incompatible, and the real behavior of R (q) for small loads depends also on the
effective form assumed by the function Ψ2

p0
J

(q), probably giving a power low in

p0/J . Nevertheless, for high values of the load, the approximation Ψ2
p0
J

(q) = 1 can

be considered as well founded, and the corresponding values of R (q), in Eq. A.30,
are probably a good approximation.

At this point, we can try to compare the predictions of the theory exposed in
section 4.2 with those of Persson’s theory. The form found for the function C (q)
involve the correlation function 〈h (x) h (0)〉, which is very useful, for instance, when
only the fractal properties of a surface are known. In our case we dispose of detailed
2-dimensional maps of the specific diamond and silicon surfaces to be bonded, and
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a little more analysis will allow us to find a more useful expression. The integral at
the exponent in Eq.A.30 can be written as

∫ q

q0

q′3C (q′) dq′ =

∫
d2x 〈h (x) h (0)〉 1

(2π)2

∫

q0<|q|<q

d2q · q2e−iq·x. (A.32)

If the integral in the wavevector q were extended to the whole plane, it whould equal
the laplacian of the Dirac distribution, in our case, we can define a “smoothed”
laplacian △q in this way:

△qF (x, y) ≡ 1

(2π)2

∫

q0<|q|<q

d2q · q2F (x) e−iq·x. (A.33)

In this way, Eq.A.32 takes the form:
∫ q

q0

q′3C (q′) dq′ =< △qh (0) · h (0) > . (A.34)

As an example of simple application of Eq.A.34, let us suppose the profile h (x)
to be of a sinusoidal type with wavelength λ and amplitude h0. In this case, if

q >> 2π
λ

the expression A.34 assume the value
(
π h0

λ

)2
. A look to the plot of Fig.4.1

reveals that an almost total contact is reached if p0 exceed some units times π h0

λ
J .

This analysis is confirmed also by the exact solution of the sinusoidal problem, as
reported in section 4.2.

Expression A.34 allows a drastic simplification for the calculations of the rate
of contact when the profile is described in term of a matrix hij . If we define a
discretized laplacian as △k:

△khij =
hi+k,j + hi,j+k − 4hij + hi−k,j + hi,j−k

k2∆x2
, (A.35)

we can write the rate of contact, at the resolution k, as

Rk =
2

π

∫ ∞

0

sin x

x
exp

(
−x2 1

2

(
J

p0

)2 〈
△kh00 · h00

〉
)
dx. (A.36)

I calculated the value of
〈
△kh00 · h00

〉
for a set of surfaces profile of the first

and the second batch of diamond samples that we had at our disposition. I found
values of 0.00098 and 0.0023, respectively, which gives curves of the Rk (with k = 1)
as a functions of p0/J which are represented in figure A.1 (right), together with the
corresponding curves determined by the theory exposed in section 4.2. Persson’s
theory gives a same shape of the curve, with an horizontal translation which ex-
tent depends on the characteristics of the sample. In this case, the second batch,
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giving a higher value of
〈
△kh00 · h00

〉
(due mainly to the high spatial-frequencies

behavior) results to perform worser than the first one, loosing the indication of a
better behavior at the lower pressures. The two theories, letting aside the position
of the elbow, which is approximately correct, seems to predict quite different be-
haviors. An experimental investigation, for instance by development of the silicon
raman shift method outlined in section 4.4, could help to discriminate the correct
theoretical approach.



Appendix B

Additional proofs to chapter 6

B.1 Swelling and optical path difference

We have to show that the complex optical path difference (COPD) due to the
variation of the refractive index only, in its real and imaginary part, depends on the
measured one (COPDm) and on the swelling height h in the following way:

COPD = COPDm − (n̂0 − 1)h. (B.1)

Let each point, initially at the height z inside diamond, displace, as an effect of the
damage, to the new height z′ given by

z′ = z + h(z). (B.2)

so that
dz′

dz
= 1 +

dh

dz
≡ 1 + σ (z) . (B.3)

Suppose σ (z) ≪ 1 for every value of z. This is a very good approximation, in
fact, the observed swelling, which is related to the function σ (z) by the relation:

h = z′ (0) = h (0) =

∫ 0

−∞

dh

dz
dz =

∫ 0

−∞

σ (z) dz (B.4)

is (at most) about 30 nm, while the region over which σ is appreciably non null has
a width WBragg about 3 µm (about the full-width half maximum of the Bragg peak),
so that

σ ≈ h

WBragg
≤ 0.01 (B.5)
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Figure B.1: Scheme of the displacement of each point inside diamond due to radia-
tion damage. z is the height of a given point before damage, z′ is the height after
damage, h (z) is the displacement z′ − z.

Let now the refraction index inside diamond be

n̂ = n̂0 +∆n̂, (B.6)

where n̂0 is the refraction index of un-damaged diamond. Our experimental results
indicate that ∣∣∣∣

∆n̂

n̂0

∣∣∣∣ ≤
0.11

2.41
≈ 0.05. (B.7)

If we assume that the variation of the refraction index over distances of the order of
h (z) (less then 30 nm) is very small, we can write:

n̂ (z′) = n̂0 +∆n̂ (z + h (z)) ∼= n̂0 +∆n̂ (z) +
d∆n̂

dz
h (z) ∼= n̂0 +∆n̂ (z) . (B.8)

Now, the measured COPD (COPDm) is given by the difference between the optical
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path inside and outside the damaged area, so we can write

COPDm =

[∫ h

−∞

n̂ (z′) dz′ +

∫ H

h

dz′
]
−
[∫ 0

−∞

n̂0dz
′ +

∫ H

0

dz′
]
. (B.9)

Were H is the distance between the undamaged free surface of diamond and a
reference plane (see also figure B.1 ) The first integral of Eq.B.9 can be written as

∫ h

−∞

n̂ (z′) dz′ =

∫ 0

−∞

n̂ (z′)
dz′

dz
dz =

∫ 0

−∞

(n̂0 +∆n̂ (z)) (1 + σ (z)) dz =

∫ 0

−∞

n̂0dz +

∫ 0

−∞

∆n̂ (z) dz + n̂0

∫ 0

−∞

σ (z) dz +

∫ 0

−∞

∆n̂ (z) σ (z) dz. (B.10)

If ∆n̂ and σ are, as previously assumed, small compared with the unit, their product
(which is lesser than about 0.0005) in the last integral can be neglected. Thus,

considering COPD =
∫ 0

−∞
n̂ (z) dz and h =

∫ 0

−∞
σ (z) dz, the equation B.9 can be

written as

COPDm =
[∫ 0

−∞
n̂0dz +

∫ 0

−∞
∆n̂ (z) dz + n̂0

∫ 0

−∞
σ (z) dz +

∫ H

h

]
−

[∫ 0

−∞
n̂0dz +

∫ H

0
dz
]
=

∫ 0

−∞
n̂0dz + COPD + n̂0h+ (H − h)−

∫ 0

−∞
n̂0dz −H =

COPD − (n̂0 − 1)h (B.11)

which is what we had to prove.

B.2 Fluence calculation

I prove here that if the raster scanning of each implanted region Ω is uniform and if
the dimensions L of the square region are much wider than the beam width l, we can
assume that the fluence in the central region equals the ratio of the deposited charge
Q to the area AΩ scanned by the center of the beam. In fact, given φ (x) = d2q

dSdt
the

distribution of the beam current density, the fluence at a give position y is

φ (y) =

∫ T

0

φ (y − x (t)) dt =

∫ T

0

dt
1

AΩ

∫

Ω

φ (y− x) d2x. (B.12)

If φ (x) = 0 for |x| > r and y is chosen in such way that |y − x| > r for every x not
belonging to the region Ω, thus

∫
Ω
φ (y− x) d2x = dq

dt
and

φ (y) =
1

AΩ

∫ T

0

dq

dt
dt =

Q

AΩ
, (B.13)

as we had to prove.
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