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Chapter 1

Introduction

The digital revolution has converted old, analog technologies into a digital

format. The sweeping changes brought about by digital computing and

communication technology during the latter half of the 20th century, have

opened exciting new challenges [157]. In this context, due to the widespread

availability of personal and professional imaging devices, the low cost of

multimedia storage and ease of content transmission and sharing, the need

to automatically analyze and organize large amounts of visual data becomes

more and more prominent.

1.1 The objective

While data processing capabilities of machines are truly impressive if com-

pared to a human, data interpretation skills are very poor. Just as an ex-

ample, considering an archive of sports videos, retrieving the winning goal

from the 2010 Word Cup is a hard task requiring human intervention when

the data has not been manually annotated.

Our goal is to enable visual search of videos and image collections. This

task may consist of determining whether the visual data contains some spe-

cific property, object or activity (Figures 1.1, 1.2, 1.3 and 1.4). Nowa-

days, currently available text-based image and video search engines (such

as Google and Bing) are based on queries that are mainly given by few tex-

tual words, and images and videos are searched based on their metadata and

surrounding text. Although these systems are (relatively) effective and pow-

erful, their potential is limited by the information given in the text. Moreover

1



2 Introduction

Figure 1.1: Example search for the query “panorama” with the particular

property of having red color.

this textual information is often imprecise, ambiguous and overly personal-

ized (think for example at social websites for media sharing like YouTube

and Flickr). Moreover, systems that enable fast, automatic visual search of

images and videos are very appealing because of their relevance to many real

applications, from semantic image and video indexing to intelligent video-

surveillance and advanced human-computer interaction. For these reasons,

content-based image/video retrieval and understanding receives a lot of at-

tention from both the scientific community and industry. Although a lot of

work has been done [203,55], this task remains very challenging. It is mainly

due to the fact that machines can only compute low level properties of data

that have no clear relation with high level conceptual semantics. This is

a well-known problem in the literature, and it has been formalized as the

semantic gap:

“The semantic gap is the lack of coincidence between the infor-

mation that machines can extract from the visual data and the

interpretations the user may give to the data.”

Therefore, the problem of visual search and recognition could be summa-

rized in the question: “how can we bridge the semantic gap for image and

video understanding?”.

1.2 Contributions

We present in this thesis a step-by-step methodology to reduce the semantic

gap and to achieve automatic annotation and retrieval of visual content. The

contribution of this research work is divided into two main themes. The first
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Figure 1.2: Example search for a particular object instance (in this case the

logo “Starbucks”).

Figure 1.3: Example search for a particular object category (in this case

“airplane”).

Figure 1.4: Example search for a particular activity (in this case the action

“shake hand”).

one is related to the recognition of objects in images and videos, while the

second one to the recognition of dynamic concepts such as actions and ac-

tivities. Although these two main themes can be individuated, the common

idea of our work is the usage of local visual features. Local representations
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are a robust and general solution since they are able to describe the vi-

sual observations as a collection of independent local patches. Objects and

events are fully represented by the appearance of hundreds of local visual

features. This approach is well suited in generic real-world scenarios, since

it exhibits a strong robustness against several geometrical transformations,

such as rotation and scaling, partial occlusions and clutter. This basic repre-

sentation is then extended by introducing spatial and temporal constraints

between local features in order to obtain more complete information and

to manage ambiguity. A formal representation of knowledge is introduced

by a multimedia ontology that connects visual observations (the perceptual

level) to linguistic and abstract concepts and relations (the semantic level).

The structure of the ontology itself, together with reasoning, can be used

to perform higher-level annotation of the visual data, to generate complex

queries that comprise concepts, their relations and temporal evolutions, and

to create extended text commentaries.

The rest of the thesis is organized as follows1. We start in Chapter 2

with a survey of related work on object and event recognition in multimedia

archives. Special attention is given to visual recognition approaches using

local representations, which forms the basis for our work.

Chapters 3 and 4 deal with the particular problem of detection and re-

trieval of trademarks in images and videos. First, we propose a real system

for logo recognition in large sports video archives (Chapter 3). Here clas-

sification of trademarks is performed by matching a set of SIFT feature

descriptors [137] for each trademark instance against the set of features de-

tected in each frame of the sport video. Localization is performed through

robust clustering of matched feature points in the video frame. Experimental

results are provided, along with an analysis of the precision and recall in a

real application scenario. In Chapter 4, we extend this retrieval approach

by introducing a robust context-dependent similarity measure between local

descriptors. This measure takes into account not only the intrinsic visual fea-

tures but also their context and spatial configuration. The main contribution

of this work includes: i) a variational framework which makes it possible to

design our similarity as the fixed point of an energy function mixing a visual

“data term”, a “context criterion” and a “regularization term”; ii) a theo-

retical study of the consistency of logo matching/detection and its invariance

1Note that each chapter is written in a self-contained fashion and can be read on its
own.
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to different transformations including similarity and occlusion. The validity

of this method is shown through extensive experiments on a challenging logo

image dataset.

Chapter 5 builds on ideas from Chapter 3 to address the problem of

image forensics; to be more precise, it consists in determining if a particular

image is authentic or not, which could be a crucial task when images are

presented as basic evidence to influence judgment (e.g. in a court of law).

Special attention has been paid to the case in which an area of an image is

copied and then pasted onto another zone to make a duplication or to cancel

something that was awkward (copy-move attack). The proposed method

can determine if such tampering has occurred and which image patches are

involved, and to recover which geometric transformation was used to perform

cloning.

In Chapter 6 we move to video event recognition problem. Events are

modeled as a sequence of histograms of “static” visual features (e.g. SIFT),

computed from each video frame. The sequences are treated as strings where

each histogram is considered as a character. Event classification of these

strings of variable length, depending on the duration of the video clips, are

performed using SVM classifiers with a novel string kernel (based on the

Needlemann-Wunsch edit distance [156]). In other words, the basic idea of

the approach is to represent the dynamics of the event by collecting the

visual appearance in each video frames through the time. Experiments have

been performed on two different domains: soccer and TRECVID 2005 news

videos.

Chapter 7 focuses on categorization of human action classes from video

collections. Automatic human activity recognition methods are useful in

many real applications, in particular in videosurveillance scenarios. To this

end, we first define a novel 3D spatio-temporal gradient descriptor that,

combined with optic flow, outperforms the state-of-the-art without requir-

ing fine parameter tuning. Second, we introduce a more effective codebook

model by applying a radius-based clustering method and a soft assignment

that considers the information of two or more relevant codeword candidates.

We extensively test our approach on standard KTH and Weizmann datasets

showing its validity and outperforming several recent approaches.

In Chapter 8 we present a novel rule-based approach to describe and

recognize composite concepts and events. Our method automatically learns

rules expressed in Semantic Web Rules Language (SWRL), exploiting the
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knowledge embedded in a multimedia ontology. The relationship between

concepts, their co-occurrence and the temporal consistency of video data are

used to improve the performance of individual concept detectors.

Chapter 9 summarizes the contribution of the thesis and discusses avenues

for future research. Note also that the full-list of published papers from this

thesis is given in Appendix B.



Chapter 2

Literature review

This chapter gives a brief survey of related work on object and

event recognition using local visual features. The first part of

the chapter roughly introduces the problem of object recognition

in image archives, while the second part deals with the prob-

lem of semantic video annotation. Finally, multimedia ontolo-

gies have been presented as a formal tool to enrich the semantic

image/video annotation or to derive new knowledge. 1

2.1 Recognition of object instances

The goal of object recognition in visual archives is to detect the presence of

a particular object in an image, and possibly localize the object in the image

and estimate its pose. This usually involves designing an object represen-

tation that can model the imaged appearance of an object under a broad

class of imaging conditions, such as varying object and camera pose, scene

lighting, partial occlusion and deformation. Such representation should also

be robust enough to deal with large amounts of background clutter.

1The part of this chapter related to semantic video annotation has been published as
“Event detection and recognition for semantic annotation of video” in Multimedia Tools
and Applications (Special Issue: Survey Papers in Multimedia by World Experts), vol. 51,
iss. 1, pp. 279-302, 2011 [17].

7



8 Literature review

2.1.1 Local visual features

While early works made strong simplification about the real world by using

mostly 3D geometric object models and geometric invariants (see for example

block world by Roberts [181] and [136]) or, more generally, global appearance

models, recent works in object recognition often use local appearance mod-

els. The main reason of this trend is that global representations suffer from

too simplistic assumption about object appearances and they also present

problems with partial occlusion and background clutter (due to the global

appearance representation used). For these reasons, this kind of models are

often unsatisfactory in real-world generic scenarios.

Local representations describe the visual observations as a collection of

independent local patches. These methods are at the heart of some of the

most successful object instance recognition systems to date. The main idea

of this kind of approaches is that objects are represented by the appearance

of hundreds of local visual features. First, a database of objects is built

by storing local appearances in the form of a feature vector (descriptor). In

recognition, local regions are extracted from a test image and matched to the

object database using their appearance descriptors. This initial set of local

region matches is then disambiguated using semi-local or global geometric

constraints (e.g. if the object is planar, we can use the constraint that all

local features must be mapped by a planar homography).

Local visual features (e.g. SIFT, SURF, GLOH, etc.) have been widely

used for the particular tasks of image retrieval and object recognition, due

to their robustness to several geometrical transformations (such as rotation

Figure 12: The training images for two objects are shown on the left. These can be recognized in a

cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown

on the right. A parallelogram is drawn around each recognized object showing the boundaries of the

original training image under the affi ne transformation solved for during recognition. Smaller squares

indicate the keypoints that were used for recognition.

The least-squares solution for the parameters x can be determined by solving the correspond-

ing normal equations,

x = [ATA]−1ATb,

which minimizes the sum of the squares of the distances from the projected model locations

to the corresponding image locations. This least-squares approach could readily be extended

to solving for 3D pose and internal parameters of articulated and flexible objects (Lowe,

1991).

Outliers can now be removed by checking for agreement between each image feature and

the model. Given the more accurate least-squares solution, we now require each match to

agree within half the error range that was used for the parameters in the Hough transform

bins. If fewer than 3 points remain after discarding outliers, then the match is rejected.

As outliers are discarded, the least-squares solution is re-solved with the remaining points,

and the process iterated. In addition, a top-down matching phase is used to add any further

matches that agree with the projected model position. These may have been missed from the

Hough transform bin due to the similarity transform approximation or other errors.

The fi nal decision to accept or reject a model hypothesis is based on a detailed probabilis-

tic model given in a previous paper (Lowe, 2001). This method fi rst computes the expected

number of false matches to the model pose, given the projected size of the model, the number

of features within the region, and the accuracy of the fi t. A Bayesian analysis then gives the

probability that the object is present based on the actual number of matching features found.

We accept a model if the fi nal probability for a correct interpretation is greater than 0.98.

For objects that project to small regions of an image, 3 features may be suffi cient for reli-

able recognition. For large objects covering most of a heavily textured image, the expected

number of false matches is higher, and as many as 10 feature matches may be necessary.

8 Recognition examples

Figure 12 shows an example of object recognition for a cluttered and occluded image con-

taining 3D objects. The training images of a toy train and a frog are shown on the left.
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(a) (b) (c)

Figure 2.3: Object recognition example from the work of Lowe [85, 87]. (a) Model images for two
objects. (b) Novel scene image. (c) Recognition result. Matched local regions and model image
bounding boxes are overlaid.

local patches. First, a database of objects is built by storing local appearances in the form of a

descriptor vector. In recognition, local regions are extracted from a novel image and matched to the

object database using their appearance descriptor values. This initial set of local region matches is

then disambiguated using semi-local or global geometric constraints. For example if the object is

planar, we can require that all local regions are mapped by a planar homography.

The method can naturally handle partial occlusion as objects are represented by multiple

patches. Robustness to background clutter is achieved by making the appearance descriptors dis-

criminating and applying geometric constraints. Viewpoint and illumination invariance is achieved

by careful design of local region detectors and descriptors, which we describe below.

Local region based systems can represent and reliably recognize a surprising variety of real-

world objects, provided the objects are at least lightly textured. The key to the good performance

is: (i) repeatability of local regions, which means that a local region describing a particular part of

the object can be reliably re-detected over a range of camera viewpoints, illumination conditions

and camera noise; (ii) robust and discriminative description of local regions, i.e. local regions with

different appearances can be reliably discriminated in the descriptor space, and descriptor compu-

tation is robust to noise which might occur in the region detection process; (iii) redundant object

description by hundreds of local regions, which can cope with occasional missing or mismatched

regions and partial occlusion.

An example of local region based representation is the work of Schmid and Mohr [126]. Their

17

Figure 2.1: Object recognition example from the original work of Lowe [137].

(a) Model images for two objects; (b) Test image; (c) Recognition result.
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and scaling), occlusions and clutter. Most of the algorithms proposed in the

literature for detecting and describing local visual features usually requires

two steps. The first is the detection step, in which interest points are lo-

calized, while in the second step robust local descriptors are built so as to

be invariant with respect to orientation, scale and affine transformations. A

comprehensive analysis of several local descriptors is provided in [149] while

local affine region detectors are surveyed in [150]. These works confirm that

SIFT feaures [137] are a good solution because of their high performance

and relatively low computational costs. In the following we report, as an

example of these methods, a brief summary of the SIFT algorithm; for more

details (obviously) refer to the original paper.

Scale-Invariant Feature Transform (SIFT)

This method can be roughly summerized as the following four steps: i) scale-

space extrema detection; ii) keypoint localization; iii) assignment of one (or

more) canonical orientation; iv) generation of keypoint descriptors.

In other words, given an input image I, SIFT features are detected at dif-

ferent scales by using a scale-space representation implemented as an image

pyramid. The pyramid levels are obtained by Gaussian smoothing and sub-

sampling of the image resolution while interest points are selected as local

extrema (min/max) in the scale-space. These keypoints, also referred as xi in

the following, are extracted by applying a computable approximation of the

Laplacian of Gaussian (LoG) called Difference of Gaussians (DoG). Specifi-

cally, a DoG image D is given by: D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗
I(x, y) = L(x, y, kσ)− L(x, y, σ), where L(x, y, kσ) is the convolution of the

original image I(x, y) with the Gaussian blur G(x, y, kσ) at scale kσ.

In order to guarantee invariance to rotations, the algorithm assigns to

each keypoint a canonical orientation o. To determine this orientation, a

gradient orientation histogram is computed in the neighborhood of the key-

point. Specifically, for an image sample L(x, y, σ) at scale σ (the scale in

which that keypoint was detected), the gradient magnitude m(x, y) and ori-

entation θ(x, y) are precomputed using pixel differences:

m(x, y) =
((

(L(x + 1, y)− L(x− 1, y)
)2

+

+
(
(L(x, y + 1)− L(x, y − 1)

)2
)1/2

, (2.1)
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θ(x, y) = tan−1

(
L(x, y + 1)− L(x, y − 1)

L(x + 1, y)− L(x− 1, y)

)
. (2.2)

An orientation histogram with 36 bins is formed, with each bin covering

approximately 10 degrees. Each sample in the neighboring window added to

a histogram bin is weighted by its gradient magnitude and by a Gaussian-

weighted circular window with σ equal to 1.5 times respect to the scale of the

keypoint. The peaks in this histogram correspond to dominant orientations.

Once these keypoints are detected, and canonical orientations are assigned,

SIFT descriptors are computed at their locations in both image plane and

scale-space. Each feature descriptor consists in a histogram f of 128 elements,

obtained from a 16×16 pixels area around the corresponding keypoint. This

area is selected using the coordinates (x, y) of the keypoint as the center

and its canonical orientation as the origin axis. The contribution of each

pixel is obtained by accumulating image gradient magnitude, m(x, y), and

orientation, θ(x, y), in scale-space and the histogram is computed as the local

statistics of gradient orientations (considering 8 bins) in 4 × 4 sub-patches

(see Fig. 2.2).

Figure 2.2: Image gradients within a patch (left) are accumulated into a

coarse 4× 4 spatial grid (right, only a 2× 2 grid is shown). A histogram of

gradient orientations is formed in each grid cell. 8 orientation bins are used

in each grid cell giving a descriptor of dimension 128 = (4× 4× 8).

Summarizing the above, given an image I, this procedure ends with a

list of N keypoints each of which is completely described by the following

informations:

xi = {x, y, σ, o, f}, (2.3)

where (x, y) are the coordinates in the image plane, σ is the scale of the

keypoint (related to the level of the image-pyramid used to compute the de-



2.2 Recognition of object categories 11

Figure 2.3: Examples of successful face detections by the Schneiderman and

Kanade detector [218].

scriptor), o is the canonical orientation (used to achieve rotation invariance)

and f is the final SIFT descriptor.

2.2 Recognition of object categories

The recognition of object categories in images is a challenging problem in

computer vision, especially when the number of categories is large. The chal-

lenge is that appearance variations among instances of an object class have

to be modeled, in addition to standard problems of viewpoint and lighting

changes and partial occlusion. Early works in this field usually addressed

the problem of detecting very particular categories such as faces or cars

(Fig. 2.3 shows an example of the results obtained using the Schneiderman

and Kanade detector [193]). Often these methods involve training a sliding

window classifier, which for a small image patch (e.g. 24×24 pixels) decides

whether the desired object (e.g. a face) is present or not [218].

Given the big success of local representations for recognition of object

instances, approaches based on local visual features have been extended in

the object and scene categorization scenario by exploiting the Bag-of-Words

(BoW) model [201]. The BoW in document retrieval (in particular in natural

language processing) is a popular method for representing documents, which

ignores the word orders. For example, “a good work” and “work good a”

are the same under this model. The BoW model allows a dictionary-based

modeling, and each document looks like a bag which contains some words

from the dictionary. In the visual case, an image can be treated as a doc-

ument, and visual features extracted from the image are considered as the

visual words. Through the use of this intermediate description (the code-
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book), images can be represented very compactly. The codebook is usually

obtained with a vector quantization procedure exploiting some clustering al-

gorithm (such as k-means). This intermediate description allows both fast

data access, by building an inverted index [201,164], and generalization over

category of objects by representing each instance as a composition of com-

mon parts [72]. As in the textual counterpart, the bag of visual words does

not retain any structural information and so, by using this representation,

we actually do not care where regions occur in an image. As this comes with

some advantages, like robustness to occlusions and generalization over differ-

ent object and scenes layouts, there is also a big disadvantage in discarding

completely image structure, since this actually removes all spatial informa-

tion. A local visual words spatial layout description [189] can recover some

image structure without loss of generalization power. A global approach has

been proposed by Lazebnik et al. [124]; in their work structure is added in

a multi-resolution fashion by matching spatial pyramids obtained by subse-

quently partitioning the image and computing bag-of-words representations

for each of the sub-image partition.

2.2.1 Codebooks

Visual features are usually quantized by applying some clustering algorithm,

to obtain a visual dictionary (usually called codebook) that is used to repre-

sent and classify categories of visual concepts [163, 72, 201, 97]. Most of the

methods use the k-means algorithm for codebook creation, because of its

simplicity and convergence speed. However, local representations with code-

Figure 2.4: Illustration of the bag-of-visual-words model. An image is repre-

sented by a histogram of quantized local features (visual words). Note that

all spatial relations between regions are lost.
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books also have shown limitations. On the one hand, the k-means clustering

method, despite of its popularity, is not very robust w.r.t. outliers and the

number of codewords has to be known in advance, requiring an empirical

evaluation of this number. Jurie and Triggs [100] have also shown that with

k-means, due to the simplistic assumption of uniform distribution of the fea-

tures in the descriptor space, cluster centers are selected almost exclusively

around the denser regions in the descriptor space and more sparsely else-

where, thus failing to code other informative regions. They have proposed a

radius-based clustering to improve the quality of the codebook. Another crit-

ical point of bag-of-features approaches is related to the high dimensionality

of the codebooks and so to their computational requirements. Reducing the

codebook size allows to better fit a real-time scenario reducing action recog-

nition time. A simple means of codebook size reduction is to use a lower

number of clusters (or a bigger radius in radius-based clustering). However

this approach compromises descriptor statistics by increasing quantization

errors, visual words uncertainty and word discriminative power. A more prin-

cipled approach is the use of Principal Component Analysis (PCA) [104,227].

In the field of text retrieval, a common technique used to project high dimen-

sional features in a “semantic space” is Latent Semantic Indexing (LSI) [56]

which, by applying Singular Value Decomposition (SVD) to the documen-

t/term matrix, attempts at finding the best linear subspace where to project

all document vectors.

Moreover, the traditional codebook approach represents an image by a

histogram of codeword frequencies obtained through a hard-assignment be-

tween features and codewords. In other words, for each codeword w in the

vocabulary V , the frequency distribution in an image is computed by:

H(w) =
1

n

n∑

i=1





1 if w = argmin

v∈V
(D(v, pi));

0 otherwise;
(2.4)

where n is the number of local visual features, pi is the ith features, and

D(v, pi) is the distance (usually Euclidean) between the codeword v and pi.

This hard assignment, that takes account only of the closest codeword, lacks

to consider two issues: codeword uncertainty (selection of the correct code-

word when two or more candidates are relevant) and codeword plausibility

(selection of a codeword when all codewords are too far and not representa-

tive) [215]. For this reason the distribution of the codewords in a sequence
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has to contain the information of two or more relevant candidates. This can

be done by applying a soft-assignment such as, for example, the one pro-

posed by van Gemert et al. [215]; it consists in smoothing the assignment

of local features to the codebook using Gaussian kernel density estimation.

A similar idea has been proposed also in [172].

Finally, given the extremely high success of codebook-based solutions for

visual categorization and retrieval, several researchers are trying to scale this

kind of approaches to extremely large visual archives (e.g. using GPUs) [214,

211].

2.3 Semantic video annotation

Semantic annotation of video content is a fundamental process that allows

the creation of applications for semantic video database indexing, intelligent

surveillance systems and advanced human-computer interaction systems.

Several surveys on semantic video annotation have been recently pre-

sented in the literature. A review of multi-modal video indexing was pre-

sented in [206], considering entertainment and informative video domains.

Multi-modal approaches for video classification have been surveyed in [41]. A

survey on event detection has been presented in [123], focusing on modeling

techniques; our work [17] extends this, providing also a review of low-level

features suitable for event representation, like detectors and descriptors of

interest points, as well as a review of knowledge representation tools like

ontologies. A survey on behavior recognition in surveillance applications has

been provided in [113], while in [176] are reported the most recent works on

human action recognition.

Typically videos are automatically segmented in shots and a representa-

tive keyframe of each shot is analyzed to recognize the scene and the objects

shown, thus treating videos like a collection of static images and losing the

temporal aspect of the media. This approach is not feasible for the recogni-

tion of events and activities, especially if we consider videos that have not

been edited and do not contain shots. Recognising the presence of concepts

that have a temporal component in a video sequence, if the analysis is done

using simply a keyframe, is difficult [221] even for a human annotator, as

shown in Fig. 2.5. A revision of the TRECVid 2005 ground truth annota-

tion of 24 concepts related to events and activities has shown that 22% of
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the original manual annotations, performed inspecting only one keyframe

per shot, were wrong [106]. An event filmed in a video is related to the

temporal aspect of the video itself and to some changes in the properties of

the entities and scenes represented; therefore there is need of representing

and modeling time and properties’ variations, using appropriate detectors,

feature descriptors and models.

(a) (b) (c)

Figure 2.5: Keyframe-based video event recognition. (a) Is it shot-on-goal

or placed-kick? (b) Is the person entering or exiting in/from the car? (c) Is

the aircraft landing or taking-off ?

Recently, the problem of the detection and recognition of events and ac-

tivities is getting a larger attention also within the TRECVid evaluation.

The high-level concept detection task of TRECVid 2009 [167] considered

the problem of event detection, with 7 out of 20 high-level concepts to be

detected that were related to events and actions [48]. The most recent ap-

proaches proposed in this task have started to cope with the problem of

representing videos considering the temporal aspects of it, analyzing more

than one keyframe per shot and introducing some representation of the con-

text [167, 234]. Since 2008 a new dataset of airport surveillance videos, to

be used in a event detection task, has been added to the TRECVid evalua-

tion campaign; the dataset focuses mostly on crowd/group actions (e.g. peo-

ple meeting), human gestures (e.g. person running) and human activities

(e.g. putting an object somewhere).

2.3.1 Actions and events

We refer to events as concepts with a dynamic component; an event is “some-

thing happening at a given time and in a given location”. In the video

analysis community the event recognition task has never been tackled by
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proposing a generic automatic annotation tool and the proposed approaches

are usually domain dependent. Video domains considered in this survey

are broadcast news, sports, movies, video-surveillance and user generated

content. Videos in the broadcast news, sports and movies are usually profes-

sionally edited while video-surveillance footage and user generated content

are usually unedited. This editing process adds a structure [206] which

can be exploited in the event modeling (as explained in the following Sec-

tions 2.3.3 and 2.4). Automatic annotation systems are built so as to detect

events of interest. Therefore we can firstly split events in interesting and

non-interesting ; in the case of video-surveillance interesting events can be

specific events such as “people entering a prohibited area”, “person fight-

ing” or “person damaging public property”, and so on; sometimes defining

a-priori these dangerous situations can be cumbersome and, of course, there

is the risk of the non exhaustivity of the system; therefore it can be useful

to detect anomalous vs. non-anomalous (i.e. normal) events [196, 143]. In

this case an event is considered interesting without looking at its specific

content but considering how likely is given a known (learnt) statistics of

the regular events. Also in the sport domain the detection of rare events is

of interest, but systems need to detect events with a specific content (typi-

cally called highlights, [32]) such as “scoring goal”, “slam dunk”, “ace serve”,

etc. Most of the domains in which video-analysis is performed involve the

analysis of human motion (sports, video-surveillance, movies). Events origi-

nated by human motion can be of different complexity, involving one or more

subjects and either lasting few seconds or happening in longer timeframes.

Actions are short task oriented body movements such as “waving a hand”,

or “drinking from a bottle”. Some actions are atomic but often actions of

interest have a cyclic nature such as “walking” or “running”; in this case

detectors are built to recognise a single phase of it. Actions can be further

decomposed in action primitives, for example the action of running involves

the movement of several body limbs [74]. This kind of human events are

usually recognized using low-level features, which are able to concisely de-

scribe such primitives, and using per-action detectors trained on exemplar

sequences. A main difficulty in the recognition of human actions is the high

intra-class variance; this is mainly due to variation in the appearance, pos-

ture and behaviour (i.e. “the way in which one acts or conducts oneself”) of

the “actor”; behaviour can thus be exploited as a biometric cue [102].

Events involving multiple people or happening in longer timeframes can
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be referred as activities [176]. Activity analysis requires higher level repre-

sentations usually built with action detectors and reasoning engines. Events

can be defined activities as long as there is not excessive inter-person occlu-

sion and thus a system is able to analyse each individual motion (typically

in sequences with two to ten people). In case of presence of a large amount

of people, the task is defined as crowd analysis [240]: persons are no more

considered as individuals but the global motion of a crowd is modelled [147].

In this case the detection of anomalous events is prominent because of its

applicability to surveillance scenarios and because of the intrinsic difficulty

of precisely defining crowd behaviours. Human actions are extremely useful

in defining the video semantics in the domains of movies and user generated

content. In both domains the analysis techniques are similar and challenges

arise mainly from the high intra-class variance. Contextual information such

a static features or scene classifiers may improve event recognition perfor-

mance [146,132,91].

2.3.2 Spatio-temporal features

Recognition of events in video streams depends on the ability of a system to

build a discriminative model which has to generalise with respect to unseen

data. Such generalization is usually obtained by feeding state-of-the art

statistical classifiers with an adequate amount of data. We believe that the

key to solve this issue is the use of sufficiently invariant and robust image

descriptors. While tackling a problem such as single-object recognition (i.e.

find instances of “this object” in a given collection of images or videos) image

descriptors are required to yield geometric and photometric invariance in

order to match object instances across different images, possibly acquired

with diverse sensors in different lighting environment and in presence of

clutter and occlusions. An elegant way of dealing with clutter, occlusion and

viewpoint change is the use of region descriptors [137,149]; image regions can

be normalized [150] to obtain invariance to deformations due to viewpoint

change, other normalization can be applied to obtain rotation and partial

photometric invariance [137].

This kind of description has been extended in the object and scene cat-

egorization scenario exploiting the bag-of-words framework (as previously

introduced). Given the success of bag of keypoints representations in static

concept classification, efforts have been also made to introduce this frame-
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work in event categorization. The first attempt in video annotation has been

made by Zhou et al. [243], describing a video as a bag of SIFT keypoints.

Since keypoints are considered without any spatial or temporal location (nei-

ther at the frame level) it is possible to obtain meaningful correspondences

between varying length shots and shots in which similar scenes occur in pos-

sibly different order. Again, the structure is lost but this allows a robust

matching procedure. Anyway temporal structure of videos carries rich in-

formation which has to be considered in order to attain satisfactory video

event retrieval results. This information can be recovered using sequence

kernels, as reviewed in Sect. 2.3.3. A different temporal information lies at a

finer grained level and can be captured directly using local features. This is

the case of gestures, human actions and, to some extent, human activities.

Since gestures and actions are usually composed of action primitives, which

occur in a short span of time and involve limb movements, their nature is

optimally described by a local representation.

As in static keypoint extraction frameworks, the approach consists of two

stages, detection and description. The detection stage aims at producing a

set of “informative regions” for a sequence of frames, while the goals of the

description stage are to gain invariance with respect to several region trans-

formations caused by the image formation process, and to obtain a feature

representation that enables matching through some efficiently computable

metric.

Detectors

Space-time interest points located by detectors should contain information

on the objects and their motion in the world. Detectors are thus functions

computed over the image plane and over time that present higher values in

presence of local structures undergoing non-constant motion. These struc-

tures in the image should correspond to an object part that is moving in

the world. Since they deal with dynamic content they need to be robust

to motion generated by camera movements; these noisy detections have to

be filtered without damaging detector ability to extract interesting image

structures.

Local dynamic representations have been mostly derived directly from

their static counterparts [118, 228, 226, 166] while the approaches presented

in [59, 48] are explicitly designed for space-time features. Laptev extended
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Figure 2.6: Spatio-temporal interest point detector [16] running at different

temporal scales (blue low response, red high response); first row: original

video frames, second row detector response at temporal scale τ1 (mostly due

to the limbs), third row: detector response temporal scale τ2 (mostly due

to the torso), with τ1 < τ2. Frames taken from the ViSOR video repository

[217].

Harris corners keypoints to the space-time domain [118]; space-time cor-

ners are corner-like structures undergoing an inversion of motion. Wong et

al. employed a difference-of-Gaussian operator on space-time volumes, after

a preprocessing with non-negative matrix factorisation, in order to exploit

the global video structure. Willems extended the SURF [22] detector using

box filters and integral videos in order to obtain almost real time feature

extraction; finally, the saliency measure originally proposed by Kadir and

Brady [101] have been extended by Oikonomopoulos et al. [166]. The detec-

tor proposed by Dollár et al. [59] separates the operator which process the

volume in space and time; the spatial dimension is filtered with a Gaussian

kernel while the temporal dimension is processed by Gabor filters in order

to detect periodic motion. A similar approach, specifically designed for the

spatio-temporal domain, has been proposed by Chen et al. [48], which ex-

ploits a combination of optical flow based detectors with the difference of

Gaussian detector used by SIFT.

Region scale can be selected by the algorithm [118,226,228] both in space
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and time or may simply be a parameter of it [120, 59]; moreover scale for

space and time can be fixed as in [59] or a dense sampling can be performed to

enrich the representation [120,16]. Fig. 2.6 shows an example of the response

of the detectors presented in [16], applied to the video surveillance domain.

All the above approaches model the detector as an analytic function of the

frames and scales, some other approaches instead rely on learning how to

perform the detection using neural networks [109] or extending boosting and

Haar features used for object detection [218]. Kienzle et al. trained a feed-

forward neural network using, as a dataset, human eye fixations recorded

with an headmounted tracker during the vision of a movie.

Recent detectors and approaches lean toward a denser feature sampling,

since in the categorisation task a denser feature sampling yields a better

performance [165]. State-of-the art image classifiers are, by now, performing

feature sampling over regular multi-scale overlapped grids. This kind of

approach is probably still too computational expensive to be performed on

a sequence composed of hundred of frames. Finally, to the end of extracting

as much information as possible, multiple feature detectors, either static or

dynamic, have been used in conjunction [146,132,151].

Descriptors

The regions extracted by detectors need to be represented compactly. De-

scriptors are usually computed using a common pipeline as outlined in [227]

for static features and, partially, in [119] for dynamic ones: preprocessing,

non-linear transformation, pooling and normalisation. The preprocessing

stage is usually a smoothing operation performed using a 3-dimensional

Gaussian kernel [118, 111]. In order to obtain more robust descriptors a

region normalisation can be applied [118]; the normalisation procedure pro-

posed by Laptev attempt to obtain camera-motion invariant regions in order

to increase the matching procedure reliability. Regions are transformed by

computing an image measurement; typical choices are: normalised bright-

ness [59], image gradients [118], spatio-temporal gradients [111, 59, 16, 195]

and optical flow [16, 59, 118]. Gradients are used to provide photometric

invariance, 3-dimensional gradients are capable of representing appearance

and motion concisely. Optical flow descriptors can offer very informative

low dimensional representations in case of smooth motion patterns, but in

presence of noise the performance may degrade. Even if both carry mo-
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tion information these two descriptions have been found to be complemen-

tary [16] and the fusion is beneficial for recognition. After computing this

region transformation, the descriptor size is still very high dimensional and

there is no invariance to small deformations (due for example to viewpoint

change). Typically either global [119, 59] or local [16, 195, 111] histograms

of gradient/optical flow orientation are computed. The use of local statis-

tics contribute to obtain invariance to little viewpoint changes. A simpler

approach is to apply PCA to the concatenated brightness, gradient or op-

tical flow values [119, 59]. A different technique is to compute higher order

derivatives of image intensity values [118]. Finally, following the approach

of SIFT a descriptor normalisation and clipping can be applied to obtain

robustness w.r.t. contrast change [111]. As shown in [227], for static feature

descriptors, parameters can be learnt instead of “handcrafted”; Marszalek et

al. performed such an optimisation by training on datasets [146]. This tech-

nique shows an improvement over the handcrafted values but it is also shows

sensitivity to data: descriptors trained over Hollywood movies2 dataset does

not perform as well on videos of the KTH dataset 3 and vice-versa. Fig. 2.7

shows sample frames of these two datasets.

(a)

(b)

Figure 2.7: Sample frames from actions in KTH (a) and Hollywood (b)

datasets.

2http://www.irisa.fr/vista/actions/
3http://www.nada.kth.se/cvap/actions/
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Action representation

Actions can be represented as a collection of space-time pixel neighbour-

hoods descriptors. Statistical classification frameworks require an instance-

to-instance or an instance-to-class matching procedure. Local feature match-

ing can be done using simple metrics such as the Euclidean distance and ex-

ploiting [137] nearest neighbour distances to remove outliers. This technique

is highly effective in the single-object recognition task but can deliver poor

performance when generalisation power is needed as in a category recogni-

tion problem. As in object category recognition the intermediate codebook

representation can offer together generalisation power and dimensionality re-

duction; in fact features which are often high dimensional (200+) are replaced

with a code corresponding to a visual word in the dictionary. As stated pre-

viously bag-of-words representations completely lack any notion of the global

features layout or their correlations. In action representation the visual words

are often associated with an action primitive such as “raising an arm” or “ex-

tending a leg forward” and their spatio-temporal dependence is a strong cue.

These relations can be modelled in the codebook formation [195,133] or en-

coded in the final action representation [188, 229, 162, 151]. Scovanner et

al. [195] have grouped co-occurring visual words to capture spatio-temporal

feature correlations. Liu et al. have acted similarly on the dictionary by iter-

atively grouping visual words that maximise the mutual information. Niebles

et al. [162] and Wong et al. [229] exploited graphical models to introduce a

structural representation of the human action by modelling relations among

body parts and their motion. Savarese et al. [188] augmented the action de-

scriptor by computing visual words spatio-temporal correlograms instead of a

flat word-count. Finally Mikolajczyk and Uemura [151] exploited vocabulary

forest together with a star-shape model of the human body to allow localisa-

tion together with recognition. All these structural representations deal with

relations between the feature themselves and are suitable in the analysis of

isolated actions or behaviours. In the case of unconstrained scenarios, global

layout representation can be a better choice [121,120,70]. The main advan-

tage is their reduced computational cost. Moreover their coarse description

can deal better with a higher intra-class variation. These approaches split

the video volume with a coarse spatio-temporal grid, which can have a uni-

form [121, 70] or non-uniform layout [120], and by binning features in space

and time, position dependent feature statistics is computed.
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2.3.3 Classification of composite events

Events that are characterised by complex or composite evolution are often

modelled by using a mid-level representation of the particular domain which

eases the event recognition. Therefore many works try to build classifiers that

are able to characterise the evolution and the interaction of particular visual

features. These kinds of representations are often used in specific domains

(for example in sports videos), where it is easier to define “in advance”

the relations among visual features. Several different techniques have been

proposed in the literature for this purpose: simple heuristic rules, finite state

machines, statistical models (such as HMM or Bayesian networks) and kernel

methods.

Heuristic rules and Finite State Machines

Several works in the sports video domain apply heuristics or rule-based ap-

proaches to automatically recognise simple events. An example is given by

Xu et al. [233] in which recognition of play/break events of soccer videos is

performed using classification of simple and mutually exclusive events (ob-

tained by using a simple rule-based approach). Their method is composed

by two steps; in the first step they classify each sample frame into global,

zoom-in and close-up views using an unique domain-specific feature, grass-

area-ratio. Then heuristic rules are used in processing the sequence of views,

and obtain play/break status of the game.

More complex events can be recognised using Finite State Machines

(FSMs). The knowledge of the domain is encoded into a set of FSMs and

each of them is able to represent a particular video event. This approach was

initially proposed by Assfalg et al. in [8] to detect the principal soccer high-

lights, such as shot on goal, placed kick, forward launch and turnover, from

a few visual cues, such as playground position, speed and camera direction,

etc. The idea of applying FSMs to model highlights and events has been

recently followed also in [14]; scored goal, foul and generic play scenes in

soccer videos have been modeled using four types of views (e.g. in-field, slow

motion, etc.) for the states of the FSMs and transitions are determined by

some audio-visual events such as the appearance of a caption or the whistle

of the referee. Experiments have been performed using a set of manually

annotated views and audio-visual events.
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Markovian models

Visual events that evolve in a predictable manner are suitable for a Marko-

vian modelling, and thus they can be detected by HMMs. Sports videos, in

particular those that have a specific structure due to the rules like baseball

and tennis, have been analysed using HMMs for event classification. If the

events always move forward then a left-to-right model may be more suitable;

in other cases, if the meaning of the states is not tangible it is better to

choose a model with a sufficient number of states. A fully connected (er-

godic) model is more suited for unstructured events. The feature set needs

to capture the essence of the event, and features have to be chosen depending

on the events being modelled. In general the steps that have to be followed

when using HMMs for event classification/recognition [88] is to check if a

“grammar” of the events is identifiable: this helps to identify if HMMs can

model events directly or if the states within the HMM model the events. An

appropriate choice of model topology, e.g. left-to-right or fully connected,

has to be done. Then features have to be chosen according to the events to

be modelled. Enough training data, representative of the range of manifes-

tations of the events, has to be selected, increasing its size in case of ergodic

models. In general a significant effort is required to train a HMM system, and

ergodic models require more training data than left-to-right models. In [39]

is noted that the conventional HMM training approaches, based on maxi-

mum likelihood such as the Baum-Welch algorithm, often produce models

that are both under-fit (failing to capture the hidden structure of the signal)

and over-fit (with many parameters that model noise and signal bias), thus

leading to both poor predictive power and small generalisation.

A number of approaches that use HMM have been proposed to analyse

sports videos, since the events that are typical for this domain are very well

suited for this approach. It has to be noted that reliable event classification

can be achieved if events have been accurately segmented and delimited.

Classification of three placed kicks events (free, corner and penalty kick)

using HMMs has been proposed by Assfalg et al. in [9], using a 3-state left-

to-right model for each highlight, based on the consideration that the states

correspond well to the evolution of the highlights in term of characteristic

content. The features used are the framing term (e.g. close-up), camera

pan and tilt (quantised in five and two levels). Similar approaches for event

detection in news videos have been applied also at a higher semantic level,
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using the scores provided by concept detectors as synthetic frame represen-

tations or exploiting some pre-defined relationships between concepts. For

example, Ebadollahi et al. [65] proposed to treat each frame in a video as

an observation, applying then HMM to model the temporal evolution of an

event. In [232] multi-layer HMMs (called SG-HMM) have been proposed

by Xu et al. for basket and volleyball. Each layer represents a different se-

mantic layer, and low-level features (horizontal, vertical and radial motion

and acceleration cues) are fed to the bottom layer to generate hypothesis of

basic events, the upper layer gets the results of the below HMMs and each

state corresponds to an HMM; this requires to treat differently these HMM:

the observation probability distribution is taken from the likelihood of the

basic HMMs. Fully connected HMMs, with six states, are used to model all

the basic events in both sports. The Basket SG-HMM has two layers: one

for sub-shot classification and the upper layer for shot classification in 16

events. The Volley SG-HMM has three layers: shots are classified in the two

bottom layers, and the intermediate layer accounts for shots relationships;

this allows to classify 14 events that cannot be recognised within a shot.

Bayesian networks

Bayesian networks are directed acyclic graphs whose nodes represent vari-

ables, and whose arcs encode conditional independencies between the vari-

ables. Nodes can represent any kind of variable, be it a measured parameter,

a latent variable or a hypothesis. Bayesian networks can represent and solve

decision problems under uncertainty. They are not restricted to representing

random variables, which represents another “Bayesian” aspect of a Bayesian

network. Efficient algorithms exist that perform inference and learning in

Bayesian networks. Bayesian networks that model sequences of variables

(such as for example speech signals or protein sequences) are called Dynamic

Bayesian Networks (DBNs). Dynamic Bayesian Networks are directed graph-

ical models of stochastic processes. They generalise hidden Markov models

(HMMs). In fact a HMM has one discrete hidden node and one discrete or

continuous observed node per slice. In particular a Hidden Markov Model

consists of a set of discrete states, state-to-state transition probabilities, prior

probabilities for the first state and output probabilities for each state.

In [139] Bayesian Networks are used to recognise frame and clip classes

(close-up, playfield centre and goal areas, medium views). In order to iden-
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tify shot-on-goals the proposed system groups the clips that are preceding

and following the clips classified as showing the goal areas. If a certain pat-

tern of clips is found, and the values of a feature that corresponds to the

position of the field end line follow a certain pattern, then a shot-on-goal is

determined to be present. In [44] DBNs are used by Chao et al. to model the

contextual information provided by the timeline. It is argued that HMMs

are not expressive enough when using a signal that has both temporal and

spatial information; moreover, DBNs allow a set of random variables instead

of only one hidden state node at each time instance: this stems from the

fact that HMMs are a special case of DBNs. In [44] five events are defined

and are modeled considering five types of primitive scenes such as close-ups,

medium views, etc. Medium level visual features such as playfield lines are

used as observable features. Since all the states of the DBN are observable

in the training stage it is required to learn the initial and transition proba-

bilities among the scenes in each event separately. In the inference stage the

DBN finds the most plausible interpretation for an observation sequence of

features.

Kernel methods

Kernel methods are a class of algorithms for pattern analysis, whose best

known element is the Support Vector Machine (SVM), a group of super-

vised learning methods that can be applied to classification problems. These

methods map the input data into a high dimensional feature space, by doing

a non-linear transformation using suitably chosen basis functions (kernel).

This is known as the “kernel trick”. The linear model in the feature space

corresponds to a non-linear model in the input space. The kernel contains

all of the information about the relative positions of the inputs in the feature

space; the actual learning algorithm is based only on the kernel function and

can thus be carried out without explicit use of the feature space. Since there

is no need to evaluate the feature map in the high dimensional feature space,

the kernel function represents a computational shortcut.

An approach that uses SVM with RBF kernel to classify sequences that

contain interesting and non-interesting events was proposed in [183], showing

an application to field sports such as soccer, hockey and rugby. Each shot

is represented using five values, one for each feature used (e.g. speech-band

audio activity, motion activity, etc.), and the maximum value of each feature
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is selected as representative value for the whole shot. In this way the tem-

poral extent and the dynamics of the event are not considered or exploited.

Authors note that a classification scheme such as HMM may be more appro-

priate if continuous knowledge of past and present states is desired. In [91]

was proposed the use of SVM models for a set of motion features, computed

from MPEG motion vectors, and static features, followed by a late fusion

strategy to aggregate results at the decision level.

As previously discussed, many recent methods extend the traditional

BoW approach. In fact, the application of this part-based approach to

event classification has shown some drawbacks with respect to the tradi-

tional image categorisation task. The main problem is that it does not take

into account temporal relations between consecutive frames, and thus event

classification suffers from the incomplete dynamic representation. Recently

methods have been proposed to consider temporal information of static part-

based representations of video frames. Xu and Chang [231] proposed to apply

Earth Mover’s Distance (EMD) and Temporally Aligned Pyramid Match-

ing (TAPM) for measuring video similarity; EMD distance is incorporated

in a SVM framework for event detection in news videos. In [221], BoW

is extended constructing relative motion histograms between visual words

(ERMH-BoW) in order to employ motion relativity and visual relatedness.

Zhou et al. [243] presented a SIFT-Bag based generative-to-discriminative

framework for video event detection, providing improvements on the best re-

sults of [231] on the same TRECVid 2005 corpus. They proposed to describe

video clips as a bag of SIFT descriptors by modeling their distribution with

a Gaussian Mixture Model (GMM); in the discriminative stage, specialised

GMMs are built for each clip and video event classification is performed. Bal-

lan et al. [20] modelled events as a sequence composed of histograms of visual

features, computed from each frame using the traditional bag-of-words. The

sequences are treated as strings where each histogram is considered as a

character. Event classification of these sequences of variable length, depend-

ing on the duration of the video clips, are performed using SVM classifiers

with a string kernel that uses the Needlemann-Wunsch edit distance. Hidden

Markov Model Support Vector Machine (SVMHMM), which is an extension

of the SVM classifier for sequence classification, has been used in [96] to

classify the behaviour of caged mice.
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2.4 Ontologies

In many image/video content-based applications there is need of methodolo-

gies for knowledge representation and reasoning, to analyse the context of an

action in order to infer an activity. This has led to an increasing convergence

of research in the fields of video analysis and knowledge management. This

knowledge can include heterogeneous information such as video data, fea-

tures, results of video analysis algorithms or user comments. Logical-based

methods for activity recognition have been proposed, to represent domain

knowledge and model each event. In these approaches an event is generally

specified as a set of logical rules that allow to recognise them by using logi-

cal inference techniques, such as resolution or abduction [198, 60, 169, 7]. In

particular, Shet et al. [198] proposed a framework that combines computer

vision algorithms with logic programming to represent and recognise activ-

ities in a parking lot in the domain of video surveillance. Lavee et al. [122]

have proposed the use of Petri-Nets, and provided a methodology on how

to transform ontology definitions in a Petri-Net formalism. Artikis et al. [7]

and Paschke et al. [169] presented two different activity recognition systems

based both on a logic programming implementation of an Event Calculus

dialect [116]. The Event Calculus is a set of first-order predicate calculus,

including temporal formalism, for representing and reasoning about events

and their effects. These approaches do not consider the problems of noise or

missing observations, that always exist in real world applications. To cope

with these issues, some extensions to logic approaches have been presented.

Tran et al. [212] described a domain knowledge as first-order logic production

rules with associated weights to indicate their confidence. Probabilistic infer-

ence is performed using Markov-logic networks. While logic-based methods

are an interesting way of incorporating domain knowledge, they are limited

in their utility to specific settings for which they have been designed. Hence,

there is need of a standardised and shareable representation of activity defi-

nitions.

Recently, ontologies have been regarded as the appropriate tool for do-

main knowledge representation because of several advantages. Their most

important property is that they provide a formal framework for support-

ing explicit, shareable, machine-processable semantics definition of domain

knowledge, and they enable the derivation of implicit knowledge through

automated inference. In particular, an ontology is a formal specification of a
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shared conceptualisation of a domain of interest [85] and form an important

part of the emerging semantic web, in which ontologies allow to organise

contents through formal semantics. Ontology Web Language (OWL) and

Semantic Web Rule Language (SWRL) have been proposed by the World

Wide Web Consortium (W3C) as language standards for representing ontolo-

gies and rules, respectively. SPARQL Protocol and RDF Query Language

(SPARQL) has been approved as W3C recommendation as query language

for the Semantic Web technologies. An overview of such languages is pre-

sented in [152]. These languages enable autonomic agents to reason about

Web content and to carry out more intelligent tasks on behalf of the user.

Thus, ontologies are suitable for expressing video content semantics.

For these reasons, many researches have exploited ontologies to perform

semantic annotation and retrieval from video digital libraries [114]. Ontolo-

gies that can be used for semantic annotation of videos are those defined by

the Dublin Core Metadata Initiative [1], TV Anytime [2] - they have defined

standardised metadata vocabularies - and the LSCOM initiative [154] - that

has created a specialised vocabulary for news video. Other ontologies provide

structural and content-based description of multimedia data, similarly to the

MPEG-7 standard [79, 213, 6]. Other approaches have directly included in

the ontology an explicit representation of the visual knowledge [34,145]. Da-

siopoulou et al. [53] have included in the ontology instances of visual objects.

They have used as descriptors qualitative attributes of perceptual properties

like colour homogeneity, low-level perceptual features like components dis-

tribution, and spatial relations. Semantic concepts have been derived from

colour clustering and reasoning. In the attempt of having richer annota-

tions, other authors have explored the usage of reasoning over multimedia

ontologies. In this case spatial relationships between concept occurrences

are analysed so as to distinguish between scenes and provide more precise

and comprehensive descriptions. Hollink et al. [94] defined a set of rules in

SWRL to perform semi-automatic annotation of images. Jain et al. [126]

have employed a two-level ontology of artistic concepts that includes visual

concepts such as colour and brushwork in the first level, and artist name,

painting style and art period for the high-level concepts of the second level.

A transductive inference framework has been used to annotate and disam-

biguate high-level concepts. In Staab et al. [54] automatically segmented

image regions are modeled through low-level visual descriptors and associ-

ated to semantic concepts using manually labelled regions as training set.
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Context information is exploited to reduce annotation ambiguities. The la-

belled images are transformed into a constraint satisfaction problem (CSP),

that can be solved using constraint reasoning techniques.

Several authors have exploited ontologies for event recognition. These

methods have to deal with two issues: how to represent the entities and

events of the considered domain in the ontology, and how to use the ontol-

ogy for improving the video event analysis results. For solving the first issue,

researchers have proposed ontologies to describe several domains, e.g. for vi-

sual surveillance analysis. In particular, Hakeen and Shah [87] have defined

a meeting ontology that is determined by the knowledge base of various

meeting sequences. Chen et al. [45] proposed an ontology for analysing so-

cial interaction of the patients with one another and their caregivers in a

nursing home, and Georis et al. [81] for describing bank attack scenarios.

Akdemir et al. [3] drew on general ontology design principles and adapted

them to the specific domains of human activity, bank and airport tarmac

surveillance. Moreover, a special formal language to define ontologies of

events, that uses Allen’s logic to model the relations between the temporal

intervals of elementary concepts so as to be able to assess complex events

in video surveillance has been proposed by Francois et al. [160, 76]. More

recently, Scherp et al. [190] defined a formal model of events that allows in-

terchange of event information between different event-based systems, causal

relationships between events, and interpretations of the same event by dif-

ferent humans. A more generic approach has been followed in [170], where

a verb ontology has been proposed to better describe the relations between

events, following Fellbaum’s verb entailments [71]. This ontology is used to

classify events that may help the comprehension of other events (e.g. when

an event is a precondition of another one). The outcomes of event classifica-

tion are then used to create hyperlinks between video events using MPEG-7

video annotations, to create a hypervideo.

Solutions for the second issue have also been explored. Neumann and

Möller [159] have proposed a framework for scene and event interpretation

using Description Logic reasoning techniques over “aggregates”; these are

composed of multiple parts and constrained by temporal and spatial rela-

tions to represent high-level concepts, such as objects configurations, events

and episodes. Another solution was presented by Bertini et al. in [30], us-

ing generic and domain specific descriptors, identifying visual prototypes as

representative elements of visual concepts and introducing mechanisms for
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their updating, as new instances of visual concepts are added to the ontol-

ogy; the prototypes are used to classify events and objects observed in video

sequences. Bai et al. [13] defined a soccer ontology and applied temporal rea-

soning with temporal description logic to perform event annotation in soccer

videos. Snidaro et al. [204] addressed the problem of representing complex

events in the context of security applications. They described a complex

event as a composition of simple events, thus fusing together different in-

formation, through the use of the SWRL language. SWRL rules have been

also employed to derive complex events in soccer domain [18]. In [187] the

authors proposed an ontology that integrates two kinds of knowledge infor-

mation: the scene and the system. Scene knowledge is described in terms of

objects and relations between them. System knowledge is used to determine

the best configuration of the processing schemas for detecting the objects

and events of the scene.

Finally, in this research work we have presented an ontology-based frame-

work for semantic video annotation by learning spatio-temporal rules (see

Chapter 8 and [19, 33]). In our approach, an adaptation of the First Order

Inductive Learner to the Semantic Web technologies (FOILS) is used to learn

SWRL rule patternsthat have been then validated on a few TRECVid 2005

and CAVIAR video events.
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Chapter 3

Trademark retrieval in sports
video archives

In this chapter we describe a system for detection and retrieval

of trademarks appearing in sports videos. We propose a compact

representation of trademarks and video frame content based on

SIFT feature points. This representation can be used to robustly

detect, localize, and retrieve trademarks as they appear in a vari-

ety of different sports video types. Classification of trademarks is

performed by matching a set of SIFT feature descriptors for each

trademark instance against the set of SIFT features detected in

each frame of the video. Localization is performed through robust

clustering of matched feature points in the video frame. Experi-

mental results are provided, along with an analysis of the preci-

sion and recall. Results show that the our proposed technique is

efficient and effectively detects and classifies trademarks. 1 2

3.1 Introduction

Every year sponsors spend millions of euros on sports marketing, a large por-

tion of which is spent on placement of billboards, banners, and other physical

1This chapter has been published as “Trademark Matching and Retrieval in Sports
Video Databases” in Proc. of ACM Multimedia Information Retrieval (MIR), 2007 [10].

2Acknowledgments: this work was partially supported by Sport System Europe srl,
Bologna, Italy.
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Figure 3.1: Example trademarks. i) top row: graphic version; ii) bottom

row: trademarks extracted from actual videos.

advertising media positioned in and around soccer and football fields, for-

mula one race circuits, tennis courts, etc. These physical advertising artifacts

are usually emblazoned with the sponsor’s name, logo, and their trademark

brand in general. Given these astronomical numbers, sponsors are extremely

keen to verify that their brand has the level of visibility they expect for such

an expenditure. Such verifications are essential to major sponsors in order

to justify advertising budgets and ensure their brands achieve the desired

level of visibility.

Currently, verification of brand visibility is done manually by human

annotators that view a broadcast sporting event and annotate every appear-

ance of a sponsor’s trademark in the broadcast. The annotation performed

on these videos is extremely labor-intensive, usually requiring the video to

be viewed in its entirety several times. Manual annotation of this type is

often limited to annotations of the appearance of trademarks (i.e., that a

trademark appears at a given timecode).

The problem of automatic trademark and logo detection and recogni-

tion belongs to the broader problem of object recognition that has been

studied following many different approaches in recent decades. The two pri-

mary types of features used are geometric and photometric object features:

the former rely on properties of objects such as lines, vertexes, curves and

shapes [117,26], while the latter are computed from pixel values (luminance

or color) of the imaged object [192,82,137]. Object detection and recognition

using photometric features has been the subject of much recent research due

to the fact that if these features are computed locally they can cope with

the problem of occlusion and are able to distinguish similar objects much

better [192].

Most of the work related to trademark recognition deals with the problem

of content-based indexing and retrieval in logo databases, with the goal of
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assisting in the detection of trademark infringement by comparing a newly

designed trademark with archives of already registered logos [110, 238, 63,

216]. In this case it can be assumed that the image acquisition and processing

chain is controlled so that the images are of acceptable quality and are not

distorted. The problem of trademark recognition in videos is inherently

harder, since the whole process is not controlled and several limitations of

the imaging equipment introduce considerable distortion and loss of quality

of the original logos (e.g. video interlacing, color sub-sampling, motion blur,

etc.)

In [4] the problem of detecting and tracking billboards in soccer videos

has been studied, with the goal of superimposing different advertisements

according to the different audiences. Billboards are detected using colour

histogram back-projection and represented using a PD in an invariant color

space estimated from manually annotated video frames. The focus of this

work is on detection and tracking rather than recognition. In [115] logo

appearance is detected by analyzing sets of significant edges and applying

heuristic techniques to discard small or sparsely populated edge regions of

the image. The logo recognition method proposed in [58] extends the work

presented in [57] and deals with logos appearing on rigid planar surfaces that

have an homogeneously colored background; the video frame is binarized and

logo regions are combined using heuristics. The Hough transform space of

the segmented logo is then searched for large values to find the image inten-

sity profiles along lines. Logo recognition is performed by matching these

lines with the line profiles of the models. In [171] candidate logo regions are

detected using color histogram back-projection and then they are tracked.

Multidimensional receptive field histograms are then used to perform logo

recognition. For every candidate region the most likely logo is computed,

and thus if a region does not contain a logo the precision of identification is

reduced. In [108] the architecture for a system for media monitoring is pre-

sented. The system provides logo detection and recognition functionalities,

and the authors briefly discuss a variation of the SIFT algorithm to select

and track keypoints in videos. The points are used for trademark recogni-

tion, but the logo matching algorithm is not described, and very few results

of the proposed variation are provided.

In this chapter we propose a system for automatically detecting and re-

trieving trademark appearances in sports videos. In brief, broadcast sports

video is recorded directly to DVD. This video, and a collection of static
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trademark images, are then processed to extract a compact, salient-point

representation. The results of this processing are stored in a database for

later retrieval. All of the trademarks are then matched against the content

extracted from every frame of the video to compute a “match score” indi-

cating the likelihood that the trademark occurs at any given point in the

video. These time series are used to retrieve intervals of the video likely to

contain the trademark image. Retrieved segments are used to drive a user

interface used by a human annotator who can then validate this automatic

annotation.

In the next section we describe the compact representation used to model

trademarks and video frame content. Section 3.3 details the matching pro-

cedure that is used to detect and localize trademarks in video streams. In

section 3.4 we present the experimental results we obtained with the ap-

proach. Finally, in section 3.5 we conclude with an analysis of the technique

and indications for future work.

3.2 Image and video features

Figure 3.1 contains several representative examples of the types of trade-

marks we wish to detect. The top row of figure 3.1 contains clean, synthetic

versions of each trademark, while the bottom row contains example trade-

marks extracted from frames of actual sports videos.

The appearance of trademarks in sports videos are often characterized

by:

• Perspective deformation due to placement of the camera and the

vantage from which it images advertisements in the field.

• Motion blur due to camera motion, or motion of the trademark in

the case of trademarks placed, for example, on Formula One cars or

jerseys of soccer players.

• Occlusion caused by players or other obstacles between the camera

and the trademark. In many sports, soccer for instance, trademarks

are occluded more often than not.

Since blur is indistinguishable from a change in scale, a scale-invariant

representation is essential. To render our matching technique robust to par-

tial occlusions, we use local neighborhood descriptors of salient points. By
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combining the results of local, point-based matching we are able to match

entire trademarks. One the most distinguishing aspects of trademarks is

that they usually contain both text and other high-contrast features such as

graphic logos. They are also usually planar objects. Because of this, and be-

cause of the observations made above, we use SIFT points and SIFT feature

descriptors as a compact representation of the important aspects and local

texture in trademarks [137]. These feature points are robust to changes in

scale, perspective, and rotation.

Trademarks are represented as a bag of SIFT feature points. Each trade-

mark is represented by one or more graphical instances. Trademark Ti is

represented by the Ni SIFT feature points detected in the image:

Ti = {(xt
k, y

t
k, s

t
k, d

t
k,O

t
k)}, for k ∈ {1, . . . , Ni},

and where xt
k, yt

k, st
k, and dt

k are, respectively, the x- and y-position, the scale,

and the dominant direction of the kth detected feature point. The element

Ot
k is a 128-dimensional local edge orientation histogram of the SIFT point.

The superscript t is used only to distinguish points from trademarks and

video frames. An individual point k from Trademark i is denoted by T k
i .

Each frame, Vi, of a video is represented similarly as a bag of Mi SIFT-

feature points detected in frame i:

Ti = {(xv
k, y

v
k, s

v
k, d

v
k,O

v
k)}, for k ∈ {1, . . . ,Mi},

and where each element is defined as above for trademarks. Again, the

superscript is used to distinguish video frame points from points detected in

trademark images.

For the matching procedure described in the next section will be using

only the local orientation histogram portions (Ov
k and Ot

k) of the feature

points described above. This renders the feature descriptors robust to geo-

metric distortions and scale changes. The geometric elements of the feature

point descriptors are used only for visualization of match results.

3.3 Detection and retrieval of trademarks

Trademark matching is done by comparing the bag of local features repre-

senting the trademark with the local features detected in the frames of the
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video. This is done using a very conservative threshold in order to mini-

mize false positive detections. For every point detected in trademark T j we

compute its two nearest neighbors in the points detected in video frame Vi:

N1(T
k
j , Vi) = min

q
||Ov

q −Ot
k||

N2(T
k
j , Vi) = min

q #=N1(T k
j ,Vi)

||Ov
q −Ot

k||. (3.1)

Next, for every point in the video frame we compute its match score:

M(T k
j , Vi) =

N1(T k
j , Vi)

N2(T k
j , Vi)

, (3.2)

that is the ratio of the distances to the first and second nearest neighbors.

Points are selected as being good candidate matches on the basis of their

match scores. The match set for trademark Tj in frame Vi is:

M j
i = {k |M(T k

j , Vi) < τ1}, (3.3)

where τ1 is a suitable chosen threshold (0.8 in all of our experiments).

This approach gives very good results in terms of robustness. It performs

well because a correct match needs to have the closest matching descriptor

significantly closer than the closest incorrect match, while false matches have

a certain number of other close false matches, due to the high dimensionality

of the feature space (Figure 3.2 for some examples).

The final determination of whether a frame Vi contains trademark Tj is

made by thresholding the normalized match score:

|M j
i |

|Tj|
> τ2 ⇐⇒ trademark Tj present in frame Vi.

This threshold requires that a certain percentage of the feature points de-

tected in the trademark be matched according to equation 3.3 in order to

make that final determination that the trademark Tj is in fact present in

frame Vi. Analysis of the precision–recall curves obtained using different

values of τ2, and different trademarks, allows to determine the best choice

for this threshold (see section 3.4). Experiments have shown that a value of

0.2− 0.25 is a reasonable choice for several different sports.

In order to localize the trademark in the original frame Vi and to approx-

imate its area, we compute a robust estimate of the feature point cloud.
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Figure 3.2: Two examples of the “traditional” SIFT matching technique.

The current feature point locations are so denoted as:

F = {(x1, y1), (x2, y2), . . . , (xn, yn)}

The robust centroid estimate is computed by iteratively solving for (µx, µy)

in

n∑

i=1

ψ(xi; µx) = 0,
n∑

i=1

ψ(yi; µy) = 0

where the influence function ψ used is the Tukey biweight:

ψ(x; m) =

{
(x−m)(1− (x−m)2

c2 )2 if |(x−m)| < c

0 otherwise
(3.4)

The scale parameter c is estimated using the median absolute deviation

from the median:

MADx = mediani(|xi −medianj(xj)|)

After the robust centroid is estimated, the distance of each matched

point to the robust centroid is computed according to the influence function

(3.4). Points with a low influence are excluded from the final match set (see

figure 3.3).
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Figure 3.3: An example of robust trademark localization. Points in cyan

are those selected as finale trademark points set; points in green are SIFT

matched points with a low influence and so excluded from the final match

set.

Some example matches found in videos using this technique are shown

in figure 3.4. Notice that the technique is quite robust to occlusions, scale

variation, and perspective distortion. Note also that the model trademark

used in the second row is a synthetic trademark image. The distinctive

structure in the text of the trademark is enough to discriminate it from

other trademarks and background noise.

3.4 Experimental results

We have implemented the approach described above and here we describe

a number of experiments we have performed to calibrate and evaluate the

performance of the matching technique.

3.4.1 Implementation

The steps involved in our matching procedure are as follows:

1. Acquisition

Videos are processed directly from DVD in MPEG2 format. Prepro-
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Figure 3.4: Some example matches. The leftmost column contains the trade-

mark model annotated with its detected SIFT feature points. The other

three columns contain a portion of a video frame where a match was found.

Points indicated in cyan are those selected as “good” matches according to

equations (3.3, 3.4).

cessing consists of de-interlacing each video frame.

2. Feature point detection

The SIFT feature point detection algorithm is run on each frame of the

video. Because of the large quantity of data generated by this process,

all feature points are stored in a database for retrieval later. The SIFT

detector that we use is implemented in C++ and is able to process

video at about 2.5fps.

3. Matching of trademarks

Each trademark in the database is matched against the feature points

detected in the previous step. Again, match information corresponding

to equations (3.2) and (3.1) are stored in another table in the database.

4. Retrieval of matches

Trademarks are retrieved from the database by supplying the thresh-
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Figure 3.5: A screenshot of the visualization application. The user can

configure how detected trademarks are visualized on the video frame. The

rows at the bottom indicate, in different colors, the timeline of detected

trademarks in the video.

olds τ1 and τ2 on the match score and normalized match score, respec-

tively. A list of candidate frames is returned by this process. These

frames are grouped temporally to define intervals where the trademark

is (believed to be) present.

5. Visualization

Match results are displayed in an applications that also doubles as

a manual annotation tool for trademarks in sports videos. The tool

allows a user to inspect and correct the automatic match results, adjust

the thresholds τ1 and τ2, and save the resulting annotation in MPEG7

format. A screenshot of the visualization/annotation application is

shown in figure 3.5.

The most time consuming steps in this procedure are the detection of the

SIFT feature points and the matching of trademarks against every frame
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in the video. One hour of video at 25fps contains around 90, 000 frames,

in each of which SIFT features must be detected. Each frame contains

around 1, 000 feature points, on average, and each trademark around one

hundred. Consequently, the time required for detection and matching is

directly proportional to the number of video frames processed.

3.4.2 Test data and experiment design

Three videos of three different sports were used for a preliminary evaluation

of the performance of the proposed technique. The first video, of a Mo-

toGP motorcycle race, is approximately one hour long. The second video

is of a volleyball match and contains significantly different trademarks and

characteristics than the MotoGP video. In fact, sports like volleyball and

basketball presents a lot of situations with occlusions or partial appearance

of the trademarks. The last one is of a soccer match; in this case there are

often trademarks at low resolution with few SIFT feature points. The ex-

amples in the top row of figure 3.4 are from the MotoGP video, those in the

middle row are from the volleyball and those in the bottom row from the

soccer video.

To evaluate the effects of all the parameters of the proposed algorithms,

the MotoGP video was manually annotated for the presence of a number of

trademarks. These annotations were performed at the frame level, and each

trademark appearance is associated with an interval in the ground-truth.

The performance of the technique is evaluated in terms of precision and

recall:

precision =
# correct trademark detections

# trademark detections

recall =
# correct trademark detections

# trademark appearances

3.4.3 Results

Figure 3.6 gives an overview of the performance of the algorithm on the

MotoGP video for six trademarks over a range of normalized match score

thresholds. Also shown in the plots of figure 3.6 are the precision and recall

performances as a function of the frame sampling rates. Results are shown

for 2.5fps, 5fps, and 10fps. Note that in these plots, the recall plots are

the ones that start at or around 1.0 and decrease as the normalized match
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Figure 3.6: Precision and recall as a function of the normalized match thresh-

old. Note that as the threshold increases, more matches are excluded. Be-

cause of this, recall usually begins at or around 1.0 and is inversely propor-

tional to the normalized match threshold.
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Figure 3.7: Comparison of precision between synthetic trademarks and trade-

marks cropped from actual video frames.

threshold is increased. In most cases, a recall of about 85% can be obtained

at an precision of around 80% with values of τ2 varying between 0.2− 0.25.

The preliminary experiments performed on soccer and volleyball videos have

shown that this value of the threshold can be used also for these other sports.

In cases such as Tissot and Kerakoll, the poor performance is related

to the fact that the model trademarks have relatively few feature points

detected in them, causing the normalized match score to become unreliable.

Increasing the frame sampling rate predictably impacts the recall of the

results. It is interesting, however, that the precision of the retrieved results

is not adversely affected. This indicates that the matching technique has a

very low false-positive rate.

We have also experimented with different types of trademark prototypes

used for matching. In some cases, the textual and graphical structure of a

trademark is enough to distinguish it. In figure 3.7 are shown results com-

paring matching performance on synthetic trademarks and on trademark

instances cropped directly from the video. In these plots, “bwin1” and “cin-

zano1” refer to the synthetic images (shown to the right of figure 3.7). In

the case of precision, we can see that, for low values of the normalized match
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threshold, the synthetic images perform worse than those selected from the

video itself. This is due to the fact that many other trademarks consisting of

mostly text and graphics are confused for the synthetic trademark models.

Recall is affected as well, though not as significantly as precision.

3.5 Conclusion

In this work we introduced an approach for automatically detecting and re-

trieving trademark occurrences in sports video. The use of SIFT features

as a compact representation of video and trademark content ensures that

technique is robust to occlusions, scale and perspective variations. In most

cases, a recall rate of better then 85% can be achieved with a precision of

approximately 80%. Our experiments indicate that SIFT-features a good

representation for many types of trademarks consisting of text and logos.

The high-contrast nature of this type of trademark design makes these fea-

tures very distinguishable from background noise. Experiments on clean,

synthetic trademarks also indicate that in many cases these can be used as

trademark prototypes for matching. A process of robust clustering enables

accurate localization of trademark instances and makes the technique ro-

bust to spuriously matched points in the video frame by requiring spatial

coherence in the cluster of matched points.

While in many cases a satisfactory level of precision and recall can be

achieved by selecting the appropriate trademark directly from the video, ad-

ditional trademark descriptors will certainly be required to guarantee a high

level of recall and simultaneously maintaining a low false-positive rate. Color

trademark descriptors are the most promising approach to maintaining preci-

sion when using less conservative normalized match thresholds. Preliminary

results on other types of sports videos confirm that the technique is capable

of effectively retrieving trademarks in a variety of situations. Results on For-

mula One races, for example, are comparable to the results presented here

for MotoGP. For sports such as soccer and volleyball, however, the approach

suffers from the fact that trademarks are usually viewed from a wide-angle

vantage and appear at a much lower resolution than in MotoGP and For-

mula One. This fundamentally limits the ability to detect enough feature

points on the trademarks in the video. One solution to this is to double the

resolution of each video frame before processing. This has the adverse affect

of greatly increasing the amount of time required to detect feature points
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and perform matching on the (greatly inflated) sets of features.

The best human annotators can annotate a sports video for four different

trademarks in real time (i.e., one hour of video requires one hour of anno-

tation for four trademarks). Annotations are typically required for between

twenty and thirty trademarks for each video, requiring the annotator to view

it multiple times or for annotation to be performed in parallel by multiple

human annotators. In any case, each video typically requires around six

man-hours to fully annotate. Automatic annotation of sports videos, as we

propose in this article, promises to significantly reduce the labor involved in

annotating for trademark visibility. Furthermore, automatic annotation can

provide richer annotations than those currently performed by humans. For

example, our technique is able to compute metrics on the duration of each

trademark appearance as well as an estimation of the size it occupies in the

frame.

Future work will include an investigation of how the approach performs

on other types of sports videos. We are also investigating different metrics

that can be computed on automatically annotated videos. To this end, we

are particularly interested in refining the localization of trademarks so that

a visibility metric can be computed in terms of how much visible space is

occupied by a sponsor’s brand during the course of a broadcast sporting

event.
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Chapter 4

Context-dependent trademark
matching and retrieval

In this chapter we introduce a novel multiple-logo matching and

detection algorithm based on a new class of similarity functions

referred to as context dependent. Our approach is based on de-

signing a similarity measure, involving interest points, which takes

into account not only their intrinsic visual features but also their

context and spatial configuration. The main contribution of this

work includes (i) a variational framework which makes it possible

to design our similarity as the fixed point of an energy function

mixing a visual “data term”, a “context criterion” and a “regu-

larization term” and, (ii) a theoretical study of the consistency

of logo matching/detection and its invariance to different trans-

formations including similarity and occlusion. Finally, we will

show the validity of the method through extensive experiments on

challenging logo images. 1

4.1 Introduction

Automatic image and video annotation has received an increasing attention

from the research and industrial community in the recent years [55]. This is

1Part of this work was conducted while the author was a visiting Ph.D. student at
Télécom ParisTech, Paris (France), from April to June 2010 (working with. Dr. Hichem
Sahbi). This chapter previously appeared as research report n. 2010D009, Télécom Paris-
Tech [186].

49
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Figure 4.1: Realistic examples of trademark images characterized respec-

tively by a bad light condition (Coca-Cola), occlusions (McDonald’s), a de-

formation (Starbucks) and a small size (Ferrari).

mainly due to the growing request for content based search and retrieval of

interesting visual elements, resulting from the exponential growth of multi-

media sharing systems such as Flickr and YouTube. In particular, a really

challenging task is the detection and recognition of advertising trademark-

s/logos, which are of great interest for several real world applications. In

fact, logos are key elements for companies and play essential role in industry

and commerce; they also recall the expectations associated with a particular

product or service.

The early work on trademark detection and recognition addressed the

problem of assisting the registration process. Since a trademark has to be

formally registered, the idea of these approaches is to compare a newly de-

signed trademark with archives of already registered ones, in order to ensure

that it is sufficiently distinctive and avoid confusion [191]. Historically, the

earliest approach was Kato’s Trademark system [103,110]. Its idea is to map

normalized trademark images to an 8 × 8 pixel grid, and calculate a GF-

vector for each image from frequency distributions of black and edge pixels

appearing in each cell of the grid. Matching between logos was performed by

comparing the GF-vectors. An other notable system was Artisan [62] that

achieves trademark retrieval using shape similarity. In this approach Gestalt

principles were used in order to derive rules allowing individual image com-

ponents to be grouped into perceptually significant parts. More recently, Wei

et al. [223] proposed a system that combines global Zernike moments and

local curvature and distance to centroid features in order to describe logos.

All these methods use synthetic images and rely on global logo descriptions,

usually related to their contours or to particular shape descriptors (such as

shape context [26]), so they require logos to be fully visible.
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In the last years, other work on logo detection and recognition, in real

world images/videos, has emerged and is targeted to automatically identify

products (such as groceries in stores for assisting the blind) [148, 98] or to

verify the visibility of advertising trademarks (e.g. billboards or banners) in

sports events [10, 222]. This problem is much harder, due to the relatively

low resolution and quality of images (e.g. compression artifacts, color sub-

sampling, motion blur, etc.) and also to the fact that trademarks are often

small and may contain few information. Moreover their appearance is often

characterized by occlusions, perspective transformations and deformations

(see the examples in Fig. 4.1).

Interest points and local descriptors have been successfully used in order

to describe logos and obtain flexible matching techniques that are robust to

partial occlusions as well as liner and non linear transformations. The first

approach, proposed by Bagdanov et al. [10], achieves trademark detection

and localization in sport video; each trademark is described as a bag of local

features (SIFT points [137]) which are classified and matched with the bags

of SIFT features in video frames. Localization is performed through robust

clustering of matched SIFT features. Following the same approach, Joly

and Buisson [99] exploit SIFT point representation in order to detect logos

in natural images. In order to refine their detection results, they also in-

clude geometric consistency constraints by estimating affine transformations

between queries and retrieved images. Furthermore, they use a contrario

adaptive thresholding in order to improve the accuracy of visual query ex-

pansion.

More recently, interesting work includes spatial informations into logo

representations in order to improve the detection performances. Kleban et

al. . [112] introduced a method for logo detection based on association rules

that capture frequent spatial configurations of local features at multiple reso-

lutions. These configurations are indexed in order to retrieve representative

training templates for matching, nevertheless image resolution is a major

limitation. Gao et al. [78] presented a two-stage logo detection algorithm

which also achieves localization by adapting a spatial-spectral saliency in

order to improve the matching precision. They proposed a spatial context

descriptor in order to estimate the spatial distribution of the set of matching

points. In particular, they find minimum boundary round of matched points

and partition it into nine areas. Finally, they describe the distribution of

these points using a nine-dimensional histogram. However, this global logo
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representation is sensitive to occlusion.

Following the above discussed work, logo detection algorithms, based on

interest points, are known to be very effective and also flexible in order

to handle invariance (including occlusion and affine transformations). Nev-

ertheless, their success strongly depends on the quality of matching (also

referred to as alignment) mainly when images contain repeatable and redun-

dant structures. On the one hand, a naive matching strategy, which given

two images (a reference logo and a test image), looks for all pairs of inter-

est point matches, using a context2-free similarity, such as the laplacian or

the Gaussian, might result into many false matches. Figure (4.3, left) illus-

trates the deficiency of such naive approach when used between two groups

of interest points; any slight perturbation of the values of the underlying

features will result into unstable matching results if no context is taken into

account. On the other hand, putting strong model assumptions about pos-

sible transformations (homography, affine, etc.) between reference logos and

test images, might not capture the actual inter-logo transformations; for

instance when logos deform.

In this chapter, we introduce an alternative matching framework, for

logo detection, based on a new class of similarity functions, called “context-

dependent” (CD) and defined as the fixed-point of an energy function which

balances a “fidelity” term, a “context” criterion and an ”entropy” term. The

fidelity term is inversely proportional to the expectation of the Euclidean

distance between the most likely aligned interest points while the context

criterion measures the spatial coherence of the alignments, i.e., how good

two interest points, with close context, match. Given a pair of interest

points (fp, fq) with a high alignment score (defined by our “CD” values),

the context criterion is proportional to the alignment scores of all the pairs

close to (fp, fq) but with a given spatial configuration. The “entropy” term

considers that without any a priori knowledge about the alignment scores

between pairs of interest points, the joint probability distribution related to

these scores should be as flat as possible so this term acts as a regularizer. In

a second major part of this work, we introduce a matching procedure based

on our “CD” similarity and we show, under the hypothesis of the existence of

reference logos into test images, the probability of success of this procedure

2Given a set of interest points X , the context of x ∈ X is defined as the set of points
spatially close to x and with some particular geometrical constraints (see section 4.2.1 for
a detailed and a formal definition of the context.)
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is high, which is also corroborated through experiments. Notice also that

the proposed alignment and logo detection method is model-free, i.e., it is

not based on any a priori alignment model such as homography which might

not capture the actual inter-logo transformations.

We consider the following organization of the chapter; we first discuss in

Section 2, our energy function which makes it possible to design our context-

dependent similarity, then we show in Section 3, the application of this sim-

ilarity in order to align interest points and perform logo detection. We will

also show some theoretical properties about our alignment procedure mainly

its probability of success even in challenging conditions such as presence of

partial occlusion and its rotation, scale and translation invariance. In Sec-

tion 4, we show logo detection results and comparison on challenging logo

images, and we conclude in Section 5 while providing possible extensions for

a future work.

4.2 Context-dependent similarity

Let Sp = {xp
1, . . . , x

p
n}, Sq = {xq

1, . . . , x
q
m} be the list of interest points taken

respectively from a reference logo and a test image (n ' m and the value

of n, m may vary with the objects p, q). The set X of all possible interest

points is the union over all possible objects p, q of Sp, Sq:

X =

{
∪p Sp

}
∪

{
∪q Sq

}
.

We consider k : Sp × Sq → R as a function which, given two interest points

(xp
i , x

q
j), provides a similarity measure between them. This will be designed

as shown in Section (4.2.2).

4.2.1 Context

Formally, an interest point x is defined as x = (ψg(x), ψf (x), ψo(x), ω(x))

where the symbol ψg(x) ∈ R2 stands for the 2D coordinates of x while

ψf (x) ∈ Rs corresponds to the feature of x (in practice the 128 coefficients

of the SIFT; [137]). We have an extra information about the orientation of x

(denoted ψo(x) ∈ [−π, +π]) which is provided by the SIFT gradient. Finally,

we use ω(x) to denote the object from which the interest point comes from,

so that two interest points with the same location, feature and orientation
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tation, scale and translation invariance. In Section 4, we
show logo detection results and comparison on challenging
logo images, and we conclude in Section 5 while providing
possible extensions for a future work.

2. Context-Dependent Similarity
Let Sp = {xp

1, . . . , x
p
n}, Sq = {xq

1, . . . , x
q
m} be the list

of interest points taken respectively from a reference logo
and a test image (n ! m and the value of n, m may vary
with the objects p, q).

2.1. Context
In order to take into account contextual informa-

tion, an interest point x is formally defined as x =
(ψg(x),ψf (x),ψo(x),ω(x)) where the symbol ψg(x) ∈
R2 stands for the 2D coordinates of x while ψf (x) ∈ Rs

corresponds to the feature of x (in practice the 128 coef-
ficients of the SIFT; [13]). We have an extra information
about the orientation of x (denoted ψo(x) ∈ [−π,+π])
which is provided by the SIFT gradient. Finally, we use
ω(x) to denote the object from which the interest point
comes from, so that two interest points with the same loca-
tion, feature and orientation are considered different when
they are not in the same image (this is not surprising since
we want to take into account the context of the interest point
in the image it belongs to).

Let d(x, x′) = ‖ψf (x)−ψf (x′)‖2 measure the dissimi-
larity between two interest point features, ‖·‖2 is the “entry-
wise” L2-norm (i.e., the sum of the square values of vector
coefficients). Introduce the context of x

N θ,ρ(x) = {x′ : ω(x′) = ω(x), x′ %= x s.t. (i) and (ii) hold},

with
ρ− 1
Nr

εp ≤ ‖ψg(x)− ψg(x′)‖2 ≤
ρ

Nr
εp, (i)

and
θ − 1
Na

π ≤ ∠
(
ψo(x),ψg(x′)− ψg(x)

)
≤ θ

Na
π. (ii)

Here εp is the radius of a neighborhood disk surrounding
x and θ = 1, ..., Na, ρ = 1, ..., Nr correspond to indices
of different parts of that disk (see Fig. 2). In practice, Na

and Nr correspond to 8 sectors and 8 bands. The definition
of neighborhoods {N θ,ρ(x)}θ,ρ reflects the co-occurrence
of different interest points with particular spatial geometric
constraints (see again Fig. 2).

2.2. Similarity Design
The set X of all possible interest points is the union over

all possible objects p, q of Sp, Sq:

X =
{
∪p Sp

}
∪

{
∪q Sq

}
.
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Figure 2. This figure shows a collection of SIFT interest points (with their loca-
tions, orientations and scales) (left) and the partitioning of the context (also referred
to as neighborhood) of an interest point into different sectors for orientations and
bands for locations (right).

We consider k : Sp × Sq → R as a function which, given
two interest points (xp

i , x
q
j), provides a similarity measure

between them.
For a finite collection of interest points, the sets Sp, Sq

are finite. Provided that we put some (arbitrary) order on
Sp, Sq, we can view function k as a matrix K in which
the “(x, x′)−element” is the similarity between x and x′:
Kx,x′ = k(x, x′). Let Pθ,ρ be the intrinsic adjacency
matrices respectively defined as Pθ,ρ,x,x′ = gθ,ρ(x, x′),
where g is a decreasing function of any (pseudo) distance
involving (x, x′), not necessarily symmetric. In practice,
we consider gθ,ρ(x, x′) = 1{ω(x)=ω(x′)} × 1{x′∈N θ,ρ(x)}.
Let Dx,x′ = d(x, x′). We propose to use the function on
Sp × Sq defined by solving

min
K

Tr
(
K D

′)
+ β Tr

(
K log K

′)

− α
∑

θ,ρ

Tr
(
K Pθ,ρ K′ P′

θ,ρ

)
(1)

s.t.

{
K ≥ 0
‖K‖1 = 1

Here α,β ≥ 0 and the operations log and ≥ are applied in-
dividually to every entry of the matrix (for instance, log K
is the matrix with (log K)x,x′ = log k(x, x′)), ‖ · ‖1 is
the “entrywise” L1-norm (i.e., the sum of the absolute val-
ues of the matrix coefficients) and Tr denotes matrix trace.
The first term, in the above constrained minimization prob-
lem, measures the quality of matching two features ψf (x),
ψf (x′). In the case of SIFT, this is considered as the dis-
tance, d(x, x′), between the 128 SIFT coefficients of x and
x′. A high value of d(x, x′) should result into a small value
of k(x, x′) and vice-versa.
The second term is a regularization criterion which consid-
ers that without any a priori knowledge about the aligned in-
terest points, the probability distribution {k(x, x′)} should
be flat so the negative of the entropy is minimized. This
term also helps defining a direct analytic solution of the
constrained minimization problem (1). The third term is

3

Figure 4.2: This figure shows a collection of SIFT interest points (with their

locations, orientations and scales) (left) and the partitioning of the context

(also referred to as neighborhood) of an interest point into different sectors

for orientations and bands for locations (right).

are considered different when they are not in the same image (this is not

surprising since we want to take into account the context of the interest

point in the image it belongs to).

Let d(x, x′) = ‖ψf (x) − ψf (x′)‖2 measure the dissimilarity between two

interest point features, ‖ ·‖ 2 is the “entrywise” L2-norm (i.e., the sum of the

square values of vector coefficients). Introduce the context of x

N θ,ρ(x) = {x′ : ω(x′) = ω(x), x′ += x s.t. (i) and (ii) hold},

with
ρ− 1

Nr
εp ≤ ‖ψg(x)− ψg(x

′)‖2 ≤
ρ

Nr
εp, (i)

and
θ − 1

Na
π ≤ ∠

(
ψo(x), ψg(x

′)− ψg(x)
)
≤ θ

Na
π. (ii)

Here εp is the radius of a neighborhood disk surrounding x and θ =

1, ..., Na, ρ = 1, ..., Nr correspond to indices of different parts of that disk

(see Fig. 4.2). In practice, Na and Nr correspond to 8 sectors and 8 bands.

The definition of neighborhoods {N θ,ρ(x)}θ,ρ reflects the co-occurrence of

different interest points with particular spatial geometric constraints (see

again Fig. 4.2).
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4.2.2 Similarity design

For a finite collection of interest points, the sets Sp, Sq are finite. Provided

that we put some (arbitrary) order on Sp, Sq, we can view a function k

on Sp × Sq as a matrix K in which the “(x, x′)−element” is the similarity

between x and x′: Kx,x′ = k(x, x′). Let Pθ,ρ be the intrinsic adjacency

matrices respectively defined as Pθ,ρ,x,x′ = gθ,ρ(x, x′), where g is a decreasing

function of any (pseudo) distance involving (x, x′), not necessarily symmetric.

In practice, we consider gθ,ρ(x, x′) = 1{ω(x)=ω(x′)}×1{x′∈N θ,ρ(x)}. Let Dx,x′ =

d(x, x′). We propose to use the function on Sp × Sq defined by solving

min
K

Tr
(
K D

′)
+ β Tr

(
K log K

′)

− α
∑

θ,ρ

Tr
(
K Pθ,ρ K′ P′

θ,ρ

)
(4.1)

s.t.

{
K ≥ 0

‖K‖1 = 1

Here α, β ≥ 0 and the operations √ , log and ≥ are applied individ-

ually to every entry of the matrix (for instance, logK is the matrix with

(log K)x,x′ = log k(x, x′)), ‖ ·‖ 1 is the “entrywise” L1-norm (i.e., the sum of

the absolute values of the matrix coefficients) and Tr denotes matrix trace.

The first term, in the above constrained minimization problem, measures

the quality of matching two features ψf (x), ψf (x′). In the case of SIFT, this

is considered as the distance, d(x, x′), between the 128 SIFT coefficients of

x and x′. A high value of d(x, x′) should result into a small value of k(x, x′)

and vice-versa.

The second term is a regularization criterion which considers that with-

out any a priori knowledge about the aligned interest points, the probabil-

ity distribution {k(x, x′)} should be flat so the negative of the entropy is

minimized. This term also helps defining a direct analytic solution of the

constrained minimization problem (4.1). The third term is a neighborhood

criterion which considers that a high value of k(x, x′) should imply high val-

ues in the neighborhoods N θ,ρ(x) and N θ,ρ(x′). This criterion also makes

it possible to consider the spatial configuration of the neighborhood of each

interest point in the matching process.

We formulate the minimization problem by adding an equality constraint

and bounds which ensure a normalization of the similarity values and allow

to see {k(x, x′)} as a probability distribution on Sp × Sq.
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4.2.3 Solution

Proposition 1. Let u denote the matrix of ones and introduce

ζ =
α

β

∑

θ,ρ

‖Pθ,ρuP′
θ,ρ + P′

θ,ρuPθ,ρ‖∞,

where ‖ ·‖ ∞ is the “entrywise” L∞-norm. Provided that the following two

inequalities hold

ζ exp(ζ) < 1 (4.2)

‖ exp(−D/β)‖1 ≥ 2 (4.3)

the optimization problem (4.1) admits a unique solution K̃, which is the limit

of

K(t) =
G(K(t−1))

‖G(K(t−1))‖1
, (4.4)

with

G(K) = exp

{
− D

β
+

α

β

∑

θ,ρ

(
Pθ,ρKP′

θ,ρ + P′
θ,ρKPθ,ρ

)}
, (4.5)

and

K(0) =
exp(−D/β)

‖ exp(−D/β)‖1

Besides K(t) satisfy the convergence property:

‖K(t) − K̃‖1 ≤ Lt‖K(0) − K̃‖1. (4.6)

with L = ζ exp(ζ).

Proof. see an extended version [184] of our previous work [185].

By taking not too large β, one can ensure that (4.3) holds. Then by

taking small enough α, Inequality (4.2) can also be satisfied. Note that α = 0

corresponds to a similarity which is not context-dependent: the similarities

between neighbors are not taken into account to assess the similarity between

two interest points. Besides our choice of K(0) is exactly the optimum (and

fixed point) for α = 0.

To have partitioned the neighborhood into several cells corresponding to

different degrees of proximity (as shown in Fig. 4.2) has lead to significant
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improvements of our experimental results. On the one hand, the constraint

(4.2) becomes easier to satisfy, for larger α with partitioned neighborhood,

compared to [185]. On the other hand, when the context is split into dif-

ferent parts, we end up with a context term, in the right-hand side of the

exponential (4.5), which grows slowly compared to the one presented in our

previous work [185] and grows only if similar spatial configurations of inter-

est points have high similarity values. Therefore, numerically, the evaluation

of that term is still tractable for large values of α which apparently produces

a more positively influencing (and precise) context-dependent term, i.e., last

term in (4.1) (see also equation (4.9) and discussion in Section 4.3.1).

4.3 Logo detection and consistency

Let X, Y be two random variables standing respectively for interest points

in Sp, Sq, and {X1, . . . , Xn} (resp. {Y1, . . . , Ym}) as n (resp. m) realizations

with the same distribution as X (resp. Y ). Define also H1 (resp. H0) as the

set of all possible matching points (resp. non matching points) taken from

{Sp} × {Sq} according to a well defined ground truth.

4.3.1 Matching

Given X, a good matching strategy as will be shown in the remainder of

this section, consists in declaring YJ as a match iff the conditional proba-

bility on (X, YJ) is larger than the sum of the conditional probabilities on

{(X, Yj), j += J}; leading to

KYJ |X >
m∑

j #=J

KYj |X , (4.7)

here KY |X = KX,Y /
( ∑m

j=1 KX,Yj

)
; the intuition behind choosing the above

criterion comes from the fact that when KYJ |X /
∑m

j #=J KYj |X , the entropy

of the conditional probability distribution K.|X will be close to 0, so given

X, the uncertainty about its possible matches will be reduced.

Considering (4.7), we define its probability of success

ps = P

(
KYJ |X >

m∑

j #=J

KYj |X

)
, (4.8)
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this probability is with respect to {X, Y1, . . . , Ym}. In the remainder of this

section, we will discuss the consistency of the matching criterion (4.7) under

H1 and H0.

Proposition 2. given X, under the hypothesis of existence of a reference

logo into a test image (i.e. ∃YJ s.t. (X, YJ) ∈ H1), the probability of success

ps (in 4.8) is
exp

(
n(1− 1/Q)

)

exp
(
n(1− 1/Q)

)
+ (m− 1)

, (4.9)

and if Q > 1, (Q = NrNa, see (i),(ii)), then ps is exponentially-convergent

to 1 with respect to n and decreasing with respect to m.

And under the hypothesis of non existence of a reference logo into a test

image (i.e. !YJ , s.t. (X, YJ) ∈ H1), the probability of success (4.8) is 1/m

which is convergent to 0 as m increases.

Proof. see appendix A.

It results from the above proposition, that under H1 (in contrast to H0),

ps is an increasing function of n, Q and a decreasing function of m. For

instance, if m = 10.000, Q = 64, then ps reaches 1 with only n ≥ 20 sample

points in the reference logo. Clearly, this shows that the procedure is able to

correctly match very few interest points (in Sp) into a very large collection

(in Sq) as also corroborated through experiments.

4.3.2 Logo detection

Given a test image Sq and a reference logo Sp, the latter is declared as present

into Sq if the number of times the inequality (4.7) is satisfied is larger than

τn (τ ∈]0, 1]); here (1 − τ) is the amount of occlusion that Sp might have

in Sq while still can be detected3. Let Xs (Xs → B(n, ps)) be a binomial

random variable standing for the number of times good matches are found

in Sq, for the n points in Sp, using (4.7). In this section, we are interested

in lower bounding

P
(
Xs ≥ τn

)
, τ ∈]0, 1], (4.10)

3It reasonable to set τ = 0.5, which means that a reference logo is still detectable
event-though half-occluded in a test image.
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here P is the probability distribution of Xs. Now, we provide our main result

which allows us under some conditions to lower bound (4.10):

Proposition 3. fix τ and consider Xs as a binomial random variable with

parameter ps. If ps (∈ [0, 1]) is at least
√
− ln(δ/2)

2n + τ , then

P
(
Xs ≥ τn

)
≥ 1− δ (4.11)

here δ ' 1 is a fixed error rate.

Proof. the left-hand side of the above inequality is equal to

P

(
n∑

i

Zi ≥ τn

)
, here Xs =

n∑

i

Zi, Zi → B(1, ps)

= 1− P

(
ps −

1

n

n∑

i

Zi ≥ ps − τ

)

≥ 1− 2 exp

(
− 2n(ps − τ)2

)
, (by Hoeffding’s inequality)

(4.12)

the sufficient condition is

2 exp

(
− 2n(ps − τ)2

)
≤ δ ⇒ ps ≥

√
− ln(δ/2)

2n
+ τ, (4.13)

when n → +∞, and if ps is at least equal to τ , then

P
(
Xs ≥ τn

)
−→

n→+∞
1 (4.14)

Now combining (4.9) and (4.13), the sufficient condition which guarantees

(4.11) becomes under H1

exp
(
n(1− 1/Q)

)

exp
(
n(1− 1/Q)

)
+ (m− 1)

≥
√
− ln(δ/2)

2n
+ τ, (4.15)

which holds true mainly for larger n, Q, but τ < 1, and even large m. For

instance if n = 20, m = 10.000, Q = 64, the left hand side is very close to

1 and hence the inequality (4.15) will be satisfied even when τ → 1 (low

occlusion factor) and δ → 0 (high lower bound).
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4.3.3 Similarity invariance

The adjacency matrices Pθ,ρ, in K, provide the intrinsic properties and also

characterize the geometry of logos {Sp} in X . It is easy to see that Pθ,ρ is

translation and rotation invariant and can also be made scale invariant when

εp (see (i)) is adapted to the scales of ψg(Sp). It follows that the right-hand

side of our similarity K is invariant to any 2D similarity transformation.

Notice, also, that the left-hand side of K(t) may involves similarity invari-

ant features ψf (.) (actually SIFT features), so K(t) (and also the matching

process) is similarity invariant.

4.4 Benchmarking

4.4.1 Test data and settings

In order to show the extra-value of our context dependent matching strategy

both with respect to context free one and other approaches, we evaluate

the performances of multiple-logo detection on the TradeMark-720 database

containing 13 trademark classes each one represented with 14−87 real world

pictures, resulting into a collection of 720 images. 13 reference logos are

used and correspond to trademarks: 1: ”agip”, 2: ”apple”, 3: ”barilla”,

4: ”birra moretti”, 5: ”cinzano”, 6: ”cocacola”, 7: ”esso”, 8: ”ferrari”, 9:

”heineken”, 10: ”marlboro”, 11: ”mcdonald”, 12: ”pepsi”, 13: ”starbucks”.

Note that each reference logo is synthetically transformed in order to generate

4 affine transformations. Interest points are extracted from test images as

well as reference logos and encoded using the usual SIFT features.

Each test image Sq is processed in order to evaluate the similarity function

K (shown in 4.4) with respect to each reference logo Sp, using Gaussian

power assist setting, i.e., K(0)
x,x′ = exp(−d(x, x′)/β). Our goal is to show the

improvement brought when using K(t), t ∈ N+, so we tested it against the

standard context-free similarity (i.e., K(t), t = 0). First, the setting of β

is performed by maximizing the performance of the Gaussian similarity as

the latter corresponds to the left-hand side (and the baseline form) of K(t),

i.e., when α = 0.4 For our database, we found that the best performances

are achieved for β = 0.1 and this also guarantees condition (4.3) in practice.

4Notice that selecting β independently from α is obviously “not sub-optimal” for the
context dependent similarity but “sub-optimal” for the Gaussian similarity.
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The influence (and the performance) of the right-hand side of K(t), α += 0

increases as α increases nevertheless and as shown earlier, the convergence

of K(t) to a fixed point is guaranteed only if (4.2) is satisfied. Intuitively,

the weight parameter α should then be relatively high while also satisfying

condition (4.2). In practice, we found that the best α is 0.1; for a matter

of space, more details about the setting of α, β can be found in a research

report [184].

4.4.2 Performance, comparison and discussion

We used criteria (4.7), (4.10) in order to decide whether a given reference

logo Sp exists into a test image Sq. Different values were experimented for the

tolerance factor τ and performances are measured using False Acceptance

(FAR) and False Rejection Rates (FRR) defined as

FAR = E

(
false positive

false positive+ true negative

)

FRR = E

(
false negative

false negative + true positive

)
,

(4.16)

here the expectation is with respect to all possible test images. Diagrams

in (4.4), show the FAR, FRR errors for different classes (trademarks) of our

test set; we clearly see the out-performance and the improvement of the our

context dependent similarity function (i.e., K(t), t ∈ N+), in logo detection,

with respect to the baseline, i.e., context-free similarity (K(0)). For almost all

the classes of the test set, the improvement brought by the “CD” similarity

is clear and consistent; except the classes “apple” and “mcdonald” as their

reference logos contain very few interest points (n < 12), and this makes

(consistently with our theoretical analysis) inequality (4.15) difficult to satisfy

mainly for high expectations about the lower bound in (4.11) (i.e., low δ)

and when τ is relatively high.

Table. 4.1 shows a comparison of our context dependent similarity for

logo matching and detection with respect to other techniques including SIFT

matching and also with respect to (iterative) Ransac matching using the

inliers/outliers of SIFT matching. Even though, the FAR and FRR results

are variable depending on the setting of τ , in all these cases, the average

error rates, defined as (FAR+FRR)/2, of our method are lower than those

reported for SIFT matching and Ransac.
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Figure 4.3: This figure shows a comparison of the matching results when using a naive matching
strategy without context and our context dependent matching. (Bottom figures) show the conditional
probability distribution K.|X for a particular interest point X in the reference logo. This distribution is
peaked when using context dependent similarity so the underlying entropy is close to 0 and the uncertainty
about possible matches is dramatically reduced. (Top figures) show the matching results between the
reference logo and the test image which are correct using the context dependent matching framework.

! " # $ % & ' ( ) !* !! !" !#
*

*+!

*+"

*+#

*+$

*+%

*+&

*+'

*+(

*+)

,--./01234.5464789:;.5184.<45.72133=

.

.

>:;84?8!0544

>:;84?8!@4<4;A4;8

! " # $ % & ' ( ) !* !! !" !#
*

*+!

*+"

*+#

*+$

*+%

*+&

*+'

,-./012345/2665782965/:285/75:/63244;

/

/

<=985>8!1:55

<=985>8!?5759@598

Figure 4.4: This figure shows a comparison of logo detection using our (i) context-dependent similarity
and (ii) context-free one (actually Gaussian). FAR and FRR rates are shown for each class. In these
experiments, β = α = 0.1 and τ = 0.5 while n and m vary of course with reference logos and test images.
Excepting the logos “Apple” and “Mc Donald’s” (which contain very few interest points n < 12), the
FRR errors are almost always significantly reduced while FAR is globally reduced.
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Figure 4.5: These pictures shows logo detection results; in all these pictures, all
the 13 reference logos were checked using criterion (4.10). Match points are also
displayed.
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Thresholds (τ) 0.1 0.2 0.3 0.4 0.5

Errors FRR/FAR FRR/FAR FRR/FAR FRR/FAR FRR/FAR

Sift Matching 0.299/0.312 0.509/0.148 0.632/0.090 0.730/0.054 0.773/0.039

Ransac Matching 0.395/0.087 0.527/0.035 0.620/0.014 0.705/0.005 0.753/0.003

CD Matching 0.095/0.279 0.109/0.220 0.111/0.200 0.120/0.188 0.120/0.182

Thresholds (τ) 0.6 0.7 0.8 0.9 1

Errors FRR/FAR FRR/FAR FRR/FAR FRR/FAR FRR/FAR

Sift Matching 0.822/0.026 0.856/0.020 0.893/0.015 0.924/0.011 0.950/0.009

Ransac Matching 0.802/0.002 0.827/0.002 0.848/0.001 0.866/0.001 0.877/0.0006

CD Matching 0.128/0.177 0.132/0.173 0.131/0.171 0.135/0.167 0.137/0.1650

Table 4.1: This table shows a comparison of our method, with respect to

Sift and Ransac matching; in all these experiments we clearly see that the

global error rates (defined as 1
2(FAR+ERR)) of our method are better than

those reported for standard matching techniques. Notice also that FAR is an

increasing function of the occlusion factor (1− τ) while FRR is a decreasing

function.

4.5 Conclusion

We introduced in this work a novel logo detection and localization approach

based on a new class of similarities referred to as context dependent. The

strength of the proposed method resides in several aspects (i) the inclusion

of the information about the spatial configuration in similarity design as

well as visual features (ii) the ability to control the regularization of the

solution via our energy function (iii) the invariance to many transformations

including translation, scale, rotation and also partial occlusion, and (iv)

the theoretical groundness of the matching framework which shows that

under the hypothesis of existence of a reference logo into a test image, the

probability of success of matching and detection is high while very low under

background.

Further extensions of this work include the application of the method to

logo retrieval in videos and also the refinement of the definition of context

in order to handle other rigid and non-rigid logo transformations.



Chapter 5

A SIFT-based forensic method
for copy-move detection

One of the principal problem image forensics has to deal with is

determining if a particular image is authentic or not. This task

is very important in all those fields where is crucial to use such

digital content as evidence like, for instance, in a court of law.

To carry out such forensic analysis various technological instru-

ments have been developed in literature. Many of them try to re-

veal if some modifications have been performed thus assessing that

something of suspect could have been made, other ones search for

comprehending what has happened and possibly which relations

there are with other linked photos. In this chapter the problem of

detecting if a feigned image has been created is investigated; in

particular, attention has been paid to the case in which an area of

an image is copied and then pasted onto another zone to make a

duplication or to cancel something that was awkward. To detect

such modifications we propose a new methodology based on SIFT

features. Our method allows both to understand if a copy-move

attack has occurred and which are the image points involved, and,

furthermore, to recover which has been the geometric transforma-

tion happened to perform cloning.1

1A preliminary version of the work presented in this chapter has been published as
“Geometric tampering estimation by means of a SIFT-based forensic analysis” in Proc. of
IEEE Int’l Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2010, [5]
and submitted to IEEE Trans. on Information Forensics and Security (TIFS).

65
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5.1 Introduction

Digital crime, together with constantly emerging software technologies, is

growing at a rate that far surpasses defensive measures. Sometimes a digital

image or a video are incontrovertible evidence of a crime or the proof of a

malevolent action. By looking at a digital content as a digital clue, mul-

timedia forensics aims at introducing novel methodologies to support clue

analysis and to provide an aid for making a decision on a crime. Multime-

dia forensics [142, 67, 179] deals with developing technological instruments

operating in the absence of any watermark [52, 21] or signature inserted in

the image. In fact, diversely from digital watermarking, forensics means are

defined as “passive” because they can formulate an assessment on a digital

document only by resorting to such digital asset. These techniques basically

allow the user to determine if a certain content has been tampered [68, 175]

or which has been the adopted acquisition device [210,47]. In particular, by

focusing on the task of acquisition device identification, two are the main

aspects that have to be studied: the first one is to understand which kind of

device has generated that digital image (e.g. a scanner, a digital camera or

is a computer graphics product) [107,42], while the second one is to succeed

in determining which specific camera or scanner (by recognizing model and

brand) has acquired that particular content [210,47].

The other main multimedia forensics topic is about image tampering de-

tection [68], assessing the authenticity or not of a digital image. Information

integrity is fundamental in a trial, but it is clear that the advent of digital

pictures and relative ease of digital image processing makes today this au-

thenticity uncertain. Two examples of this problem, that recently appeared

in newspapers and TV news 2, are given in Fig. 5.1 and Fig. 5.2. Modifying

a digital image to change the meaning of what is represented in it, could be

crucial when it is used in a court of law, where images are presented as basic

evidences to influence the judgement. Furthermore, it would be interesting,

once established that something has been manipulated, to understand ex-

actly what is happened: if an object or a person has been covered, if a part

of the image has been cloned, if something has been copied from another

image or, even more, if a combination of these processes have been carried

2See http://thelede.blogs.nytimes.com/2008/07/10/in-an-iranian-image-a-missile-too-
many/ and http://littlegreenfootballs.com/weblog/?entry=24492 Iranian Fauxtography
Bust&only/
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Figure 5.1: An example of image tampering appeared on press in July 2008.

The feigned image (on the right) shows four Iranian missiles but only three of

them are real; two different sections (encircled in red and purple respectively)

replicate other image sections by applying a copy-move attack.

Figure 5.2: A close look at this picture, appeared on news in 2007 (Fars

News Agency, Tehran), shows that many elements are cloned over and over.

Also in this case the cloned sections are encircled in different colors.

out. In particular, when an attacker creates his feigned image by cloning an

area of the image onto another zone (copy-move attack), he is often obliged

to apply a geometric transformation to satisfactorily achieve his aim.

In this chapter this issue is investigated, and the proposed method is

able to individuate if the copy-move tampering has taken place and also

to estimate the parameters of the transformation occurred (i.e. horizontal

and vertical translation, scaling factors, rotation angle). On the basis of

our preliminary work [5], a new methodology which answers to this require-

ment is presented hereafter. Such a technique is based on Scale Invariant

Features Transform (SIFT) [137], which are used to robustly detect and
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describe clusters of points belonging to cloned areas. Successively, these

points are exploited to reconstruct the parameters of the occurred geometric

transformation. The proposed technique has also been tested against splicing

attack (i.e. when an image block is duplicated onto another different image).

In fact, in a context where the source image is available (e.g. the forensic

analyst has to check a suspect dataset which contains both the source and

the destination image) this methodology can be still applied. The rest of the

chapter is structured as follows: Section 5.2 presents related works regarding

copy-move forgery detection. Moreover, the contribution and the novelty of

our approach respect to the state-of-the-art is discussed. Section 5.3 presents

the proposed method in its three main stages, while experimental results on

forgery detection and on applied transformation parameters estimation are

presented in Section 5.4. Conclusions are finally drawn in Section 5.5.

5.2 SIFT Features for Image Forensics

One of the most common image manipulations is to clone (copy and paste)

portions of the image, for instance, to conceal a person or an object in the

pictured scene. When this is done with care, and retouch tools are used,

it can be very difficult to detect cloning. Moreover, since the copied parts

are from the same images some components (e.g noise and color) will be

compatible with the rest of the image and thus will not be detectable using

methods that look for incompatibilities in statistical measures in different

parts of the image [23, 69]. Furthermore, since the cloned regions can be of

any shape and location, it is computationally impossible to search all possible

image locations and sizes with an exhaustive search as pointed out in [77].

The problem of copy-move forgery detection has been faced by proposing

different approaches each of these based on the same concept: a copy-move

forgery introduces a correlation between the original image area and the

pasted one. Several methods search this dependence dividing the image into

overlapping blocks and then applying a feature extraction process in order

to represent the image blocks by using a low dimensional representation.

In [140] the averages of red, green and blue components are chosen together

with other four features computed on overlapping blocks, obtained by calcu-

lating the energy distribution of luminance along four different directions. A

different approach is presented in [127] in which the features are represented
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by the Singular Value Decomposition (SVD) performed on low-frequency

coefficients of the block-based Discrete Wavelet Transform (DWT). The au-

thors in [144] proposed a block representation calculated using blur invari-

ants. Their specific aim is to find features invariant to the presence of blur

artifacts that a falsifier can apply to make detection of forgery more difficult.

Then they used Principal Component Analysis (PCA) to reduce the number

of features and a k-tree to identify the interested regions. In [61] authors

present a technique to detect cloning when the copied part has been mod-

ified using two specific tools, the Adobe Photoshop healing brush and the

Poisson cloning. Others two algorithms [77] and [174] based on using low

dimensional representation of blocks and fast sorting to improve efficiency

have been developed to detect copy-move image regions. In particular, the

authors in [77] apply a Discrete Cosine Transform (DCT) to the block. Du-

plicated regions are then detected by lexicographically sorting the DCT block

coefficients and grouping similar blocks with the same spatial offset in the

image. While in [174] the authors apply PCA on image blocks to yield a

reduced-dimension representation. Duplicated regions are again detected by

lexicographically sorting and grouping all of the image blocks. A related

approach is the method in [25] where a Fourier Mellin Transform is applied

on each block. A forgery decision is made when there are more then a given

number of blocks that are connected to each other and the distance between

block pairs is the same. To create a convincing forgery, it is often necessary

to resize, rotate, or stretch portions of an image. For example, when creating

a composition of two objects, one object may have to be resized to match

the relative heights. This process requires re-sampling of the original image

introducing specific periodic correlations between neighboring pixels. The

presence of these correlations due to the re-sampling can be used to detect

that something happened to the image [173] but not to detect the specific

manipulation.

So a good copy-move forgery detection should be robust to some types

of transformations as rotation and scaling and also to some manipulations

including JPEG compression, Gaussian noise addition and gamma correc-

tion. Most of the existing methods do not deal with all these manipulations

and are often computationally prohibitive. In particular the method in [174]

is not able to detect scaling or rotation transformation, whereas with the

methods in [77] and [25] only small variations in rotation and scaling are

identifiable as reported in [24]. The authors in [182] make an attempt to
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overcome this problem solving copy-move identification when only rotation

of the copied area takes place by using Zernike moments. This issue is also

discussed in [129] where rotation transformation and JPEG compression and

Gaussian noise manipulations are analyzed to understand how they could af-

fect the copy-move detection. Authors in [40] instead propose a method to

detect duplicated and transformed regions through the use of a block de-

scription invariant to reflection and rotation such as the log-polar block rep-

resentation summed along its angle axis. Finally a comparison among some

of copy-move methods described above has been reported in [49] evaluating

the performance of each methods with and without geometric transformation

applied to the copied patch.

Nowadays local visual features (e.g SIFT, SURF, GLOH, etc.) have been

widely used for the particular tasks of image retrieval and object recogni-

tion, due to their robustness to several geometrical transformations (such as

rotation and scaling), occlusions and clutter. More recently few attempts

have been done to apply this kind of features also in the digital forensics do-

main; in fact, SIFT features have been used for fingerprint detection [199],

shoeprint image retrieval [209], and also for copy-move detection.

5.2.1 Our contribution

A very preliminary work on copy-move forgery detection based on SIFT fea-

tures was proposed in [95], but in that paper no estimation of the parameters

of the applied geometric transformation is performed and, furthermore, ex-

tended numerical results to evaluate real performances of the methodology

(e.g. True/False Positive Rates) are not provided. Another very recent work

has been presented in [168], but, though the technique is able to deal with

region extraction by resorting to a correlation map, it can not manage affine

transformation and, also in this case, quantitative results on the reliability of

the estimate of geometric transformation parameters are not given; in addi-

tion to this, the approach adopts many different empirical thresholds whose

setting seems to be not completely unsupervised. Moreover none of these

contributions considers accurately the case of multiple copy-move forgeries.

As we will show furthermore, this is a key point in a realistic forensic scenario

since often a forged image contains several cloned areas (like in the case of

Fig. 5.2).

In this scenario is placed the proposed method that is able to detect and
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then to estimate the geometrical transformation occurred in a copy-move

forgery attack. Multiple copy-move forgeries are managed by performing a

robust feature matching procedure and then a clustering on the keypoints co-

ordinates in order to separate the different cloned areas. These two tasks are

fundamental since otherwise, in case of multiple cloning, it is often impossible

to detect and separate each forgery and also to estimate the geometric trans-

formation. Estimating the geometric parameters with accuracy is deemed as

a fundamental task not only to understand how the cloned patch has been

processed [224] and possibly to infer which was the counterfeiter’s motive,

but also to compare the original source block of image and the forged one on

a common ground; furthermore a reliable estimate of the transformation per-

mits to register the two patches for a possible deeper forensics analysis [138].

The method proposed hereafter is able to deal with affine geometric trans-

formations and, as witnessed by experimental results, can grant a reliable

estimate of the transformation parameters. Such a technique acts by relying

on a unique empirical threshold which regulates clustering operation, and

that has been determined by a training procedure on a general dataset. This

is a very important issue also in comparison with other similar techniques

like that in [168].

5.3 The proposed method

The proposed approach is based on the SIFT algorithm to extract robust

features which can allow to discover if a part of an image was copy-moved

and furthermore which geometrical transformation was applied. In fact,

the copied part has basically the same appearance of the original one, thus

keypoints extracted in the forged region will be quite similar to the originals.

Therefore, matching among SIFT features can be adopted for the task of

determining a possible tampering. A simple schematization of the whole

system is shown in Fig. 5.3: the first step consists of SIFT features extraction

and keypoint matching, the second step is devoted to cluster such keypoints

and assess forgeries detection, while the third one is in charge to estimate the

occurred geometric transformation, if a tampering has been individuated.
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Figure 5.3: Overview of the proposed system. SIFT matched pairs and

clusters.

5.3.1 SIFT features extraction and multiple keypoint

matching

Given a test image, a set of keypoints X = {x1, . . . ,xn} with their corre-

sponding SIFT descriptors {f1, . . . , fn} is extracted. A matching operation

is performed in the SIFT space among the fi vectors of each keypoint to

identify similar local patches in the test image. The best candidate match

for each keypoint xi is found by identifying its nearest neighbor from all

the other (n − 1) keypoints of the image, which is the keypoint with the

minimum Euclidean distance in the SIFT space. In order to decide for a

matching between two keypoints (i.e. “are these two descriptors the same

or not?”), simply evaluating the distance between two descriptors with re-

spect to a global threshold does not perform well. This is due to the high-

dimensionality of the feature space (128) in which some descriptors are much

more discriminative than others.

We can obtain a more effective procedure, as suggested in [137], by us-

ing the ratio between the distance of the closest neighbor to that of the

second-closest one, and comparing it with a threshold T (often fixed to

0.6). For the sake of clarity, given a keypoint we define a similarity vec-

tor D = {d1, d2, . . . , dn−1} that represents the sorted euclidean distances

with respect to the other descriptors. Following this idea, the keypoint is

matched only if this constraint is satisfied:

d1

d2
< T where T ∈ (0, 1). (5.1)

We refer to this procedure as 2NN test. But also this matching procedure

shows a main drawback: it is unable to manage multiple keypoint matching.

This is a key aspect in case of copy-move forgeries since it may happen that
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the same image area is cloned over and over (see for example Fig. 5.2). In

other words, it only finds matches between keypoints whose SIFT descriptors

are very different from those of the rest of the set (i.e. features that are

globally distinctive). Therefore, the case of cloned patches is very critical

since the keypoints detected in those regions are very similar to each other.

For this reason we propose a novel matching procedure, that is a general-

ization of (5.1), and is able to deal with multiple copies of the same features.

Our generalized 2NN test (referred as g2NN) starts from the observation

that in a high-dimensionality feature space such as that of SIFT features,

keypoints that are different from the inspected one share very high and very

similar values (in terms of Euclidean distances) among them. Instead, simi-

lar features show low Euclidean distances respect to the others. The idea of

the 2NN test is that the ratio between the distance of the candidate match

and the distance of the 2nd nearest neighbor is low in the case of a match

(e.g. lower than 0.6) and very high in case of two “random features” (e.g.

greater than 0.6). Our generalization consists in iterating the 2NN test be-

tween di/di+1 until this ratio is greater than T (in our experiments we set

this value to 0.5). If k is the value in which the procedure stops, each key-

point in correspondence to a distance in {d1, . . . , dk} (where 1 " k < n) is

considered as a match for the inspected keypoint.

Finally, by iterating on each keypoint belonging to X, we can obtain the

set of matched points. All the matched keypoints are held, instead isolated

ones are no more considered in the following processing steps. Already at

this stage a draft idea of the authenticity of the image is provided. But it can

happen that images that are legitimately containing areas with very similar

texture, can yield to matched keypoints that might induce false alarms: the

following two steps of the proposed methodology try to reduce this possibil-

ity.

5.3.2 Clustering and forgeries detection

To identify possible cloned areas, an agglomerative hierarchical clustering [90]

is performed on spatial locations (i.e. x, y coordinates) of the matched points.

Hierarchical clustering creates a hierarchy of clusters which may be repre-

sented in a tree structure. The algorithm starts by assigning each keypoint

to a cluster; then it computes all the reciprocal spatial distances among clus-

ters, finds the closest pair of clusters, and finally merges them into a single
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cluster. Such computation is iteratively repeated until a final merging situa-

tion is achieved. The way such final merging can be accomplished is basically

conditioned both by the linkage method adopted and by the threshold used

to stop clusters’ grouping.

Several linkage methods exist in the literature and our experiments eval-

uate their performance and then estimate the best cut-off threshold Th (see

Subsection 5.4.1 for a detailed description of such experiments) for forgery

detection. In particular, three different linkage methods have been taken into

account: Single, Centroid and Ward’s linkage. Given two clusters P and Q,

respectively containing nP and nQ objects (where xPi and xQj indicate the

ith and the jth object in the clusters P and Q), the diverse linkage method

operates as it follows:

• Single linkage uses the smallest euclidean distance between objects in

the two clusters:

dist(P, Q) = min(‖xPi,xQj‖2)

with i = [1, nP ], j = [1, nQ]. (5.2)

• Centroid linkage uses the euclidean distance between the centroids of

the two clusters:

dist(P, Q) = ‖xP − xQ‖2 (5.3)

where

xP =
1

nP

nP∑

i=1

xPi and xQ =
1

nQ

nQ∑

i=1

xQi. (5.4)

• Ward’s linkage evaluates the increment/decrement (5.5) in the Error

Sum of Squares (ESS) after merging the two clusters into a single one

with respect to the case of two separated clusters:

∆dist(P, Q) = ESS(PQ)− [ESS(P ) + ESS(Q)] (5.5)

where

ESS(P ) =
nP∑

i=1

|xPi − xP |2, (5.6)

xP is the centroid (again) and PQ indicates the combined cluster.



5.3 The proposed method 75

According to the adopted linkage method, a specific tree structure is ob-

tained. In addition to this, the proper choice of the threshold Th, to deter-

mine where to cut the tree and consequently which is the final number of

clusters, is crucial. The parameter which is utilized to be compared with

Th is the Inconsistency Coefficient (IC) which characterizes each clustering

operation; the higher the value of this coefficient, the less similar the objects

connected by the link, thus when it exceeds the threshold Th clustering stops.

IC takes basically into account the average distance among clusters and does

not allow to join clusters spatially too far at that level of hierarchy. It is

easy to understand that an appropriate assumption of Th directly influences

tampering detection performances. At the end of clustering procedure, how-

ever clusters which do not contain a significant number (more than three)

of matched keypoints are eliminated. On this basis, to optimize detection

performances and consequently to the carried out experimental tests (see

again Subsection 5.4.1), it has been established to consider that an image

has been altered by a copy-move attack, if the method detects two (or more)

clusters with at least three pairs of matched points that link a cluster to

another one. This aspect has been investigated and this assumption grants

a good trade-off between the need to provide a low false alarm rate.

It is worthy to point out that can occur the case where no matched

keypoints are obtained, mainly because salient features are not revealed in

the forged patch (e.g. when an object is hidden with a flat patch): anyway

this is a very well-known open issue in SIFT-related scientific literature.

5.3.3 Geometric transformation estimation

When an image has been classified as non-authentic, the proposed method

allows to determine which is the geometrical transformation occurred be-

tween the original area and its copy-moved version. Let the matched point

coordinates be, for the two areas, x̃i = (x, y, 1)T and x̃′i = (x′, y′, 1)T respec-

tively, their geometric relationships can be defined by an affine homography

which is represented by a 3× 3 matrix H as:



x′

y′

1



 = H




x

y

1



 (5.7)

This matrix can be computed by resorting at three matched points at least.

In particular, we determine H by using Maximum Likelihood estimation of
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the homography [89]. This method seeks homography H and pairs of per-

fectly matched points x̂i and x̂′i that minimizes the total error function as in

Equation 5.8:

∑

i

[
d(xi, x̂i)

2 + d(x′i, x̂
′
i)

2
]

subject to x̂′i = Hx̂i ∀i. (5.8)

However mismatched points (outliers) can severely disturb the estimated

homography. For this purpose we perform the previous estimation by ap-

plying the RANdom SAmple Consensus algorithm (RANSAC) [75]. Such

algorithm randomly selects a set (in our case three pairs of points) from

the matched points and estimates the homography H, then all the remained

points are transformed according to H and compared in terms of distance

with respect to their corresponding matched ones. If this distance is under

or above a certain threshold β, they are catalogued as inliers or outliers

respectively. After a pre-defined number Niter of iterations, the estimated

transformation which is associated with the higher number of inliers is cho-

sen. In our experimental tests, Niter has been set to 1000 and the threshold

β to 0.05; this is due to the fact that we used a standard method of normal-

ization of the data for homography estimation. The points are translated so

that their centroid is at the origin and then they are scaled so that the aver-

age distance from the origin is equal to
√

2. This transformation is applied

to both of the two areas xi and x′i independently.

Once the affine homography is found, rotation and scaling transforma-

tions can be computed by its decomposition, while translation can be deter-

mined by considering the centroids of the two matched clusters. In particular,

H can be represented as:

H =

[
A t

0T 1

]
where A =

[
a11 a12

a21 a22

]
. (5.9)

The matrix A is the composition of rotation and non-isotropic scaling

transformations. In fact, it can always be decomposed as

A = R(θ)(R(−Φ)SR(Φ)) (5.10)

where R(θ) and R(Φ) are rotations by θ and Φ respectively, and S = diag(s1, s2)

is a diagonal matrix for the scaling transformation. Hence, the A defines the

concatenation of a rotation by Φ, a scaling by s1 and s2 respectively in

the rotated x and y directions; a rotation back by −Φ; and finally another
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rotation by θ. This decomposition is computed directly by the SVD (Sin-

gular Value Decomposition). In fact, the matrix A can be also rewritten as:

A = USVT = (UVT)(VSVT) = R(θ)(R(−Φ)SR(Φ)) since U and V are orthogonal

matrices.

5.4 Experimental results

In this section we evaluate the proposed methodology providing two main

kinds of the tests: firstly, on a small dataset named MICC-F220, a bench-

marking of the technique is done to properly set the operative threshold Th

and to compare it with other methods known in the literature; secondly,

on a larger dataset named MICC-F2000, a complete evaluation is carried

out by testing the system against different types of modifications. Both

datasets are composed by images with different contents coming from the

Columbia photographic images repository [161] and from a personal collec-

tion. The first dataset MICC-F220 is composed by 220 images: 110 are

tampered images and 110 are originals. The images resolution varies from

722 × 480 to 800 × 600 pixels and the size of the forged patch covers, on

the average, 1.2% of the whole image. The second dataset MICC-F2000 is

composed by 2000 photos of 2048× 1536 pixels (3M pixels) and the forgery

is, on the average, 1.12% of the whole image: so it is again quite small and

similar to the MICC-F220 dataset case. To reproduce as much as possible

a practical situation, the number of original and altered images belonging

to the MICC-F2000 dataset is not the same: 1300 original images and 700

tampered images have been taken. The forged images are obtained, in both

the datasets, by randomly selecting (both as location and as dimension) an

image area (squared or rectangular) and copy-pasting it over the image after

having applied a number of different attacks such as translation, rotation,

scale (symmetric/asymmetric) or a combination of them.

Table 5.1 and Table 5.2 summarize the geometric transformations for

the attack applied in the MICC-F220 dataset (10 attacks, from A to J in

Table 5.1) and in the MICC-F2000 (14 attacks, from a to o in Table 5.2)

respectively. In particular, for each attack, is reported the rotation θ ex-

pressed in degrees and the scaling factors sx, sy applied to the x and y axis

of the cloned image part (e.g. in the attack G, the x and y axes are scaled

by 30%, and no rotation is performed).
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Attack θ ° sx sy

A 0 1 1

B 10 1 1

C 20 1 1

D 30 1 1

E 40 1 1

Attack θ ° sx sy

F 0 1.2 1.2

G 0 1.3 1.3

H 0 1.4 1.2

I 10 1.2 1.2

J 20 1.4 1.2

Table 5.1: The 10 different combinations of geometric transformations ap-

plied to the original patch for the MICC-F220 dataset.

Attack θ ° sx sy

a 0 1 1

b 0 0.5 0.5

c 0 0.7 0.7

d 0 1.2 1.2

e 0 1.6 1.6

f 0 2 2

g 0 1.6 1.2

Attack θ ° sx sy

h 0 1.2 1.6

i 5 1 1

j 30 1 1

l 70 1 1

m 90 1 1

n 40 1.1 1.6

o 30 0.7 0.9

Table 5.2: The 14 different combinations of geometric transformations ap-

plied to the original patch for the MICC-F2000 dataset.

5.4.1 Settings for forgery detection

First of all the proposed method is analyzed to determine the best settings

for the cut-off threshold Th introduced in Section 5.3.2 according to the

chosen linkage method. Such values will be set up for the successive phase

of experiments and comparisons. To address this problem, the following

experiment has been set-up applying a 4 -fold cross-validation process: from

the database of 220 images (MICC-F220), 165, that is 3/4 of the image

set, (82 tampered and 83 original) have been randomly chosen to perform a

training to find the best threshold Th for each of the three considered linkage

methods (Single, Centroid, Ward’s); the remaining 55 images (1/4 of the

whole set) have been used in a successive testing phase to evaluate detection

performances of the proposed technique. The experiment was repeated four

times, by cyclically exchanging the four image sub-sets belonging to the

training (3 sub-sets) and to the testing set (1 sub-set), and the results have

been averaged. Detection performances have been measured in terms of
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True Positive Rate (TPR) and False Positive Rate (FPR), where TPR is the

fraction of tampered images correctly identified as such, while FPR is the

fraction of original images that are not correctly identified as such:

TPR =
# images detected as forged being forged

# forged images
,

FPR =
# images detected as forged being original

# original images
.

We underline that has been assumed to consider that an image has been

altered by a copy-move attack, if the method detects two (or more) clusters

with at least three pairs of matched points that link a cluster to another one

(as debated in Subsection 5.3.2).

In Table 5.3, for each linkage method, the TPR and the FPR obtained

during the training phase are reported with respect to the threshold Th which

varies in the interval [0.8, 3] with steps of 0.2.

Single Centroid Ward’s

Th FPR(%) TPR(%) FPR(%) TPR(%) FPR(%) TPR(%)

0.8 2.729 41.827 1.822 23.626 0.911 10.906

1 5.455 70.001 4.547 56.373 3.636 32.739

1.2 8.180 89.994 7.273 90 7.273 82.714

1.4 8.180 95.456 8.180 95.456 7.273 90.905

1.6 8.180 98.185 7.273 97.274 8.180 97.274

1.8 7.269 96.360 8.180 98.182 9.088 99.089

2 6.362 91.820 7.269 95.456 9.088 100

2.2 5.451 82.721 5.451 92.723 8.177 100
2.4 4.544 63.639 4.544 84.536 7.269 96.364

2.6 2.726 48.185 2.729 70.897 7.273 89.998

2.8 0.911 22.726 1.822 46.360 3.640 78.170

3 0.911 15.461 0.911 18.179 3.640 61.813

Table 5.3: Training phase: TPR and FPR values (in percentage) for each

metric with respect to Th.

The goal was to minimize the FPR while maintaining a very high TPR;

as it can be seen FPR is almost always very low, on the contrary TPR is

very variable, so the optimal threshold Th has been chosen, as evidenced
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in Table 5.3, for the maximum value of TPR that means 1.6 for the Single

linkage method, 1.8 for the Centroid and 2.2 for the Ward’s linkage. Fi-

nally, the test phase has been launched for the best metrics by using the Th

previously obtained in the training phase. The final detection results are re-

ported in Table 5.4. These values show that the proposed method performs

satisfactorily providing a low FPR though maintaining an high rate of cor-

rect tampering detection basically for all the used linkage method, though

Ward’s metric seems to be slightly better. It is possible to conclude that the

choice of linkage method is not so fundamental while Th setting is crucial.

Single Centroid Ward’s

FPR (%) 8.16 8.16 8

TPR (%) 98.21 98.17 100

Table 5.4: Test phase on MICC-F220 dataset: detection results in terms of

FPR and TPR.

Furthermore, for the cases of correctly detected forged images, the esti-

mation of the geometric transformation parameters which bring the original

patch onto the forged one has also been computed. The Mean Absolute Er-

ror (MAE) between each of the true values of the transformation parameters

and the estimated ones are reported in Table 5.5. As in the previous tables,

sx and sy refers to the scaling factors occurred in the transformation; θ refers

to the rotation (in degrees) while tx and ty are translation on x/y direction

respectively.

MAE (tx) MAE (ty) MAE (θ) MAE (sx) MAE (sy)

4.04 2.48 0.94 0.021 0.015

Table 5.5: Transformation parameters estimation errors for the MICC-F220

(Single linkage method with Th = 1.6, as previously underlined other metrics

give similar performances). The values tx and ty are expressed in pixels while

θ in degrees.

Results show an high degree of precision in the estimate of the various

parameters of the affine transformation. In addition to this, Table 5.6 reports

for one of the test image belonging to the MICC-F220, named Cars (see

Fig. 5.4 first column), each transformation parameter (the original value

applied to the patch, the estimated one and the absolute error (|e|)). It can
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A tx t̂x |e| ty t̂y |e| θ θ̂ |e| sx ŝx |e| sy ŝy |e|
A 304 304.02 0.02 80.5 81.01 0.51 0 0.040 0.040 1 1.004 0.004 1 0.998 0.002

B 304 305.20 1.20 80.5 82.42 1.92 10 9.963 0.037 1 1.001 0.001 1 0.999 0.001

C 304 305.55 1.55 80.5 82.64 2.14 20 20.009 0.009 1 1.006 0.006 1 0.998 0.002

D 304 305.04 1.04 80.5 82.49 1.99 30 30.092 0.092 1 1.002 0.002 1 0.998 0.002

E 304 306.08 2,08 80.5 78.43 2.07 40 39.932 0.067 1 1.007 0.007 1 1.004 0.004

F 304 304.88 0.88 80.5 80.41 0.09 0 0.080 0.080 1.2 1.202 0.002 1.2 1.198 0.002

G 304 305.07 1.07 80.5 79.87 0.63 0 0.108 0.108 1.3 1.304 0.004 1.3 1.303 0.003

H 304 305.78 1.78 80.5 80.18 0.32 0 0.037 0.037 1.4 1.403 0.003 1.2 1.206 0.006

I 304 305.23 1.23 80.5 81.76 1.26 10 9.910 0.090 1.2 1.203 0.003 1.2 1.201 0.001

J 304 305.02 1.02 80.5 80.82 0.32 20 20.067 0.067 1.4 1.404 0.004 1.2 1.198 0.002

Table 5.6: Transformation parameters estimation on image Cars. The values

tx and ty are expressed in pixels while θ in degrees.

be observed how reliable the estimate is, specifically for the scale parameters

and also for an asymmetric scaling combined with a rotation.

Qualitative evaluation

Hereafter, some experimental results on images where a copy-move attack

has been performed by taking into account the context are reported. In

this case the patch is selected according to the specific goal to be achieved

and, above all, transformed by paying attention to perfectly conceal the

occurred modification. Alterations are not recognizable at least at a first

rough watch and a forensic tool could help in investigation action. In Fig. 5.4,

four of these specific cases are pictured by presenting the tampered image

and the corresponding one where matched keypoints and clusters, extracted

by the proposed method, are highlighted. Interesting situation concerns the

individuation of a cloned patch for the image named Dune (second column)

where, though the duplicated area is quite flat, the method is able to detect

a sufficient number of matched keypoints. On the contrary, an opposite case

is registered for the image named Santorini (last column), where a very

high amount of matched keypoints is obtained; now the cloned block is very

textured and though it has undergone a geometrical transformation to be

properly adapted to the context, the SIFT algorithm is so robust not to be

disturbed.
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Figure 5.4: Some examples of tampered images are pictured in the first

column, while the corresponding detection results are reported in the second

column.
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Copy-move methods comparison

The proposed approach has been compared to the results obtained with our

implementations of the methods presented in [77], based on Discrete Cosine

Transform (DCT), and in [174], based on Principal Component Analysis

(PCA) (please note that both have been previously introduced in Section

5.2). The input parameters required by the two methods are set as it fol-

lows: b = 16 (number of pixels per block), Nn = 5 (number of neighborhood

rows to search in the lexicographically sorted matrix), Nf = 1000 (threshold

for the minimum frequency) and Nd = 22 (threshold to determine a du-

plicated block). These parameters are used in both the algorithms, while

e = 0.01 (fraction of the ignored variance along the principle axes after PCA

is computed) and Q = 256 (number of the quantization bins) are only used

for the method presented in [174]. In our method, the Ward’s linkage with

a threshold Th = 2.2 has been assumed.

The experiments have been launched on the whole MICC-F220 image

database on a machine with an Intel Q6600 quad core with 4-GB RAM (linux

os) and the FPR, TPR and the processing time have been evaluated. Ta-

ble 5.7 shows the detection performance and the processing time on average

(in seconds) for an image relatively to each methodology.

Method FPR (%) TPR (%) Time (s)

Fridrich et al. [77] 84 89 294.69

Popescu and Farid [174] 86 87 70.97

Our method 8 100 4.94

Table 5.7: TPR, FPR values (%) and processing time (one image averagely)

for each method.

The results point out that the proposed method performs better with

respect to the others methods; in fact the processing time (per image) is on

average about 5 seconds, whereas the other two take more than 1 minute

and almost 5 minutes respectively. Furthermore DCT and PCA methods,

though presenting an acceptable TPR, fail when a decision about original

images is required (high FPR values in Table 5.7). Anyway this is basically

due to the incapacity of such methods to properly deal with cases where a

geometrical transformation which is not just a translation is applied to the

copy-moved patch. For the specific case of simple patch translation FPR is

0% for all the three methods.
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5.4.2 Test on multiple copied regions

In this experiment we analyze the performance of our method in presence

of tampered images which have multiple copies of a same region. This test

has been performed on ten photos of 2048× 1536 pixels. In these pictures,

one or more image areas are copied and pasted in several different positions

over the image, taking into account the context in order to hide, at the first

glance, the forgery.

In this scenario, as we have previously highlighted in Subsection 5.3.1, the

standard 2NN matching procedure is a critical point for copy-move forgery

detection methods based on SIFT features [95, 168]. In fact, comparing the

standard SIFT matching technique with our g2NN strategy, we determine

that our method increases (averagely) of 195% the number of the extracted

matches. A high number of matches is fundamental in order to have sufficient

information for a correct estimation of the geometric transformation, but it

can introduce false alarms. To this end, we tested our matching strategy on

MICC-F220 dataset in order to evaluate how these new matches influence

the results. We obtained that we lose on average 3% in terms of FPR with

the same results in terms of TPR.

Fig. 5.5 shows a qualitative comparison between the two techniques. It

is interesting to note that the number of the matched keypoints between

the gun a and c, obtained by the standard 2NN technique, are very few (2

matches) with respect to g2NN (54 matches). In this case the technique,

based on standard matching, fails to detect the relationship between the two

guns. Finally, Fig. 5.6 shows some examples of multiple cloning obtained

with the g2NN test. Detection results are reported by highlighting matched

keypoints and clusters.

5.4.3 Test on a large dataset

In this section, experimental results obtained on a larger dataset, named

MICC-F2000, to verify the behavior of the proposed technique are presented;

detection performances and geometric transformation parameters estimation

are investigated as well. Furthermore tests to check the robustness of the

method against usual operations such as JPEG compression or noise addi-

tion, an image can undergo, have been carried out; such kinds of processing

have been considered as applied both to the whole forged image and only to
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c

Figure 5.5: Matched keypoints computed by the 2NN standard SIFT match-

ing technique (left) and our g2NN strategy (right).

the altered image patch.

Single Centroid Ward’s

Th FPR(%) TPR(%) FPR(%) TPR(%) FPR(%) TPR(%)

0,8 3.41 51.86 1.69 32.29 0.54 11.43

1 5.56 70.19 4.92 62.43 3 51.29

1,2 10.28 89.95 10.31 87.43 9.54 83.86

1,4 10.95 91.24 12.15 90.14 11.62 88.43

1.6 10.97 93 13.23 93.57 13.15 93.14

1.8 9.46 91 12.46 93.43 14.54 93.86

2 7.46 84.43 11.23 92.29 13.85 93.86

2.2 4.79 72.38 9.00 89.43 11.62 93.43

2,4 2.72 54.43 6.46 78.43 9.85 91.29

2,6 1.00 29.14 3.23 62.86 8.46 87.71

2,8 0.21 19.86 1.23 40.86 5.62 79.43

3 0.08 12.86 0.38 23.29 3.38 67.43

Table 5.8: Training phase on MICC-F2000 dataset: TPR and FPR values

(in percentage) for each metric with respect to Th.

First of all, we have tried to set up again an experiment for the determi-

nation of the best threshold Th, according to the three linkage methods, as

done in Subsection 5.4.1 for the MICC-F220; this has been made to further

check if the established thresholds were correct. To do that a 4-fold cross-

valitation process has been carried out. Results are listed in Table 5.8. It

can be observed that a similar behavior to that obtained with MICC-F220

is registered and, above all, that the values chosen in Subsection 5.4.1 for
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Figure 5.6: Examples of tampered images with multiple cloning are shown

in the first column, while the detection results are reported in the second

column.
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Th (1.6 for Single, 1.8 for Centroid and 2.2 for Ward’s) still grant about the

higher performances in terms of TPR and FPR. After this, the test phase is

launched by setting such values for Th and in Table 5.9 the detection rates

are reported demonstrating both the effectiveness of the proposed method

which achieves a TPR around 93% for all the three metrics and its robustness

obtaining again performances very coherent to those presented in Table 5.8

for these fixed thresholds.

Single Centroid Ward’s

FPR (%) 10.99 12.45 11.61

TPR (%) 92.99 93.23 93.42

Table 5.9: Test phase on MICC-F2000 dataset: detection results in terms of

FPR and TPR obtained with Th = 1.6, Th = 1.8 and Th = 2.2 for the three

linkage methods respectively.

Going into detail, in Fig. 5.7 the number of errors for each attack is listed

with regard to tampered images not detected as such. The most critical

attacks seem to be the f (θ = 0°, sx = 2 and sy = 2) and the n (θ =

40°, sx = 1.1 and sy = 1.6) which increase twice the patch dimension and

apply a 40 degrees rotation combined with a consistent variation on scale

respectively. The histogram in Fig. 5.7 shows that these two kinds of attacks

generate everyone around the 30% of the total errors.

In Table 5.10 are then reported the estimate errors for the geometric

transformation parameters averaged on all the 500 test images. The Mean

Absolute Error (MAE) still remains small enough although the transforma-

tions applied to the images in this circumstance for MICC-F2000 dataset are

more challenging with respect to the case of MICC-F220 dataset.

MAE(tx) MAE(ty) MAE(θ) MAE(sx) MAE(sy)

22.49 8.49 1.55 0.27 0.2

Table 5.10: Transformation parameters estimation errors. The values tx and

ty are expressed in pixels while θ in degrees.
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Figure 5.7: Error analysis of tampered images misdetection for each different

attack (in percentage).

JPEG compression and noise addition

The proposed methodology has also been tested in terms of detection perfor-

mances from a robustness point of view; in particular, the impact of JPEG

compression and then of noise addition on all the 2000 images of the MICC-

F2000 dataset has been investigated. In the first experiment all the images

which were originally in the JPEG format (quality factor of 100), have been

compressed in JPEG format with a decreasing quality factor of 75, 50, 40

and 20. Table 5.11 (left) shows the FPR and TPR (Ward’s linkage method

with Th = 2.2) for all the diverse JPEG quality factors; it can be seen that

FPR is practically stable while the TPR tends to slightly diminish when im-

age quality decreases. In the second experiment, in the same way as before,

the images of MICC-F2000 dataset are distorted by adding a Gaussian noise

obtaining different final decreasing signal-noise-ratios (SNR) of 50, 40, 30

and 20 db. Noisy images are obtained by adding white Gaussian noise to

the image with a JPEG quality factor of 100. In Table 5.11 (right), obtained

results are shown and it can be noticed that the TPR is over 90% till a SNR

of 30 dB while FPR is again quite stable, though it seems to even improve.
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JPEG quality FPR TPR

100 11.61 93.42

75 12.07 93.42

50 11.15 93.16

40 11.38 92.14

20 10.46 87.15

SNR (dB) FPR TPR

50 11.46 93.71

40 11.69 94.14

30 11.46 92.00

20 8.15 82.42

Table 5.11: Detection performances against JPEG compression (left) and

noise addition (right).

JPEG compression, noise addition, gamma correction on cloned

patches

The duplicated patches are often modified by applying some further process-

ing such as brightness/contrast adjustment, gamma correction, noise addi-

tion and so on, in order to adjust the patch with respect to the image area

where it has to be located. So to explore this scenario the following experi-

ment has been made. Starting from 10 original images, a block is randomly

(as explained before) selected for each of them and 4 geometric transforma-

tions (a, d, j and o from Table 5.2) are applied to every of these patches.

Furthermore, before pasting them, 4 different gamma corrections with values

[2.2, 1.4, 0.7, 0.45] are applied to each single block. Finally, 160 tampered

images are obtained. In the same way, the final stage of gamma correction

is firstly substituted by JPEG compression with different quality factors [75,

50, 40, 20] and secondly by Gaussian noise addition with SNR (dB) equal

to 50, 40, 30, 20. For every case, 160 fake images have been created. So

for each of the three situations (gamma correction, JPEG compression and

noise addition), a dataset composed by 160 fake images and by 350 original

ones randomly taken from the MICC-F2000 database is built. In Table 5.12,

performances in terms of TPR and FPR are reported.

These experiments show that the proposed method maintains its level

of accuracy though some diverse kinds of post-processing are applied to the

duplicated patch in addition to a geometric transformation, to adapt it to

the image context where it is pasted.
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Kind of processing FPR TPR

Gamma correction 9.23 99.37

JPEG 11.38 100.00

SNR (dB) 12.00 100.00

Table 5.12: Detection performances against gamma correction, JPEG com-

pression and noise addition applied to the duplicated and geometrically

transformed patch.

5.4.4 Image splicing

Though the proposed technique has been presented to operate in a copy-

move attack scenario, it can also be utilized in a context where a splicing

operation has occurred. With the term splicing attack is intended that a

part of an image is grabbed and, possibly after having been adapted (geo-

metric transformed and/or enhanced), pasted onto another one to build a

new fake image. In most of the cases only the final fake photo is available to

the forensic analyst for inspection, the source one is often undeterminable;

because of this, the SIFT matching procedure, which is the core of the pro-

posed method could not take place and would seem that there is no room

for it in such circumstance. Anyway this is not always true in practice! In

fact, often, the analyst is required to give an assessment over a dataset of

images for example belonging to a specific person under judgement, or that

have been found in a hard disk or a pen drive, and so on. In this operative

scenario, it can happen that the source image used to create a fraudulent

content belongs to the image collection at disposal. It is easy to understand

that the proposed method can be adopted again to determine both if within

the to-be-checked collection there is a false image containing an ”external”

patch and, above all, where it comes from. It is interesting to highlight

that succeeding in detecting such link could help investigation activities.

To prove that the proposed technique can be used in such a scenario the

following experimental test has been set up.

A subset of 100 images (96 original and 4 tampered with) taken from a

private collection with size of 800×600 pixels has been selected. In particular,

the 4 fake images have been created by pasting a patch that was cut from

another image belonging to the other original 96. The proposed technique

has been launched to analyze all the possible pairs of photos
(n·(n−1)

2 =
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Figure 5.8: Examples of correct detection of splicing attack.
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Figure 5.9: An example of wrong detection of splicing attack.

100·99
2 = 4950

)
within the dataset looking for duplicated areas. To allow to

the presented algorithm to perform as it is the pair of images to be checked

are considered as a single image with a double number of columns (size equal

to N × 2M); due to this fact, the detection threshold Th has been moved

up to 3.4 (it was 2.2 in the previous experimental tests of this section) for

the Ward’s linkage method which was chosen for this specific experiment.

In Table 5.13 performances on FPR and TPR are reported.

Splicing attack FPR (%) TPR (%)

0.04 100.00

Table 5.13: Detection performances against splicing attack (in percentage).

The method is able to correctly reveal all the four fake pairs as expected

determining a link between the possible original image and the forged one,

though it can not distinguish the source from the destination as well-known

if other tools are not adopted. The procedure also detects as suspected two

other innocent couples of images incurring in false alarms. In Fig. 5.8 the

four cases of splicing attack detection are pictured, while in Fig. 5.9 one of

the false alarm is illustrated. In this last circumstance, it is immediate to

understand that the error is induced by the presence of the same objects (the

posters over the wall of the wooden box) in both the photos taken in the same

real context. However this could be the actual situation that might happen in

practical scenario (e.g. establishing possible relations among photos acquired

in similar environments).
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5.5 Conclusion

A novel methodology to support image forensics investigation based on SIFT

features has been proposed. Given a suspected photo, it allows to reliably

detect if a certain region has been duplicated and, furthermore, to determine

the geometric transformation applied to perform such tampering. The pre-

sented technique has shown effectiveness with respect to diverse operative

scenarios such as composite processing and multiple cloning. Future works

will be mainly dedicated to investigate how to improve detection phase with

respect to cloned image patch with highly uniform texture where salient key-

points are not recovered by SIFT-like techniques. In particular, integration

with other forensics techniques applied locally onto flat zones is envisaged.

Furthermore, clustering phase will be extended by means of an image seg-

mentation procedure.
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Chapter 6

Video event classification using
string kernels

Event recognition is a crucial task to provide high-level semantic

description of the video content. The bag-of-words (BoW) ap-

proach has proven to be successful for the categorization of objects

and scenes in images, but it is unable to model temporal infor-

mation between consecutive frames. In this chapter we present a

method to introduce temporal information for video event recogni-

tion within the BoW approach. Events are modeled as a sequence

composed of histograms of visual features, computed from each

frame using the traditional BoW. The sequences are treated as

strings (phrases) where each histogram is considered as a char-

acter. Event classification of these sequences of variable length,

depending on the duration of the video clips, are performed using

SVM classifiers with a string kernel that uses the Needlemann-

Wunsch edit distance. Experimental results, performed on two

domains, soccer videos and a subset of TRECVID 2005 news

videos, demonstrate the validity of the proposed approach. 1

1This chapter has been published as “Video Event Classification using String Kernels”
in Multimedia Tools and Applications, vol. 48, iss. 1, pp. 69-87, 2010 [20].

95



96 Video event classification using string kernels

6.1 Introduction

Recently it has been shown that part-based approaches are effective meth-

ods for object detection and recognition due to the fact that they can cope

with partial occlusions, clutter and geometrical transformations. Many ap-

proaches have been presented, but a common idea is to model a complex

object or a scene by a collection of local interest points. Each of these local

features describes a small region around the interest point and therefore they

are robust against occlusion and clutter. To achieve robustness to changes of

viewing conditions the features should be invariant to geometrical transfor-

mations such as translation, rotation, scaling and also affine transformations.

In particular, SIFT features by Lowe [137] have become the de facto stan-

dard because of their high performances and (relatively) low computational

cost. In fact, SIFT features have been frequently applied to object or scene

recognition and also to many other related tasks. In this field, a solution that

recently has become very popular is the Bag-of-Words (BoW) approach. It

has been originally proposed for natural language processing and informa-

tion retrieval, where it is used for document categorization in a text corpus,

where each document is represented by its word frequency. In the visual

domain, an image or a frame of a video is the visual analogue of a document

and it can be represented by a bag of quantized invariant local descriptors

(usually SIFT), called visual-words or visterms. The main reason for its

success is that it provides methods that are sufficiently generic to cope with

many object types simultaneously. We are thus confronted with the problem

of generic visual categorization [201,72,236,242], like classification of objects

or scenes, instead of recognizing a specific class of objects. The efficacy of the

BoW approach is demonstrated also by the large number of systems based

on this approach that participate in the PASCAL VOC and TRECVID [202]

challenges.

More recently, part-based models have been successfully applied also to

the classification of human actions [59, 163], typically using salient features

that represent also temporal information (such as spatio-temporal gradients),

and to video event recognition. These tasks are particularly important for

video indexing and retrieval where dynamic concepts occur very frequently.

Even if few novel spatio-temporal features have been proposed, the most

common solution is to apply the traditional BoW approach using static fea-

tures (e.g. SIFT) on a keyframe basis. Unfortunately, for this purpose the
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(a) (b) (c)

Figure 6.1: Keyframe-based video event detection. (a) Is it shot-on-goal or

placed-kick? (b) Is it walking or running? (c) Is it a car exiting or entering

from somewhere?

standard BoW approach has shown some drawbacks with respect to the tra-

ditional image categorization task. Perhaps the most evident problem is that

it does not take into account temporal relations between consecutive frames.

In this way, event detection suffers from the incomplete dynamic represen-

tation given by the keyframe, resulting in a poor performance compared to

the results obtained for the detection of static concepts. Fig. 6.1 shows a

few examples of difficulties that arise when performing event detection using

only keyframes. Nevertheless, only few works have been proposed to cope

with this problem [221,231].

In this chapter, we present a novel method to model actions as a sequence

of histograms (one for each frame) represented by a traditional bag-of-words

approach. An action is described by a “phrase” of variable length, depending

on the clip’s duration, thus providing a global description of the video content

that is able to incorporate temporal relations. Then video phrases can be

compared by computing edit distances between them and, in particular, we

use the Needleman-Wunsch distance [156] because it performs a global align-

ment on sequences dealing with video clips of different lengths. Using this

kind of representation we are able to perform classification of video events

and, following the promising results obtained in text categorization [135] and

in bioinformatics (e.g. protein classification) [125], we investigate the use of

SVMs with a string kernel, based on edit distance, to perform classification.

Experiments have been performed on soccer and news video datasets, com-

paring the proposed method to a baseline kNN classifier and to a traditional

keyframe-based BoW approach. Experimental results obtained by SVM and

string kernels outperform the other approaches and, more generally, they
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demonstrate the validity of the proposed method.

The rest of the chapter is organized as follows. A review of related

previous works is presented in the next section. The techniques for frame and

event representation are discussed in Sect. 6.3. The classification method,

including details about the SVM string kernel, is presented in Sect. 6.4.

Experimental results are discussed in Sect. 6.5 and, finally, conclusions are

drawn in Sect. 6.6.

6.2 Related works

Video event detection and recognition is really challenging because of com-

plex motion, occlusions, clutter, geometric transformations and illumination

changes. Nevertheless, it is an essential task for automatic video content

analysis and annotation. Previous works in this field can be roughly grouped

into three main categories; abnormal/unusual event detection [241, 36, 230],

human action categorization [59, 163, 35, 194, 120], and video event recogni-

tion [221,231,105,64,92].

Unusual event detection and activity recognition are very active research

areas in video surveillance and many different approaches have been previ-

ously proposed. Several of these works rely on HMM models or Dynamic

Bayesian Networks. In [241], Zhang et al. used HMMs to model usual events

from a large training set; unusual event models are learned in a second step

through Bayesian adaptation. The problem of detecting suspicious behaviors

in video sequences is addressed also by Boiman and Irani [36]. They posed

the problem as an inference process in a probabilistic graphical model, used

to describe large ensembles of patches at multiple spatio-temporal scales.

Inferred unusual configurations are treated as suspicious behaviors.

Over the past decade, the specific problem of recognizing human actions

has received considerable attention from the research community. In fact, an

automatic human activity recognition method may be very useful for many

applications such as video surveillance, video annotation and retrieval and

human-computer interaction. The early works in this field are usually based

on holistic representations. For example, Bobick et al. [35] proposed mo-

tion history images to encode short spans of motion; this representation is

then matched using global statistics, such as moment features. Although

this method is efficient, it is assumed to have a well segmented foreground

and background. More recently, part-based appearance models have been
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successfully applied to the human action categorization problem, because

they overcome some limitations of holistic models such as the necessity of

performing background subtraction and tracking. These approaches rely

on salient visual features that represent also temporal information (such as

spatio-temporal intensity gradients) or motion descriptors like optical flow.

Laptev [118] proposed a spatio-temporal interest point detector by extend-

ing the Harris corner operator. Local features are extracted from locations

of the video which exhibit strong variations of intensity both in spatial and

temporal directions. Dollar et al. [59] applied separable linear Gabor fil-

ters, treating time differently from space and looking for locally periodic

motion. These features have been frequently used by different researchers

within part-based frameworks (e.g. the BoW approach) in combination to

learning techniques such as support vector machines (SVM) [194] and prob-

abilistic latent semantic analysis (pLSA) [163]. More recently, Laptev et

al. [120] have abandoned the interest point detection approach, preferring a

structural representation based on dense temporal and spatial scale sampling

(inspired by spatial pyramids), providing state-of-the-art results and show-

ing promising results also on realistic video settings. Instead, in [105] action

is modeled by a space-time volume in the video sequence and volumetric

features (based on optic flow) are extracted for event detection. However,

the performance of these methods heavily depends on the spatio-temporal

features which often privilege high-motion regions. As a result, the approach

is very sensitive to motion, thus providing high performance in the recogni-

tion of motion events that are more frequent in constrained video domains

such as videosurveillance.

The generalization of this approach to less constrained and more general

domains, like news videos or movies, has not been demonstrated. There-

fore, the most common solution is to apply the traditional BoW approach

using static features (such as SIFT descriptors) on a keyframe basis; in fact,

many of the methods that have been submitted to the TRECVID compe-

tition extend this idea. Unfortunately, the application of this approach to

event classification has shown some drawbacks with respect to the tradi-

tional image categorization task. The main problem is that it does not take

into account temporal relations between consecutive frames, and thus event

classification suffers from the incomplete dynamic representation. Recently

some attempts have been made to employ temporal information among static

part-based representations of video frames. Xu and Chang [231] proposed
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to apply Earth Mover’s Distance (EMD) and Temporally Aligned Pyramid

Matching (TAPM) for measuring video similarity; EMD distance is incorpo-

rated in a SVM framework for event detection in news videos. In [221], BoW

is extended constructing relative motion histograms between visual words

(ERMH-BoW) in order to employ motion relativity and visual relatedness.

Zhou et al. [243] presented a SIFT-Bag based generative-to-discriminative

framework for video event detection, providing improvements on the best re-

sults of [231] on the same TRECVID 2005 corpus. They proposed to describe

video clips as a bag of SIFT descriptors by modeling their distribution with

a Gaussian Mixture Model (GMM); in the discriminative stage, specialized

GMMs are built for each clip and video event classification is performed.

Similar approaches for event detection in news videos have been applied

also at a higher semantic level, using the scores provided by concept detectors

as synthetic frame representations or exploiting some pre-defined relation-

ships between concepts. For example, Ebadollahi et al. [64] proposed to treat

each frame in a video as an observation, applying then HMM to model the

temporal evolution of an event. Yang and Hauptmann [234] proposed to

exploit temporal consistency between nearby shots (described by their con-

cept score) obtaining a temporal smoothing procedure for improving video

retrieval. In [76] an ontology framework (VERL) has been defined for rep-

resentation and annotation of video events. Finally, Bertini et al. [28] have

recently presented an ontology-based framework for semantic video annota-

tion by learning spatio-temporal rules; in their approach, an adaptation of

the First Order Inductive Learner (FOIL) is used to learn rule patterns that

have been then validated on few TRECVID 2005 video events.

6.3 Event representation and classification

Given a set of labeled videos, our goal is to automatically learn event mod-

els to perform categorization of new videos. In this work, we investigate in

particular a new way of representing an event and how to learn this repre-

sentation. An overview of our approach is illustrated in Fig. 6.2.

Structurally an event is represented by a sequence of frames, that may

have different lengths depending on how it has been carried out. We model

an event by a sequence of visual word frequency vectors, computed from the

frames of the sequence; considering each frequency vector as a character we

call this sequence (i.e. string) phrase. Additionally, we define a kernel, based
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on an edit-distance, used by SVMs to handle variable-length input data such

as this kind of event representation.

Figure 6.2: Schematization of the proposed approach. In the training stage

the features (SIFT) extracted from videos are clustered into visual words

(A,B,C,D,E). Each video is represented as a sequence of BoW histograms.

Events are described by a phrase (string) of variable length, depending on

the clip’s duration. SVMs with string kernel are used to learn the event

representation model for each class. The learned models can be used to

recognize events in a new video.

6.3.1 Frame representation

Video frames are represented using bag-of-words, because this representa-

tion has demonstrated to be flexible and effective for various image analysis

tasks [201,72,242]. First of all, a visual vocabulary is obtained through vec-

tor quantization of large sets of local feature descriptors extracted from a

collection of videos. In this work, we use DoG [149] as keypoint detector and

SIFT [137] as keypoint descriptor. The visual vocabulary (or codebook) is

generated by clustering the detected keypoints in the feature space using the
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k -means algorithm and Euclidean distance as the clustering metric. The cen-

ter of each resulting cluster is defined as visual word. The size of the visual

vocabulary is determined by the number of clusters and it is one of the main

critical point of the approach. A small vocabulary may lack discriminative

power since two features may be assigned to the same cluster even if they

are not similar, while a large vocabulary is less generalizable. The trade-off

between discrimination and generalization is highly content dependent and

it is usually determined by experiments [236]. The effect of the codebook

size is explored also in our experiments (see Sect. 6.5). Once a vocabulary

is defined, each detected keypoint in a frame is assigned to a unique cluster

membership (i.e. a particular visual word), so that a frame is represented

by a visual word frequency vector. In this way, this frame representation ig-

nores the spatial arrangement between the different words and thus between

the extracted visual features. This effect brings the advantages of using a

simple representation that makes learning efficient but, on the other hand,

it discards useful information. Alternative approaches might include struc-

tural information by encoding information of the structure of the model, for

example by modeling the geometrical arrangement of local features [73]. In

most cases, the trade-off is an increased computational complexity.

6.3.2 Video representation

As previously introduced, each video shot is described as a phrase (string)

formed by the concatenation of the bag-of-words representations of consecu-

tive characters (frames). To compare these phrases, and consequently actions

and events, we can adapt metrics defined in the information theory.

Edit distance. The edit distance between two string of characters is

the number of operations required to transform one of them into the other.

There are several different algorithms to define or calculate this metric, and

different transformations can be used. In particular, our approach uses the

Needleman-Wunsch distance [156] with the substitution, insertion and dele-

tion transformations.The main motivation of this choice is that Needleman-

Wunsch distance performs a global alignment that accounts for the structure

of the strings, and the distance can be considered as a score of similarity.

The basic idea of the algorithm is to build up the best alignment through

optimal alignments of smaller subsequences, using dynamic programming;

unlike other approaches, such as dynamic time warping, this type of edit
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distance algorithms is able to cope with noise and inaccurate sequence seg-

mentation [180]. Considering the cost matrix C that tracks the costs of the

edit operations needed to match two strings, we can then write the cost

formula for the alignment of the ai and bj characters of two strings as:

Ci,j = min(Ci−1,j−1 + δ(ai, bj), Ci−1,j + δI , Ci,j−1 + δD)

where δ(ai, bj) is 0 if the distance between ai and bj is close enough to eval-

uate ai ≈ bj or the cost of substitution otherwise, δI and δD are the costs

of insertion and deletion, respectively. The matrix contains all possible pair

combinations that can be constructed from the two sequences being com-

pared, and every possible comparison of the sequences can be represented

by a path in the matrix. Fig. 6.3 shows an example of the evaluation of

the Needleman-Wunsch distance for the case of text and soccer action, re-

spectively. The distance is the number in the lower-right corner of the cost

matrix. The traceback that shows the sequence of edit operations leading to

the best alignment between the sequences is highlighted in each cost matrix.

The algorithm guarantees to find the best alignment of the sequences and is

O(mn) in time and space, where m and n are the lengths of the two strings

being compared. We have used a dynamic programming implementation of

the algorithm that reduces the space complexity to O(min(m, n)) [155].

Measuring similarity between characters. A crucial point is the

evaluation of the similarity among characters (ai ≈ bj). In fact, when evalu-

ating this similarity on text it is possible to define a similarity matrix between

characters, because their number is limited. Instead, in our case each fre-

quency vectors is a different character, therefore we deal with an extremely

large alphabet. This requires us to define a function that evaluates the simi-

larity of two characters. Since in our approach each character is an histogram

we have evaluated several different methods to compare the frequency vec-

tors of two frames, p and q. In particular we have considered the following

distances: Chi-square test, Kolmogorov-Smirnov test, Bhattacharyya, Inter-

section, Correlation, Mahalanobis. Note that in our implementation each

histogram is normalized to sum to one so that it can be considered as a

probability distribution.

Chi-square test is a statistical method that permits to compare an
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(a) text example 
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(b) video example 
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Figure 6.3: Needleman-Wunsch edit distance: (a) text and (b) video exam-

ples. Each video frame is represented using its visual word frequency vector.

The highlighted path in the cost matrix shows the sequence of operations

leading to the best alignment.

observed frequency with a reference frequency. It is defined as:

d(p, q) =
N∑

k=1

(p(k)− q(k))2

p(k) + q(k)
. (6.1)

A low value means a better match than a high value.

Kolmogorov-Smirnov test is a statistical method that quantifies the

distance between one cumulative distribution function and a reference cu-

mulative distribution function. In our case it can be defined as:

d(p, q) = sup
k
|Fp(k)− Fq(k)| , (6.2)

where Fs(k) =
∑k

j=1 s(j).
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Bhattacharyya’s distance is defined equal to:

d(p, q) =

(
1−

N∑

k=1

√
p(k)q(k)√∑N

k=1 p(k) ·
∑N

k=1 q(k)

) 1
2

. (6.3)

Using this distance a perfect match is evaluated as 0, whereas a total mis-

match is 1.

Intersection distance is equal to:

d(p, q) =
N∑

k=1

min(p(k), q(k)). (6.4)

The intersection of two histograms is connected to the Bayes error rate,

the minimum misclassification (or error) probability which is computed as

the overlap between two PDF’s P (A) and P (B). If both histograms are

normalized to 1, then a perfect match is 1 and a total mismatch is 0.

Correlation is defined as:

d(p, q) =

∑N
k=1 p′(k)q′(k)√∑N
k=1 p′2(k)q′2(k)

, (6.5)

where s′(k) = s(k)− (1/N)(
∑N

j=1 s(j)) and N equals the number of bins in

the histogram. For correlation, a high score represents a better match than

a low score.

Mahalanobis is a distance between an unknown sample and a set of

samples which has known mean vector and covariance matrix. Formally

given a sample x and a group of samples Y with mean µ and covariance

matrix Σ the Mahalanobis distance is:

d(x, Y ) = (x− µ)′Σ−1(x− µ). (6.6)

In our case this distance can be exploited to find the similarity between a

frequency vector of a frame p and a set of frames q−n.., q−1, q, q1, ..qn, where

q−n is nth frame before q. In particular n is empirically set to ten.

6.4 Classification using string kernels

In recent years, Support Vector Machines (SVMs), introduced by Vapnik

et al. [38], have become an extremely popular tool for solving classification
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problems. In their simplest version, given a set of labeled training vectors

of two classes, SVMs map these vectors in a high dimensional space and

learn a linear decision boundary between the two classes that maximizes the

margin, which is defined to be the smallest distance between the decision

boundary and any of the input samples. The result is a linear classifier that

can be used to classify new input data. In the binary classification problem,

suppose to have a training data set that comprises N input vectors x1, ...,xN ,

with corresponding target values t1, ..., tN where tn ∈ {−1, 1}. The SVMs

approach finds the linear decision boundary y(x) as:

y(x) = wT φ(x) + b (6.7)

where φ denotes a fixed feature-space transformation, b is a bias parameter,

so that, if the training data set is linearly separable, y(xn) > 0 for points

having tn = +1 and y(xn) < 0 for points having tn = −1. In this case

the maximum marginal solution is found by solving for the optimal weight

vector a = (a1, . . . , aN) in the dual problem in which we maximize:

L̃(a) =
N∑

n=1

an −
1

2

N∑

n=1

N∑

m=1

anamtntm 〈φ(xn), φ(xm)〉 (6.8)

with respect to a, that is subject to the constraints:

N∑

n=1

antn = 0, an ≥ 0 for n = 1, ..., N (6.9)

where 〈φ(xn), φ(xm)〉 is the inner product of xn and xm in the feature-space.

The parameters w and b are then derived from the optimal a.

The mapping to a higher dimensionality feature-space is motivated by

Cover’s theorem [51]. This theorem states that a complex classification prob-

lem cast non-linearly into high dimensional space is more likely to be linearly

separable than in the original low dimensional space. However, the explicit

mapping of input samples in a high dimensional space, and then their in-

ner product, generally have very high computational costs. Kernel functions

have been introduced to handle this problem, since they permit to perform

the inner product in the feature-space without requiring to explicitly per-

form the transformation 〈φ(x1), φ(x2)〉. Formally, let χ be the original input

vector space and k : χ× χ → 6 a function mapping pairs of input vector to

real numbers. If the function satisfies the Mercer condition [27] then there
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exists a feature-space and a mapping function φ such that k acts as a in-

ner product in this feature-space and it is called valid kernel function [197].

In particular a necessary and sufficient condition for a function k(x1,x2) to

be a valid kernel is that the Gram matrix K, whose elements are given by

k(xn,xm), should be positive semidefinite for all possible choices of the input

samples.

Recently, many approaches in image categorization have successfully used

different kernels such as linear, radial and chi-square basis functions; in par-

ticular the latter often gives the best results [242]. However, these kernels are

not appropriate for event classification. In fact they deal with input vectors

with fixed dimensionality, whereas vectors that represent an action usually

have different lengths, depending on how the action is performed. Unlike

other approaches that solve this problem simply by representing the video

clips with a fixed number of samples [183], we introduce a kernel that deals

with input vectors with different dimensionality, in order to account for the

temporal progression of the actions. Starting from a Gaussian Kernel that

takes the form:

k(x,x′) = exp(−‖x− x′‖2 /2σ2), (6.10)

we replace the Euclidean with the Needleman-Wunsch (NW) [156] edit dis-

tance. Thus the proposed resulting kernel is:

k(x,x′) = exp(−d(x,x′)). (6.11)

where d(x,x′) is the NW edit distance between x and x′ input vectors.

It has been previously empirically demonstrated that this type of kernel

obtains good results for classification of handwritten digits, shapes, chromo-

some images [12, 153, 158], despite the fact that the edit distance has not

been proved to be a valid kernel. These good empirical results recently have

become subject of investigation, in order to obtain a more formal theoretical

understanding for the use of indefinite kernel functions [86, 46, 141]. In the

cases in which the kernel does not satisfy the Mercer condition, it is possible

to adjust the Gram matrix by adapting eigenvalues of this matrix to be all

positive, as described in [83]. However, it should be noted that the Gram

matrices we applied in our experiments did not require any adaptation.
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Figure 6.4: Soccer dataset consists of four different events: shot-on-goal,

placed-kick, throw-in and goal-kick.

6.5 Experimental results

We have carried out video event classification experiments on different do-

mains, soccer videos and a subset of TRECVID 2005 video corpus, to analyze

the performance of the proposed method and to evaluate its general appli-

cability. The soccer dataset consists of 100 video clips in MPEG-2 format

at full PAL resolution (720× 576 pixels, 25 fps), and it contains 4 different

events: shot-on-goal, placed-kick, throw-in and goal-kick. Examples of these

events are shown in Fig. 6.4. The full dataset, including also ground truth,

is public available on the web2. The sequences were taken from 5 different

matches of the Italian “Serie A” league (season 2007/08) played by 7 dif-

ferent teams. For each class there are 25 clips of variable lengths, from a

minimum of about 4 sec (corresponding to ∼ 100 frames) to a maximum of

about 10 sec (∼ 2500 frames). This collection is particularly challenging be-

cause events are performed in a wide range of scenarios (i.e. different lighting

conditions and different stadiums) and event classes show an high intra-class

variability, because even instances of the same event may have very different

progression. For our experiments videos are grouped in training and testing

2http://www.micc.unifi.it/ballan/research/video-events
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Figure 6.5: Dataset based on a subset of the TRECVID 2005 video corpus.

It consists of five events: Exiting Car, Running, Walking, Demonstration or

Protest and Airplane Flying.

sets, selecting for each class 15 and 10 videos respectively, and results are

obtained by 3-fold cross-validation.

The second dataset is composed by a subset of the TRECVID 2005 video

corpus. It is obtained selecting five classes related to a few LSCOM dynamic

concepts [106]. In particular we have selected the following classes: Exiting

Car, Running, Walking, Demonstration or Protest and Airplane Flying. Ex-

amples of these events are shown in Fig. 6.5. The resulting video collection

consists of about 180 videos for each class (∼ 860 in total) in MPEG-1 for-

mat with resolution 352× 240 pixels and 30 fps. For each class, also in this

dataset, videos have different lengths and show an high intra-class variability.

Examples of high intra-class variability are shown in Fig. 6.6. Experiments

are performed applying 3-fold cross-validation also for this dataset.

In the first experiment we have evaluated the effect on the classification

accuracy of the metrics presented in Sect. 6.3 and of the codebook sizes. The

second experiment shows the improvement obtained using SVMs, based on

the proposed string kernels, with respect to the baseline kNN classifier. In

particular we used the LIBSVM implementation [43] using the “one-against-

all” approach for multiclass classification. Finally, in the last experiment,

we show that our method outperforms the traditional keyframe-based BoW

approach.
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(a) Running

(b) Exiting Car

Figure 6.6: Examples of intra-class variability in two TRECVID 2005 classes:

a) shows two sequences containing the Running action, b) shows two se-

quences containing an Exiting Car.
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Metric Th Accuracy Metric Th Accuracy

Bhattacharyya 0.5 0.47 Intersection 0.1 0.52

Chi-square 0.13 0.54 Kolmogorov-Smirnov 0.5 0.50

Correlation 0.7 0.53 Mahalanobis 7 0.37

Table 6.1: Comparison of different metrics used to compare the characters

(frequency vectors) of the strings that represent video shots.

6.5.1 Experiment 1: characters distance and codebook

size

In this experiment we evaluate what is the best characters distance that has

to be used when computing the Needleman-Wunsch distance and the best

codebook size. It has been conducted on the soccer dataset, using a kNN

classifier, varying the number of visual words used to build the codebook

(from 30 to 500 codewords) and the metric used to compare the characters

of the strings that represent video shots. Classification performances shows

that the best codebook size is 200, while the best distance is the Chi-square

test, since it has a more uniform performance, for the various classes of

events, that is not achieved by the others (e.g. correlation metric). Table 6.1

reports the best results obtained for each distance, with a codebook of 200

words, along with the corresponding threshold. For these reasons we select

Chi-square as the metric used in all the following experiments, and we set

to 200 the codebook size for the soccer domain.

It can be observed in table 6.2 that, unlike the case of object classification,

the increase of the codebook size does not improve the performance and,

instead, the effect may become negative. This can be explained by analyzing

the type of views of the soccer domain: events are shown using the main

camera that provides an overview of the playfield and of the ongoing event,

and thus the SIFT points are mostly detected in correspondence of playfield

lines, crowd and players’ jerseys and shorts, as shown in Fig. 6.7, and thus

the whole scene can be thoroughly represented using an histogram with a

limited number of bins for the interest points. Increasing the number of bins

may risk to amplify the intra-class variability and then reduce the accuracy

of classification, resulting finally also in higher computational costs.
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Codebook Size Accuracy Codebook Size Accuracy

30 0.52 200 0.54

60 0.52 300 0.51

100 0.53 500 0.48

Table 6.2: Comparison of classification accuracy obtained using different

codebook sizes on the soccer dataset.

Figure 6.7: Examples of SIFT points detected in a soccer video frame.

6.5.2 Experiment 2: comparison with kNN classifier

In this experiment we have compared the results of the baseline kNN classi-

fier with the results of the SVM classifier using the proposed kernel on the

soccer dataset. The mean accuracy obtained by the SVM (0.73) largely out-

performs that obtained using the kNN classifier (0.54). Fig. 6.8 reports the

global accuracy and the confusion matrices for the kNN and SVM classifiers,

respectively. A large part of the improvement, in terms of accuracy, is due

to the fact that the SVM has a better performance on the two most critical

actions: shot-on-goal and throw-in. This latter class has the worst classifica-

tion results, due to the fact that it has an extremely large variability in the

part of the action that follows immediately the throw of the ball (e.g. the

player may choose several different directions and strengths for the throw,

the defending team may steal the ball, etc.).



6.5 Experimental results 113

0.8 00 00 0.2

0.13 0.44 0.15 0.28

0.62 0.06 0.32 00

0.33 00 0.06 0.61

Placed-kick

Shot-on-goal

Throw-in

Goal-kick

Placed-kick

Shot-on-goal

Throw-in

Goal-kick

(a) kNN classifier

0.8 00 00 0.2

00 0.8 00 0.2

0.25 0.06 0.63 0.06

00 00 0.3 0.7

Placed-kick

Shot-on-goal

Throw-in

Goal-kick

Placed-kick

Shot-on-goal

Throw-in

Goal-kick

(b) SVM string classifier

kNN SVM

Mean Accuracy 0.54 0.73
(c) Global accuracy

Figure 6.8: Confusion matrices of baseline kNN and the proposed SVM string

classifiers; mean Accuracy for kNN is equal to 0.54 and 0.73 for SVM with

string kernel.

6.5.3 Experiment 3: comparison with a traditional

keyframe-based BoW approach

Finally, in this experiment we show the improvement of the proposed method

with respect to a traditional keyframe-based BoW approach, using the TRECVID

dataset. As in the first experiment, we have initially tested different vocab-

ulary sizes, looking for the correct choice for the TRECVID 2005 videos

corpus. Results show that, in this case, a vocabulary of 300 words is a good

trade-off between discriminativity and generalizability.

For a direct comparison we evaluate the classification performance using

the Mean Average Precision (MAP) measure, which is the standard eval-

uation metric employed in the TRECVID benchmark. In particular, this

measure gives a single numerical figure to represent the accuracy of a ranked

concept detection result. Formally, let T be the size of the test set, R the

number of relevant shots and Ri the number of relevant shot in the top i

shot of a query result. Ci = 1 if the ith shot is relevant and 0 otherwise. The
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average precision is defined as:

AP =
1

R

S∑

i=1

Ri

i
Ci. (6.12)

MAP is the mean of average precision scores over a set of queries.

Table 6.3 reports the comparison results between a traditional BoW ap-

proach, as reported in [221], and the proposed method in terms of Mean

Average Precision. Our method outperforms the traditional bag-of-words

approach in four classes out of five, with an average improvement of 3%.

We found a drop in classification performances only for the Running event.

This is due to the fact this class shows a very high intra-class variability

(see Fig. 6.6), with large differences in shot lengths. In particular, there

are many different kinds of running actions in the dataset, each of which is

depicted from a different camera viewpoint; for example, in several videos,

often related to commercials, the running person is filmed frontally, while in

many others people is filmed from the sides (e.g. in sports videos).

Exiting Running Walking Demonstration Airplane MAP

Car or Protest Flying

BoW 0.25 0.57 0.28 0.32 0.17 0.32

Our Approach 0.37 0.36 0.29 0.38 0.34 0.35

Table 6.3: Mean Average Precision (MAP) for event recognition in

TRECVID 2005.

6.6 Conclusion

In this work we introduced a method for event classification based on the

BoW approach. The proposed system uses generic static visual features

(SIFT points) that represent the visual appearance of the scene; the dynamic

progression of the event is modelled as a phrase composed by the temporal

sequence of the bag-of-words histograms (characters). Phrases are compared

using the Needleman-Wunsch edit distance and SVMs with a string kernel

have been used to deal with these feature vectors of variable length. Ex-

periments have been performed on soccer videos and TRECVID 2005 news

videos; the results show that SVM with string kernels outperform both the
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performance of the baseline kNN classifiers and of the standard BoW ap-

proach and, more generally, they exhibit the validity of the proposed method.

Our future work will deal with the application of this method to a broader

set of events and actions that are part of the TRECVID LSCOM events/ac-

tivities list, and the use of other string kernels. Moreover, we will investi-

gate the possibility to integrate the proposed approach in an ontology-based

framework [18], that exploits concept and event dependencies to improve the

quality of classification.
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Chapter 7

Effective codebooks for human
action categorization

In this chapter we propose a new method for human action cate-

gorization, combining novel gradient and optic flow descriptors,

and creating an effective bag-of-words model. Recent approaches

have represented videos using bag of spatio-temporal visual words,

following the successful results achieved in object and scene classi-

fication. In such cases codebooks are usually obtained by k-means

clustering and hard assignment of visual features to the more rep-

resentative codewords. Our main contribution is two-fold. First,

we define a novel 3D gradient descriptor that combined with optic

flow outperforms the state-of-the-art, without requiring fine pa-

rameter tuning. Second, we show that for spatio-temporal features

the popular k-means algorithm is insufficient, because cluster cen-

ters are attracted by the denser regions of the sample distribution,

providing a non-uniform description of the feature space and thus

failing to code other informative regions. We obtain a more ef-

fective codebook by applying a radius-based clustering method and

a soft assignment that considers the information of two or more

relevant codeword candidates. 1

1A preliminary version of the work presented in this chapter has been published as
“Effective Codebooks for Human Action Categorization” in Proc. of ICCV International
Workshop on Video-oriented Object and Event Classification (VOEC), 2009 [15].

117
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7.1 Introduction and previous work

Automatic human activity recognition methods are useful for many applica-

tions such as video surveillance, video annotation and retrieval and human-

computer interaction. For example, in video surveillance, an automatic ac-

tion classification system that alerts an operator of a possible dangerous

situation can reduce human effort and mistakes. However, building a gen-

eral human activity recognition and classification system is a challenging

problem, because of the variations in environment, people and actions. In

fact environment variation can be caused by cluttered or moving background,

camera motion, illumination changes. People may have different size, shape

and posture appearance. Semantically equivalent actions can manifest dif-

ferently or partially; for example, imagine the different ways of running or

actions that can be only partially observed due to occlusions.

Over the past decade, this problem has received considerable attention.

Existing action recognition approaches can be classified as using holistic in-

formation or part-based information. An early work based on holistic rep-

resentation was proposed by Bobick et al. [35]. They proposed the motion

history images, to encode short spans of motion. For each frame of the input

video the motion history image is a gray scale image that records the loca-

tion of motion; recent motion results into high intensity values whereas older

motion produces lower intensities. This representation can be matched using

global statistics, such as moment features. Although this method is efficient,

it is assumed to have a well segmented foreground and background. Efros

et al. [66] created stabilized spatio-temporal volumes for each object whose

action is to be classified. For each volume a smoothed dense optic flow field

is extracted and used as descriptor. This method is particularly suited for

distant objects where detailed information of the appearance is unavailable.

Yilmaz and Shah [237] used a spatio-temporal volume, built stacking object

regions obtained by a contour tracking method, in consecutive frames. De-

scriptors encoding direction, speed and local shape of the resulting surface

are generated by measuring local differential geometrical properties. Gore-

lick et al. [84] analysed three-dimensional shapes induced by the silhouettes

and exploited the solution to the Poisson equation to extract features, such

as shape structure and orientation. These methods require robust tracking

to generate the 3D volumes. Moreover most of the holistic-based approaches

are computationally expensive due to the requirement of pre-processing the
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input data (e.g. to perform background subtraction, shape extraction, optic

flow calculation, object tracking) and they perform better in a controlled

environment.

Part-based representations, that exploit interest point detectors com-

bined with robust descriptor methods, have been used very successfully

for object and scene classification tasks [72, 201, 236, 242]. Recently, part-

based models have been successfully applied to the human action classifi-

cation problem, because they overcome some limitations of holistic models

such as the necessity of performing background subtraction and tracking.

Laptev [118] proposed an extension to the Harris-Förstner corner detector

for the spatio-temporal case; interesting parts are extracted from voxels sur-

rounding local maxima of spatio-temporal corners, i.e. locations of videos

which exhibit strong variations of intensity both in spatial and temporal di-

rections. The extension of the scale-space in the temporal dimension yields

a method for automatic scale-selection. Schüldt et al. [194] successfully used

these features for human action classification by discretizing them into code-

words and producing an histogram of the occurring words for each shot.

Dollár et al. [59] have followed in principle the same approach of Laptev, but

suggested to treat time differently from space and to look for locally periodic

motion using a quadrature pair of Gabor filters. Their approach produces a

denser sampling of the spatio-temporal volume but does not provide a scale-

selection criterion. Comparison of the experimental results w.r.t. the ap-

proach of Schüldt et al. shows an improvement on the same dataset. Niebles

et al. [163] have then trained an unsupervised probabilistic topic model on

the same features as Dollár et al. , obtaining comparable classification perfor-

mance. More recently, Laptev et al. [120] have addressed the human action

recognition problem in more realistic video settings. They also abandon

the scale selection approach, preferring a structural representation based on

dense temporal and spatial scale sampling inspired by spatial pyramids [124],

showing an improvement of the state-of-the-art results. Finally, Willems et

al. [226] proposed a new efficient and scale-invariant spatio-temporal detector

and descriptor, extending the static SURF features.

All of these part-based approaches use the codebook paradigm that allows

classification by describing a video as a bag of words, where video features

are represented by discrete visual codewords. These are defined beforehand

in a given vocabulary. A vocabulary, in the object and scene classifica-

tion domain, is commonly obtained by following one of two approaches: an
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annotation approach [220] or a data-driven approach [37, 201, 242]. The an-

notation approach obtains a vocabulary by assigning meaningful labels to

image patches (e.g. sky, water, vegetation, etc.) while, in contrast, a data-

driven approach applies vector quantization on the features using typically

k-means clustering. However, despite of its popularity, this is not the optimal

solution. Jurie and Triggs [100] have shown that in k-means clustering the

centres are almost exclusively around the denser regions in descriptor space

and thus fail to code other informative regions. They show that k-means

works well for texture analysis in homogeneous images, but the images that

arise in natural scenes have far less uniform statistics. For this reason they

proposed a scalable acceptance radius-based clustering that generates better

codebooks. Nevertheless, all the previous part-based methods for human

action recognition use the k-means algorithm for codebook creation. To the

best of our knowledge, few papers address approaches to obtain an efficient

codebook in human action recognition area. Liu et al. [133] proposed a

method to automatically find the optimal number of word clusters by utiliz-

ing maximization of mutual information (MMI) between words and actions.

Initially they apply k-means and then MMI clustering is used to discover a

compact representation from the initial codebook of words. They show an

improvement of the performance with the learned optimal number of words.

A different approach has been proposed by Mikolajczyk and Uemura [151]

that recently explored the idea of using a large number of features repre-

sented in many vocabulary trees instead of a single flat vocabulary.

Independently of the clustering algorithm, one of the main drawback of

the codebook approach, recently pointed out in object and scene classifi-

cation, is the hard assignment of image feature vectors to codewords in the

vocabulary [172,215]. This hard assignment is particularly critical because of

two main issues. The first one (uncertainty) refers to the problem of selecting

the correct codeword out of two or more relevant candidates; the second one

(plausibility) denotes the problem of selecting a codeword without a suitable

candidate in the vocabulary.

In this chapter we describe a new method for classification of human ac-

tions that relies on an appropriate quantization method, dealing with the

ambiguity of the traditional codebook model. Our main contribution is two-

fold: i) the definition of gradient and optic flow descriptors that, combined

together, outperform the state-of-the-art without requiring fine parameter

tuning; ii) a radius-based clustering method and a soft assignment proce-
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dure that, considering the information of two or more relevant candidates,

are able to generate effective codebooks showing a further improvement of

classification performances. The rest of the chapter is organized as follows.

The interest point detector and descriptors are presented in the next section.

The techniques for action representation and categorization, including the

codebook creation, are discussed in Sect. 7.3. Experimental results, with

an extensive comparison with state-of-the-art approaches, are discussed in

Sect. 7.4. Finally, conclusions are drawn in Sect. 7.5.

7.2 Detector and descriptors

Following the approach commonly used for local interest points in images,

the detection and description of spatio-temporal interest points are separated

in two different steps. Among the different spatio-temporal interest point

detectors available, the spatio-temporal corner detector proposed by Laptev

et al. [118] provides a too sparse representation of the actions. For this

reason the spatio-temporal interest points detector proposed by Dollár et

al. [59], that is able to detect a greater number of points, has received a

large attention from the scientific community and has been adopted in several

recent works [133,163].

7.2.1 Detector

In our approach we have adopted the detector proposed by Dollár et al. [59].

This detector applies two separate linear filters to spatial and temporal di-

mensions, respectively. The response function is computed as follows:

R = (I(x, y, t) ∗ gσ(x, y) ∗ hev(t))
2

+ (I(x, y, t) ∗ gσ(x, y) ∗ hod(t))
2

(7.1)

where I(x, y, t) is a sequence of images over time, gσ(x, y) is the spatial

Gaussian filter with kernel σ, hev and hod are a quadrature pair of 1D Gabor

filters applied along the time dimension. They are defined as hev(t; τ, ω) =

− cos(2πtω)e−t2/τ2
and hod(t; τ, ω) = − sin(2πtω)e−t2/τ2

, where ω = 4/τ , and

they give a strong response to the temporal intensity changes, in particular

for periodic motion patterns. The interest points are detected at locations

where the response is locally maximum.
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The main problem of this detector is the fact that it does not cope with

scale selection. However, both spatial and temporal scales have to be con-

sidered when analyzing motion activity. The spatial scale is related to the

ability to detect more or less detailed visual features, while the temporal

scale is related to the ability to detect actions that are performed at dif-

ferent speed. In order to cope with the lack of scale selection we run the

detector over a set of spatial and temporal scales, to permit the recognition

of the same action at different distance and velocity. In particular the spa-

tial scales used are σ = {2, 4} and the temporal scales are τ = {2, 4}. This

approach has also some other desirable properties such as a reduced com-

putational complexity w.r.t. scale selection and the production of a richer

description of the scene, using a larger number of interest points.

7.2.2 Descriptors

For each detected point a patch that contains the volume that contributed to

the response function is considered. The volume is proportional to the scale

at which the interest point is detected. Each volume is divided in equally

sized sub-regions, three for the spatial dimensions and two for the temporal

dimension. To obtain a representation for each spatio-temporal volume, we

evaluate a descriptor based on gradients on x, y and t direction and an optic

flow descriptor, considering also their combinations. This is motivated by

the fact that these two descriptors encode different information. In fact the

descriptor based on gradient encodes mostly the visual appearance of each

volume, while the optic flow descriptor encodes the motion information. The

two descriptors are presented in the following.

The gradient magnitude and orientations in 3D are:

M3D =
√

G2
x + G2

y + G2
t , (7.2)

φ = tan−1(Gt/
√

G2
x + G2

y), (7.3)

θ = tan−1(Gy/Gx). (7.4)

where Gx, Gy and Gz are respectively computed using finite difference ap-

proximations: I(x + 1, y, t)− I(x− 1, y, t), I(x, y + 1, t)− I(x, y − 1, t) and

I(x, y, t + 1) − I(x, y, t − 1). We compute two separated orientation his-

tograms quantizing φ and θ and weighting them by the magnitude M3D.

The φ (with range, −π
2 , π

2 ) and θ (−π,π) are quantized in four and eight bins
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respectively. The spatio-temporal gradient is computed after smoothing the

values extracted with those of two adjacent scales, to increase the robustness

of the feature description. The overall dimension of the descriptor is thus

3 × 3 × 2 × (8 + 4) × 2 = 432. This construction of the three-dimensional

histogram is inspired by the approach proposed by Scovanner et al. [195], in

which they construct a weighted three-dimensional histogram normalized by

the solid angle value (instead of quantizing separately the two orientations)

to avoid distortions due to the polar coordinate representation. Moreover we

do not re-orient the 3D neighbourhood, since rotational invariance, which is

invaluable in object detection and recognition, is not desired in an action

categorization context. We have found that our method is computationally

less expensive, equally effective in describing motion information given by

appearance variation, and showing a better performance (see comparison

results in Tab. 7.2).

The optic flow is estimated using the Lucas&Kanade algorithm. Con-

sidering the optic flow computed for each couple of consecutive frames, the

relative apparent velocity of each pixel is (Vx, Vy). These values are expressed

in polar coordinates as in the following:

M2D =
√

V 2
x + V 2

y , (7.5)

θ = tan−1(Vy/Vx). (7.6)

We compute position dependent histograms as in the gradient based de-

scriptor but, being the optic flow two dimensional, only a single orientation

histogram is stored for each of the 18 sub-regions within the voxel. Every

sample is weighted with the magnitude M2D, as is done for the gradient-

based descriptor. Then we have also added an extra “no-motion” bin that,

in our initial experiments, has shown to greatly improve the performance.

Thus the final descriptor size is 3× 3× 2× (8 + 1) = 162.

We have finally analysed two possible combinations of these descriptors:

i) a weighted concatenation of the two descriptors and ii) a concatenation

of the histograms of the bag-of-words that have been computed from the

3D gradient descriptor and from the histogram of optic flow. In the first

case the visual words, created according to the bag-of-words paradigm, are

computed from a vector that has higher dimensionality, while in the second

case the visual words are computed differently for each descriptor and the

SVM classifiers are able to pick the best combinations of features, practically

resulting in an implicit feature selection.
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7.3 Action representation and categorization

The spatio-temporal bag-of-words (BoW) model is built through the creation

of a discrete visual vocabulary (or codebook) and then by assigning each

feature to the corresponding codeword. First of all, it is required to perform

a vector quantization for large sets of feature vectors in a high dimensional

space. Typically this is performed through clustering methods and the most

common approach is the use of k-means clustering, because of its simplicity

and convergence speed. The BoW approach then assigns each feature to

the closest vocabulary word and a histogram of visual word frequencies is

computed. The histogram is fed to a classifier to predict the action category.

The performance of this model depends on the quantization method and on

the number of words that are selected.
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Figure 7.1: Comparison of k-means and radius-based clustering on a syn-

thetic dataset. (a) k-means clustering; (b) k-means clustering: detail of a

dense region that has been split in four clusters; (c) Radius-based clustering.

7.3.1 Codebook formation

The use of k-means clustering has some disadvantages: i) the cluster centers

are attracted by the denser regions of the sample distribution, resulting more

clustered near these regions and more sparse otherwise, thus providing a more

imprecise quantization for the vectors laying in these latter regions [100].

This effect, due to the assumption of uniform distribution of the features in

the descriptor space, is even more pronounced in high dimensional spaces

such as those spanned by the spatio-temporal descriptors; a representation

of this effect can be obtained visualizing a Voronoi tessellation of the feature

space, where Voronoi cells do not uniformly cover the feature space as shown

in Fig. 7.1. Other disadvantages are: ii) the clustering is not very robust
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w.r.t. outliers, iii) the number of visual words has to be known in advance,

requiring an empirical evaluation of this number.

Radius-based clustering. In order to overcome the limitations of k-

means clustering, we explore the idea of using an on-line radius-based cluster-

ing technique following a mean-shift approach [50, 80]. In fact, as shown by

Jurie and Triggs [100], in the case of dense sampling image representations,

it is better to apply a radius-based clustering method. This observation is

interesting also for the human action domain because, as previously intro-

duced (Sect. 7.2), the spatio-temporal features extracted by the Dollár de-

tector [59] can be considered as a dense representation; this fact is even more

pronounced using our multi-scale approach. In this case the non-uniformity

in the descriptor space, caused by densely sampled patches, is better coded

using a radius-based method that is able to allocate centers more uniformly.

An example of this effect is shown in Fig. 7.1 c.

The algorithm starts with an uniform random sub-sampling Dn of the

original dataset points D. Given a radius R, mean shift clustering on Dn

is used to find the modes of the samples distribution. A new cluster center

is then allocated on the mode corresponding to the maximal density region.

Data points of the original dataset D, within a distance less than R from

the center, are considered members of this cluster and eliminated for the

following iterations. This elimination prevents the algorithm from repeatedly

assigning centers to the same high density regions. Finally, the algorithm

can be stopped when a “sufficiently” large number of clusters (words) has

been identified.

Visual words statistics. One of the assumption in text categorization

methods is that, given a natural language textual corpus, the words fre-

quency distribution follows the well-known Zipf’s law. This is a critical

point because, considering this empirical evidence, we can consider words at

intermediate frequencies as the most informative for classification. There-

fore it is interesting to see how the visual words are distributed in a visual

corpus, as also noted in [100, 177, 236]. In particular, we want to know

whether their distribution satisfies Zipf’s law. Fig. 7.2 shows the statistics

of visual words frequency using k-means and radius-based quantization on

our experimental dataset (see Sect. 7.4 for details). An “ideal” Zipf’s dis-

tribution must be a straight line in log-log scale. The figure shows that the
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Figure 7.2: Log-log plots of visual words frequency using k-means and radius-

based quantization.

distribution of visual words obtained by k-means quantization satisfies the

Zipf’s law only roughly. In fact, most of the bins has similar frequencies and

they are distributed more evenly with respect to the expected power law. In

contrast, the proposed radius-based quantization shows a statistics that fit

better the expected distribution. This confirms the assumptions discussed

in the previous paragraph and confirms that this approach models better

medium density frequencies.

7.3.2 Codeword assignment

Given a vocabulary, the traditional codebook approach represents a video

sequence containing an action by a histogram of codeword frequencies. In

particular, for each word w in the vocabulary V the frequency distribution

in a sequence is computed by:

FD(w) =
1

n

n∑

i=1





1 if w = argmin

v∈V
(D(v, pi));

0 otherwise;
(7.7)

where n is the number of spatio-temporal patches in a sequence, pi is the

ith spatio-temporal patch, and D(v, pi) is the distance (usually Euclidean)

between the codeword v and the patch pi. This hard assignment, that takes
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account only of the closest codeword, lacks to consider two issues: codeword

uncertainty (selection of the correct codeword when two or more candidates

are relevant) and codeword plausibility (selection of a codeword when all

codewords are too far and not representative). We observe that, in our

case, the plausibility is less problematic, because the radius-based clustering

method that we employ is able to allocate the centers more uniformly. On

the other hand, as noted by van Gemert et al. [215], in a high-dimensional

feature space the codeword uncertainty issue becomes very urgent. In fact,

if we consider a codeword as a high-dimensional sphere in feature space,

most feature points in this sphere lay near the surface and are close to the

boundary between different codewords. For this reason the distribution of

the codewords in a sequence has to contain the information of two or more

relevant candidates. This can be done by smoothing the hard assignment of

a spatio-temporal patch to the codeword vocabulary using Gaussian kernel

density estimation, computing the uncertainty frequency distribution with:

UFD(w) =
1

n

n∑

i=1

Kσ(D(w, pi))∑|V |
j=1 Kσ(D(vj, pi))

(7.8)

where D is the Euclidean distance and Kσ is the Gaussian kernel:

Kσ(x) =
1√
2πσ

exp

(
−1

2

x2

σ2

)
(7.9)

where σ is the scale parameter of the Gaussian kernel; this parameter has to

be tuned on the training set, because dependent on the dataset, the features

length and their range values.

7.4 Experimental results

We tested our approach on two datasets commonly used for human action

recognition: the KTH and Weizmann datasets. The KTH dataset contains

2391 video sequences showing six actions: walking, running, jogging, hand-

clapping, hand-waving, boxing. They are performed by 25 actors under

four different scenarios of illumination, appearance and scale change. The

video resolution is 160×120 pixel. The Weizmann dataset contains 93 video

sequences showing nine different people, each performing ten actions such as

run, walk, skip, jumping-jack, jump-forward-on-two-legs, jump-in-place-on-

two-legs, gallop-sideways, wave-two-hands, wave-one-hand and bend. The
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Walking

    KTH           Weizmann
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    KTH           Weizmann

Waving

    KTH           Weizmann

Figure 7.3: Sample frames from the KTH and Weizmann datasets (Walking,

Running and Waving actions).

video resolution is 180 × 144 pixel. An example of the differences between

the two dataset is shown in Fig. 7.3, where sample frames selected from

videos containing the same action in the two sets are compared each other.

Two approaches were followed during the training phase, due to the differ-

ent sizes in the datasets. The SVM classifiers used for the KTH dataset were

trained on videos of 16 actors and the performance was evaluated using the

videos of the remaining 9 actors. Measures have been taken according to a

five-fold cross-validation. Due to the small size of the Weizmann dataset the

classifiers were trained on actions from eight actors and tested on the remain-

ing one. Measures have been taken using the leave-one-out cross-validation.

This setup is identical to the most recent works in action recognition domain

and thus is suitable for a direct comparison [111,120,163,228]. Classification

is performed using non-linear SVMs with the χ2 kernel [242]:

Kχ2(p, q) = exp

(
− 1

2γ

N∑

k=1

(pk − qk)2

(pk + qk)

)
(7.10)

where N is the vocabulary size, p and q are histograms of word occurrences.

The value of the kernel parameter γ is obtained by cross-validation on the
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Descriptor KTH Weizmann

3DGrad 90.38 ± 0.8 92.30±1.6

HoF 88.04 ± 0.7 89.74±1.8

3DGrad HoF combination 91.09 ± 0.4 92.38±1.9

3DGrad+HoF combination 92.10 ± 0.4 92.41 ±1.9

Table 7.1: Comparison of our descriptors, alone and combined, on the KTH

and Weizmann datasets.

training set. For multi-class classification, we use the one-vs-one approach.

7.4.1 Evaluation of our descriptor

Table 7.1 evaluates the performance of our proposed descriptors, comparing

the performance of each descriptor alone and the two possible combinations

discussed in Sect. 7.2. The experiments have been carried on using the setup

described above, and the quantization approach used is k-means clustering

(using 4000 words for KTH and 1000 for Weizmann), in order to be directly

comparable with other approaches. In the first two rows we report results

obtained using only one of the two descriptors, 3D gradient in the first row

and histogram of optic flow in the second. In the third row are reported the

results for the descriptor that is obtained through a weighted concatenation

of the two descriptors, while in row four the descriptor is composed by the

concatenation of the histograms of the bag-of-words that have been com-

puted from the 3D gradient descriptor and from the histogram of optic flow.

The best result, on both datasets, is achieved by the concatenation of the

histograms of the BoWs computed from both descriptors. This is due to the

fact that the performance of 3D gradient and HoF are quite complementary

(see Fig. 7.4). For example, the action recognition performance for the box-

ing class on the KTH dataset is better when using the 3D gradient instead

of the HoF description, while for handclapping is the opposite case. It can

be observed (Fig. 7.4 c) that the concatenation of the histograms improves

the performance for all the classes except one, running class. In the Weiz-

mann dataset we obtain a smaller improvement, with the concatenation of

histogram, probably caused by the smaller training set that is available and

the increased size of the representation.
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(a) 3DGrad (b) HoF
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Figure 7.4: Confusion matrices on the test set KTH actions.

7.4.2 Performances obtained by effective codebooks

In this set of experiments we evaluate the different codebook creation ap-

proaches presented in Sect. 6.3. The datasets used are the KTH and Weiz-

mann with the same experimental setup described above, and the descriptor

is the concatenation of the histograms of bag-of-words computed from 3D

gradient and optic flow descriptors (3DGrad+HoF). Fig. 7.5 compares the

classification performances obtained by the standard k-means and hard as-

signment approach - commonly used by previous works - with the proposed

radius-based clustering and soft assignment. The graph reports the vari-

ation in accuracy w.r.t. the number of visual words, up to the number of

words (4000 for KTH, 1000 for Weizmann) that were used in the previous
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experiments.

With a very low number of words the soft radius-based clustering method

has a lower performance than k-means, since in this approach the words

that are used are those that are more common (i.e. those that provide less

discriminative information). However, this effect disappears rapidly (above

1500 words for KTH and 400 words for Weizmann) due to the more effective

choice of the words, as discussed in Sect. 7.3.2. The radius-based clustering

extended so as to account for codeword uncertainty outperforms k-means

clustering and classification results are improved in both datasets; in par-

ticular, it has a better performance even with a relatively low number of

visual words (e.g. ∼ 2000 for KTH and ∼ 500 for Weizmann). Indeed the

radius-based clustering better encodes sparser regions while the soft assign-

ment is able to moderates uncertainty in the denser ones, leading thus to

more effective codebooks.
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Figure 7.5: Comparison of classification accuracies on KTH and Weizmann

datasets using the combined descriptor (3DGrad+HoF) and i) k-means

based codebooks and ii) our effective codebooks approach (i.e. radius-based

clustering + soft assignment).

We report on Fig. 7.6 the final classification performance on KTH and

Weizmann datasets, obtained using the proposed soft radius-based quan-
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(a) KTH (overall accuracy = 92.57%)
(b) Weizmann (overall accu-
racy = 95.41%)

Figure 7.6: Final confusion matrices on KTH and Weizmann.

tization, as confusion matrices. Interestingly, the major confusion occurs

between similar classes (running-jogging on KTH and jump-skip on Weiz-

mann). The overall accuracy on KTH is 92.57% while on Weizmann is

95.41%.

7.4.3 Comparison to state-of-the-art

In Table 7.2 we report a comparison of the average class accuracy of our

approach with state-of-the-art results, reported by other researchers.

Results obtained on KTH using our combined descriptor (3DGrad+HoF)

united with the proposed effective codebook formation outperform previous

works based on standard BoW models [194, 59, 111, 120, 163, 226, 228], even

those that employ fine tuning of parameters or additional structural descrip-

tors. Note that the previous state-of-the-art result (91.8%), achieved by

Laptev et al. [120] using their best combination of features, is obtained per-

forming a greedy search on different combination of descriptors (HoG and

HoF) and grids, which add structural information. Our results outperform

also those of Kläser et al. [226] (91.4%) that use a single 3D gradient descrip-

tor but with a heavy optimization of eight descriptor parameters, resulting

in a high dependence on the dataset used.

Also when considering the Weizmann dataset we outperform previous

BoW-based works [111, 163, 195], and also the results reported by Liu et

al. [131] (90.4%) obtained combining and weighting multiple features. How-
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ever, we cannot compare to results by Gorelick et al. [84] or Fathi and

Mori [70] because they use an holistic representation and more data given

by segmentation masks.

Method KTH Weizmann

Our method 92.57 95.41

Laptev et al. [120] 91.8 -

Dollár et al. [59] 81.2 -

Wong and Cipolla [228] 86.62 -

Scovanner et al. [195] - 82.6

Niebles et al. [163] 83.33 90

Liu et al. [131] - 90.4

Kläser et al. [111] 91.4 84.3

Willems et al. [226] 84.26 -

Schüldt et al. [194] 71.7 -

Table 7.2: Comparison of our method to state-of-the-art.

7.5 Conclusion

In this chapter we have presented a novel method for human action cat-

egorization based on a new descriptor for spatio-temporal interest points,

that combines appearance (3D gradient descriptor) and motion (optic flow

descriptor), and on an effective codebook formation. We replaced the tra-

ditional codebook quantization method using a radius-based clustering al-

gorithm and a soft assignment of features descriptors to codewords. The

approach was validated on two popular datasets (KTH and Weizmann),

showing results that outperform state-of-the-art BoW approaches, without

requiring parameter tuning employed by the previous best results. The pro-

posed approach is modular and each contribution of this chapter can be

adapted to any framework based on interest points and BoW. Our future

work will deal with evaluation on real world videos.
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Chapter 8

Video annotation using
ontologies and rule learning

In this chapter we present an approach for automatic annota-

tion and retrieval of video content, based on ontologies and se-

mantic concept classifiers. A novel rule-based method is used to

describe and recognize composite concepts and events. Our algo-

rithm learns automatically rules expressed in Semantic Web Rules

Language (SWRL), exploiting the knowledge embedded into the

ontology. The relationship between concepts, their co-occurrence

and the temporal consistency of video data are used to improve the

performance of individual concept detectors. Finally, we present

a web video search engine, based on ontologies, that permits queries

using a composition of boolean and temporal relations between

concepts. 1

8.1 Introduction

Whereas understanding of the semantic meaning of video content is imme-

diate for humans, for a computer this is far from true. This discrepancy is

commonly referred to as the “semantic gap”. A recent trend for bridging

this gap is to define a large set of semantic concept detectors, each of which

automatically detects the presence of a semantic concept such as “indoor”,

1This chapter has been published as “Video Annotation and Retrieval Using Ontologies
and Rule Learning” in IEEE MultiMedia, vol. 17, iss. 4, pp. 80-88, 2010 [19].
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“face”, “person” or “airplane flying”. Typically these detectors learn the

mapping between a set of low-level visual features, such as local descrip-

tors, color and texture, and a concept from examples. Many approaches

have been proposed to design these detectors, but the common idea is to

apply machine-learning techniques (typically SVM) to automatically learn

this mapping from the data, thus obtaining a large set of binary classifiers.

Among the others, the most popular solution is to use the Bag-of-Words

(BoW) approach [201] in which an image, or a video frame, is treated as the

visual analogue of a document and it is represented by a bag of quantized

descriptors (e.g. SIFT), referred to as visual-words. This representation of

the visual content is used to compute histograms of visual-word frequen-

cies, that are used to train appropriate classifiers. Another approach that

has been proved to be extremely successful for detection of specific object

classes such as “face” or “person”, is the Viola and Jones detector [219].

These approaches have been implemented by several systems that partici-

pated to visual concept recognition challenges, such as PASCAL-VOC and

TRECVid. However, semantic concepts are in general still difficult to be

accurately detected, so that their detection in video remains a challenging

problem to be solved. Observing the results provided by state-of-the-art

detectors, the accuracy of detection (measured by Average Precision) can

range from less than 0.1, for semantic concepts such as “people marching”

or “fire weapon”, to above 0.6 for a concept such as “face”. Despite the

fact that continuous performance improvement has been reported in the last

years, and a large effort has been devoted to extend the number of different

concept classifiers, important questions are still open. How many concept

detectors are really useful [93] and how much reliable [235] should they be?

Moreover, concept classifiers are usually drawn from a particular domain,

but how well are they able to generalize across different domains?

On the other hand, exploitation of the semantic relationships between

concepts is recently receiving a large attention from the scientific community,

since it can improve the detection accuracy of concepts and obtain a richer

semantic annotation of a video. To this end, ontologies are expected to im-

prove the capability of computer systems to automatically detect even com-

plex concepts and events from visual data with higher reliability. Ontologies

consist of concepts, concept properties, and relationships between concepts.

They organize semantic heterogeneity of information, using a formal repre-

sentation, and provide a common vocabulary that encodes semantics and
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supports reasoning. Few attempts have been done to integrate high-level

semantic concepts provided by an ontology with their visual representation.

In the most common approach, the ontology provides the conceptual view

of the domain at the schema level, and appropriate concept detectors play

the role of observers of the real world sources, classifying an observed en-

tity or event in the nearest concept of the ontology. In this way concept

detectors have the responsibility of implementing invariance with respect to

several conditions while, once the observations are classified, the ontology is

exploited to have a more complete semantic annotation, establishing links to

other concepts and disambiguating the results of classification. Among the

recent works that follow this approach, Snoek et al. [205] defined “seman-

tically enriched detectors” by linking a general-purpose ontology (obtained

from WordNet) to a set of detectors (with several hundreds of concepts), ob-

taining an improvement with respect to TRECVid 2005 classification results.

Zha et al. [239] also followed this approach, using hierarchical relationships

and pairwise correlations between concepts, to refine confidence scores of con-

cept detectors. In a different approach, proposed by Bertini et al. [29], the

ontology includes also visual data instances related to high-level concepts,

identifying their spatio-temporal patterns; visual prototypes, representative

of these patterns, are then defined and used for automatic annotation.

However, in real applications there is need to detect and recognize com-

plex concepts and situations where multiple elementary concepts are in mu-

tual relation in time and space. Therefore, ontologies have to be extended

to define these higher level concepts, adding sets of rules that encode spatio-

temporal relationships among individual concepts. As the number of these

concepts grows, the number of rules for their detection becomes high. Thus,

the definition of the rules by human experts is not practical; the appropriate

solution is to learn automatically a set of rules for each composite concept

to be detected.

In this chapter we present an approach for automatic annotation and re-

trieval of video content, based on ontologies and semantic concept classifiers.

Several elements are included to support effective annotation and retrieval.

First of all, automatic determination of semantic linguistic relations between

concepts (is a, has part, is part of ) is performed, using WordNet, to define the

ontology schema; the concept detectors are then linked to the correspond-

ing concepts in the ontology. We propose a novel rule-based method for

automatic semantic annotation of composite concepts and events in videos;
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our algorithm learns automatically rules expressed in Semantic Web Rules

Language (SWRL), exploiting the knowledge embedded into the ontology.

Moreover, the concepts’ relationship of co-occurrence and the temporal con-

sistency of video data are used to improve the performance of individual

concept detectors. Finally, we present a web video search engine, based on

ontologies, that permits queries using a composition of boolean and tempo-

ral relations between concepts; this system exploits the ontology structure

permitting also, for example, to expand queries to synonyms and concept

specializations.

8.2 Related work

The usefulness of the construction of large sets of automatic video concept

classifiers and the evaluation of the number of detectors needed for effec-

tive video retrieval has been studied in [93, 207, 235]. In [93] Hauptmann et

al. report that concept-based video retrieval (with fewer than 5000 concepts

detected) with a minimal 0.1 Mean Average Precision is likely to provide

high accuracy results in news video retrieval. Snoek and Worring [207] have

confirmed the positive correlation between the number of concept detectors

and video retrieval performance, as well as the improvement of the pair-wise

combination of detectors, using a set of 363 concept detectors. Presently,

the performance of video search engines is still far to be acceptable. In fact,

their performance in terms of Mean Average Precision, as resulting from

the TRECVid 2008 on 20 concepts of the Large Scale Concept Ontology

for Multimedia lexicon (LSCOM), varies in a range from 0.19 to 0.13. On-

tologies and concept relations have been recently proposed to improve the

performance of the concept detectors. Zha et al. [239] defined an ontology

to provide a simple structure to LSCOM [154], using pairwise correlations

between concepts and hierarchical relationships to refine concept detection

of support vector machine classifiers. Wei et al. [225] have proposed two

semantic spaces (Ontology-enriched Semantic Space (OSS) and Ontology-

enriched Orthogonal Semantic Space (OS2)) to facilitate the selection and

fusion of concept detectors for video search.

To obtain richer annotations, other authors have explored the usage of

rule-based reasoning over objects and events in different domains. Hollink

et al. [94] defined a set of SWRL rules to perform semi-automatic annota-

tion of images of pancreatic cells. Bai et al. [13] defined a soccer ontology
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and applied temporal reasoning, with temporal description logic, to perform

event annotation in soccer videos. All these approaches expect that rules

are created by human experts; thus, they are not practical for the definition

of a large set of rules. Automatic learning of rules has been proposed by

Shyu et al. [200]. The authors proposed a method to annotate rare events

and concepts based on set of rules that use low-level and middle-level fea-

tures. A decision tree algorithm is applied to the rule learning process.

Moreover they addressed the imbalance problem of positive and negative ex-

amples in the case of rare event/concept using data mining techniques. Liu

et al. [134] proposed a method to enhance accuracy of semantic concepts

detection, using association mining techniques to imply the presence of a

concept from the co-occurrence of other high-level concepts. However, these

methods have shown to be insufficiently expressive to describe composite

concepts and events, since they do not take into account spatio-temporal

relations between individual concepts.

8.3 Automatic rule learning using first order

logic

In our approach, first order logic rules defined in SWRL are automatically

learned from the knowledge that is embedded in the ontology. To this end our

ontology contains abstract concepts, the ontology schema (based on concepts

that are detected by semantic classifiers, their linguistic relations, namely:

is a, has part, is part of, as encoded in WordNet), and, for each concept

a set of the concept instances that have been observed. Rules are learned

using FOILS, a new algorithm obtained as an adaptation of the First Order

Inductive Learner technique (FOIL [178]) to ontologies and Semantic Web

technologies.

To describe in detail the algorithm, let us introduce some basic termi-

nology from formal logic. All the expressions are composed of constants,

variables, predicate symbols and function symbols. The difference between

predicates and functions is that predicates (in the following written with

upper-case first letter) can assume only boolean values, whereas functions

(in the following written in lower-case) may have any constant as their value.

A term is any constant, any variable, or any function. A literal is any pred-

icate, or its negation, applied to any term. If a literal contains a negation



140 Video annotation using ontologies and rule learning

symbol (¬), it is called negative literal, otherwise positive literal. A clause is

any disjunction of literals, where all variables are assumed to be universally

quantified. A Horn clause is a clause containing at most one positive literal,

as in:

H ∨ ¬L1 ∨ ¬L2 . . . ∨ ¬Ln

where H is the positive literal, and ¬L1∨¬L2 . . .∨¬Ln are negative literals.

It is equivalent to:

(L1 ∧ L2 . . . ∧ Ln) → H

which is equivalent to “IF (L1 ∧ L2 . . . ∧ Ln) THEN H”. The Horn clause

precondition L1 ∧ L2 . . . ∧ Ln is called body, while the literal H, that forms

the post-condition, is called head. As an example of Horn clause consider

the sentence that describes the composite concept: “a person is in a secured

area” (“IF a person and a secured area instances occur in a shot and the

bounding box of that person is in the bounding box of that secured area

THEN that person is in secured area”). This sentence can be translated in

the following fragment in first-order logic:

Person(p) ∧ SecuredArea(s) ∧
HasBoundingBox(p, pBox) ∧ HasBoundingBox(s, sBox) ∧
BoxIsInBox(pBox, sBox) → PersonIsInSecuredArea(p)

where p and s are variables that can be bound to any person and any secured

area respectively, while sBox and pBox are their bounding boxes.

The hypotheses learned by FOILS are sets of rules that are Horn clauses.

The algorithm starts with an initial rule, written in SWRL, composed by the

head (i.e. the target composite concept) and an empty or initial body, and an

ontology with a set of instances that are positive and negative examples of

the target concept. As an example, the initial rule for the composite concept

“a person enters in a secured area” could be:

Person(p) ∧ SecuredArea(s) → PersonEntersSecuredArea(p).

The algorithm iterates searching new literals that have to be added to the

body. This is a general-to-specific search through the space of hypotheses,

beginning with the most general preconditions possible (the empty or initial

precondition), and adding literals one at a time to specialize the rule until

it avoids all negative examples, or when no more negative examples are
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excluded for a certain number of iterations l. A schema of the algorithm

is shown in Alg. 1. Two issues have to be addressed: the generation of

hypothesis candidates and the choice of the most promising candidate.

Pos ← Positive examples

Neg ← Negative examples

Rule ← Initial rule

repeat

Candidate literals ← Generating hypothesis candidates

Best literal ← arg max
L

Rule Gain(L,Rule)

Add Best literal to Rule preconditions

Pos ← subset of Positive examples that satisfy Rule

Neg ← subset of Negative examples that does not satisfy Rule

until Neg is empty or no more Neg examples are excluded for l

iterations

Algorithm 1: FOILS algorithm

Suppose that at the iteration ith, the current rule Ri being considered is

(L1 ∧ L2 . . . ∧ Li) → H(x1, x2, . . . , xk), where (L1 ∧ L2 . . . ∧ Li) are literals

forming the current rule preconditions and H(x1, x2, . . . , xk) is the head.

FOILS generates candidate specializations of this rule by considering as new

literals Li+1 any predicate occurring in the ontology (i.e. all concepts and

concepts relations), where at least a variable already exists in the rule. A

special literal, Equal(xj, xk) where xj and xk are variables already present

in the rule, can be considered, because it can happen that variables created

at different iterations could have the same meaning.

To select the most promising literal from the candidates generated at each

step, the algorithm considers the performance of the rule over the instances

stored in the ontology. The evaluation function used to estimate the utility of

adding a new literal is based on the number of positive and negative bindings

covered before and after adding this new literal. Let us consider a rule Ri

and a candidate literal Li+1 that might be added to the body of the rule.

The evaluation function is defined as:

Rule Gain(Li+1, Ri) ≡ t

(
log2

p1

p1 + n1
− log2

p0

p0 + n0

)
(8.1)
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where p0 and n0 are the number of positive and negative bindings of Ri,

while p1 and n1 are the number of positive and negative bindings of the new

rule Ri+1 (resulting from the addition of Li+1). Finally, t is the number of

positive binding of rule R that are still covered after adding literal Li+1 to

Ri.

8.3.1 Improving performance

The performance of composite concept annotation is tightly related to the

reliability of the semantic classifiers. This can be improved considering the

probability of contemporary presence of pairs of individual concepts, as well

as their temporal consistency. To this end we included in the ontology the

relation of concepts co-occurrence, expressed using mutual information, that

measures the mutual dependence of a pair of concepts. This quantity is

computed from the analysis of the concept instances as:

MI(Ci, Cj) =
∑

k,l∈{0,1}

P (Ci = k, Cj = l)
P (Ci = k, Cj = l)

P (Ci = k)P (Cj = l)
(8.2)

where MI(Ci, Cj) is the mutual information between concept Ci and Cj.

The value of P (Ci = k) for k ∈ {0, 1} is the probability of the presence or

absence of Ci in the videos. The probability values P (Ci = k), P (Cj = l)

and P (Ci = k, Cj = l) for k, l ∈ {0, 1} are computed from ground truth.

Following the approach introduced in [239] it is possible to exploit the mutual

information to refine the confidence values of the detected concept instances.

Given Pi = P (Ci = 1|S) the confidence score of a detector for the concept Ci

in shot S and P = [P1, . . . , Pn]T the confidence score vector for all concepts

in S, it is possible to refine the confidence scores P+ with:

P+ = (1− α)P + αMP (8.3)

where α ∈ [0, 1] weights the contribution of the mutual information and M is

a matrix, whose entries have been computed using the mutual information,

with the diagonal elements set to 0 to avoid self-reinforcement.

The confidence score of a detector for concept C can be improved consid-

ering the fact that the presence of a semantic concept generally spans mul-

tiple consecutive shots [134]. In particular for each concept we re-evaluate
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its confidence values at each shot using:

P T (Ct = 1|St) =
+d∑

i=−d

wiP (Ct = 1|Ct−i = 1)P (Ct−i = 1|St−i) (8.4)

where P (Ct = 1|Ct−i = 1) are probabilities estimated from ground-truth

annotations, P (Ct = 1|St) is the confidence score of a detector for the con-

cept C in shot St, wi is a concept-dependent weighting coefficient (with∑
i wi = 1) that measures the contribution from the shot that is temporally

i shots apart from St, while d is the maximum temporal distance within

which the shots are considered.

8.3.2 Rule learning example

As an example of rule learning using the FOILS algorithm, consider the event

“airplane take-off ” and a simple initial rule, such as:

Airplane(?a) ∧ Sky(?s) ∧ Ground(?g) → AirplaneIsTakingOff(?a)

The algorithm enriches an initial rule with spatio-temporal relations,

using a training set. The literal candidates considered by the algorithm

are all the classes and properties defined in the ontology domain (e.g. Has-

BoundingBox(s,Sbox)), the temporal properties used to encode Allen’s logic

(e.g. Temporal : before(?a, ?s)) and the spatial properties used to encode

the relative positions between concepts (e.g. Spatial:BoxOverlapsBox(?tas,

?aBox,?sBox)). At each step the most promising literal is added, consider-

ing the performance of the rules over the training data, until the recognition

performance does not improve. Thus, the result of the FOILS algorithm is:

Airplane(?a) ∧ Sky(?s) ∧ Ground(?g) ∧HasBoundingBox(?a, ?aBox) ∧
HasBoundingBox(?s, ?sBox) ∧ HasBoundingBox(?g, ?gBox) ∧
Spatial : BoxOverlapsBox(?tas, ?aBox, ?sBox) ∧
Spatial : BoxIsInBox(?tag, ?aBox, ?gBox) ∧ Temporal : After(?tas, ?tag) ∧
MovingObject(?a) → AirplaneIsTakingOff(?a)

This rule can be translated in the following sentence: “IF an airplane, sky

and ground instances (a, s, g) occur in a shot AND they have a bounding box

(aBox, sBox, gBox, respectively) AND for a time interval tas the bounding
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box of the airplane is on the bounding box of the sky AND for a time interval

tag the bounding box of the airplane is on the bounding box of the ground

AND the time interval tas is after of the interval tag AND the airplane is

a moving object THEN that airplane is taking-off”. In some cases we can

observe that FOILS adds some literals that are not necessary for the event

representation, however this does not affect negatively the performance of

the rule. In this example, the “moving object” concept, that in our ontology

is an hypernym of “airplane”, is added to the rule even if it is not necessary.

Once the rule is learned it is applied to the ontology, that contains the

instances obtained by the semantic classifiers, to automatically extend the

video annotation with instances of the “airplane take-off ” event. In this

case the ontology contains instances resulting from the detection of “air-

plane”, “sky” and “ground” detectors. These detectors have been created

using the Viola and Jones algorithm (provided by OpenCV) and color-based

pixel classification with SVM, to detect and localize objects. Then, the

spatio-temporal evolution of the appearance of concepts is determined using

a tracker, based on an improved version of the particle filter [11]. Concept

instances are associated with color and luminance histograms, that are used

by the tracker to identify each instance in a video sequence. As an exam-

ple, Fig. 8.1 shows a sequence of “airplane take-off ” with results of concept

detectors.

Figure 8.1: Examples of airplane, sky and ground detection and tracking in

a TRECVid video sequence.
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8.4 Experimental results

We evaluated how much our method improves the performance of individ-

ual concept detectors, exploiting concept co-occurrence and temporal con-

sistency. We have built automatically an ontology from the MediaMill de-

tectors thesaurus [208], following the method described in Sect. 8.3. The

dataset used for this experiment is the training set of TRECVid 2005; it was

divided using a 4-fold approach, maintaining groups of consecutive shots in

the same fold, to be able to evaluate the effects of time consistency. The

parameters of eq. 8.3 and eq. 8.4 (α and d, respectively) were chosen in pre-

liminary experiments on the training data. In the training phase we also

identified the concepts that took advantage of the use of the co-occurrence

relation, and computed the refined confidence score only for them (based

on eq. 8.3, with α = 0.1). The Mean Average Precision (MAP) computed

for all the concepts improved by 4.37%. After the co-occurrence refinement

we computed, for all concepts, the temporal consistency refinement (setting

d = 15 in eq. 8.4). The overall improvement of MAP, obtained by the com-

bination of the two techniques, is 17.64%. Fig. 8.2 shows the performance

of the baseline detectors and the results of the two refinement techniques,

in terms of Average Precision. We report only the 50 concepts that ob-

tained the largest variations. The concepts whose detectors have a very low

performance, like “airplane”, “desert”, “explosion”, “people marching” are

improved by use of co-occurrence, that exploits the results of more robust

detectors. The use of temporal consistency greatly improves the performance

of certain concepts that are related to topics often shown in consecutive shots

within news videos, like politics (e.g. “Arrafat”, “Bush Jr”, “government

leader”) or sports (e.g. “soccer”, “basketball”, “boat”). Small improvements

are obtained for detectors with high performance, like for “anchor”, “people”

and “outdoor”.

We also checked the capability of our system to detect composite con-

cepts using semantic rules, automatically learned from concept instances, in

two different video domains: broadcast news and surveillance. For the first

domain, we considered four events selected from the LSCOM events/activ-

ities [106]: “airplane flying”, “airplane take-off ”, “airplane landing”, “air-

plane taxiing”. The other set of events is related to the video surveillance

of shopping malls: “person enters in a shop” and “person exits a shop”.

The dataset used for the news domain comprises 65 TRECVid 2005 videos
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Baseline
Co-occurrence
Co-occurrence + Temporal consistency

Concept Baseline Co-occurrence Co-occurrence +
Temporal consistency

airplane 0.04 0.08 0.09

anchor 0.82 0.84 0.84

animal 0.46 0.46 0.41

arrafat 0.00 0.00 0.14

basketball 0.35 0.35 0.48

bird 0.60 0.60 0.62

boat 0.07 0.07 0.19

building 0.28 0.29 0.29

bus 0.01 0.01 0.06

bush jr 0.07 0.06 0.30

car 0.16 0.16 0.18

cartoon 0.20 0.20 0.25

chair 0.48 0.49 0.49

cloud 0.12 0.12 0.47

desert 0.01 0.06 0.20

entertainment 0.14 0.14 0.16

explosion 0.01 0.06 0.21

female 0.08 0.08 0.11

fireweapon 0.05 0.12 0.05

food 0.60 0.60 0.77

golf 0.21 0.21 0.19

government leader 0.27 0.27 0.41

grass 0.05 0.05 0.05

house 0.02 0.02 0.02

indoor 0.62 0.62 0.60

Concept Baseline Co-occurrence Co-occurrence +
Temporal consistency

maps 0.34 0.35 0.46

military 0.29 0.29 0.43

mountain 0.13 0.13 0.25

natural disaster 0.08 0.08 0.08

newspaper 0.66 0.66 0.67

office 0.02 0.02 0.01

outdoor 0.73 0.73 0.74

people 0.70 0.70 0.73

people marching 0.07 0.18 0.18

powell 0.00 0.01 0.01

road 0.15 0.15 0.13

sky 0.47 0.47 0.55

smoke 0.01 0.12 0.13

snow 0.00 0.14 0.15

soccer 0.50 0.50 0.70

studio 0.67 0.67 0.69

table 0.14 0.14 0.20

tennis 0.50 0.52 0.52

tower 0.01 0.04 0.04

truck 0.02 0.03 0.03

vegetation 0.20 0.20 0.22

vehicle 0.19 0.19 0.22

walking running 0.29 0.29 0.30

waterfall 0.00 0.03 0.03

weather 0.38 0.38 0.39

Figure 8.2: Average precision of 50 concepts, selected from the 101 MediaMill
thesaurus, showing comparison of baseline with the proposed refinement ap-
proaches: co-occurrence only and the combination of temporal consistency with
co-occurrence (in this case the overall improvement for all the concepts is 17.64%).
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and 100 videos containing airplane events taken from the web2 (called in

the following Web Dataset). The TRECVid videos were selected from the

TRECVid development set, considering those containing the LSCOM con-

cepts “airplane take-off ”, “airplane landing” and “airplane flying”. We in-

spected all the videos annotated with the “airplane” concept to select those

that contain the “airplane taxiing” event, since this concept is not used in

LSCOM. The videos used for the second domain are the CAVIAR3 surveil-

lance videos, selected from the front of view of the 2nd set. These videos were

filmed from a fixed position camera that frames a mall shop and the area in

front of the shop. In the experiments, the scene framed was divided in four

parts, as shown in Fig. 8.3, to determine when a person is in the shop, in

front of it or in front of the showcase. The two datasets were divided using

a 3-fold approach, to learn the rules.

We have then used these rules to annotate these videos, evaluating the

results, in terms of precision and recall, as shown in Tab. 8.3. As it can be

observed, the overall results for all the rules are extremely promising. The

performance of “airplane flying” and “airplane taxiing” is better than that

of “airplane landing” and “airplane take-off ”; this is due to the fact that

the rules modeling those events are simpler. The performance of the rules is

dependent on the performance of the detectors and tracker. Investigation of

the cases in which the rules fail, has shown that the main cause of failure is

due to the performance of the sky and ground detectors. In particular, these

detectors are affected by the low quality of the images and the presence of

superimposed graphics. In a few cases the fault was the airplane detector,

especially when superimposed graphics and text covered the appearance of

the airplane, that occurred mostly in TRECVid videos. This fact is reflected

by the different performance in the two datasets.

The results of the recognition of video surveillance actions show a good

performance both in terms of precision and recall. The fixed camera and

lighting conditions reduce the variability of the appearance of the observed

events and objects; this leads to a good performance of the person detector

and of the tracker. The performance of the rules is mainly dependent on

the errors of the tracker, that happened sometimes when multiple persons’

trajectories overlapped.

2This dataset is available on demand from the URL: http://www.micc.unifi.it/dome
3CAVIAR Dataset: http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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(a)

(b)

Figure 8.3: a) CAVIAR Surveillance video dataset: view of the mall shop

areas. b) Example of person detector and tracking in a video sequence.
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Data Set Action/Event Precision Recall

TRECVid 2005 Airplane flying 0.94 0.52

TRECVid 2005 Airplane take-off 0.32 0.40

TRECVid 2005 Airplane landing 0.69 0.69

TRECVid 2005 Airplane taxiing 0.92 0.78

Web Dataset Airplane flying 0.93 0.92

Web Dataset Airplane take-off 0.78 0.81

Web Dataset Airplane landing 0.84 0.94

Web Dataset Airplane taxiing 0.96 0.78

Web Dataset + TRECVid 2005 Airplane flying 0.93 0.72

Web Dataset + TRECVid 2005 Airplane take-off 0.55 0.60

Web Dataset + TRECVid 2005 Airplane landing 0.76 0.81

Web Dataset + TRECVid 2005 Airplane taxiing 0.94 0.78

CAVIAR Person enters in the shop 0.96 0.76

CAVIAR Person leaves from the shop 0.95 0.89

Table 8.3: Precision and recall of “Airplane flying”, “Airplane take-off ”,

“Airplane landing”, “Airplane taxiing”, “Person enters in the shop”, “Per-

son leaves from the shop” for different datasets.

8.5 The Sirio web-based search engine

Browsing and searching video archives is performed exploiting the ontology

described in Sect. 8.3. To this end we have developed a web-based prototype

system, Sirio4 [31], which provides integrated support for boolean-temporal,

semantic, and query-by-example (QBE) queries. The system is based on

the Rich Internet Application (RIA) paradigm. RIAs can avoid the usual

slow and synchronous loop for user interactions, typical of web environments

that use only the HTML widgets available to standard browsers. This has

allowed to implement a visual querying mechanism that exhibits a look and

feel approaching that of a desktop environment, with the fast response that

is expected by users.

The search engine is a web application written in Java, executed in an

Apache Tomcat application server, and supports multiple ontologies (for

different video domains), ontology reasoning services and W3C SPARQL

(SPARQL Protocol and RDF Query Language) queries. The GUI is a Flash

application, written in Flex, that is executed in a client-side Flash Virtual

Machine. Videos, returned as results of queries, are streamed using the

4http://www.micc.unifi.it/vidivideo - contact authors to obtain access passwords
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(a)

(b)

Figure 8.4: (a) Browsing interface: the ontology graph view is used to explore

parts of the full ontology, checking the instances of video clips annotated with

the selected concept. All the instances of a concept are visible as streaming

video clips. (b) Search interfaces: GUI query builder; natural language

search; Google-like search.

RTMP protocol. To browse an archive, inspecting the annotated concept in-

stances (i.e. video clips), the user navigates the ontology structure, presented

as a graph. Fig. 8.4 (a) shows the browser interface. The user can select a

concept from a tag cloud, that shows the concepts with the largest number
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of instances, or navigate the ontology following the concept relations.

The prototype provides three different search modalities, as shown in

Fig. 8.4 (b), aiming at different types of users: a GUI to build composite

queries that include boolean-temporal operators (based on Allen’s logic),

visual prototypes for QBE and video metadata (like broadcaster and pro-

gramme names, broadcast dates, etc.) has been developed for professional

users. A free-text interface for Google-like searches and a natural language

interface, that allow to compose queries with boolean-temporal operators,

have been developed for novice users that do not require to specify complex

queries or broadcast metadata. Using the ontology relations and reasoning

it is possible to extend user’s queries through subsumption and meronymy.

The natural language and the Google-like interface, require another form of

query expansion, using synonym relations based on WordNet, so that users

can formulate their queries in a natural way, without being forced to select

terms from a lexicon.

8.6 Conclusion

Ontologies are a source of a-priori knowledge that can be usefully exploited

to complement classifiers and achieve higher performance, especially for con-

cepts related to dynamic composite events. In this chapter we have presented

an algorithm for automatic learning of ontology rules for video annotation

and methods to refine the performance of automatic concept detection. We

have also presented a prototype system to browse and search video archives.

Our future work will deal with learning of rules that cope with uncertainty,

to use fuzzy ontology reasoning that can exploit detector confidence scores.

We will also investigate the use of fuzzy temporal Horn logic to overcome

the expressivity limitations of SWRL.
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Chapter 9

Conclusion

This chapter summarizes the contribution of the thesis and discusses avenues

for future research.

9.1 Summary of contribution

This thesis makes a contribution to the field of multimedia understanding.

We have proposed models and methods for effective visual search for objects

and events in images and videos. We focused on retrieval of object instances

(in particular trademarks) and event categories (such as human actions) and

we provided a step-by-step methodology to reduce the semantic gap and to

achieve automatic annotation and retrieval of visual content. The major

contributions are summarized below:

• In Chapter 3, we presented a real system for logo recognition in large

sports video archives. Trademark recognition and retrieval was per-

formed by matching a set of local descriptors (SIFT) for each trade-

mark instance against the set of features detected in each frame of

the video. Accurate localization of trademarks was obtained through

robust clustering of matched feature points in the video frame. Exper-

imental results were shown, along with an analysis of the precision and

recall, in a realistic application scenario in a variety of situations.

• In Chapter 4, we extended this approach by introducing a robust

context-dependent similarity measure between local descriptors. This

measure takes into account not only the intrinsic visual features but
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also their context and spatial configuration. The strength of the pro-

posed method resides in several aspects: i) the inclusion of the informa-

tion about the spatial configuration in similarity design as well as visual

features; ii) the ability to control the regularization of the solution via

our energy function; iii) the invariance to many transformations in-

cluding translation, scale, rotation and also partial occlusion; iv) the

theoretical groundness of the matching framework which shows that

under the hypothesis of existence of a reference logo into a test image,

the probability of success of matching and detection is high while very

low under background. The validity of the method was shown through

extensive experiments on a challenging logo image dataset.

• In Chapter 5, we developed a novel approach for image forensics based

on local visual features (the approach was built on ideas that came

from Chapter 3). Given a suspected photo, our method allows to

reliably detect if a certain region has been duplicated and, furthermore,

to determine which geometric transformation was applied to perform

such tampering. The technique has shown effectiveness with respect to

diverse operative scenarios such as composite processing and multiple

cloning.

• In Chapter 6, we introduced a method for event classification based on

the popular bag-of-words model. The proposed approach used static

visual features that represent the visual appearance of the scene; the

dynamic progression of the event is modelled as a string composed

by the temporal sequence of the bag-of-words histograms (characters).

Strings are compared using the Needleman-Wunsch edit distance and

SVMs with a string kernel have been used to deal with these feature

vectors of variable length. Experiments have been performed on soccer

videos and TRECVID 2005 news videos.

• Chapter 7 focused on categorization of human action classes from video

collections. The novelty lies in: i) a novel 3D spatio-temporal gradi-

ent descriptor that, combined with optic flow, outperformed the state-

of-the-art without requiring fine parameter tuning; ii) a more effec-

tive codebook model obtained by applying a radius-based clustering

method and a soft assignment that considers the information of two

or more relevant codeword candidates. The method was applied on
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standard KTH and Weizmann datasets showing its validity and out-

performing several recent approaches.

• In Chapter 8 we developed a novel rule-based methodology to describe

and recognize composite concepts and events. It is able to automati-

cally learn rules, expressed in Semantic Web Rules Language (SWRL),

exploiting the knowledge embedded in a multimedia ontology. The

relationship between concepts, their co-occurrence and the temporal

consistency of video data are then used to improve the performance

of individual concept detectors. We have also presented a prototype

system to browse and search video archives.

9.2 Directions for future work

Nowadays social websites for media sharing (e.g. YouTube, Flickr and Face-

book) have become more and more popular, allowing people to easily upload,

share and annotate personal media content with keywords usually referred

to as tags. These tags provide additional contextual and semantic informa-

tion with which users can organize and access shared media content. Flickr

hosts more than 2 billion images with about 3 million new uploads per day.

YouTube reported in March 2010 more than 2 billion views per day, 24

hours of videos uploaded per minute, and also estimated that a common

user spends, on average, 15 minutes each day on the site.

Because of this new scenario, the main directions for our future research

are twofold. The first one is related to scalability. In fact, one direction of

research is focused on how to extend visual search to such huge archives. To

this end we are working on a compact codebook representation, in order to

extend the work presented in Chapter 7 to more unconstrained videos, and

also on a scalable string-based representation of video sequences (Chapter 6).

A key aspect, that has to be adequately taken into consideration, is given by

the fact that if hundreds of concepts need to be learned, overfitting to train-

ing domains must be overcome. This is the so-called domain change problem,

which refers to the fact that concept detection is often applied on different

domains of visual data than the ones it was trained on (it is a common prob-

lem within the TRECVID evaluation community). Therefore, visual search

systems must become flexible enough to keep up with users’ information

needs. This requires new strategies for bootstrapping visual learning beyond
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the manual annotation of limited datasets that constitutes the state of the

art.

The second main research direction is also related to this problem. The

availability of large archives of user-generated visual content provides a new

opportunity to recover training data. But from a more general point of view,

user-tagged images and videos introduce new challenges and opportunities.

First of all, social visual search and analysis is very important for helping

people organize and access the increasing amount of user-tagged multime-

dia. Since user tagging is known to be uncontrolled, ambiguous, and overly

personalized, a fundamental problem is how to interpret the relevance of a

user-contributed tag with respect to the visual content the tag is describing.

For these reasons, several researchers are working on novel tag recommen-

dation and re-ranking strategies, mainly based on tag co-occurrence, to ease

the task of tagging visual data. The basic intuition is that, if different per-

sons label visually similar images using the same tags, these tags are likely

to reflect objective aspects of the visual content [128]. The main research in

this area is focused on the problem of how to integrate social tags and visual

representation of the data. While research on image tagging has received

a considerable attention in recent years [130], there are still very few works

that address the problem of automatically assigning tags to videos and lo-

cating them temporally (or spatially) within the video sequence. This is a

really interesting task since user tags are usually associated with the entire

video and are not located temporally within the sequence. For this reason,

users that search for a specific tag are forced to watch whole sequence of

retrieved videos. Thus, our future research will deal (in particular) with

video tag suggestion and temporal localization based on collective knowl-

edge and visual similarity of frames. Other work will deal with exploitation

of semantic relations between tags and the use of other sources of social

knowledge to improve semantic relatedness of the suggested tags. Our idea

is to integrate the appearance of visual data and the social knowledge given

by user-tags with an a priori semantic knowledge represented by ontology

models (Chapter 8).
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Appendix

This appendix is related to context-dependent trademark matching and re-

trieval, previously presented in Chapter 4. Here we proof the convergence of

our matching criterion (see Section 4.3.1).

A.1 Proof of proposition 2 in Section 4.3.1

Proof. Let N θ,ρ(X), N θ,ρ(Y ) be two random variables standing for the number
of interest points falling inside the context cell (θ, ρ) of respectively a reference
logo and a test image. Here N θ,ρ(X) → B(n, 1/Q), N θ,ρ(Y ) → B(m, 1/Q) and Q

is the number of cells in the context (Q = Na×Nr, in practice Q = 64). Following
the definition of our fixed point KX,Y in (4.4), we have

KY |X ∝ 1
C

exp
(
N (X, Y )

)
, (A.1)

where N (X,Y ), stands for the number of matching points in the context of X, Y

N (X, Y ) =
Q∑

θ,ρ

N θ,ρ(X) N θ,ρ(Y ). (A.2)

Under H1 −→ ∃YJ s.t. (X, YJ) ∈ H1

Since KYJ |X +
∑m

j #=J KYj |X = 1, using (4.8), ps, qs = 1− ps are respectively

E
(
KYJ |X

∣∣(X, YJ) ∈ H1
)
,

and
m∑

j #=J

E
(
KYj |X

∣∣(X, Yj) ∈ H0
)
,

(A.3)
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here the expectation E is with respect to {X, Y1, . . . , Ym}. Now, combining (A.1),
(A.3), ps and qs may be respectively rewritten

1
C

exp
(
EH1

(
N (X,Y )

))

and
1
C

(m− 1) exp
(
EH0

(
N (X,Y )

))
,

(A.4)

EH1 (resp. EH) denotes the expectation w.r.t data in H1 (resp. H0) equal to

EH0

(
N (X,Y )

)
= EH0




∑

θ,ρ

N θ,ρ(X)N θ,ρ(Y )





=
∑

θ,ρ

EH0

(
N θ,ρ(X)N θ,ρ(Y )

)

=
∑

θ,ρ

EH0

(
N θ,ρ(X)

)
EH0

(
N θ,ρ(Y )

)
,

N θ,ρ(X),N θ,ρ(Y ) i.i.d→ B(n, 1/Q)

= n2 (1/Q)2Q
= n2/Q.

(A.5)

EH1

(
N (X, Y )

)
= EH1




∑

θ,ρ

N θ,ρ(X)N θ,ρ(X)



 . (A.6)

Under H1, N θ,ρ(X) = N θ,ρ(Y ) and

EH1

(
N (X, Y )

)
= EH1




∑

θ,ρ

N θ,ρ(X)2




=
∑

θ,ρ

EH1

(
N θ,ρ(X)2

)

=
∑

θ,ρ

EH1

(
(

n∑

i

Zθ,ρ,i)2
)

,

Zθ,ρ,i → B(1, 1/Q)

=
∑

θ,ρ

EH1




n∑

i,j

Zθ,ρ,iZθ,ρ,j





=
∑

θ,ρ

EH1

(
n∑

i

Z2
θ,ρ,i

)

+ EH1




n∑

i,j #=i

Zθ,ρ,iZθ,ρ,j



 .

(A.7)
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Since Zθ,ρ,i, Zθ,ρ,j
i.i.d→ B(1, 1/Q)

EH1

(
N (X,Y )

)
=

∑

θ,ρ

n∑

i

EH1

(
Z2

θ,ρ,i

)

+
n∑

i,j #=i

EH1 (Zθ,ρ,i)EH1 (Zθ,ρ,j)

= Q
(
n/Q + n(n− 1)(1/Q)2

)

= n2/Q + n(1− 1/Q),

(A.8)

therefore,
ps ∝ exp

(
n2/Q + n(1− 1/Q)

)

qs = 1− ps ∝ (m− 1) exp
(
n2/Q

)
.

(A.9)

Now, we consider a normalization factor C (in A.4) which guarantees ps + qs = 1,
accordingly ps is

exp
(
n(1− 1/Q)

)

exp
(
n(1− 1/Q)

)
+ (m− 1)

(A.10)

Under H0 −→ ! YJ s.t. (X, YJ) ∈ H1

Equations (A.3) are updated as

E
(
KYJ |X

∣∣(X, YJ) ∈ H0
)
,

and
m∑

j #=J

E
(
KYj |X

∣∣(X, Yj) ∈ H0
) (A.11)

ps ∝ exp
(
EH0

(
N (X, Y )

))

qs = 1− ps ∝ (m− 1) exp
(
EH0

(
N (X, Y )

))
,

(A.12)

Combining (A.5), (A.12), ps is 1/m.
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Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

1. L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra. “Event De-
tection and Recognition for Semantic Annotation of Video”, Multimedia
Tools and Applications, vol. in press, 2011. (Special Issue: Survey Papers
in Multimedia by World Experts) [DOI:10.1007/s11042-010-0643-7]

2. L. Ballan, M. Bertini, A. Del Bimbo, G. Serra. “Video Annotation and
Retrieval using Ontologies and Rule Learning”, IEEE Multimedia, vol. 17,
iss. 4, pp. 80-88, 2010. [DOI: 10.1109/MMUL.2010.4]

3. L. Ballan, M. Bertini, A. Del Bimbo, G. Serra. “Semantic Annotation of
Soccer Videos by Visual Instance Clustering and Spatial/Temporal Reason-
ing in Ontologies”, Multimedia Tools and Applications, vol. 48, iss. 2, pp.
313-337, 2010. [DOI: 10.1007/s11042-009-0342-4]

4. L. Ballan, M. Bertini, A. Del Bimbo, G. Serra. “Video Event Classification
using String Kernels”, Multimedia Tools and Applications, vol. 48, iss. 1, pp.
69-87, 2010. (Special Issue on Content Based Multimedia Indexing) [DOI:
10.1007/s11042-009-0351-3]

1The author’s bibliometric indices are the following: H -index = 4, total number of
citations = 65 (source: Google Scholar on December 16, 2010).
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Submitted

1. L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra. “Human
Action Localization and Recognition using Spatio-Temporal Interest Points
and Tracking”, Expert Systems: The Journal of Knowledge Engineering,
2010. (Submitted after major revision)

2. I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, G. Serra, “A SIFT-based
forensic method for copy-move attack detection and transformation recov-
ery”, IEEE Transactions on Information Forensics & Security, 2010. (Sub-
mitted after major revision)

International Conferences and Workshops

1. L. Ballan, M. Bertini, A. Del Bimbo, M. Meoni, G. Serra. “Tag suggestion
and localization in user-generated videos based on social knowledge”, in
Proc. of ACM Multimedia International Workshop on Social Media (WSM),
Firenze (Italy), 2010. (Best paper award)

2. I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, G. Serra, “Geometric
tampering estimation by means of a SIFT-based forensic analysis”, in Proc.
of IEEE International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), Dallas (USA), 2010.

3. L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra. “Recognizing
Human Actions by Fusing Spatio-temporal Appearance and Motion De-
scriptors”, in Proc. of IEEE International Conference on Image Processing
(ICIP), Cairo (Egypt), 2009.

4. L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra. “Effec-
tive Codebooks for Human Action Categorization”, in Proc. of ICCV
International Workshop on Video-oriented Object and Event Classification
(VOEC), Kyoto (Japan), 2009.

5. L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra. “Human Ac-
tion Recognition and Localization using Spatio-temporal Descriptors and
Tracking”, in Proc. of AI*IA International Workshop on Pattern Recogni-
tion and Artificial Intelligence for Human Behaviour Analysis (PRAI*HBA),
Reggio Emilia (Italy), 2009.

6. L. Ballan, M. Bertini, A. Del Bimbo, G. Serra. “Action Categorization
in Soccer Videos using String Kernels”, in Proc. of IEEE International
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Workshop on Content-Based Multimedia Indexing (CBMI), Chania (Crete),
2009.

7. L. Ballan, M. Bertini, A. Del Bimbo, G. Serra. “Video Event Classification
Using Bag of Words and String Kernels”, in Proc. of International Confer-
ence on Image Analysis and Processing (ICIAP), Salerno (Italy), 2009.

8. L. Ballan, A. Bazzica, M. Bertini, A. Del Bimbo, G. Serra. “Deep Net-
works for Audio Event Classification in Soccer Videos”, in Proc. of IEEE
International Conference on Multimedia & Expo (ICME), New York (USA),
2009.

9. L. Ballan, M. Bertini, A. Jain. “A System for Automatic Detection and
Recognition of Advertising Trademarks in Sports Videos”, in Proc. of ACM
International Conference on Multimedia (MM), Vancouver, (Canada), 2008.

10. L. Ballan, M. Bertini, A. Del Bimbo, A. Jain. “Automatic Trademark
Detection and Recognition in Sport Videos”, in Proc. of IEEE International
Conference on Multimedia & Expo (ICME), Hannover (Germany), 2008.

National Conferences

1. L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra. “Robust
space-time features combination for human action recognition”, in Proc. of
GIRPR National Conference, Marina di Ascea (SA), Italy, 2010.

2. L. Ballan, M. Bertini, A. Del Bimbo, A. Jain. “Automatic Detection
of Advertising Trademarks in Sport Video”, in Proc. of Italian Research
Conference on Digital Library Systems (IRCDL), Padova, Italy, 2008.

Technical Reports

1. H. Sahbi, L. Ballan, G. Serra, and A. Del Bimbo. “Context-Dependent
Logo Matching and Retrieval”, TELECOM ParisTech, Technical Report,
2010D009, 2010.
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