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The modern structural biologist

We may, I believe, anticipate that the chemist of the future who is inter-
ested in the structure of proteins, nucleic acids, polysaccharides, and other
complex substances with high molecular weight will come to rely upon a new
structural chemistry, involving precise geomelrical relationships among the
atoms in the molecules and the rigorous application of the new structural
principles, and that great progress will be made, through this technique, in
the attack, by chemical methods, on the problems of biology and medicine.
With these words, Linus Pauling concluded his Nobel Lecture on December
11, 1954.

A deeper understanding of basic aspects of structure-function relation-
ships in biologically active macromolecules requires that many different yet
complimentary approaches be used in modern structural biology. Bioinfor-
matics, genetics and structural determination are nowadays integrated to
fully understand the behavior of macromolecules of particular interests such
as proteins involved in copper trafficking or in cellular respiration.

With Linus Pauling’s caveat in mind, according to whom progresses in
biology and medicine will be accomplished only by mean of a full under-
standing of the physics and chemistry of biological processes, it is clear that
a modern structural biologist must encompass skills and knowledge in differ-
ent yet not related scientific fields. With the completion of Human Genome
in 2003, the post-genomic era begun, and for the first time scientists are given
all the instruments to understand how Life works. An incredible amount of
data is now easily accessible through biological databases. The structural
biologist must know how to deal with countless data and this can be only
accomplished by mastering bioinformatic tools, not only the existing ones
but even developing new tools for both personals and general purposes thus
using and integrating, trough an adequate programming language, mathe-
matics to reduce the reality to formulas, biostatistics to extract meaningful
and unique information from redundancy and chemistry and biology to in-
terpret his results.

Despite the fact that in silico studies could be indicative to trace the
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perspectives and suggest theoretical approaches for a biological problem, a
structural biologist must be able, of course, to perform direct experiments
in the laboratory because experiments are the corner stone of the Scientific
Method. As structural biology is focused on understanding how proteins
works by means of the study of their interactions and their structures, this
interest has stimulated the development of a number of biochemical and
genetic approaches to identify and clone genes encoding interacting proteins
to apply techniques such as co-immunoprecipitation, co-purification and the
yeast two-hybrid system, devised to identify genes encoding proteins that
physically associate with a given protein in vivo.

Once a system and /or its interaction partners has been biochemically and
biologically characterized, the knowledge of their structures and the details
of their mutual interplay could be assayed using structural methods such as
nucler magnetic resonance (NMR) spectroscopy.

As NMR has the unique feature of allowing in vivo studies, a structural
biologist must be able to understand the fundamentals and the development
of the use of NMR spectroscopy for the determination of three-dimensional
structures of biological macromolecules in solution. He must not only know
the different aspects of the many kinds of experiments that can be performed
to investigate a particular physical effect but also the physics of the phenom-
ena he is looking at.

As long as structural biologists rely on experimentally determined three-
dimensional structures to link biomolecular data and structural information,
he cannot be unaware of the quality of data he derives from public databases.
Assessment of NMR structures quality is indeed a long-standing issue; the
community of bio-NMR scientists that are focused on protein structural bio-
logy is still lacking a generally accepted measure of accuracy of the structures
produced, although several measures have been proposed over the years. To
have a wide spread scientific insight in different aspect of structural biology,
during my three years Ph.D. course, I worked on different projects, focused on
bioinformatics, genetic approaches to protein-protein interactions and vali-
dation of three dimensional NMR-solved protein structures.

... non vogliate negar l’esperienza

di retro al sol, del mondo sanza gente.
Considerate la vostra semenza

fatti non foste a viver come bruti

ma per sequir virtute e canoscenza

Dante Alighieri, Divina Commedia
Inferno canto XXVI, vv. 116-120
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Introduction

Computational biology is a highly interdisciplinary field of biology, rely-
ing on basic principles from computer science, biology, physics, chemistry,
mathematics, and statistics.

Bioinformatics, a popular term in this era of large-scale DNA sequencing,
is only a subset of computational biology - the part concerned with the
storage, organization, curation and annotation of biological data but is now
often used as an umbrella term for almost all aspects of computational biology
|66].

Computational biology and bioinformatics originated as a cross-disciplinary
field as the need for computational solutions to research problems raised
in biology and medicine [112]. These fields evolved as computation be-
came cheaper and widespread during the 80s, as the Internet grew dur-
ing the 90s, and as high-throughput technologies become common in the
2000s. The boundaries between numerical and biological disciplines have
become blurred [108] and indeed, recent years have seen the spawning of
bioinformatics sub-disciplines such as cheminformatics [99], neuroinformat-
ics |[7] and immunoinformatics [25]. Ostensibly, the only limit to the number
of bioinformatics/computational-related sub-disciplines is the number of dis-
ciplines themselves. Because of the growing need for an integrative view of
biological problems, cross-disciplinary efforts such as these are considered
increasingly important to continued scientific progress [130].

Computational biology extends beyond bioinformatics into the realm of
sequence analysis: finding genes and ascertaining their function; predicting
the structure of proteins and RNA sequences; and determining the evolu-
tionary relationship of proteins and DNA sequences.

Trough computational biology, the biological functions of cells, tissues,
and organisms can be explained in terms of the structure and behavior of
biological molecules. Genes, the basic elements of biological information, re-
flect the molecular structures of the enormously large, linear DNA molecules
of which they are made. The behavior of enzymes, hormones, and antibodies
reflects the molecular structures of proteins and the organic chemistry of the



functional groups of the amino acid side chains. The surface and barrier prop-
erties of biological membranes reflect the ability of lipids to aggregate into
flexible two-dimensional bilayers with hydrophobic cores and polar surfaces.

Information about the molecular structures and biophysical properties of
proteins, nucleic acids (DNA and RNA), lipids, and carbohydrates is available
on the Molecular Structure

The characterization of molecular structure, the measurement of molec-
ular properties, and the observation of molecular behavior presents an enor-
mous challenge for biological scientists. A wide range of biophysical tech-
niques have been developed to study molecules in crystals, in solution, in
cells, and in organisms. These biophysical techniques provide information
about the electronic structure, size, shape, dynamics, polarity, and modes
of interaction of biological molecules. Some of the most exciting techniques
provide images of cells, subcellular structures, and even individual molecules.
It is now possible, for example, to directly observe the biological behavior
and physical properties of single protein or DNA molecules within a living
cell and determine how the behavior of the single molecule influences the
biological function of the organism.

Information about the wide variety biophysical techniques available to
study the structures, properties, and functions of molecules both in the test
tube and in living biological systems is available on our Biophysical Tech-
niques page.

Much of the scientific success of computational biology depends upon its
ability to develop detailed physical mechanisms to explain specific biological
processes. The double helical structure of DNA, for example, provides a
framework for an explanation of how genetic material is replicated and of
how genetic mutations arise: specific proteins mediate the unwinding of the
DNA duplex and the assembly of a new strand based on complementary
base pairing of the four DNA bases, guanine with cytosine and adenine with
thymine; mismatch of one of these base pairs generates a complementary
strand with a single base substitution. The value of this, and a variety of
other biophysical mechanisms, is unlimited for human knowledge in general
and for biomedical research in particular.

Development of high throughput data acquisition technologies in bio-
logical sciences, together with advances in digital storage, computing, and
communications technologies have begun to transform biology in general,
and molecular biology in particular, from a data poor science to a data rich
science. Examples of biological data sets include DNA and protein sequence
data, macromolecular structure and function data, and gene expression data.

A major goal of computational molecular biology is to develop informa-
tion processing or algorithmic accounts of biological questions such as: How is
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information encoded, stored, decoded, and used in biological systems? What
sequence regularities (if any) are predictive of protein function? How can
we precisely characterize the syntax (grammar) and semantics (meaning) of
macromolecular sequences? How do hundreds of genes interact over time to
orchestrate specific biological processes of interest (neural development, dis-
ease, aging)? Research in computational biology requires the development
of sophisticated databases, knowledge bases, ontologies, algorithms and soft-
ware tools for data storage and retrieval, data integration, information ex-
traction, exploratory data analysis and discovery (through data mining and
data visualization), experiment design, using heterogeneous biological data
sources. Design and development of such tools is a major goal of bioinfor-
matics or genome informatics.

All in all two distinct branches can be distinguish in computational biol-
ogy: knowledge discovery, or data-mining, which extracts the hidden patterns
from huge quantities of experimental data, forming hypotheses as a result;
and simulation-based analysis, which tests hypotheses with in silico experi-
ments, providing predictions to be tested by in vitro and in vivo studies.

Knowledge discovery is used extensively within bioinformatics for such
tasks as the prediction of exonintron and protein structure from sequence,
and the inference of gene regulatory networks from expression profile. These
methods typically use predictions based on heuristics, on statistical discrim-
inators that often involve sophisticated approaches (such as hidden Markov
models) and on other linguistic—based algorithms.

In contrast, simulation attempts to predict the dynamics of systems so
that the validity of the underlying assumptions can be tested. Detailed be-
haviours of computer—executable models are first compared with experimen-
tal observation. Inconsistency at this stage means that the assumptions that
represent our knowledge on the system under consideration are at best in-
complete. Models that survive initial validation can then be used to make
predictions to be tested by experiments, as well as to explore questions that
are not amenable to experimental inquiry.

Although traditional bioinformatics has been used widely for genome
analysis, simulation—based approaches have also received mainstream at-
tention. Current experimental molecular biology is now producing the high-
throughput quantitative data needed to support simulation—based research.
Combined with rapid progress of genome and proteome projects, this is con-
vincing increasing numbers of researchers of the importance of a system level
approach. At the same time, substantial advances in software and compu-
tational power have enabled the creation and analysis of reasonably realistic
yet intricate biological models.

Recent years have witnessed an exponential growth of data on the 3D
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structures of macromolecules, and in particular proteins. Managing this in-
formation is a challenging problem. It requires efficient ways of storing, cross
referencing and accessing these data and the in formation that can be ob-
tained from them, commonly re ferred to as databases. Such databases can
only be useful if the data they contain are consistent and as error free as
possible. This applies in particular to the atomic coordinates of the macro-
molecules and genes data sequencing.

It is clear that results of computational biology deeply rely on the quality
of experimental data. This is particularly true for those methods that heavily
make use of experimental data, such as large sequencing projects, protein-
protein interactions network mapping or protein three-dimensional structure
determination via both NMR or X-ray spectroscpy. Evaluating and assessing
the quality of experimental data and refining experimental high-throughput
methods should be a major goal of the paramount importance to be pur-
suived.
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Chapter 1

Evaluation of Single Nucleotide
Polymorphisms data quality

1.1 Introduction

If one compares the same stretch of DNA for two or more individuals, nu-
cleotide polymorphisms are the most frequently observed differences at the
nucleotide level within diploid organisms. Single nucleotide polymorphisms
(SNPs) shown to be essential for studying a variety of organismal proper-
ties and processes, such as recombination, chromosomal dynamics, genome
rearrangement, and genetic relatedness between individuals.

SNPs can be located in coding regions of genes or in intergenic regions,
where they are most abundant [31], [70]. In coding regions, SNPs can alter
the function and structure of encoded proteins, e.g., proteins involved in drug
metabolism [77], [117]. In humans, single-nucleotide substitutions are the
cause for most of the known recessively or dominantly inherited monogenic
disorders, and missense SNPs also often contribute to common diseases [85]
, [128]. SNPs are estimated to occur once every 1 kb throughout the human
genome and are being targeted for association mapping of disease suscepti-
bility genes [111]| and used to study traits of diseases such as cancers, which
are often accompanied by a loss of heterozygosity at SNP loci.

Recent surveys of human genetic diversity have estimated that there are
about 250,000-400,000 common single nucleotide polymorphisms (SNPs) in
protein coding sequences of the genome [29], [55]. Analysis of their functional
effects is a crucial aspect of current genomic science. Coding SNPs (¢cSNPs)
are interesting, in part, because some of them, termed non-synonymous SNPs
(nsSNPs), introduce amino acid polymorphisms into their encoded proteins.
nsSNPs are proportionally less prevalent than synonymous SNPs that do not



affect protein sequence, presumably as a consequence of selection against the
functional disruptions of amino acid variation [29], [55]. However, it might
be expected that a significant fraction of molecular functional diversity in
the human population remains attributable to effects on protein function
caused by nsSNPs. For example, the kinetic parameters of enzymes, the
DNA-binding properties of proteins that regulate transcription, the signal
transduction activities of transmembrane receptors, and the architectural
roles of structural proteins are all susceptible to perturbation by nsSNPs
and their associated amino acid polymorphisms. Amino acid polymorphisms
can also influence the efficacy and toxicity of drugs, as has been shown for
cytochrome P450 2D6, TPMT, and the [y-adrenergic receptor among others.
[80], [79], [82], [132], [45], [116].

Structural analysis of amino acid polymorphisms provides a powerful
mechanistic explanation of their effects on function. Very early in the molec-
ular analysis of genetic variation, the strengths of structural analysis were
demonstrated for the case of amino acid mutations in hemoglobin. Here, the
molecular basis of the clinical effects caused by mutations could be inferred
as soon as the structural information became available [103], [152].

These pioneering studies recognized crucial links between the structural
disposition of residues and potential effects of mutations on function, in-
cluding the destabilizing effects of introducing charged residues into the hy-
drophobic core of a protein, and the functional disruptions of mutations in
protein residues that contact the iron or the heme ligands.

As the structure databases have grown and been analyzed by computa-
tional methods, the understanding of the relationship between structure and
the effects of amino acid substitution on function has continued to deepen.
Many studies have shown that a model residue’s solvent accessibility is im-
portant for anticipating whether its mutation will affect function [22], [41].
In a similar way, a strong relationship between molecular rigidity measured
by a crystallographic B-factor and the tolerance to mutation for the case of
lysozyme has been demonstrated [5]. Several groups have noted a systematic
intolerance to mutation in residues that are either extremely conserved in
phylogeny or confined in their identity to particular classes of amino acid
residues [89], [105], [129].

Others point to relationships between functional effects and hydropho-
bicity or residue volume [22|. Sunyaev et al. have started to examine the re-
lationship between structural features and either human disease causing mu-
tations or common human nsSNPs [131]. They identified structural features
that are significantly associated with the disease causing polymorphisms, and
found that a surprisingly large fraction, about 45%, of the prevalent nsSNPs
share these structural features. For about half of these structurally impor-
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Figure 1.1: Graphical display of human cytochrome c gene features.
Source: ensemble.org

tant residues, the polymorphism represents an amino acid substitution that
apparently is not found in interspecies variation.

The current number of known protein structures is still far less than the
number of known human protein sequences, but this discrepancy does not
diminish the importance of structural analysis for understanding the effects
of nsSNPs and their amino acid polymorphisms on function. It is accepted
generally that proteins with similar amino acid sequence will exhibit a high
degree of structural homology, even when they are only distantly related. For
example, in hemoglobin and myoglobin (sharing only 25% amino acid identity
in sequence) the structural dispositions of many corresponding residues are
extremely well conserved. The same principle serves as the underlying basis of
classifications of proteins according to fold families (e.g. DALI, SCOP) [56],
|94| and structure prediction methods like threading [100], [1] and homology
modeling [52], [118].

Shared structural properties can be extremely precise, for example in the
conservation of the residues that coordinate the heme in hemoglobin and myo-
globin. They can also be more general, as for example if the corresponding
residues in two proteins are both hydrophobic and buried in the hydrophobic
core. For the majority of proteins, structural information is not available; but
for those proteins with sequence homology to a protein of known structure,
much structural information can be inferred. For the human genome, about
30% of the protein sequences are likely to be homologous to known crystal or
NMR structures [52]. The current high-throughput structure initiatives and
theoretical modeling techniques will increase this proportion dramatically in
the next years [2], [8], [4], [51].

In 1999, Buetow et al. [26] and in 2000 Irizarry et al. [61] published two
papers in Nature Genetics proposing two computational strategies to identify
candidate SNPs in expressed sequences from public EST data.

An expressed sequence tag or EST is a short sub-sequence of a transcribed



Residue | dbSNP rs ID | SNP type | Handle|Submitter ID
14 rs11548821 ns CGAP-GAI
18 rs17851278 ns YMGC ENOME DIFF
20 rs11548816 ns CGAP-GAI
21 rs11548815 ns CGAP-GAI
24 rs11548797 S CGAP-GAI
26 rs11548802 ns CGAP-GAI
29 rs11548799 ns CGAP-GAI
31 rs11548796 ns CGAP-GAI
35 rs11548805 ns CGAP-GAI
39 rs11548791 ns CGAP-GAI
40 rs11548812 ns CGAP-GAI
44 rs1154880 ns CGAP-GAI
48 rs11548783 ns CGAP-GAI
51 rs11548772 ns CGAP-GAI
56 rs11548795 ns CGAP-GAI
75 rs11548820 ns CGAP-GAI
7 rs11548818 ns CGAP-GAI
81 rs11548778 ns CGAP-GAI
88 rs11548785 ns CGAP-GAI
95 rs3211448 S LEE
96 rs3211449 ns LEE
98 rs11548776 s CGAP-GAI
100 rs3211451 ns LEE

Table 1.1: List of human cytochrome ¢ polymorphisms deposited in
dbSNP build 127.

spliced nucleotide sequence (either protein-coding or not). They may be used
to identify gene transcripts, and are instrumental in gene discovery and gene
sequence determination [3]. The identification of ESTs has proceeded rapidly,
with approximately 43 million ESTs now available in public databases as
GeneBank database [14].

An EST is produced by one-shot sequencing of a cloned mRNA (i.e. se-
quencing several hundred base pairs from an end of a cDNA clone taken from
a ¢cDNA library). The resulting sequence is a relatively low quality fragment
whose length is limited by current technology to approximately 500 to 800
nucleotides. Because these clones consist of DNA that is complementary to
mRNA, the ESTs represent portions of expressed genes.

The current understanding of the human set of genes includes the exis-



tence of thousands of genes based solely on EST evidence. In this respect,
ESTs become a tool to refine the predicted transcripts for those genes, which
leads to prediction of their protein products, and eventually of their function.
Moreover, the situation in which those ESTs are obtained (tissue, organ, dis-
ease state - e.g. cancer) gives information on the conditions in which the
corresponding gene is acting [122]. Anyway EST are intended solely to find
a consensus sequence for a gene [36] and not to detect differences from an
assessed sequence. A detailed review of EST methods can be found in [97].

As a result of their study, Buetow et al. and Irizarry et al. added a
significant number of SNPs to the newborn dbSNP database [120]. Other
EST—based computational methods have since been developed and new
SNPs identified by these methods are being deposited on a regular basis.
As of July 2006 (dbSNP build 127), more than 16% of all SNPs in coding
sequences (cSNPs) originate from these computational methods.

These EST-based dbSNP data are used with the same level of confidence
as all other SNPs. Indeed, the original papers claimed an overall success rates
of 70%-+80% through sample validation experiments. However, an internal
check within the dbSNP itself shows that only 28.2% of the cSNPs deriving
from EST-based computational methods have been detected also by experi-
mental methods. This success rate is already unexpectedly low, and we find
that it decreases further (24.7%) when the comparison is made more stringent
by restricting it to the genes analysed in the frame of the NIEHS Envirom-
mental Genome Project (EGP) [84] (http:\\egp.gs.washington.edu). In
this comparison, the Buetow et al. ¢cSNP dataset scores as low as 19%, while
the Irizarry et al. ¢cSNP dataset scores 33%.

To confirm or disprove these more pessimistic estimates, we decided to
experimentally verify the presence of cSNPs in a single gene on a statistically
meaningful sample of different individuals, and we selected the same pool of
individuals used in the EGP project. To increase the significance of the test
we looked for - relatively small - genes possessing a relatively large number
of candidate ¢SNPs in the coding region (see Table 1.1 and Figure1.2).

The search pointed to somatic human cytochrome ¢ (cyc ¢), with an ORF
of 318 bp and 24 candidate ¢SNPs (6 synonymous and 18 non-synonymous),
15 of which were deposited in 2003 using the method of Buetow et al. [26].
The coding parts of the two cyc ¢ coding exons and the short intervening
intron were PCR-amplified from the selected panel of 95 individuals and
bi—directionally sequenced. In such a way, from the number of experimen-
tally verified cSNPs we expected to be able to provide a reasonable estimate
of the reliability of the candidate cSNPs for this gene. Surprisingly, none of
the 19 ¢SNPs was found in the 95-individuals panel (190 chromosomes). No
other SNPs were found. Results of this study have been published in [18]. As
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Figure 1.2: Human cytochrome ¢ coding sequence together with
the transcript sequence. Single nucleotide polymorphisms are high-

lighted. Source: ensembl.org. Ensembl access code for cyc ¢ gene is
ENSG00000172115

many methods and findings used in the study have not been fully reported
in the paper, they will be extensively explained and discussed hereafter.

1.2 Material and Methods

1.2.1 Statistical Methods
Some general definitions

Given a set of genes with genotyped cSNPs, we indicated with s; the
number of SNPs in the coding region of length \; of the i-th gene. We get
the average snp number 7 as

EpSL (L)

where G is the total number of considered genes. We define SNP density p
as

P= (1.2)

i



We get the average snp density <p> as
Si

< p>=
p G

(1.3)

A statistical model for SNPs distribution

Let have a number S of putative Single Nucleotide Polymorphisms (pSNP).
Let be f; the frequency of the i-th pSNP. We can set the probability p; to
find the i-th pSNP in an individual as p; = f;. The probability A(p;S) to
find zero pSNP can be estimated as:

=S

Ap:8) = [J(1 - p) (1.4)

i=1

where p is the vector of the py...ps pSNPs probabilities. Let us now
consider a population of N individuals and a sample of dimension K. The
probability B(p; S, K, N) to get K individuals with none of the S pSNPs is

given by the equation

i=S K i=S N-K
B(p; S, K,N) = <g) (H(l —Pz‘)> (1 - H(l _pi)> (1.5)

=0 i=1

Statistical tests for non normality of data

Deviation of an experimental distribution (i.e. coding and non coding
SNPs densities) from normality can be assessed by mean of fundamental
parameter such as skewness and kurtosis that can been tested using the
statistical tests proposed by Snedecor and Cochran [123|, . The symmetry
of the distribution is given by the skewness mg, defined as the third moment
about the mean

n

Z(Sﬁz - M)3

i=1
(T — 1.6

= (16)

The skewness is 0 if the distribution is symmetric, positive (negative) if the
it is asymmetric on the right (left). Nevertheless, the absolute value of this
parameter is strongly dependent on the scale utilized for the measurement.

Said o the standard deviation, adimensionalization is achieved by dividing it



by 3. Following this approach, one get the Pearson 3; index and the Fisher
71 index! defined as

o= (") (L.7)
n="3 (18)

with the relation

m=vbH (1.9)

The kurtosis my (or peakedness or tailed-ness) is defined as

my == (1.10)

As kurtosis for a gaussian distribution is 3, Pearson (5 and Fisher -, indexes
are defined as

By = —2 (1.11)

Ny =12 3 (1.12)

Significativity for both skewness and kurtosis can be assessed using a bilateral
test if 7, or ¥, indexes are not zero or a unilateral test if there is symmetry to
the right (left) of if the distribution is platicurtic (leptocurtic), introducing
a Z values ? defined as (for big samples)

Zskeumess = l (113)
6

Zk:urtosis = i (114)
24

n

IStatisticians use to indicate Pearson and Fisher indexes as b and g when these pa-
rameters are calculated on an experimental distribution, but we will maintain the greek
notations.

2These relations are derived from the general formula Z = t_?” For big samples, one
finds that v, and 5 are distributed in a quasi-gaussian manner with standard deviation

6 24

o equal to 4/~ and /= respectively.



Chi-square test for 2 x M tables

To asses difference among groups we use a x? (Chi-square) test for 2 x M
tables using the exact formula:

2XxX M obs exp
X2 _ Z (fzb f_e:rlzl )2 (115)
i=1 i

where f2 are the observed frequencies and fi*” the expected ones

Tests for outliers

The more general method to estimate the probability that a particular
data belongs to certain population, without a-prior: knowledge or hypothesis
on the shape of the data distribution is the so called Chebyshev inequality.
Chebyshev inequality states that for a set of data the percentage P of obser-
vations comprised in the distance of k standard deviations o from the mean

W is at least
— 1
P (k%) < (1 - @) (1.16)

independently from the distribution itself.

1.2.2 Bioinformatic methods
Databases surveying

Surveying the dbSNP database:

As for today, dbSNP127 counts 11.883.685 polymorphisms for Homo sapi-
ens genome. Of these 6.262.709 (52%) have been validated.

The public SNPs database dbSNP1 (build 125) was queried using either
the ENTREZ SNP filter mask or queries with Boolean operators. The suc-
cess rate of candidate ¢cSNPs derived from in silico analysis of public EST
was estimated by restricting the queries to the panel of 546 genes (listed be-
low) re-genotyped by the NIEHS Environmental Genome Project (EGP) [84].
EGP-derived SNPs and SNPs coming from the two EST-based computational
methods published in Nature Genetics were retrieved in dbSNP according to
the criterion that they had the [HANDLE] tags EGP SNPS for the NIEHS
project dataset, CGAP-GAI for the Buetow et al.3 dataset (query restricted to
computed [M ETHOD]) and LEE for the Irizarry et al.4 dataset. Experimen-
tal cSNPs were retrieved in dbSNP according to the criterion that they had
the following [M ETHOD] tags: sequence, hybridize, rflp, sscp, dhplc.
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Millions of Variations
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Figure 1.3: Growth of dbSNP for all organisms through end of August
2007 (left). The black line indicates the growth of dbSNP using the total
number of submissions, while the red line indicates the growth using the
non-redundant content (refSNPs) of dbSNP. Overall growth of human
variations in dbSNP over the years since its inception (right). Through
February, 2007 dbSNP is closing on 12 million non redundant variations
clustered over 30 million submissions.

Source: ncbi.nlm.nih.gov/SNP/

Computational ¢SNPs were retrieved in dbSNP according to the criterion
that they had computed [M ETHOD] tag. All queries were restricted to
¢SNPs and to snp [SNP_CLASS].

SNPs number for the genes resequenced in the frame of the NIEHS project
together with the approved HGCN names have been retrieved parsing the
downloadable data sets available at the address http:\\egp.gs.washington
.edu\. Genes coding regions length have been retrieved automatically pars-
ing on-line the NCBI Entrez Gene database [87], [88]. An html page parser
have been implemented to retrieve useful information from the pages www.
ncbi.nlm.nih.gov\sites\entrez?db=gene&cmd=search&term=HGNC (whe
re HGNC stands for the HGNC gene name [87]). In particular the associated
expressed protein codes NP have been retrieved and linked to the deposited
FASTA format sequences [101] through the link www.ncbi.nlm.nih.gov\en
trez\viewer.fcgi&val=NP&dopt=fasta (where NP stands for the NP pro-
tein code). FASTA sequences have been used do retrieve univocally the
length of the codding regions.
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Software

The entire nucleotidic coding region of human cyc ¢ aligned against the
BLAST EST database [21] using the on-line version of the BLAST program
|6] (0-www.ncbi.nlm.nih.gov.catalog.1llu.edu\BLAST\). Default setting
have been used.

Sequence alignment of re-sequenced cyc ¢ has been performed with th on-
line version of the program CULSTALW [133| (www.ebi.ac.uk\Tools\clust
alw\).

In-house utilities for data mining, parsing and analysis have been im-
plemented using Python programming language (www.python.org) and the
MATLAB software from MathwWorks (www.mathworks.com).

Calculations have be performed under Linux OS (SuSE distribution 9.1,
WWW.opensuse.org)

The freely available program finchtv was used for manual inspection of
sequence cromathograms (www.geospiza.com\finchtv)).

1.2.3 Molecular Methods

PCR and sequencing

The CYC was amplified from genomic DNA of 95 samples from Coriell
panel using forward (FW) primer 5’ —AGTGGCTAGAGTGGTCATTCATTT
ACA—-3" and reverse (RW) primer 5'—TCATGATCTGAATTCTGGTGTAT
GAGA-— 3. Amplification was performed in a 25 uLi reaction volume using
PfuTurbo DNA Polymerase (Stratagene). The amplified DNA fragments
were analyzed by electrophoresis on a 1.5% agarose gel and purified with QI-
Aquik PCR Purification Kit (Qiagen). Subsequently the amplified and puri-
fied DNA fragments were sequenced using both foward and reverse primers.

1.3 Results and Discussion

The first remarkable fact is the surprisingly high number of non-synonymous
SNPs in a so quite short coding region. Human cyc ¢ gene transcript is
5506 bps long. Coding regions is 318 bps, 5’Utr is 146 bps and 3’Utr is
5042 bps. Translated protein is 106 residues long (counting start Methio-
nine).

Using relation (1.2) and dbSNP126 data we get for human cyc ¢ a nsSNP
density pnsyn = 0.05snp/bps and a sSNP density ps,,, = 0.009 snp/bps.

We did compare these values with average values of a large set of human
genes with experimentally validated SNPs. From NIEHS SNPs Program
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database we found 388 genes with genotyped and experimentally validated
SNPs: human cyc ¢ was not been sequenced. We found that the average
number 7,5, of nsSNPs in coding region is = 3.7 £ 3.7 while the number
Nsyn Of SSNPs in coding region is n = 3.7 £ 3.4.

Using equation (1.3) we get < pysyn >= 0.006 £ 0.005 snp/bps for nsSNPs
and < pgy, >= 0.006 £ 0.006 snp/bps. These results agreed with values found
by Zhao et al. [149], [150].

From these data appears that human cyc ¢ has a number of nsSNPs
greater than 7,4, of over 3 standard deviations and a nsSNP density greater
than 7 standard deviations in respect to < pnsyn >. The number of sSNPs
and sSNPs density value both lay in error ranges.

The distributions for p; values are highly asymmetric and not gaussian
shaped: m3 = 1.2, my = 3.9 for nsSNP, m3 = 0.8, my = 4.4 for sSNP. The Z
values for Fisher +; and 7, indexes (equations (1.8) and (1.11)) for skewness
and kurtosis tests are both > 10 and non-normality of the two distribution
is highly statistically significant (o << 107%).

To estimate if nsSNP density value for cyc ¢ is an outlier from the distri-
bution of nsSNPs densities, we used relation (1.16) as data are not normally
distribuited. The probability that p,s,, = 0.05snp/bps is an outlier from
distribution is greater than 98.6%.

These statistical considerations paired with the structural and functional
impact of some of the reported mutations (for a discussion see [18]) drive
us to search experimental validation (i. e. Minor Allele Frequency) for re-
ported putative SNPs. Sequencing of 95 Dna samples and alignment of all
sequences did not show the presence of SNPs in homozygotes, while manual
analysis of chromatograms did not allow to find SNPs in heterozygotes. As
a confirmation, we also draw some considerations about probability.

Allele frequencies or heterozygosity for SNPs deriving from computational
methods are obviously not available as these parameters make sense only if
derived from an experimentally genotyped population. Confounding proba-
bility with frequency we did operatively assumed p; = f;; supposing to have
to deal with very rare SNPs (as the lower accepted threshold value of the
sequence for common variants is f = 0.01) we set p; = p = 0.01 for all the
putative SNPs. With this assumption, equations (1.4) and (1.5) become

Ap; ) = (1-p)* (1.17)

B kN = (1) =™ (1= (1= ) (119
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We did sequence K = 95 individuals on a panel of N = 95, looking for
S = 24 ¢SNPs. With these values, equation (1.4) gives a probability to get
an individual with no pSNPs A = 0.79 (79%); equation (1.5) reduces to
B = AN giving B = 1.2 x 1071°. That is is really unlikely to find 95 without
SNPs by chance. This show that also if dealing with really rare SNPs the
probability of finding none of them in 95 individuals is really low.

To better understand the meaning of this negative result we tried to re-
produce the results of [26] and [61], blasting entire nucleotidic coding region
of human cyc ¢ against the BLAST EST database. On over 1000 matching
sequences, 619 sequences have 100% identity with the query sequence while
the remaining have sequence indentity lower than 100%. This was due subs-
tiantally to base mismatching sequences (104) or to gapped sequences (201).
From the alignement of the mismatching sequences and the cyc ¢ reference
sequence we found tha 100 possible variations in EST sequences resulting
in 93 putative non synonymous SNPs and 26 synonynmous SNPs. We did
notice that many of mutated sequences come from tumoral tissues as well
for the matching sequences. Of 104 mismatching sequences, 48% originated
from a tumoral tissue, 34.6% from normal different tissues and 17.4% form
unknown tissues. Of the 619 matching sequences 50% originated from a tu-
moral tissue, 34.6% from normal different tissues and 15.4% form unknown
tissues. We then asked ourselves if the high number of SNPs in the cyc ¢
could arise from the fact that also many EST used also by Buetow et al. were
from non normal tissues. We did try to associate SNPs presence to tumoral
tyssue but A x? test (M = 3, d.o.f. =2, x* = 9.067, « = 0.01, x%.,, = 9.210
and a = 0.005, x%,, = 10.597 ) shows that the difference beetwen the three
groups is not statistically significant. That is no inference can be assessed
beetween SNPs frequency and tissue type.

Several of the nonsynonymous mutations involve residues that have been
shown to play crucial roles in the stabilization of the protein core and its sol-
vation and in maintaining the conformational integrity of the molecule and of
the surface involved in protein protein interactions. The reported mutations
rs11548778 (Met81Thr) and rs11548796 (Pro31Ser) are both in absolutely
conserved residues: Met81 is involved in the coordination of the iron ion of
the heme prosthetic group, while Pro31 is involved in hydrogen bonding of
the imidazole ring of the coordinated histidine. The iron ion of the heme is
six-coordinated: two of the binding atoms are the Hé1 atom of the side chain
of His19 and the sulfur atom of the side chain of Met81. The Hel proton
of the imidazole is hydrogen bonded to the carbonyl oxygen of Pro31. The
nsSNP rs17851278 (Cys18Tyr) again occurs in a totally conserved position
surrounding the so-called heme pocket, a region that is known to have both
structural and functional roles. The nsSNP rs11548785 (Lys88Arg) affects
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Lysl4stop

Figure 1.4: NMR structure of the reduced recombinant human cy-
tochrome ¢ (PDB entry 1J3S |64]). Residues affected by critical putative
nsSNPs are highlighted in red.

one of the contact sites involved in the cyc ¢-ATP interaction. The stop-
gain mutation rs11548821 (Lysl4stop) occurs in a conservatively substituted
position (only Arg or Lys are found in all known species) that has been pro-
posed to be involved in the interactions of the complex between cytochrome
¢ and the cytochrome ¢ peroxidase [102]. Other nonsynonymous mutations,
such as rs11548820 (Lys75Cys) and rs11548818 (Pro77His), occur in a very
highly conserved region (>95%). In total, 39% of cyc ¢ putative nonsyn-
onymous SNPs are in highly or totally conserved regions with predicted or
demonstrated functional significance [10].

1.4 Conclusions

Single nucleotide polymorphisms (SNPs) are important tools in studying
complex genetic traits and genome evolution. Computational strategies for
SNP discovery make use of the large number of sequences present in public
databases like expressed sequence tags. These methods are considered to be
faster and more cost-effective than experimental procedures. A major chal-
lenge in computational SNP discovery is distinguishing allelic variation from
sequence variation between paralogous sequences, in addition to recognizing
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sequencing errors. For the majority of the public EST sequences, trace or
quality files are lacking which makes detection of reliable SNPs even more
difficult because it has to rely on sequence comparisons only.

From our re-examination of the SNPs deposited in dbSNP by EST-based
methods we can conclude that on average only one fourth of the candidate
c¢SNPs are true SNPs and this casts serious doubts on the validity of this
kind of computational approach.
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Chapter 2

Refining Yeast Two-Hybrid
methods

2.1 Introduction

Protein-protein interactions have attracted much attention because they
form the basis of a wide variety of biochemical reactions. The identification
of proteins that interact with a known protein is an essential aspect of the
elucidation of the regulation and function of that protein.

Many proteins mediate their biological function through protein interac-
tions, so the systematic identification of such interactions for a given pro-
teome has been proposed as a potentially informative functional genomic
strategy [13], [73], [145].

As well as their well-described role in the assembly of a cell’s structural
compartments such as the cytoskeleton and nuclear pore, protein interactions
are crucial for many other aspects of cellular biology. First, genetic inter-
actions often correlate with physical interactions between the corresponding
gene products. For example, it has been shown that in a C. elegans pathway
that regulates apoptosis, the ced-3 caspase gene acts downstream of ced-/,
which itself acts downstream of ced-9 [147|. Subsequently, the corresponding
proteins CED-3, CED-4 and CED-9 were shown to interact physically [34].
Second, protein interactions are required to tether the components of signal-
transduction pathways physically. A protein providing such a scaffold is the
yeast protein Stebp, which interacts with components of a mitogen-activated
protein kinase (MAPK) cascade involved in pheromone signalling [35]. Third,
enzyme protein substrate interactions are important for catalysis, and are
often found to be more stable than previously presumed. For example, a
cyclin-dependent kinase physically interacts with its substrate p107, a ho-
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mologue of the retinoblastoma protein pRb [151]. Last, protein interactions
are crucial for the integrity of multicomponent enzymatic machines such as
RNA polymerases or the splicesome.

This interest has stimulated the development of a number of biochemi-
cal and genetic approaches to identify and clone genes encoding interacting
proteins includind coimmunoprecipitation, copurification, cross-linking, and
direct expression library screening using proteins as probe. However, the de-
velopment of the yeast two-hybrid appears to have had the greatest impact
on interaction cloning methodology.

2.2 Fundamentals of Yeast Two-Hybrid

The observation that most transcription factors can separated into a
DNA-binding domanin (DB) and a transcriptional actovation domanin (AD)
led to the development of the yeat tewo-hybrid (Y2H) system [49]: this sys-
tem was devised to identify genes encoding proteins that phisically associate
with a given protein in vivo. This is a versatile and powerfull method that
is applicable to most, if not all, proteins once their genes have been isolated.

Trascriptional factors (TRs) that activate transcription are usually com-
posed of a DNA-binding domain and an activation domain. The binding
domain targets these proteins to a specific binding site in the promoter or
enhancer region of a gene while the activation domanain mediates transcrip-
tion initiation. Transcriptional activators in yeast were among the first to be
studied in detail. In all known cases they recruit additional proteins or whole
complexes to the pertinent promoters, eventually leading to the binding of
one of the three RNA polymerases [137], [134].

While DBDs are extremely well characterized both functionally and struc-
turally, ADs do not share easily recognizable motifs or structures. Accord-
ingly, no specific pattern or motif for the identification of an AD has been de-
fined in pattern/domain databases such as Prosite |60] or SMART [119], [76].
In contrast, more than 50 patterns for DBDs have been documented in the
SMART database. While DBs are extremely well characterized both func-
tionally and structurally, ADs do not share easily recognizable motifs or
structures. Accordingly, no specific pattern or motif for the identification
of an AD has been defined in pattern/domain databases. In contrast, more
than 50 patterns for DBs have been documented.

Uisng the Y2H, one can identify potentially interacting proteins (X-Y
heterodimers or X-X homodimers) by generating two different hybrid pro-
teins: one with protein X fused to DB and the other with protein Y fused
to AD. If the protein X and Y interact, the AD can be brought close to the
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Figure 2.1: Two-hybrid interactions: two fusion proteins are created,
DB-X and AD-Y each carrying a part of the transcriptor factor. If
the protein X fails to interacct with Y, the the activation domain is
not brought in proximity of the promoter and the reporter gene will be
not activate. When proteins X and Y interact sucessfully, the activa-
tion domain is brought to the promoter that activate the reporter gene
sucessfully.

promoter by DB-X and thereby activate the gene driven by that promoter
that usually is a selectable or screenable marker (see Figure 2.1)

In contrast to biochemical methods detecting protein-protein interaction,
this system is based on yeast genetic assay in which the interaction of two pro-
teins is detected by the reconstitution of a functional transcription activator
in yeast. This method not only allows identification of proteins that interact,
but also can be used to define and/or test the domains/residues necessary
for the interaction of two or more proteins 27|, [44], [78], |28], [81], [114]. A
test of the responsiveness of two different yeast strains to be used in (high-
throughput) Y2H experiments was carried in the frame of a stage in Dr.
Marc Vidal at Harvard Medical School. .

2.2.1 Reporter genes in yeast

Among the many different reporter genes integrated into the yeast genome
are the GAL1::HISS, GALI::lacZ, SPAL10::URA3, GAL2::ADA2 They con-
tain similar, albeit non identical, Gal4p binding sites in their promoters.
However, the sequences neighboring the Gal4p binding sites are different be-
tween the four reporters. The presence of different TATA boxes and initiation
site sequences allow the discrimination between promoter context-specific re-
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porter activation and two-hybrid interaction. Fach reporter gene can be
scored using a different two-hybrid phenotypes [142].

The GALI1::HIS3 reporter gene is fused to its own promoter lacking en-
dogenous Upstream Activation Sequence (UAS) sequence and containing 125
bp GAL1yas. HISS encodes for the enzymes imidazole-glycerol-phosphate
dehydratase required for the biosynthesis of histidine. The 3-amino-1,2,4-
triazole (3-AT) can act as an inhibitor of this enxymatic activity [142] [40].
The expression of this gene is assayed by growth on media lacking histidine
and containing 3-AT.

The GAL1::lacZ reporter consists in the GALI full-length promoter fused
to the lacZ gene which encodes for the -galactosidase enzyme ([-gal). Ac-
tivation of this gene can be assayed by colorimetric detection of the the
B-gal using 5-bromo-4-chloro-3-indolyl- (-D-galactopyranoside (X-Gal) or
orthonitrophenyl-(3-D-galactopyranoside (ONPG). (-gal converts X-gal and
ONPG to a blue or yellow product respectively. The intensity of the color
reflects lacZ espression [93].

The GAL2::ADA2 provides growth on media lacking adenine, as well
as a range of color from red to white depending on the strength of Galdp
expression.

The SPAL10::URAS3 reporter gene is composed by the SPO13 promoter
with 10 Gal4p binding sites fused to URAS. In fact, most part of the Galdp-
inducible promoters in yeast show basal espression strong enough to confer
UratFOA?® phenotype in absence of Galdp. Thus a promoter was constructed
that contains a cis-acting Upstream Repressing Sequence to mantain low
levels of basal espression in cells lacking Galdp, and a large number (10) of
Galdp binding sites to allow Galdp-dependent activation. SPAL10::URAS3 is
detected by growth on media lacking uracil or by the absence of growth on
media containing both uracile and 5-fluoro-orotic acid (5-FOA). This enzyme,
in fact, can convert the non toxic 5-FOA into the toxic compound 5 Fluorouri-
dine monophosphate [143]. This is essential for the reverse two-hybrid sys-
tem, in which mutations are selected that prevent an interaction [140], [141].
The reverse two-hybrid negative selections are based on the use of a reporter
gene whose expression causes toxicity under specific growth conditions (coun-
terselectable marker).

2.2.2 The MaV103/203 and Y8800/8930 yeast strains

S. cerevisiae strains MaV103 (MATa) and MaV203 (MAT«a) contain
deletions of the GAL4 and GALS80 genes encoding Galdp and its repressor
Gal80p, respectively. In the absence of Gal80p, galactose is not required for
activation of Galdp-inducible promoters. The strains contain three GGaldp in-
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Auxotrophic markers

Description

leu2-3,112

Need for Leu in medium

trp1-901 Need for Trp in medium

his8 A200 Need for His in medium

ura3-52 Need for Ura in medium
ade2-101 Reverted back to wild-type

through an unknown mechanism

Other Description

galj A Deletion of endogenous Galdp transcription factor
gal80A Deletion of Galdp repressor.
cyh2f Resistance to Cycloheximide
canl Resistance to Canavinine

Reporters Description

GAL1::HIS3@LYS2

125 bp GAL1y 45 in the HIS3 promoter

driving HIS3, integrated at the LYS2 locus.
The GAL1 promoter driving LacZ,
integrated at an unknown locus.

SPO13 promoter with 10 Galdp binding sites
driving URAS3, integrated at ura3-52 locus.

GALI1::lacZ

SPAL10::URA3Q@Qura3

Table 2.1: Genotype of the MaV103/203 yeast strain for two-hybrid
assay.

ducible reporter genes, providing four phenotypes to identify true interactors.
The reporter genes are HIS3, providing for growth on plates lacking histi-
dine, LacZ, for colorimetric detection of Galdp activity, and URAS, providing
growth on media lacking uracil, as well as sensitivity to the drug 5-FOA. In
addition, the strains are resistant to canavanine and cycloheximide, aiding
in plasmid shuffling. Both strain MaV103 and MaV203 show basal a espres-
sion of HISS which is sufficient to allow growth on plates lacking histidine.
Thus 3-AT can be titrated to provide a selection for moderate as well strong
increases in HIS3 espression [142]. MaV103 and MaV203 were derived from
a cross between two non-isogenic strains PCY2 and MaV99 [33], [140].

S. cerevisiae strains Y8800 (MATa) and Y8930 (MATw) contain deletions
of the GAL/ and GALS80 genes encoding Galdp and its repressor (al80p,
respectively. In the absence of Gal80p, galactose is not required for activa-
tion of Gal4p-inducible promoters. The strains contain three Gal4p inducible
reporter genes, providing four phenotypes to identify true interactors. The re-
porter genes are HISS3, providing for growth on plates lacking histidine, LacZ,
for colorimetric detection of Galdp activity, and ADA2, providing growth on
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Auxotrophic markers

Description

leu2-3,112

Need for Leu in medium

GAL1::HIS3@LYS?2

SPAL10::URA3Q@Qura3

trp1-901 Need for Trp in medium

his8 A200 Need for His in medium

ura3-52 Need for Ura in medium

Other Description

galf A Deletion of endogenous Galdp transcription factor
gal80A Deletion of Galdp repressor

cyh2f Resistance to Cycloheximide

Reporters Description

GAL2::ADE2 ade2-101 locus replaced by GAL2

promoter driven ADE2

GAL1 promoter driven HISS gene
downstream of LYS2 gene

SPO13 GAL7 promoter driven LacZ gene

inserted in the MET2 locus.

Table 2.2: Genotype of the Y8800/8930 yeast strain for two-hybrid
assay.

media lacking adenine, as well as a range of color from red to white depending
on the strength of Galdp expression. In addition, the strains are resistant to
cycloheximide, aiding in plasmid shuffling. Y8800 and Y8930 were generated
by adding cycloheximide resistance to the PJ69-4 Y2H strains [62].

2.3 Material and methods

2.3.1 Materials

Yeast media

Synthetic Complete (SC) dropout medium: For MaV103/MaV203, use -
Leu -Trp -His -Ura amino acid mixture. For Y8800/Y8930, use -Leu -Trp
-His -Ade amino acid mixture. A -Leu -Trp -His -Ura -Ade is is suitable for
both. For 11 L medium: 1.3 g aminoacids (AA) powder, 1.7 ¢ Yeast Nitrogen
Base (YNB,without AA and Ammonium Sulfate), 5g Ammonium Sulfate.
Adjust pH to 5.9. Autoclave to sterilize. Add 50 ml 40% glucose. Add 8 mI.
of each additional AA. (Leu, Trp, His, Ura, Ade) and 3AT or 5-FOA.

SC additives: 100mM Histidine (filter to sterilize), 100mM Leucine,
40mM Tryptophan, 40 mM Adenine, 20 mM Uracil (filter to sterilize) 3AT
concentrations range from 20-100 mM for MaV103/MaV203, and 0-5 mM for
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Y8800,/Y8930. 20mM 3AT 1.68¢g/1, 5-FOA 1g/L or 2g/L. Cycloheximide
1 ug/ml in ethanol.

YEPD: For 1 L medium: 20 g yeast peptone 10g yeast extract. Autoclave
to sterilize. Add 50 ml 40% glucose. For ade2 strains Y8800 and Y8930, the
same amounts as for SC medium of extra adenine needs to be added.

Plate pouring: add 20g od agar to 500 ml ddH,O. Add 425ml of the
corresponding liquid media without supplements. Autoclave to sterilize. Add
50ml 40% glucose and the desired supplements.

Solutions

1 M lithitum acetate stock solution: Add 51 g of lithium acetate into 500
ml of ddH20. Autoclave to sterilize.

10x TE: 100 mM Tris-HCI (pH 7.5) 10 mM EDTA, autoclave to sterilize.

50% PEG stock solution: Dissolve 125 g of polyethylene glycol (MW 350)
in warm ddH-O and finalize to 250 ml. Sterilize by filtration.

TE/LiAc: for 50mll, add 5 ml of 10x TE and 5ml of 1 M LiAc into 40 ml
of sterile ddH5O.

TE/LiAc/PEG: To make 50ml, add 5 ml of 10x TE and 5ml of 1M
LiAc into 40 ml of 50% PEG.

Boiled ssDNA: Boil the 10 mg/ml of salmon testes DNA for 5 to 10 min
and chill on ice before transformation.

Z buffer: for 1L 16.1 g NagHPO4-7H50, 5.5g NaH,PO4-H,0, 0.75 g KCI,
and 0.246 g MgSO,4-TH,0O. Autoclave to sterilize.

4% X-Gal: Dissolve 40 mg in 1 ml of N,N-dimethylformamide. Store at
-20° wrapped with foil.

(B-Gal solution: For each plate, 5ml of Z buffer with 120 mul of 4% X-Gal
and 13 ul of 2- mercaptoethanol.

Lysis solution: for 1ml, add 2.5 mg zymolyase to 0.1 M MaPO, buffer
(pHT7.4).

2.3.2 Yeast methods
Preparation of DB-ORF baits strains

The following protocol descirbes how to introduce DB (AD) ORF baits
in yeast [144]. This protocol assumes using yeast strain MaV203. In case
of Y8800,/Y8930 strain adenine must be supplemnted to media (see 2.3.1)
1) Start an overnight culture of MaV203 yeast by scratching a small clump
of cells from a patch into at least 0.5ml of media for each bait you plan
to transform (a minimum of 5ml of media should be used). 2) The next
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day, take 0.5ml of the overnight culture for each transformation. 3) Spin
down the cells at 2000 rpm for 5 min. 4) Wash the cells by adding 0.25 ml of
ddH,O for each transformation. 5) Spin down the cells and wash in 100 ml
of TE/LiAc for each transformation. 6) Spin down the cells and resuspend
the cell pellet in 20 ml of TE/LiAc for each transformation. 7) Add 2ml of
boiled ssDNA for each tansformation. 8) Aliquot 22 ml of yeast into the wells
a 96-well plate. 9) Add 50-100ng of the appropriate DB-ORF DNA to each
well. A transformation without DB-ORF DNA serves as a negative control.
10) Add 100 ml of TE/LiAc/PEG to each well and mix by pippetting. 11)
Incubate at 30°C for 30 min. 12) Heat shock at 42°C for 15min. 13) Spin
down and remove the TE/LiAc/PEG solution with a multichannel pipette.
14) Add 120ml of ddH,O to each well, but be careful not to resuspend the
cells. Remove 105 ml of ddH50O from each well and resuspend the cells in the
remaining 15ml of liquid. 15) Spot 6-7 ul onto SC-Leu plates. 16) Incubate
for 2 to 3 days at 30°C.

Introduction of an AD-cDNA library

The following protocol descirbes how to introduce a cDNA library in yeast
cells [144], [78], [142]. This protocol assumes using yeast strain MaV203. In
case of Y8800/Y8930 strain adenine must be supplemnted to media (see
2.3.1) 1) Grow the DB-ORF baits in 3ml of SC-Leu yeast medium at 30° for
approximately 24 ml. 2) Resuspend the cells well by vortexing and inoculate
10-15 ml in 35 ml of YPD and incubate for 15 to 18 h at 30° until the ODggg
reach 0.3 to 0.6. This can be done in 50 ml Falcon tubes. 3) Harvest the cells
by centrifuging for 5min at 1800 rpm. 4) Wash the cell pellet in 1.5 ml of
ddH50 by vortexing and transfer to a 2.0 ml Eppendorf. 5) Spin at highest
speed for 5s in a microcentrifuge. 6) Wash the cells in 1ml TE/LiAc and
spin again. 7) Resuspend the cells in 275ml of TE/LiAc. 8) Add 30ml
of boiled ssDNA and 3-5 ug of the normalized AD-library. 9) Add 1.5ml
TE/LiAc/PEG and mix by inverting several times. 10) Incubate at 30° for
30min to 1 h. 11) Heat shock at 42° for 15min. 12) Spin down the cells. 13)
Remove the supernatant and resuspend the cells in 900 ml of sterile ddH5O.
14) Take 10 ml and add to 10 ml of ddH2O to create a 1:1000 dilution 15) To
three 15ml 3-AT plates, add approximately twenty-five 3mm glass beads.
Plate 300 ul of cells from step 12 on each 15cm 3-AT plate. Spread the cells
evenly by shaking the plates with glass beads.
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Screening by mating

Y2H screening can be fermomed also by mating. DB and AD fusion
proteins are transoformed in different mate type yeast strain: in this case
DB in MaV203/Y8930 (MAT«a) and AD in MaV103/Y8800 (MATa). After
mating, diployds cells can be screened in the same way of colonies resulting
from a ¢cDNA library screening [27].

Isolation of Two-Hybrid positives

1) After 4 to 5 days of growth, colonies with interacting proteins should
have grown enough to isolate them. 2) Use a toothpick to pick colonies that
grow above the background. Patch the colony in a small streak onto a 3-AT
plate. 3) Incubate the plates at 30°C for 2 to 3 days. 4) Scrape a small
clump of cells into 120 ul of SC-Leu-Trp medium in U-bottom plates. Seal
the plates with airpore tape. 5) Incubate for 2 days at 30°C.

Phenotypic assays

1) Spot 5pl of culture onto a SC-Leu-Trp plate. Grow at 30°C for 1
to 2 days. 2) Different plates to assay the two-hybrid reporters are needed:
YPD for lacZ, 3-AT for HIS3, 5-FOA for URA3 (and -ADE for Y strains).
YPD plate needs a nitrocellulose filter placed on it prior to replica plating.
3) Using replica velvets and a replica block, replica plate the yeast from the
SC-Leu-Trp growth plate to the YPD /filter, 3-AT, and 5-FOA plates. Use
the same velvet for each of the assay plates; there should be enough yeast on
it for all three plates. 4) Replica clean the 3-AT and 5-FOA plates as follows.
Use a clean velvet to remove excess yeast from the 3-AT plate. Repeat the
procedure with the 5-FOA plate. 5) Culture all three assay plates at 30°C.
After 1 day the YPD plate should have large spots of yeast on the filter.
Perform (- Gal filter lift assays. 6). Examine 3-AT and 5-FOA plate. If the
negative control shows growth after 1 day, replica clean again. 7) When the
controls on the 3-AT and 5-FOA plates have grown to the appropriate levels
remove plates and score results. 8) Score the 3-AT and 5-FOA plates along
with the §-Gal filters. Any strain that passes at least two of the three tests
is considered positive. Consolidate all of the positives into fresh plates. 9)
Grow plates for 2 days and make glycerol stocks of the strains.

(-Gal filter lift assay

1) For each plate to be assayed, get one empty 1515 cm petri plate. Put
two pieces of Whatman filter paper in the plate. Add 5ml of 3-Gal solution
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to each plate. Let the paper soak up the solution remove bubbles under the
Whatman paper. 2) Remove the nitrocellulose filter from the YPD (with
yeast on the filter) and place in liquid nitrogen for at least 30s. This lyses
the cells. 3) Remove the filter from liquid nitrogen and allow it to thaw in air.
Once the filter is flexible again, place in a petri plate with §-Gal solution-
soaked Whatman paper. remove any bubbles that may be under the filter.
4) Put the $-Gal assay plates at 37°C overnight. The next day you can read
the results with positives being blue; the stronger the positive, the stronger
the blue [93].

Yeast PCR from yeast

It is necessary to isolate prey DNA from the yeast clones that pass the
phenotypic assays and identify them by sequencing. Prey DNA can be ob-
tained by polymerase chain reaction (PCR) using the universal primers on
the vector. Primers to the activation domain sequence and the termination
sequence are commonly used: activation domain CGCGTTTGGAATCAC-
TACAGGG, termination sequence -GGAGACTTGACCAAACCTCTGGCG.

1) Spot 5ml of the positives from the 96-well plate culture Culture at
30°C for 1 day. 2) Replica plate to YPD. Culture at 30°C for 1 day. 3) Add
15ml of lysis solution to each well in a 96-well PCR plate. 4) Scrape some of
the yeast cells off the YPD plate and resuspend into the 15 pl lysis solution.
5) Put the yeast at 37°C for 5 min then at 95°C for 5 min (this can be done
in a PCR machine). 6) Set up the PCR plate using a final volume of 50 ul
for each reaction. 7) Make a 1:10 dilution of the yeast lysis from step 8) Add
5 ul to the PCR plate. 9) Perform PCR using 5 min extension times.

PCR cycle is: 94°C, 4min; (94°C, 45sec; 56°C, 1 min; 68°C, 5min)x 32
times; 72°C, 7min; 4°C, indefinitely.

2.3.3 Cloning methods

A BP/LR Gateway (LR) recombination reactions strategy was that com-
bines attBxattP and attLxattR reactions to transfer the PCR amplified
Open Reading Frames (ORF) to a destinaction vector (pDEST-DB or pDEST-
AD) starting from a donor vector (pDONR223) [113], [109]

Primer Design

The ORF must be PCR amplified using the following Gateway tails to
subsequentely clone the ORF into the pDONR223:

o altBl.1: GGGGACAACTTTGTACAAAAAAGTTGGC
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o attB2.1: GGGGACAACTTTGTACAAGAAAGTTGGGTA
The forward and reverse primers for PCR amplification are:

e 5" ORF Specific Primer (Forward primer): attB1.1 + 5-3° ORF (usu-
ally 24 - 30bp ). You can omit the ATG start codon as the expression
is regulated by the DB/AD fusion proteins in the destinaction vector.

e 3" ORF Specific Primer (Reverse primer): attB2.1 + reverse comple-
ment of the 3" terminus of the ORF (usually 24 - 30 bp ) containing the
termination codon.

Cloning ORF in the Donor vector: BP Reaction.

To clone the PCR amplified ORF into the donor vector pDONR223 as-
semble a BP reaction as follow:

attB1.1 PCR clone: 150 ng
pDONR223 vector: 150ng
5x BP buffer: 2 pLs
BP Clonase: 2 ul
TE bufer pH 8.0: to 8 ul

Incubate at 25 °C for 1 hour to overnight. Add 2 ul. of Proteinase K solution
and incubate for 10 minutes at 37 °C. Transform into competent cells (e.g.
DH5a) and plate on plates containing Spectinomycin 50 pug/mL.

The 5x BP buffer consists of: 100mM Trsi-Cl (pH 7.5), 20mM EDTA,
30 mM spermidine-HCI, 25% glycerol, 225 mM NaCl. Once you got you Entry
clone, you can transfer the ORF into the destination vector.

Transferring the ORF into the Destinaction vector: LR Reaction.

To transfer ORF from the entry clone to the donor vector pDONR223
assemble an LR reaction as follow:

Entry clone: 50-150ng
pDEST (AD or DB) vector: 150 ng
LR Clonase Enzyme Mix II: 2 ulL

TE buffer pH 8.0 or HyO: to 8 uL

Alternatively you can use the following protocols:

Entry clone: 50-150 ng
pDEST (AD or DB) vector: 150 ng
LR Clonase Enzyme Mix II: 1L
(Total Volume 3 uL
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or, if using LR Clonase I

Entry clone: 100-150ng
pDEST (AD or DB) vector: 75ng

LR Clonase : 0.5uL

5x LR buffer: 1pul

TE buffer pH 7.5 : to 5 ul

Incubate at 25 °C for 1 hour to overnight. Add 2 uL (or 1 uL if using the
5 pL volume reaction) of Proteinase K and incubate for 10 minutes at 37 °C.
Transform into competent cells (e.g. DH5«) and plate on plates containing
Ampicillin 100 pg/mL.

5% BP buffer Stock solution: for 10 M: 1ml TRIS 1M, 1 M EDTA 0.2 M,
1 M NaCl2.25 M, 2.5 M of glycerol and 47 uL of spermidine (d=0.925 mg/ml).
Finalize with MilliQ water and filter sterilize (0.22um). Store at -20 °C.

Transformations of BP and LR products can be done in liquid cultures,
with antibiotic selection of spectinomycin at 50 ug/mL (BP) or ampicillin at
100 p1g/mL.

2.4 Testing two different yeast strains for Y2H
experiments

2.4.1 Methodologies

Eight proteins out of a set of 54 different proteins previously utilized for
both mating and ¢cDNA library Y2H screening [81] were randonmly selected.
The 8 open reading frames have been PCR amplified and subsequently cloned
into destination vector pDEST-DB using a BP/LR Gateway recombination
reactions strategy as previously described in section 2.3.3. To confirm that
the design and the construction of the fusion proteins were correct, the vec-
tor/insert DNA junction have been sequenced to confirm the reading frame.
The eight baits have been both transformed in the yeast strain Mav203 and
Y8930 (Mata) following the transformation protocol as detailed in section
2.3.2.

The eight baits, transformed into MaV203, strain have been tested for
auto-activation. There is indeed a major limitation inherent to the two-
hybrid system. DB-X fusions can activate transcription independently of
an interaction with an AD-Y protein (self activators) and thus cannot be
used in conventional forward two-hybrid screens. Self activators include pro-
teins that act as transcriptional activators in their respective organisms and
maintain this ability in yeast or may also include They also include proteins
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that normally act in other processes but exhibit transcriptional activity when
tethered to a promoter in yeast cells [46], [58]. Test for autoactivation was
carried out by growing yeast on selective media -L+5FOA: self-activator-
expressing colonies should not be able to grow under these conditions [143].
Two baits out of eight did show auto-activation behavior and were subse-
quently removed from screening.

The remaining six baits were then used to perform an adult human brain
c¢DNA library (ProQuest, Invitrogen) screen as described in section 2.3.2.
Bait strain containing single DB plasmid were individually transformed with
10 pg of the adult human brain ¢cDNA library and 1-2 millions independent
transformants have been on average screened for each bait using six 15cm
SC-L-T-H +3-AT plates. Baits transformed into MaV203 have been plated
on 20mM 3-AT plates while baits transformed in the new Y8930 strains
have been plated on 0, 5, 10, 20mM 3-AT plates to titrate the not yet
fully characterized basal expression of the HIS3 gene in the Y8930. All
primary positive clones were tested by further phenotypic assays using all
three reporter genes: HIS3, URA3 and LacZ for MaV203 strain and HIS3,
ADE2 and LacZ for Y8930 (see section 2.2.2). Phenotypic assays for HIS3,
URA3 and ADE2 has been performed by growing colonies on media lacking
the appropriate aminoacids as detailed in the Methods section.

Particular attention was paid in performing the (-Gal filter assay for
positives arising from Y8930 transformed baits. With aim to optimize and
adapt the protocol used for the MaV strain we performed 3-Gal tests using
different temperature conditions (room temperature and 37°C) and different
periods of incubation, ranging from 15 min to overnight incubation.

All interactions were then retested by gap repair. The particular bait
and prey proteins expressed in a yeast cell can have profound effects on yeast
physiology, including changes in transcription rate, growth rate, viability, and
cell permeability. Similar changes could occur due to mutations in the yeast
genome arising in the course of a screen. When the mutations favor growth on
the plates used to select positive interactions, false-positives arise. The gap-
repair retest procedure eliminate all false-positives due to mutations in the
yeast genome. This involves introducing into yeast the linearized pDEST-AD
vector and the PCR-amplified insert AD-cDNA products into fresh yeast cells
containing the bait plasmid. If there is some homology between the insert
and the cut vector, the yeast will repair it by ligating the insert into the
vector.

Retesting by gap repair is also necessary because the AD ¢DNA library
plasmids does not carry the CYH2 negative selection marker that allows
plasmid shuffling on cycloheximide-containing media [142]. Only the clones
passing the gap repair retests were considered as true Y2H interactors.
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Y8930

Y8930

MaV203 O/N @ 37°C

Figure 2.2: Comparison of LacZ for both Y8930 and MaV203 yeast
strains. Six different incubations times (0, 30, 45, 60, 75, 120 min) at
37°C for Y8930 are shown together with an overnight incubation at 37°C

for MaV203. For Y8930, fter 45-60 min blue levels are completely saturated.

2.4.2 Results and discussion

The comparison between the two cDNA library screening, performed us-
ing the same baits transformed in two different yeast strains was aimed to
asses the advantages and disadvantages in the use of the two strains in per-
forming Y2H experiments.

The analysis of the positives clones obtained by growing colonies on plates
carrying different concentration of 3-AT showed that the basal expression of
HIS3 in the Y8930 strains is several times lower than in MaV strain giving
an almost undetectable background. Under these conditions, titration of the
GALT1:HIS3 reporter for Y8930 seems not be anymore necessary. The reason
for this is not known, since the HIS3 reporter locus is the same.

Both strains are very similar. Both are intended for Gal4 based two-
hybrid assays, and feature three reporter genes. Each uses leu2 and trp1 as
auxotrophic markers to select for cells containing bait and prey plasmids. As
a consequence, the same plasmids and libraries can be used in either strain.
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Both use HISS and LacZ reporter genes , but differ in the third reporter.
MaV102 and MaV203 use URAS3, which was added to confer sensitivity to
5-FOA. Instead of URAS3, Y8800 and Y8930 use ADE2.

For the HISS reporter, Y8800 and Y8930 need less 3-AT in the -His plates
than MaV103 and MaV203 (0-5mM compared to 20-100 mM). The reason
for this is not known, since the HIS& reporter locus is the same.

The two strains showed a surprisingly different behavior in respect of the
LacZ (-Gal filter assay. We did find that even incubation room temperature
is sufficient to activate -Galactosidase activity in Y8930. We did find that
the typical turning to blue of this colorimetric testis is really faster in Y8930
than in MaV strain. If growth at 37°C, we did observed a full saturation
of blue color for positive colonies and positive control, making impossible
to separate not only weak interactors from strong ones but even positive
from negative. Several incubation assays at room temperature did show that
an optimum time to read the (-Gal filters ranges form 30 to 60 minutes
while growing at 37°C dramatically decreases this time to few minutes. This
behavior of the Y8930 strains make the LacZ [-Gal filter assay difficult to
be performed not only if working in the frame of a high-throughput project.;
it has been indeed difficult to optimize a well working protocol for LacZ test
due to this tight time-scale even for small scale screenings. A comparison
of $-Gal filter assay results for Y8930 (incubation at for different periods)is
shown in Figure 2.2.

All preys previously found during the screening performed in [81] have
been retrieved during our screen. The slightly highest number of preys de-
tected using the Y8930 transformed baits can indicate a highest sensivity of
the Y8930 strain in respect of the MaV strain to this kind of tests. Both
URA3 and ADE?2 yield less positives than the HIS3 marker. This does not
necessarily equate to being more stringent or identifying fewer false positives,
as certain interactions can show stronger induction of URAS or ADE2 than
HIS3. For this is advisable to test all 3 reporter genes. Although the strains
share the HIS3 and LacZ reporters, the phenotypes resulting from them
differ.

2.5 Conclusion

The two-hybrid system has some clear advantages over classical biochem-
ical and genetic approaches. First of all it embodies an in vivo technique
using the yeast host cell as a live test tube. This yeast system brings the
higher eukaryotic reality closer than most in vitro approaches or techniques
based on bacterial expression. Appealing features of this system are the
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minimal requirements to initiate a screening. Only the cDNA/ full-length or
even partial of the gene of interest is needed, in contrast to sometimes-high
quantities of purified proteins or good quality antibodies needed in classical
biochemical approaches.

Weak and transient interactions, often the most interesting in signaling
cascades, are more readily detected in two-hybrid since the genetic reporter
gene strategy results in a significant amplification. It is useful to keep in
mind that there is a trade-off between the identification of weak interactions
and the number of false positives encountered when performing a screening
procedure. Apart from the ability to screen libraries, the two-hybrid system
also allows for the analysis of known interactions. This can be achieved by
pinpointing crucial residues for interaction or by a functional characterization
of the entire subdomain. By doing semi-quantitative experiments one can
even interpret affinities from two-hybrid experiments. It was demonstrated
that the strength of interaction as predicted by the two-hybrid approach
generally correlates with that determined in vitro, permitting discrimination
of high-, intermediate- and low-affinity interactions [48]. In addition, binding
affinities of peptides to retinoblastoma, as determined by surface plasmon
resonance, correlated with results from the two-hybrid assay.

Anyway the most difficult steps in a Y2H screening are to determine if the
interaction observed in yeast is direct and to place it in the right and mean-
ingfull biological context. The tranactivation of the reporter constructed by
the DB and AD fusion proteins indicate that these proteins formed a sta-
ble complex within the yeast nucleous; additonal component provided by the
yeast itself could, anyway, contribute to this complex. To asses if the interac-
tion is direct the bait and prey proteins can be synthesized as bacterial fusion
proteins (i.e. to S-transferase and maltose binding proteins). These can be
readily purfied and the interaction assessed in vitro. In case of interaction,
the affinity can be determined.Affinity should be at least M.

An interaction detected wia yeast two-hybrid system may not be bio-
logically relevant. For se exemple during a library screening, proteins form
distinct cellular can be coexpressed, allowing interactions to take place that
would normally not occur due to subcellular compartmentalizations. Fur-
ther,proteins form different cells can be coexpressed, resulting in interaction
that are not permitted in the organism. Finally, aberrant interactions may
occur because of the two-hybrid proteins adopt nonphysiological configura-
tions: this could arise because the hybrid proteins are truncated or incorrectly
modified by the yeast or associated with yeast proteins.

The two-hybrid system was predicted to be limited to the analysis of cyto-
plasmic proteins. Indeed extracellular proteins or protein domains are often
N-glycosylated and contain disulfide bonds, both of which are not expected

31



to occur in the yeast nucleus [50]. However, several successes were reported
with transmembrane receptors. Appropriate extracellular receptor-ligand in-
teractions were demonstrated for the growth hormone,prolactin and growth
hormone releasing receptors [148], [Jkajkowski1997igh. Thus, receptors with
whole extracellular critical ligand binding determinants can sometimes be
evaluated by the two-hybrid system. But, it may be inappropriate for recep-
tors with determinants in transmembrane domains that form intramembra-
neous ligand binding pockets [65].

One of the most appealing features of the yeast two-hybrid system is that
the identification of an interacting protein implies that at the same time the
corresponding gene is cloned. Two-hybrid screens are sometimes referred to
as functional screens, since interacting proteins might give a functional hint
if at least one of the partners has a known functional commitment in a well
understood signaling pathway. Trying to attribute function to an unknown
target is often more difficult. Here, the identified partners need to be known
or the problem will propagate. Although the outcome of a screening often
results in many new hypotheses, they still need to be validated by other
techniques.
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Chapter 3

Evaluation of the quality of NMR
protein structures

3.1 Introduction

3.1.1 Fundamentals of NMR theory

NMR spectroscopy and X-ray cristallography are currently the only tech-
niques capable of determing the structures of biological macromolecules at
atomic resolution. In addition, with NMR it is possile to study time de-
pendent phenomena, such as intramolecular dynamics in macromolecules,
reaction kinetics, molecular recognition or protein folding.

The limitations of NMR spectroscopy result from the low inherent sensi-
tivity of the technique and from the high complexity and information con-
tent of NMR spectra of proteins. These problems are partially alleviated by
new developments: the sensitivity and resolution of NMR are increased by
progress in spectrometer technology. Progress in the theoretical and practi-
cal capabilities of this technique lead to a increasingly efficient utilization of
the information content of NMR spectra.

Parallel developments in the biochemical methods (recombinant protein
expression) allow the simple and fast preparation of protein samples. Het-
eronuclei like 1°N, ¥C and 2H can be incorporated in proteins by uniform
or selective isotopic labelling. Spectra from these samples can be drasti-
cally simplified. Additionally, some new informations about structure and
dynamics of macromolecules can determined with these methods.

The phenomenon of magnetic resonance results from the interaction of
the magnetic moment of an atomic nucleus g with an external magnetic
field. The cause of this magnetic moment is the quantum mechanical angular
momentum (spin angular momentum) of all nuclei that have and odd number
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of protons and neutrons.
The spin is quantized according to

J=hyI(I+1) (3.1)

with J being the spin angular momentum, / the spin quantum number and
h the reduced Planck’s constant. The angular momentum and the magnetic
moment are directly proportional:

w=yJ =nh\I(I+1) (3.2)

The constant ~ is the gyromagnetic ratio and is characteristic for each
isotope. The sensitivity of a nucleus in NMR depends on 7: the higher the
7 the higher the sensitivity is).

In an external magnetic field Bg the magnetic moment orients (if Bo=
By 7 according to:

J, = —mh (3.3)

iy = ymh (3.4)

The magnetic quantum number m can be an integer number between -/
and +/1. Thus, the external field leads to a splitting of the energy levels. For
spin % nuclei like protons, two energy levels exist according to a parallel or
antiparallel orientation of the magnetic moment with respect to the magnetic
field direction. The energy of these levels is given by the classical formula for
a magnetic dipole in a homogenous magnetic field of the strength By:

E = —p.By (3.5)

The magnetic moment of each nucleus precesses around Bg. The fre-
quency of this precession is the Larmor frequency wy which is equivalent to
the resonance frequency of the nucleus and the energy difference AFE between
the two levels.

AE = hwy (3.6)

Wy = ’YBO (37)

The Larmor frequency depends on the gyromagnetic ratio and the strength
of the magnetic field and it is different for each isotope. At a magnetic field
of 18.7T the Larmor frequency of protons is 800 MHz.
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A NMR sample contains many identical molecules (usually in a concenta-
tion range of mM for proteins). The spins of these molecules align indepently
of each other parallel or antiparallel to the external field. The ratio of parallel
spins to the antiparallel ones is given by the Boltzmann distribution:

P it (3.8)

Both energy levels are nearly equally populated, because the energy dif-
ference is in the order of magnitude of thermic movements (kT). At a tem-
perature of 300 K and a magnetic field of 18.7T (800 MHz) the excess in the
lower enery level is only 6.4 of 10000 particles for protons. This is the main
reason for the inherently low sensitivity of NMR when compared to optical
spectroscopic methods.

The magnetic moments of the individual spins sum up to a macroscopic
magnetization M, which can estimated according to Curie’s law:

1
My = 72Nh23k—TBO]([ +1) (3.9)

It is the evolution of this macroscopic magnetization which is recorded in
the spectrometer. The classical theory of NMR also deals with this quantity.
In thermal equillibrium only magnetization along the axis of the magnetic
field exists (by definition z), because the z and y components sum up to
Zero.

In the initial stage of investigation by NMR spectroscopy each resonance
of the spectra must be associated to a specific nucleus in the investigated
molecule. The aim of the analysis of NMR spectra is to extract all available
information about interatomic distances and torsion angles. This process is
called assignment.

The strategies employed for the assignment procedure depend on whether
only homonuclear 2D spectra are available (unlabelled proteins), whether N
heteronuclear spectra are available (1°N labelled proteins) or whether triple
resonance spectra (N/13C doubly labelled proteins) are available, but in
general, the assignment can be divided in two parts.

The sequential assignment of the amino acids in the protein sequence and
the assignment of the amino acid side chains. Experiments as 2D COSY and
TOCSY are employed for the identification of amino acid spin systems. The
2D NOESY experiment is used to sequentially connect the spin systems. The
fist step in sequential assignment is the identification of certain amino acids
in COSY/TOCSY, with a characteristic pattern of cross peaks like glycine,
alanine, threonine, valine, leucine and isoleucine. Glycine contains two H®
protons and is therefore readily identified. Valine, leucine and isoleucine can
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be recognized by their two methyl groups which give a characteristic row
of double signals between 0 and 1.5 ppm. In the same way, alanine and
threonine are identified by their single methyl groups.

In the second stage of the assignment process, the sequential contacts
from the already identified amino acids to the neighboring ones are searched
for in the 2D NOESY spectra. The connectivity of a given amino acid in the
sequence ¢ to its following one 7 4+ 1 can be observed in the NOESY because
the distance of the amide proton of i + 1 to the i-th H*, H? or H? protons of
i-th is usually smaller than 5A. Therefore, sequential cross signals to H(i),
HA(i) etc. are observed at the frequency of HY (i + 1). These interresidual
signals can be distinguished from the intraresidual ones by comparing the 2D
NOESY with the 2D TOCSY spectrum. A series of these sequential peaks
between H*(i) and HY (i + 1) determines the order (7,7 + 1,i + 2,...) of the
amino acid spin systems.

Thus, dipeptides are identified and subsequently prolonged to oligopep-
tides by the search for further sequential contacts. Some time along the line
these oligopeptides can be placed at a unique place in the primary struc-
ture by comparison with the amino acid sequence of the protein - they are
sequentially assigned.

The chain of sequential connectivites is interrupted by proline residues
because these have no amide proton. Therefore, no HY (i)-H?(i-1) cross signal
can be observed. However, if the proline (i) is in its trans conformation,
the sequential HV (i — 1)-H%(i — 1) and H¥(i — 1)-H®(4) cross signals can be
observed.

Another problem is, that this approach of sequential assignment breaks
down for larger proteins because the vast number of signals leads to spectral
overlap which hinders the identification of signals.

So far, the emphasis has been on identification of the observed signals
in the spectra and their correlation with the amino acid protons giving rise
to the signals. Afterwards, one has to extract the data which are relevant
for the structure. Of special importance in this respect are proton-proton
distances, which can be estimated from the signal intensities in the different
spectra .

Signal intensity depends on the distance r between two nuclei ¢ and j,
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according to ! :
1

v

The distances are derived from the spectra after calibration against NOE
signals for known distances (such as distances in elements of secondary struc-
ture) and grouped into a few classes. An upper and a lower bound of distance
is assigned to each class. The lower bound is often set to the sum of the van
der Waals radii of the two protons. In this procedure, all non-sequential sig-
nals which are visible in the NOESY spectra have to be assigned, the number
of which easily exceeds 1000 in a medium-sized protein (ca. 120 amino acids).
It is distinguished between cross peaks of protons no more than five amino
acids apart in the protein sequence (medium range NOEs) and those which
are more than five amino acids apart (long range NOEs). The former are
mainly indicative of the protein backbone conformation and are used for sec-
ondary structure determination, whereas the latter are an expression of the
global structure of the protein and therefore contain the main information
used for tertiary structure calculation.

3.1.2 NMR spectroscopy does allow for major errors

Ca. 14% of the protein structures deposited in the Protein Data Bank
(PDB) [15] have been solved by NMR. NMR has also been recognized as an
important component in Structural Genomics projects worldwide, as it can
contribute significantly to their success rate (in terms of structures solved
with respect to the number of targets entering the pipeline).

!The actual equations to determine NOEs size and sign for a steady state (the NOE
N1y is observed on signal I when .J is saturated) are

or(J)

- 3.10

1) PI(J) ( )
with

2 212432 1 . e
o1y = (@) ’YIWJJG(JJF ) 67 N Te _ (3.11)
4m 1573 ; 1+(w1+wJ) 7'3 1—|—(w1—wj) Tg
- (@)2 21232 J(J + 1) 67, 37 Te
Pren = gy 1518 14 (wrtw)?r2 14+ 14 (w —wy)’ 72
(3.12)

where o is the permeability of the vacuum and 7. is the correlation time.
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Figure 3.1: Yearly growth report of structure deposited within the
PDB as November 2007. On the left is shown the yearly growth of NMR
solved structures, on the right the yearly growth of total structures.
PDB counts a grand total of 47136 structures deposited. The 92% are
protein structures, the remaining are nucleid acids (NA) or NA-protein
complexes (4% respectively). The 14% of structures (6880) is solved by
NMR. Source: www.wwpdb.org.

NMR structures are complementary to X-ray structures under many as-
pects. When structure determination is coupled with, as often happens,
characterization of protein backbone dynamics, one gains information be-
yond the single snapshot of a static structure and actually obtains direct
experimental insight into protein flexibility. Flexible regions are often han-
dled with difficulty in NMR structure determination, because of the paucity
(or even absence) of restraints that high mobility causes. These regions there-
fore are (very) poorly defined, their conformation often being driven by the
force field used in calculation more than by experimental data. This may
yield a significant decrease of overall accuracy. On the other hand, NMR
is particularly important to characterize systems that are partly or mostly
unstructured. These systems contain structurally ordered regions next to
highly mobile regions, which prevent their crystallization. When compared
with X-ray crystallography, NMR is particularly suited to investigate com-
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plexes with dissociation constants sub-micromolar or higher, which are quite
dynamic, and whose crystallization is difficult and may easily "freeze" con-
figurations that are not the most relevant to extract biological insights. This
is one of the present frontiers of NMR. How these systems should be handled,
and in particular whether coordinates for the structure of ordered regions or
of all the protein should be released, is a completely open issue. At present,
and in the next future, NMR is getting more and more important in address-
ing intermolecular contacts, also thanks to experimental strategies that allow
signals to be detected even in systems of very high molecular mass.

A proposal for standardization of the presentation of NMR structures has
been put forward in 1998. Since then, validation and quality assessment of
NMR structures has progressed significantly.

In NMR structure determination, there exist only nascent methods for
the statistically rigorous estimation of precision, and active research is ongo-
ing in this area. [124]. Traditionally, NMR structures have been deposited
in the Protein Data Bank (PDB) [15] as ensembles which are the result of
replicating the structure determination procedure several times. The confor-
mational variability across this ensemble can then be used as a measure of
reproducibility, and therefore the precision. Measurement of the divergence
of an ensemble of structures typically involves calculating a superposition,
minimizing the root-mean-square deviation (RMSD, see section 3.2.1, rela-
tion (3.14) and following) from an average or representative set of atomic
coordinates. This approach suffers from pitfalls, however, in that the set
of atoms being superimposed must be well-chosen [125]. Furthermore, this
strategy also implicitly assumes that the ensemble deposited in the PDB
characterizes well the uncertainty inherent in the data [126], [98], [110]. The
estimation of accuracy also has complicating factors, not the least of which
is the fact that the correct structure is typically unknown. In the absence of
the knowledge of the true structure, one can attempt to estimate accuracy
using internal measures. This is now routinely done in macromolecular X-ray
crystallography using the free R-factor [32|, which provides a cross-validated
estimate of the goodness-of-fit that is correlated with the phase error. The
direct application of such a strategy in NMR structure determination is diffi-
cult because of the combined effect of low data density and high information
content of individual data points [95] (e.g. critical long-range nuclear Over-
hauser effect (NOE) restraints), but extensions based on a jackknife approach
have been suggested [24]. More sophisticated approaches based on the as-
sessment of the degree to which the model satisfies the raw data have also
been described [23], [59].

Throughout the years several errors have been uncovered in the PDB,
which often resulted in the replacement of the incorrect models with im-
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proved ones. Systematic errors and mistakes often result from errors in the
interpretation of the experimental data and relate directly to the accuracy
of the final structure models. For example, in NMR spectroscopy errors can
be introduced by misassignment of the spectral signals. Many different types
of errors can be identified in protein structures, ranging from too tightly
restrained bond lengths and angles, to molecules exhibiting a completely in-
correct fold. The first type of errors often does not have large consequences
for the analysis of the structure and typically can be easily remedied by
refinement in a proper force field. It as been shown indeed that before re-
finement, side-chain planarity is often too tightly or too loosely restrained,
with a local minimum there where X-ray structures are commonly found.
After refinement NMR structures usually have planarity RMSD compara-
ble to high-resolution X-ray structures, shwoing much better agreement with
presently acceptable simple stereochemistry parameters such as bond lengths
and bond angles [83] [96]. For structures determined using NMR spectroscopy
there are cases where re-evaluation of the experimental data has resulted in
the replacement of structures in the PDB. For example, in the structure of
the oligomerization domain of p53 a difference in the orientation of the two
dimers was observed between the NMR [37] and crystal structure that was
released shortly after the NMR structure |63] (PDB entry 1C26).

Re-examination of the nuclear Overhauser enhancement (NOE) data led
to the identification of three misinterpreted peaks in the original p53 NOE
assignments and the inclusion of several new NOEs, resulted in a revision
of the original PDB entry [38] (PDB entry 10LH). Similar is the case of
the anti-o factor AsiA [71] a low number of misinterpreted NOE signals (17
in total) resulted in a largely incorrect fold (the now obsolete PDB entry
1KA3). In this case, it was not until a second solution structure of AsiA was
published [139] (PDB entry 1JR5) that the experimental data of the original
AsiA structure were reexamined and the assignment errors were discovered
[72].

Stimulated by the activities of the Coordination Action "NMR-Life" and
by a round table on protein structure quality and related problems helded
in the frame of the 11th Chianti Workshop on Magnetic Resonance, we
thought a critical and systematic re-examination of majors validation tools
was needed.
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Program Accessible at http:\\ Reference

FRST protein.cribi.unipd.it\frst Tosatto 2005

HARMONY caps.ncbs.res.in\harmony Pougalenthi et al. 2006
HOPscore hoppscore.1lbl.gov\run.html Sims and Kim 2006
MolProbity molprobity.biochem.duke.edu Davis et al. 2007
PROCHECK www-nmr . cabm.rutgers.edu\PSVS Laskowski et al. 1993, 1996
ProsSA prosa.services.came.sbg.ac.at\prosa.php® | Wiederstein and Sippl 2007
TAPscore protein.cribi.unipd.it\tap Tosatto and Battistutta 2007
WHAT CHECK | swift.cmbi.kun.nl\WIWWWI Hooft et al. 1996

Table 3.1: List of analysed tools. Web addresses are shown together
with references. ®This server is actually accessible at https:\\.

3.2 Methodologies

3.2.1 Tools to assess protein structures quality

A wide range of computational quality parameters have been developed
and reviewed over the years, using different criteria and different strategies.
In the past, claims have been even raised about the fact that the majority of
validation tools tends to overestimate the number of errors because the fact
of the high number of false positive tough theseclaims have been disproved
[91], [74].

Generally speaking, it is possible to distinguish geometric, energetic and
conformational criteria. Geometric criteria are mainly standard values for
bond lengths and angles derived from small molecule data. [39] [57] These
form strong restraints and are generally enforced during the refinement pro-
cess, so they possess little validation power. Energetic criteria are based
on evaluation of interaction preferences or profiles |86|, [146] |92]. These
methods can provide insight into the quality of the structure but their inter-
pretation in experimental terms and feedback into the refinement process is
rather difficult.

The most promising validation criteria are based on conformational cri-
teria. The best example is the Ramachandran plot [107] of backbone (¢, ¥)
torsion angles. While each amino acid type may, in theory, adopt a large
number of different conformations, large areas of the Ramachandran plot are
almost empty. This is due to steric clashes deriving from the local geometry
of the polypeptide chain. The main chain (¢, ¥) torsion angles are usually
not restrained during refinement and this makes the Ramachandran plot a
powerful validation tool. These parameters alone are however, as mentioned,
insufficient by themselves to unambiguously identify "bad" structures, as
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advanced structure calculation protocols including structural refinement in
explicit solvent (although always recommendable) may often result in good
scores even for inaccurate structures. Many of these scores are also poorly
useful when calculations have been performed including database potentials
such as Ramachandran plot refinement [68]. Several tools have been devel-
oped to estimate the quality of a protein model based on the Ramachandran
plot. HOPPscore has been recently developed to take into account higher
order backbone torsion angle maps [121].

Of these, PROCHECK [75] and WHAT CHECK [57] are perhaps the
most frequently used methods for validation in NMR spectroscopy WHAT
IF currently is the most used, if not the most complete tool, for assessing
the quality of a structure and checking errors. It has become is a de facto
standard for structure and structural model validation. as they are used
for judging structures to be deposited in the PDB, combining several stereo-
chemical checks and measures of torsion angle compatibility. Several of these
methods (e.g. WHAT CHECK) are able to pinpoint the really wrong struc-
tures through a detailed analysis of different aspects of protein structures.
Once a structure falls into the range of roughly plausible folds however the
situation becomes more complicated. It is possible to construct structures
with acceptable values for the standard criteria that are largely incompat-
ible with the protein sequence. This means that given a roughly plausible
structures, it is almost possible to quantify the degree of "nativeness" and
highlight the best structures.

The community of bio-NMR scientists that are engaged in the structural
characterization of proteins is still lacking a generally accepted measure of
accuracy of the structures produced. Although several measures have been
proposed over the years, and also in the recent past, each laboratory is still
using its own ensemble of quality checks and parameters. Even when different
laboratories are using the same measures, they often compute them differ-
ently or assess these measures using subjective, non-reproducible criteria.
Therefore, it is often the case that when analysed by different experts, the
same structure will be assessed through different statistics, and thus assigned
a different quality level.

Commonly used measures of accuracy are the size and number of residual
restraint violations and the statistics of the distribution of residues in the
regions of the Ramachandran plot. A related issue is that of the measure of
precision of an NMR structure, which is typically evaluated by the Root Mean
Square Deviation (RMSD) of the backbone atoms or of all heavy atoms within
the bundle of conformers that is released in the PDB. RMSD is a measure
of the average distance between the backbones of superimposed structures.
Given two sets of point s (i.e. two structures Sy and Sy), RMSD = between
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S1 and S; is given by

~_ [ )
o= \/N zi:(sh‘ - Sgi) (314)

Given a family F of K structures S, the RMSD within the family can be
defined as
1
=(F :—E =(S;, ;5 3.15

or

(1]

(F) = %Z \/% Z(Sz — S_i> (3.16)

where 5; indicates the ¢ —th point of the mean structure over the family. The
equation (3.15) gives the RMSD as the average value of the RMSDs between
all the structures in the family. (3.16) gives the RMSD as the average value
of RMSD of each structure in respect to the averaged structure of the family.
However, these measures often leads to an overestimation of a structure’s
precision.

All the above kind of measures have been shown in the literature to be
inadequate to properly function as indicators of structure quality. Moreover,
they fail to clearly distinguish correct from wrongly folded structures. In fact,
solution structures can be refined to very good values for these parameters,
and thus apparently show high accuracy and precision, while still having
major flaws. Although the two aspects of precision and accuracy of NMR
structures are clearly linked to one another, we will focus mainly on the
aspects related to accuracy. Note that both are affected by the criteria used
for inclusion of a given conformer in the final bundle of structures (e.g. global
energy versus sum of restraint violations) in an unpredictable way.

Accuracy can be assessed at different levels. One aspect is global fold
accuracy, i.e. whether the NMR structure really reproduces the protein fold.
At the other extreme, another aspect of accuracy is local conformation, e.g.
of side chains, which can have a deep impact also on important features
such as hydrogen bonding or protein core compactness. Global accuracy
is typically assessed by means of global statistics, which range from scores
describing the total number of violations (sometimes normalized by the total
number of restraints used) or the residual largest violations, to more refined
measures such as RDC-based @-factors (see section 3.3 for a brief overview),
but can also include measures such as Z-scores which is the deviation of
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Figure 3.2: The deposited reference structures of Calbindin Dgx is
shown (panel a) together with the corresponding 25, 50 and 75% per-
turbed structure families (panels b, ¢ and d respectively.)

that quality indicator from a database-derived average value, in units of the
standard deviation of that database derived average. The database derived
average will by definition have a Z-score of 0. Z-scores can be calculated
with different definitions by a variety of programs.

3.2.2 Validation of validation tools

Without sake of completeness we reviewed several tools, choosen among
the most popular or the more recent released. They represent the state of
the art of programs and softwares dedicate to the assessment of the qual-
ity of three-dimensional structure of proteins. The following programs were
used: FRST [136], HARMONY [106], HOPPscore [121], MolProbity [42],
PROCHECK [75], ProSA (ProSA-Web) [146], TAP [135|, WHAT IF (WHAT
CHECK) [57]. All these tools are freely available through web servers. A list
of web addresses is shown in table Table3.1. Details about these programs
can be found in the original publications or briefly summarized in [115].

Among the methods analyzed ProSA (ProSA-web) TAP, FSRT and HAR-
MONY try to give an unique parameter indicating the overall quality of a
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Figure 3.3: The three flawed families calculated for Calbindin are
shown in panels b, ¢ and d. The reference 1IKQV structure is shown
in a. The flawed family calculated for MNKG6 is shown in f whereas the
reference family 1YJR is shown in sub-plot e. In panels 6-d and f, the
first model of the reference family is shown in green superimposed to the
flawed bundle.

structural model, while other tools give more extensive outputs listing sev-
eral different parameters usually concerning conformational and geometrical
aspects. We can refer to programs like ProSA and TAP/FSRT as statistical
methods for the reason that the scores spring from the mean values of forces
or potentials. In this way they give a parameter accounting for the overall
quality of a model and also an estimate of the local quality, usually given
as a per-residue plot of the energy of pseudo energy. The availability of a
unique parameter to fully describe the goodness of a structure is an appealing
idea especially for the occasional consumer not familiar with concepts like
rotamer normality or C” deviations and just looking, for instance, for a good
template for homology modelling.
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Structure RMSD (A) | ref. RMSD (A)
PDZ (1Y7N) 0.68 -
PDZ recalc 0.81 0.60
PDZ perturbed 25% 0.63 1.23
PDZ perturbed 50% 0.36 1.44
PDZ perturbed 75% 0.38 1.67
Calb D9k (1KQV) 0.33 ;
Calb D9k recalc 0.71 0.67
Calb D9k perturbed 25% 0.50 1.34
Calb D9k perturbed 50% 0.28 1.50
Calb D9k perturbed 75% 0.25 1.79
Calb D9k Error 1 0.82 2.65
Calb D9k Error 2 0.79 2.67
Calb D9k Error 3 2.23 2.94
Menkes 6 (1YJR) 1.07 -
Menkes 6 Error 1.32 3.48

Table 3.2: Backbone RMSDs values for the various structures. The
RMSD column contains RMSD values within the bundle of conformers.
The RMSD to the reference is the RMSD of the flawed structure with
respect to the first model of the reference structure (equation (3.15).

3.2.3 A proteins benchmark for tools assessment

The selected tools have been tested and validated on several protein test
systems in which errors have been introduced. The selected test proteins
were: bovine Calbindin Dyg, a vitamin D-dependent calcium-binding pro-
tein, the second PDZ domain of the human neuronal adaptor X11a and the
apo form of the AG9P mutant of the sixth soluble domain of the Menkes
protein. All deposited models have been retrieved from the RCSB Protein
Data Bank (PDB).

Calbindin Dygg (UniProt code P02633) is a 75 aminoacid calcium-binding
protein, whose structure consists of 4 helices and 3 loops. A total of 1675
meaningful NOE data, 37 dihedral angles and 1097 pseudocontact shifts have
been used for structure calculations. The PDB deposited ensemble 1IKQV [17]
of structures has been used as reference. We selected this protein because the
fact of the great number of experimental data available; it has been indeed
extensively used as a test protein for a variety of different studies [16], [12],
[20].

The second PDZ domain of the human neuronal adaptor X11a (UniProt
code Q02410, PDB entry 1Y7N, [47]) is a 90 aminoacid residue protein and
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its fold consists of 2 helices and 6 beta sheets. This is a high quality NMR
structure determined by a group deeply involved in the development of struc-
ture validation and refinement methodologies. We may therefore consider it
as a state of the art NMR-solved proteins. The original experimental data
(1725 meaningful NOE’s and 95 dihedral angle restraints) have been retrieved
from the BioMagResBank [138] (mrblock _id 51978, bmrb_id 6113).

The structure of MNK6 (UniProt code Q04656) has been recalculated
using 1956 meaningful NOE data and 82 dihedrals angles. MNKG6 is a 75
residues protein with a Saf8a fold (PDB entry 1YJR [9]). As long as the
fold of this proteins is correct, some regions are not structurally perfectly
assessed due the lack of NOE assignment in loops regions. This makes this
protein an interesting benchmark to prove the discriminatory power and
sensivity of validation tools.

We did generated flawed structures still having a plausible fold mimick-
ing unaccurated NMR experimental data The original experimental distance
constraints have been randomly perturbed by adding and/or subtracting up
to 75% of their original values. These data have been subsequently used
to perform structure calculations. More severe errors were generated intro-
ducing wrong NOE assignments in the data set of Calbindin Dgx and the
Menkes. In the first case we switched the NOE constraints for the protons
of residues Lys7 and Lys41. In the second case, in addition to the previous
misassignments, we interchanged all NOE values of Lys25 and Lys16. In the
third case we switched all the assignments of residues Glu51 and Glu64. Sim-
ilarly, for the sixth domain of the Menkes protein we switched all the NOE
assignments of residues Cys18 and Cys35. It should be noticed that these
residues have been chosen randomly and not because they play a particular
or critical role in protein folding or functionality. Some RMSD data for the
recalculated families are summarized in Table 3.2. The effects of this errors
and inaccuracies are shown in Figure 3.2 and Figure 3.3.

3.2.4 Structure calculations

Calculation of the 3D structure is formulated in the program CYANA as
a minimization problem for a target function that measures the agreement
between a structure and the given set of constraints. The CYANA target
function [53], [54] is given by the equation

V=3 we D (dap—bap)* +wa ) [1_%(%>2

c=ul,v  (a,B)El (a,B)E1, ¢

A? (3.17)
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where o and 3 are two atoms,and b,p the upper and lower bounds on the
distances d,s between the two atoms. T'; = 7 — (6,"%" — §,"")/2 denotes
the half width of the forbidden range of the i-th torsion angle value 6; that
is allowed in the interval [0, 6,"%*|. I, I, I, are the sets of atom pairs
(e, B) with upper, lower or van der Waals distance bounds respectively. [,
is the set of restrained torsional angles. The parameters w,, w;, w,, w, are
the weighting factors of the different types of constraints. A; is the size of
the 4-th torsion angle constraint violation.

The CYANA target function V' (equation (3.17)) is zero if and only if all
experimental distance constraints and torsion angles constraints are fulfilled
and all non-bonded pairs satisfy a check for the absence of steric overlap.
A conformation that satisfies the constraints more closely than another one
will have a lower target function value.

The minimization algorithm is based on simulated annealing [67] by
molecular dynamics simulation in torsion-angle space. Molecular dynam-
ics simulation includes kinetic energy that allows overcoming barriers of the
potential surface which reduce the problems of trapping in local minima.
Molecular dynamics simulation using torsion angles instead of cartesian co-
ordinates as degree of freedom [54], [127], [69], [127], [90] provides a very
efficient way to calculate NMR structures. The only degree of freedom are
the torsion angles that is the rotations about the single bonds, such as the
conformation of the molecule is uniquely specified by the values of all tor-
sion angles. Covalent bonds that are incompatible with a tree structures are
treated by distance constraints.

The potential energy landscape of a protein surface is complex and stud-
ded with many local minima. The temperature schedule is important because
the fact that kinetic energy determines the maximal height of energy barri-
ers that can be overcome in a molecular dynamics trajectory. A standard
simulated annealing protocol consist of five steps:

1. Initial minimization. 100 conjugate gradient minimization step are per-
formed including only distance constraints up to 3 residues apart along
the sequence followed by a 100 minimization steps including all con-
straints is performed to reduce high-energy interactions. All hydrogen
atoms are excluded form the check for steric overlap.

2. High-temperature phase. A torsion angle dynamics at constant high
temperature. One-fifth of all N torsion angle dynamics steps are per-
formed at a constant high reference temperature (typically 10* K). The
time step is initialized to 10~ *°s.

4

=N are performed during which the tem-

3. Slow cooling. The remaining
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perature approaches to zero according a fourth-power law.

4. Low-temperature phase with individual hydrogen atoms. All hydrogen
atoms are incorporated into the check for steric overlap. 100 conjugate
gradient minimization steps are performed, followed by 200 torsion an-
gle dynamics steps at zero reference temperature.

5. Final minimization. A final minimization of 1000 conjugate gradient
steps.

3.2.5 Paramagnetic based constraints

The presence of a paramagnetic metal ion induces a shift on the nu-
clear resonances. This shift is determined by two contributions: A contact
contribution, due to through-bond nuclear spin electron spin coupling, and
a pseudocontact shift contribution. The pseudocontact term is due to the
dipolar interaction between a nuclear magnetic moment and an average in-
duced electron magnetic moment. The latter depends on the scalar product
of the metal magnetic susceptibility tensor with the applied magnetic field
vector. As a result, the pseudocontact shift values depend on the position
of each observed nucleus in the magnetic metal susceptibility frame, with
origin on the metal ion, and on the anisotropy of the latter, according to the
following equation [17]

1 3
6Fes = 573 AXaz(3cos?0; — 1) + §Axrh sin? 0; cos 2¢; (3.18)
iM

where ;37 is the distance between the nucleus i and the metal ion M; #; and
¢; are the polar angles of the vector r;;; with respect to the principal axes
of the magnetic susceptibility tensor x centered on the metal ion. The axial
and rhombic magnetic susceptibility anisotropies are given by

Xaz + Xyy

5 (3.19)

AX(I.Z‘ = Xzz —

Ath = Xzz — Xyy (320)

The amount of information provided by these restraints can be so sig-
nificant that diamagnetic proteins containing a metal binding site may be
conveniently investigated by substituting the diamagnetic metal ion with a
paramagnetic one [20]. It may be convenient to substitute different paramag-
netic metal ions in the same binding site, in order to have several sets of data,
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which are often complementary [19]. Indeed, the metal susceptibility tensor
depends on the nature and the coordination properties of the metal ion and
therefore different metal ions provide independent information. PCS shifts
have been sucessfully implemented in CYANA package [11]. They can be
used together with NOEs constraints for structure calculations. A new term
VPCS has been added to the CYANA target function V (equation (3.17)):

yPes _ Zwi [max(| ZI;CZ‘;? _ (5PCS| -, 0>]2 (3.21)

Lobs

where w; is the weight of the i-th constraint and 7} is the tolerance on the
1-th proton; it gives an extimation of the error with respect to the shift real
value.

3.2.6 Structure refinement

Rapid calculation of protein structures necessitates severe simplifications
of the nonbonded interactions. The unrealistic treatment of electrostatic
and van der Waals interactions can lead to nonoptimal packing, unsatisfied
hydrogen bond donors or acceptors. For these structures, validation programs
often yield low quality indices such as the Ramachandran plot appearance or
the side-chain packing quality. Refinement in a full molecular dynamics force
field is one way to improve the quality of the structures [83]. The program
AMBER 8 that implements the SANDER module [104] has been used to
perform energy minimization of each structure within the family generated
during the molecular dynamic calculation with CYANA.

SANDER use first order steepest descent and conjugate gradient algo-
rithms for energy minimization. The force field contains bond terms (bend-
ings, stretchings, torsions) and non bond terms (Van der waals, hydrogens
and electrostatic interactions). The potential function U is given by:

U= Z K. (r—19)* + Z Kp(0 — 6o)*+ Z Z % [cos (1 — Yu)] +

bonds bonds bonds n
12 6
J 1) 1)
+ E €ij ( — —
Tij rij

1<J
where r is the actual distance between two bonded atoms, ry the equilibrium
distance, K, the stretching force costant, 6 the actual bond angle, 6, the
equilibrium angle and Ky an associated costant. V,, is the potential of the
torsional barrier, 7, the pahse of the dihedral angle, n,, the barrier periodicity,
¢; and g; the partial charges of the the i-th and j-th atom respectively at
distance r;; R;; is the sum over the Van der wallas radii R; and R;.

2

T‘. .
i<j Y

(3.22)

20



A potential function NVOF  weighted on NOEs values, is also imple-
mented to take account of these restraints during the minimization. It is a
mixed linear-armonic potential in the form (distances in A):

ki (di; — d;;.)z for di <dj <dy+05

NNOE - ¢ ¢ 2.0 < d;; < 2.0 (3.23)
ko(ds; — d;;)i dij > di + 0.5
]{52<175 — dl]) dij <1.5

where d; is the upper limit for the distance d;; between atoms ¢ and j. To
the costant k; and ke have been assigned values of 133.8 kJmol A2 and
133.8 kJmol *A~! respectively.

Pseudocontact shifts have been introduced in the potential function by
mean of the term

Leale obs

VPOS _ ZKPCS [max(|§7SS — 6768| — T, 0)}2 (3.24)

where Kpcg is force constant. The sum runs over all the 7 shifts considered
[11].

The minimization procedure is stopped when the difference of the energy
or of the norm of the energy gradient do not vary between two subsequent
minimization steps in respect to a fixed threshold. The threshold is setted
to 10~ kealmol " and 0.1 kcalmol ' A~ respectively.

3.3 Discussion

Over the last years fine ideas and tools for assessment of the quality or
validation of NMR structures have been proposed by several groups working
on this topic, and more results will be produced in the future. In this work
we gave a first evaluations of the relative merits of different measures or
strategies implemented through several different programs (see section 3.2.1).

We think that it is worthy to notice that, in general, authors make efforts
to prove the performance of their tools showing how many times the proposed
methods is able to discriminate a flawed structure from a good one, sometimes
working on huge dataset analysing thousand of proteins or models; on the
contrary the problem of false positive is rarely (if never) discussed. In the
past claims about false-positives generated by validation tools have been
raised and discussed |91]. Anyway we think that false positives are not a real
problem in the sense that a false positive usually should lead to double check
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experimental data and the structure: it is up to the "structure producer"
and to his/her experience to judge if and when data or structure need re-
examination and or correction. It is obvious, that producers should resist the
temptation to refine their models against the output of a certain validation
tool, i.e adjusting the Ramachandran plot appearance for, as we showed,
this is not a guarantee of a correct structure. This behaviour also induces a
dangerous negative feedback as in the case of X-ray structures, usually used
to build reference databases for geometrical and stereochemistry properties
or in the building of test dataset used to develop and asses new validation
tools.

From our findings, we can point out that false negative are much more
worrisome: when a structure is flagged as problematic, it is likely it is. When
a structure is flagged as a good structure, this can not be trusted completely.

The kind of errors introduced may be considered relatively gross. Nev-
ertheless, because they lead to significant distortions of the structures while
maintaining several features intact, such as individual secondary structure el-
ements, they are representative of perhaps more subtle errors that can arise
e.g. due to misinterpretation of experimental data. Indeed, the kind of errors
discussed here, that preserve a roughly plausible fold, leads to a relatively
satisfactory evaluation of the tools that assess the global quality of the struc-
ture most likely because the fold is not incorrect. However, many aspects of
the structure are wrong, and may become misleading when one attempts to
use the structure to interpret biochemical /biological evidence.

We did compare structures with correct structure to structures deriving
from an artificially wrong NMR input. We can remark that often but not
always, the scores for the correct structures are better than for the wrong
ones as in the case of TAP score. But this is not sufficient for a valida-
tion tool; having a structure set with a TAPscore of 0.6866-0.7143 (numbers
from Table 3 of the attached paper), how to know that a better one would
have a TAPscore of 0.7576-0.79467 In a real case one has only one set and
comparisons are not possible. The many inconsistencies revealed during our
screening suggest that it is not possible to use of these tools for the system-
atic screen of large numbers of models without any visual inspection of the
structures. This is particularly true especially for those tools whose output is
an unique parameter indicating the overall quality of a structural model. The
spread in score over the members of the bundle of unperturbed conformers
is relatively large and makes these tools almost useless in discriminating be-
tween correct and flawed structures. Score ranges typically allowed for NMR
structures comprise both good and flawed structures without consistent dif-
ferentiation. Indeed, significantly perturbed structures can bypass several
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Figure 3.4: Left: Investigation of two ABC transporter structures us-
ing the ProSA-web service. The structure of a monomer of MsbA (PDB
code 1JSQ, chain A [30]) determined by X-ray crystallography to 4.5 A
resolution and retracted due to problems in the interpretation of the
crystallographic raw data. Although homologous to 1JSQ, the structure
of the monomer of Sav1866 (PDB code 2HYD, chain A [43]) as deter-
mined by X-ray crystallography to 3.0 A resolution differs considerably
from the 1JSQ A chain The ProSA (ProSA-web) Z-scores indicate that
2HYD has features characteristic for native structures. This is not true
in the case of the flawed recalculated structure of 1YJR (Right). In
this case ProSA Z-scores fail to discriminate between wrong and correct
structurec assigning a lower (-4.78) (that is more "native") score to the
wrong model in respect to the correct one (-3.72). This is due to the
score spread within the bundle.

validation tools, also due to the relatively high intra-family variation that we
observed. In Figure 3.4 shows the effect of score spread within the bundle in
the case of a ProSA analysis of the recalculated Menkes protein (1YJR): the
best wrong model scores -4.78 against the -3.72 of the worse correct model,
thus assigning a more plausible fold to the flawed structure.

Operatively, it appears that the distribution of (¢, ¥) torsion angles pairs,
either in the "simple" Ramachandran plot (taking into account only the per-
centage of residues in the core region) or in the more sophisticated analysis
performed by HOPPscore, remains one the best indicators of structure qual-
ity, provided that backbone dihedral angle restraints are applied loosely as
done here. Clearly, refinement of the structure against a potential based on
the Ramachandran map would make this indicator useless. WHAT CHECK
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e lst generation packing quality : -0.933
- 2nd generation packing quality : -1.259
i Ramachandran plot appearance : -4.520 (bad)
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Figure 3.5: Ramachandran plot (from PROCHECK) for the deposited
1KQV family of Calbindin Dgg paired with the correspondent WHAT
IF checks report.

Z-scores for x; — x2 rotamer normality or for backbone conformation are
also informative. Note however that the y; — x2 rotamer distribution can be
significantly affected by the force field applied in molecular dynamics calcu-
lations/refinement, as these dihedrals may often not be well determined by
the NMR data. Incidentally we did notice that the spread of scores and the
backbone RMSD within the bundle do not correlate.

It is worthy to be noticed that none of the evaluated tools checks the
consistency of the structure with the corresponding experimental NOEs. The
selected test proteins are all compact and of similar size. For the largest one
(PDZ domain, 90 residues) there are 1725 NOEs, while for the smaller ones
(Calbindin Dy, Menkes sixth domain, 75 residues) there are 1675 or even
1956 NOEs. The number of not 'meaningful’ NOEs may bias some of the
statistics, e.g. average restraint violation. Short distances in the structure
should correspond to NOEs and vice versa. This needs some parameters
(cutoff for short distances), and one may argue also about other aspects such
as dynamics. Similar problems exist for most scores; consistency between the
list of NOEs and the resulting structure would be a validation directly on the
experimental input, and a rather informative way for NMR spectroscopists.

This could be accomplished with some useful tools have been proposed
recently |95] to identify within the several hundreds of restraints typically
used in an NMR structure calculation those that exert the greatest influence
on the resulting structure (these "unique" restraints are identified using in-
formation analysis as those having the highest information content among
all restraints used), which are thus worth checking most carefully. This is
a local-level analysis that however may impact crucially on the global fold.
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Ideas based on information retrieval analysis have been exploited to pro-
pose NMR quality factors based on Recall, Precision (not to be confused
with structural precision; here it refers to completeness of back-calculated
NOESY peak lists relative to experimental peak list data) and performance.
A normalized F-measure statistic, dubbed discriminating power (DP), has
been also proposed [59] as a measure of the capability of the experimen-
tal data to discriminate between a given 3D structure and a freely rotating
chain. These parameters provide global measures of the goodness-of-fit of
the 3D structures with NOESY peak lists, and thus do not directly assess
the accuracy of the structure.

It should be kept in mind that structure determination strategies are
typically iterative and comprise various steps of structure analysis/error cor-
rection/addition of new NOEs, in which the only goal is to minimize the
RMSD of the bundle and the residual violations of upper distance limits.
Care should be taken to evaluate quality parameters also during the itera-
tive calculation process and not just at the end, in order to detect potential
problems as early as possible.

A protocol on how to use existing tools to check an/or validate calcultated
structures prior to deposition in the PDB that has received general approval
by the bulk of the community is still lacking. A possible first step is the
compilation of a list of checks/quality factors to be always performed at
the end of a solution structure determination project, and to be released at
the time of structure deposition or together with the publication describing
the structure. "Instructions” on how these checks should be performed in a
standardized manner should be drawn up as well.

It is likely that this approach would result in tighter and better ranges of
quality scores for deposited NMR, structures.
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Chapter 4

Publications

4.1 Monomorphysm of human cytochrome c

o6



4.2 The War of Tools: how can NMR spectro-
scopists detect errors in their structures?
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