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Preface

Finite Mixture Models have gained an increased popularity in many fields of sciences;
the main feature of this class of models is that commonly used density functions are em-
ployed as building blocks for more complex distributions: this allows for a great flexibility
in statistical modeling and makes finite mixtures adequate to very complicate frameworks.

Very often, the rationale of fitting a mixture model is the presence of k unobserved
subpopulations; however, there are many examples in which the components of a mixture
lack any physical sense and may be viewed as latent clusters – according to some meanin-
gful classification. Furthermore, even when there is no reason to believe that a latent struc-
ture affects the data-generating process, a mixture model can be fitted with the aim of
exploiting its flexibility; as pointed out in McLachlan and Peel (2000), this approach is a
good compromise between a fully parametric model (k = 1) and a completely nonparame-
tric one: together with a great flexibility, a finite mixture model retains some of the advan-
tages of the parametric approaches, keeping a moderate number of parameters and allowing
for a simple interpretation of the estimated component densities.

A finite mixture model may be applied with very different purposes. As pointed out by
some authors (see, e.g., Lindsay 1995), a mixture model has a dual usefulness: on the one
hand, it enables to study the distribution of the outcome variable (Y) when a covariate (the
component membership Z) is missing; on the other hand, it makes use of a surrogate mea-
sure (Y) to learn about an unobserved variable Z; from this viewpoint, fitting a mixture
model can be a valid alternative to using standard clustering methods.

Unfortunately, estimating the parameters of a finite mixture model presents a number
of obstacles: first, model identification is not guaranteed; second, estimates are sensitive
to the starting values used for the optimization algorithm. In this work, both issues are di-
scussed under a theoretical and computational point of view. The critical points of the log-
likelihood function are classified into three main categories (spurious/local optimizers and
saddle points), according to their nature. The presence of saddle points has a great rele-
vance in model identification; furthermore, the task of finding the true MLE is complicated
by the existence of local maximizers. With a simulation study, we illustrate how difficult
it may be to estimate the parameters of a mixture model and we investigate how a Genetic
Algorithm may be used for this optimization problem: the choice of the operational para-
meters is discussed, with a special attention to the trade-off between the effectiveness of
the algorithm and the computational effort.

Another relevant topic is constituted by mixtures of multivariate distributions: after a
brief presentation of Multivariate Normal mixtures, we explain how the simultaneous mo-
deling of more than one outcome variable may improve the model identification.

In this work, we have also developed and presented a new R package mixglm (forthco-
ming) for fitting finite mixtures of Normal/Poisson/Binomial distributions via the EM al-
gorithm. With respect to other software, mixglm allows for a greater flexibility in the model
specification; covariates may affect both the mixing distributions and the mixing propor-
tions; any parameter is allowed to vary or to be constant across components, or to be an
offset; the package also handles mixtures with partially classified observations. In mixglm,
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multivariate models are implemented: since the joint distribution is specified as the product
of marginal and conditional densities, the outcomes are allowed to belong to different pa-
rametric families. Optionally, the starting values for the EM algorithm are provided by a
genetic algorithm; the standard errors of the estimates may be computed using the asym-
ptotic covariance matrix (with analytical evaluation of the Hessian of the log-likelihood
function) or with a bootstrap approach (parametric or nonparametric); a function for bo-
otstrap-based selection of the optimal number of components is provided; fitted values
and conditional membership probabilities are also available.

With some modifications, mixglm has been applied to the evaluation of the effects of
a randomized job-training program, Job Corps, which stands out as the largest, most com-
prehensive US education and job training program for disadvantaged youths between the
ages of 16 and 24; for our analysis, we use data from the National Job Corps Study, con-
ducted by Mathematica Policy Research, Inc. The study is based on a national random
sample of all eligible applicants in late 1994 and 1995. Sampled youths were assigned
randomly to a program group or a control group; consistently with the program’s aim, key
outcomes of interest are: employment status, total earnings, and wages.

In this work, we adopt the general framework of the Rubin Causal Model (Holland, 1986),
where, in the case of a binary treatment, for each unit two potential outcomes are defined
– one if treated and one if not treated; the causal treatment effect is defined as a comparison
of the two potential outcomes. This configures the causal inference as a missing data pro-
blem, since only one outcome – corresponding to the actual treatment assignment – is ob-
served for each unit; however, randomization ensures that the sample means are unbiased
estimates of expected outcomes in the two groups; as a consequence, the average treatment
effect is estimated in a straightforward way. Very often, complications arise and this simple
framework must be adapted to more complex settings.

In the study, three complications are present, namely a) compliance with assigned tre-
atment was not perfect, as only 64% of those assigned to the program group effectively en-
rolled in Job Corps; b) due to attrition, outcome is missing on some participants; c) wages
are truncated by death, meaning no wage is defined for those who are not employed. Using
the principal stratification approach (Frangakis and Rubin, 2002), we define the average
treatment effect of interest as the expected difference between the two potential wages
among the compliers-always-employed (units who would comply with the treatment as-
signment and employed in both treatment and control condition).

Using a likelihood approach, we propose a log-Normal model for wages; we assume
that data are missing at random (MAR; Rubin, 1976); both the potential outcomes and the
mixing proportions are supposed to depend on pre-treatment covariates. Using the EM al-
gorithm, we estimate the treatment effect on employment and wages for compliers with and
without assuming monotonicity of truncation.

The thesis proceeds as follows. In Chapter 1, we present the general framework of
finite mixture models, with a brief account of the main issues in estimation and inference;
a simple description of the basic EM algorithm is provided. Chapter 2 is devoted to the spe-
cial issue of the local/spurious optimizers and of the saddle points in the likelihood fun-
ction; a simple genetic algorithm is presented and applied to a simulated data set. In
Chapter 3, mixtures of multivariate distributions are discussed, with a special attention to

8
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the multivariate Normal model; with a simulation study, we illustrate the advantages of
using a multivariate mixture. Chapter 4 presents the mixglm package. In Chapter 5, we di-
scuss the general approach to the causal inference in presence of noncompliance, missing
outcomes and truncation by death; under a likelihood approach, we estimate the average
treatment effect on employment and wages for the Job Corps Study. In Chapter 6, results
are discussed and concluding remarks are provided, together with some suggestions for fur-
ther developments.





(1) Mixtures of different families are an interesting topic; see for example the so called “minefield” data set
(Dasgupta and Raftery, 1998, Fraley and Raftery, 1998) where the marginal distribution is specified as a
mixture of g bivariate Normal densities plus a Uniform component (that is, a spatial Poisson process) in
order to capture a background noise.

(2) As pointed out in McLachlan and Peel, 2000, this approach is a good compromise between a fully para-
metric model (k = 1) and a completely nonparametric one (that is a kernel estimate, where k = n and pj = 1/n
for each j): together with a great flexibility, a finite mixture model retains some of the advantages of the para-
metric approaches – keeping a moderate number of parameters and allowing for a simple interpretation of
the estimated component densities.
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1 General Introduction to Finite Mixture Models

1.1 Finite Mixture Models: origin and interpretation

Finite (nonparametric) mixture models represent an advanced and flexible tool in sta-
tistical modeling; this class of models have gained increased popularity over the last
decades across many fields.

In order to define a mixture model let us present the following scenario. Assume that the
random sample Y = (Y1, ..., Yn) has components having different distributions according to
some categorical variable Z = (Z1, ..., Zn) taking on the values z1, ..., zk with probabilities
p1, ..., pk, respectively; that is, the conditional density of Yi given Zi = zj is fj(yi) (i = 1, ..., n,
j = 1, ..., k). If in the observed sample y1, ..., yn the subpopulation the observations are coming
from is not known, the only distribution we can directly observe is the marginal density:

where p1 + ... + pk = 1 and F = (p1, ..., pk, l1, ..., lk) is the parameters vector of the mixture
model. In the above formula, fj is the distribution of Y when Z = zj and lj is the related pa-
rameters vector; the fj(

.) are called component densities and the quantities pj = P(Z = zj) are
the respective mixing proportions. According to the standard practice, without loss of gen-
erality we set zj = j; in most cases, the parametric family is independent of Z, and we can
also suppose fj = f.(1)

In some settings, the latent variable Z contains the labels of k subpopulations that are
known a priori to exist; however, there are many examples in which the components lack
any physical sense and Z may be interpreted as a cluster membership, according to some
meaningful classification. Furthermore, even when we have no reason to believe that the
observed data-generating process is of the form described above, when a mono-component
model is unsatisfactory for a given data set, a mixture model can be fitted – with the aim
of exploiting its flexibility. As a consequence, Z will in this case lose any meaning.(2)

The latent group-label Z can be unobserved for a number of reasons: depending on the
context, Z can represent an unobservable quantity or – very often – a variable for which
is very hard (or too expensive, in terms of time/money consuming) to obtain a direct meas-

f | = f | p + ... + f |1 1 ky y yF l l( ) ( ) ( )1 k ppk



urement.(3) The number of components (k) may be known or unknown: if unknown, it can be
treated as an estimand parameter; in many cases, k is chosen with an ex-post model selection
(see Section 1.2 for some details).

It is straightforward to extend the general model to more complicate settings. If a set of ob-
served covariates (X) affects the lj, a generalized linear model may be specified for the
component densities, according to an appropriate link function. Optionally, a set Xp of covari-
ates (possibly overlapping with X) may affect the distribution of the unobserved Z, with pj

= pj(Xp): a multinomial (logit, probit etc.) or some non- or semi-parametric model is fitted
in this case.

The output of a mixture model is an estimate of F and an ex-post membership proba-
bility for each observation yi (i = 1, ..., n), obtained by Bayes’ Theorem: if the component
densities f1, ..., fk are not “too close”, the model will provide a probabilistic clustering of
the observed Y.

In Figures 1.1-1.2 the shapes of different Gaussian mixtures are displayed, with and with-
out inclusion of covariates for the expected values and for the mixing proportions; different
values of the location and scale parameters lead to a great variety of marginal distributions.

Increased spread and popularity of this class of models are due to their wide applica-
bility and their great flexibility. Unfortunately, learning about mixture models can be a
very hard task. The next section is devoted to a brief discussion of the main issues in es-
timation and inference; Section 1.3 concludes this general introduction describing the EM
algorithm.

(3) It is very important to point out the dual usefulness of a mixture model: on the one hand, it enables to study
the distribution of Y when a covariate (Z) is missing; on the other hand, we can use a surrogate measure (Y)
to learn about an unobserved variable Z (see for example MacDonald and Pitcher, 1979).

Figure 1.1 Plots of 2-components Normal mixture densities. The mixing distributions in (a) have different
location and scale parameters; in (b) the location parameter is the same for both densities, whereas in (c)
and (d) a common scale is used.

(a) (b)

(c) (d)
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(4) A finite mixture model is unidentifiable when infinitely many parameters vectors lead to the same mixed
distribution; to make an example, we cannot estimate a mixture of two or more Bernoulli distributions, with-
out any additional assumptions. An accurate account of this issue is in Titterington et al., 1985.

Figure 1.2 Random samples from different 2-components mixtures of linear regressions with normally di-
stributed errors (different colors denote the true membership of each observation). In (a) and (c) different
slopes and intercepts are used, with common variance; in (b) we have different intercepts and variances, with
common slope; the scatter in (d) comes from a heteroschedastic model on a common linear trend. In (c) and
(d) the mixing proportions vary across the values of x, according to a logistic model.

(a) (b)

(c) (d)

y y

y

x x

x x

y
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1.2 Issues in Finite Mixture Models

In this section, we shortly review the main problems arising in the estimation of mixture
models and we focus on some relevant topics in inference.

A great care is needed in the specification and estimation of a mixture model: it is not
guaranteed that the parameter space lies in an identifiable set.(4) Even when identifiability
conditions hold, the identification may be weak: we pay the flexibility of this class of models
with an unpredictable and multimodal likelihood surface (posterior distribution in a
Bayesian analysis). As a consequence, very different parameters estimates may be obtained
according to the starting points for the optimization algorithm; in addition, in models ad-
mitting a degenerate distribution in an arbitrary mass point (e.g., the Normal model) the
log-likelihood function is unbounded. For the same reasons, the estimates are extremely
sensitive to model misspecifications. In Chapter 2, we deepen these aspects from a theoret-
ical and computational point of view; the shape of the log-likelihood function is investigated
and some solving strategy is proposed.

Another very important issue is that most algorithms (e.g., the standard EM) assume
a known number of components: more complex procedures allow for k to be an estimand



parameter;(5) alternatively, we can choose different values of k and perform an ex-post
model selection (k1 vs k2 components) using the standard selection criteria (BIC, AIC,
CLC, EIC, LEC etc.) or bootstrapping the LRT statistic, whose asymptotic distribution is
generally unknown.(6)

Finally, once the model structure has been chosen and a maximum of the log-likelihood
function has been found, we have to face the problem of making inference about the model
parameters. Also in very simple settings, no closed forms are available for the sampling
variances of the estimators, and the Hessian matrix is generally hard to derive; in addition,
even with a quite large sample size, the distribution of the estimators may be heavily skewed;
a bootstrap approach is preferable in this case.

We conclude this chapter with a brief presentation of the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977).

1.3 Estimation of Finite Mixture Models via the EM algorithm

The simplest and most common optimization procedure for the estimation of finite
mixture models is the EM (Expectation-Maximization) algorithm (Dempster, Laird and
Rubin, 1977). In what follows, we provide a brief description of the algorithm, exploiting
the traditional formulation of a mixture model as an incomplete-data structure; for further
details, see for example MacLachlan and Peel, 2000.

Given n independent observations y1, ..., yn, the likelihood and the log-likelihood func-
tions for a k-components finite mixture model can be written as:

and

respectively. Let us define the new variable Z = (Z1, ..., Zn) as follows:

Zij = (Zi)j = 1 if Zi = j (i = 1, ..., n; j = 1, ..., k)

That is, Zi represents – for each unit – the indicator function of the cluster membership:
we replace the single categorical variable Zi with a k-dimensional component-label vector

l f pi j
j

k

i

n

j( ) log |F l= ( )
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(5) We can mention the reversible jump (Green, 1995), the IPRA (Iterative Pairwise Replacement Algorithm,
Scott and Szewczyk, 2001), the Greedy EM (Vlassis and Likas, 2002), the SMEM (Split-and-Merge EM,
Ueda et al., 2000), the Group Membership Function Method (Yang and Liu, 2002).
(6) Titterington et al. (1985), Böhning (2000) showed the asymptotic result LRT ~ 1/2 χ2

(0) + 1/2 χ2
(d) for some

simple setting, where d = k2 – k1; in a more general context, the limiting distribution is a mixture of chi-square
densities with unknown mixing proportions (Lindsay, 1995). See for example McLachlan and Peel (2000)
for a comparison between different approaches to the model selection.

14
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Zi, whose distribution is thus Multinomial(1, p) with p = (p1, ..., pk). Clearly, being Z un-
observed, also Z are latent variables; if Z were observed, we could write the complete
likelihood and log-likelihood as

and

respectively.
The E-step of the EM algorithm consists in finding an estimate of the unobserved variable

Zi for each observation, given the actual parameters vector F(t); by Bayes’ rule, we obtain:

The complete expected log-likelihood is thus:

Performing the M-step, that is maximizing le(F), is straightforward: the first term of the
above expression is, for each component (j = 1, ..., k), the weighted log-likelihood of a pure
(i.e., mono-component) model for yi, with parameter lj and weigths eij; the second term is
the log-likelihood of a multinomial model for eij (estimating the unobserved zij) with pa-
rameters p1, ..., pk. In a more general setting, a regression model can be chosen for Y and/or
for Z: a traditional GLM software can be used in the fitting procedure. The EM algorithm
can be summarized as follows:

• step 0: choose a starting vector F(0);

• step 1 (E-step): compute the eij given the actual estimates F(t);

• step 2 (M-step): update the parameters vector F(t) maximizing the expected log-like-
lihood;

• step 3: go back to the step 1.

The rationale of the EM algorithm is very easy to understand: intuitively, in the E-step
we try to assess the component membership of each unit; using this information to weigh
the observations, we perform a different maximization for each component of the mixture.
This loop is carried on until the stopping condition has been reached. As showed in Demp-
ster et al., the log-likelihood function is not decreasing after an EM iteration. We refer to
the final estimate of F as “nonparametric maximum likelihood estimator” (NPMLE; Böh-
ning, 2000).
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2 Optimizing the log-likelihood function

In this chapter, we present a very important issue arising in mixture models; we handle
the problem of finding the best estimate among all the local maxima in the log-likelihood
function.(7) Many authors (see for example MacLachlan and Peel, 2000) tackle the issue
of the local maxima in the log-likelihood function for finite mixtures; with the aid of some
simulated data, we illustrate how this question may be relevant in practice.

In the sequel, we illustrate how the solutions of the log-likelihood function may be
classified – according to their nature – into three main categories (Section 2.1); then (Sec-
tion 2.2), we assess how a genetic algorithm performs in searching for the MLE of a mix-
ture model.

2.1 Local maxima, spurious maxima and saddle points

When working with finite mixture models, a great number of different estimates may
be obtained for the same data, depending on the starting points for the optimization algo-
rithm: believing in the uniqueness of the data-generating process, we have the aim of find-
ing the best model for a given data set.

The nature of a stationary point in the log-likelihood function may be disparate; the
main partitioning is between spurious maxima, local maxima and saddle points. After a
brief account on the well known question of the local and spurious optimizers, we will
focus on the latter issue, rarely undertaken in the statistical literature.

Local maxima and spurious solutions

In a very general way, a local optimizer represents a sub-optimal root of the score func-
tion; among all roots, the estimate with the highest value of the log-likelihood may be re-
garded as the best one. However, this very simple decision rule is not always directly
applicable. In normal models with unconstrained variances, for example, the log-likelihood
function is known to be unbounded: when a component with zero variance and mean equal
to an arbitrary data point is fitted, the observed log-likelihood becomes infinite and a sin-
gular covariance matrix is obtained. We speak in this case of spurious optimizers. In prac-
tice, there often exist other solutions which may be regarded as spurious, lying very close
to the edge of the parameter space: this happens when a component with very small vari-
ance (generalized variance in the multivariate case) is fitted; usually, this component den-
sity constitutes a cluster containing a few data points, very close together or almost lying
in the same subspace. Such estimate tends to “interpolate” a local pattern and provides a
bad fit for the remaining observations; as a consequence, the fitted model is not of practical
use in inference. The above arguments hold for any distribution admitting the degenerate
case; in such models, a global maximum does not exist and a great number of spurious
maxima – usually having a large value of the log-likelihood function – may be found.

16

(7) Note that we speak of best maximum (rather than absolute maximum); this emphasizes that the likelihood
function of some mixture models is unbounded and, in this case, the NPMLE corresponds to a local maxi-
mum. Further details are provided in the sequel.



Figure 2.1 Histogram of a sample from a 5-components Normal mixture with parameters m = (0, 2, 5, 9, 15),
s = (0.7, 1, 1, 2, 2) and mixing proportions p = (0.2, 0.2, 0.2, 0.2, 0.2) (n = 250). The superimposed densities
correspond to 40 different local maxima of the log-likelihood function; among them, the red line is the true MLE.
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In practice, the most common recommendation is to use a variety of starting points for
the maximization algorithm: once the spurious maxima have been discarded, the estimate
with the highest value of the observed log-likelihood is finally taken as the true one. Al-
ternatively, we can use some technique to “escape” from the local maxima during the op-
timization: it is the case of the Stochastic EM algorithm (Broniatowski, Celeux and
Diebolt, 1983). In most cases, these cares are enough to prevent a slip in some “bad” point
of the likelihood surface: however, this is not always true.

Model misspecifications generally lead to a substantial bias in the parameters estimates;
choosing a wrong number of components also generates spurious and local maxima. The
joint estimation of k and F may partially obviate to this problem; however, even when the
model specification is correct, the likelihood function is likely to have a large number of
local maxima: as a consequence, the estimates are very sensitive to the initial parameters.
Especially in complex settings, estimating a finite mixture may be very time-consuming:
for this reason, the relevant issue is how frequently we have to run the algorithm before ob-
taining a reliable estimate. To be more specific, we provide some simple guidelines:

• the occurrence of local and spurious optimizers is generally decreasing with the sam-
ple size;

• in weakly identified models (e.g., when the component densities are strongly over-
lapping) it is very frequent to have many different estimates with similar value of the
observed log-likelihood;

• adding covariates or specifying a multivariate distribution for the component densities
may improve the model identification; a reasonable sample size, however, is needed
when a complex model is specified.



In Figure 2.1 we propose the histogram of a random sample from a 5-components Nor-
mal model (n = 250); the superimposed densities correspond to 40 different local maxima
found in 1000 runs of the EM with random starting points (we sampled the means from a
Uniform(y(1), y(n)) distribution – where y(1) and y(n) are the sample minimum and maximum;
the standard deviations were sampled from a Uniform(0,3) density; for the mixing propor-
tions, a Dirichlet(1) was used). In 477 cases, an empty component or a spurious optimizer
was found; only in 43 runs we found the true MLE (red line in Figure 2.1).

Saddle points

The presence of saddle points in the log-likelihood function is a relevant issue (see, e.g., Wu,
1983; Fukumizu et al., 2003); in what follows, we demonstrate that this feature is common to
a wide class of finite mixture models; as showed in the sequel, the feasibility of applying a
mixture model to a given data set is also related to this topic.

In a univariate model, we suppose that the distribution of y – given the unknown cluster
membership – belongs to the exponential family; that is, the component densities are of the
form:

where E(y | θ) = b'(θ) and Var(y | θ, φ) = b''(θ)a(φ).In the above formula, θ is the canonical pa-
rameter (µ in the Normal(µ, σ2) density, log(λ) in the Poisson(λ), log[π / (1 – π)] in the
Bernoulli(π) and so on) and usually a(φ) = φ (σ2 in the Normal case, 1 in one-parameter ex-
ponential families). The first derivative with respect to the canonical parameter is of the form:

Let us consider a mixture of k = 2 components, both belonging to the same exponential
family with known and common dispersion parameter φ; with these settings, each observa-
tion yi is sampled from the mixed density:

where φ and p are supposed to be known and, in the last expression, f(.) is the component
density from the exponential family; clearly, p1 = p and p2 = 1 – p.
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The log-likelihood function for a data set containing n observations can be written as:

Letting Li = g(yi | θ1, θ2, φ, p) – that is, the contribution of the ith observation to the like-
lihood function – the first derivatives with respect to the unknown parameters are of the
form:

with j = {1, 2}. The Hessian matrix H has the following elements on its diagonal:

The mixed derivatives are of the form:

The determinant of the Hessian matrix is |H| = H11H22 – H12H21; setting θ1 = θ2 = θ = h(y),
where y is the sample mean of {y1, ..., yn} and h(.) = b'–1(.) is the canonical link function
for the chosen density, we have:

It is easy to see that at this point the first derivatives are 0; with some algebra, we can show
that the above Hessian matrix has the following determinant:

Looking at the sign of the above determinant, we can see that the log-likelihood func-
tion has a saddle point in θ1 = θ2 = θ = h(y) (being |H| < 0) if
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where

That is, we have a saddle point if the empirical variance is larger than the theoretical one
(given φ): working with Poisson or Binomial counts, this is true for every overdispersed
data set; in a Normal model, the comparison is between the empirical variance and the
known σ2. If inequality [2.1] does not hold, in θ1 = θ2 = θ = h(y) we have a global maximum
of the likelihood function (being |H| > 0 and H11 < 0 for every admissible parameters value)
and the mixture model cannot be estimated: we can argue that, given the current distribu-
tional assumptions, there is no evidence of unobserved heterogeneity.

In Figure 2.2, we depicted the shape of the log-likelihood function of a mixture of two
Poisson distributions (with parameters λ1 and λ2 and with known mixing proportions). Figure
2.2a has been obtained from a simulated data set with sample variance greater than the
sample mean: the MLE is the couple A = (λ1

∗, λ2
∗); since the mixing proportion are known,

there is no label switching and the couple B = (λ'1, λ'2) is a local maximum; finally, there is
a saddle point in S = (y, y). In Figure 2.2b, the sample mean is greather than the sample
variance: the unique MLE is in M = (y, y) and a mixture of Poisson distributions cannot
be estimated.

Var y b a

y E y h y b h y

| , ''( ) ( )

| '

θ φ θ φ

θ

( ) =

= = ( )  = ( )(( )

Figure 2.2 Contour plots of the log-likelihood function l(l1, l2) for a 2-components mixture of Poisson di-
stributions with known mixing proportions (p = 0.3). In (a) the sample variance is greater than the sample
mean: we have a global maximum (A), a local maximum (B) and the saddle point (S) in l1 = l2 = y. In (b)
the sample mean is greater than the sample variance: as a consequence, the log-likelihood has only one
global maximum (M) in l1 = l2 = y and a mixture of Poisson densities cannot be estimated.

λ2

λ1

λ2

λ1

A M

B

S

(a) (b)

It is very hard to extend the above arguments to a k-components model with unknown
dispersion parameters; however, simulations suggest that the same results hold, with some
complications, for more complex models or in presence of covariates. If the mixing pro-
portions are also unknown, when θj = θh for some (h, j) the Hessian matrix becomes sin-

20



(8) For a complete account on genetic algorithms, see for example Mitchell, 1996, Vose, 1999.
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gular: this is because k mixing proportions are estimated in a model with k – 1 actual com-
ponents; that is, the parameter space lies in a not identifiable set: infinitely many couples

(pj, ph) return the same observed log-likelihood.
In practice, empirical results confirm that a very frequent outcome of the optimization

algorithm is of the form

Ffl = (lfl, ..., lfl, lflh, ...,lflk, pfl)

where lflj = (θ flj, φflj), pfl= (pfl1, ..., pflk), j = 1, ..., k and 2< h≤ k; that is, the same estimates are
obtained for a subset of two or more component densities (without loss of generality, the
first h – 1 in the above notation). This case may be very frequent when the sample size is
small and the components are strongly overlapping; in order to find the true MLE, a central
role is played by the starting points of the algorithm: in the first step, the component den-
sities (based on the actual parameters vector) should not be too “close” together. At the ex-
treme, if the starting values for the EM algorithm contain the same parameters for each
component, the conditional membership probabilities in the E-step would be eij = 1/k: as
a consequence, the EM would converge (after just one iteration) to the parameters vector
Ffl = (lfl, ..., lfl, pfl) with pfl= (1/k, ..., 1/k).

2.2 Finite Mixture Models and Genetic Algorithms

Genetic Algorithms (Holland, 1975) are a very general technique used to find approx-
imate solutions to optimization and search problems.(8) The working principle of a Genetic
Algorithm (GA) consists in using techniques inspired by evolutionary biology such as in-
heritance, mutation, selection, and crossover. In what follows, we will explain how a GA
proceeds in optimizing the log-likelihood function of a finite mixture model.

Simplifying, the steps of a GA are the following:

• Initialization

Many individual solutions (chromosomes) are randomly generated to form an initial
population. In our problem, each individual is composed by q “genes”, that is the
vector of order q containing the model parameters. The population size (N, the num-
ber of chromosomes) should be adequate for the function to optimize (in a model
with many parameters, a bigger population is required). The initial population does
not need to cover the entire range of possible solutions: the search space will expand
by means of the mutation process. For each individual, the fitness function (in our
case, the log-likelihood function) is evaluated.

• Reproduction and mutation

From the initial population, the NE “best” individuals (the Elitists, that is those with
higher fitness) are selected to survive in the new generation; this ensures the monoto-



nicity of the algorithm. Afterward, (N – NE)/2 couples of parents are “selected” from
the whole old generation;a possible strategy is to select each individual with probability
proportional to some power (say ω) of the observed fitness or of the corresponding
order statistic: if ω = 0, there is no selection; increasing ω will make the selection more
and more severe. The parents will breed N – NE new individuals by means of some
cross-over mechanism. This progeny constitute (together with the Elitist) a new gen-
eration of size N. Optionally, a random sample of individuals (perhaps selected using
some fitness criterion) is subject to a mutation; in most cases, the mutation consists in
a random alteration of the genes. The mutation process ensures the renewal of the ge-
netic heritage: the aim is to widely explore the parameter space, giving an opportunity
to escape from local solutions. These processes ultimately result in the next generation
population of chromosomes: the average fitness is expected to be increased, since only
the best individuals from the first generation are selected for breeding.

• Termination

The generational process is repeated until a termination condition has been reached.
Common terminating conditions are:

• a fixed number of generations (T) is reached;
• the allocated budget (computation time/money) is reached;
• a fixed number of generation without significant improvements is reached;
• some minimum criterion is satisfied;
• combinations of the above.

The underlying idea of a GA is very simple: combining a stochastic search with the se-
lection mechanism, we try a great number of possible solutions; under a computational
point of view, this is less expensive than to do the same number of trials with a complete
running of any maximization algorithm. The output of a GA is a number (usually, NE) of
starting points available for an optimization routine.

The success of a GA is not guaranteed and depends on the function to be optimized and
on the operational parameters: mainly, the population size (N), the number of elitists (NE),
the terminating condition, the selection criteria and the mutation rate. As a general guide-
line, in order to have a satisfactory outcome, the algorithm should run for a great number
of generations: this ensures the effectiveness of the evolutionary process. With a high mu-
tation rate and a small value of ω, the algorithm tends to sacrifice short-term fitness to gain
long-term fitness, widely exploring the parameter space and increasing the chance of es-
caping from a local maximum. Vice versa, a severe selection – together with a small mu-
tation rate – would speed the convergence but may lead to a poor result in terms of fitness.

In order to show how a GA may improve the convergence of the EM algorithm, we con-
clude this chapter with a simulation study. For this purpose, we take back the data set of
Figure 2.1, obtained from a 5-components Normal model (n = 250). We also suppose to
know the variance parameter of each Gaussian density (this rules out the presence of spu-
rious optimizers): therefore, the estimand parameters are the means µ1, ..., µ5 and the mix-
ing proportions p1, ..., p5. Randomly choosing the starting values for µ1, ..., µ5 from a
Uniform(y(1), y(n)) distribution (where y(1) and y(n) are the sample minimum and maximum)
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and those for p1, ..., p5 from a Dirichlet(1) density, we ran the EM 2000 times: only in 18
cases (0.9%) the “true” estimate was found; in 447 cases (22.35%) the EM converged to
a local maximum, whereas some empty component was found in the remaining 1535 runs
(76.75% of cases); on the whole, 26 different local maxima were located. Assuming that
the chance of success is 0.9%, in order to find the true MLE with a probability of 95% we
should run the EM using 332 different starting values.

In order to evaluate how a genetic algorithm may undertake this estimation problem,
we carried out a great number of simulations. In our very simple implementation of a GA,
the initial population is randomly generated in the same way as the above starting points;
each individual is selected to breed with a probability proportional to the ωth power of the
individual’s position after ordering the population by increasing fitness (log-likelihood);
given a couple of parents, each gene is selected to switch across parents according to a
Bernoulli trial: the crossing-over rate (πc) is set to 0.5 (in this phase, the vector of the mix-
ing proportions is taken as a single gene). After breeding, three different mutations operate:

• type 1 mutation: a random alteration of the chromosome (an additive shift from a
N(0, 0.8) for the means; new mixing proportions are sampled from an Uniform
Dirichlet distribution). Each cromosome is selected to mutate with a mutation rate π1;
the mutation is accepted if the fitness has been improved: otherwise, the old individ-
ual is restored;

• type 2 mutation: the Nπ2 lower-fitness chromosomes are selected to be completely re-
placed by new individuals; this ensures a high renewal rate of the genetic heritage;

• type 3 mutation: with a mutation rate π3, a random sample of the individuals is se-
lected to be improved with one EM iteration.

The terminating condition is reached after T generations without significant improvements
in the population highest fitness (that is, a growth rate less than 0.002 between two suc-
cessive generations).

We made a great number of trials with different operational parameters: Table 2.2 di-
splays the number of success in 500 trials for different values of T, N, ω and mutation
rates (with NE = 10 and πc = 0.5); between brackets, the mean computational time is re-
corded. As we would expect, better results are obtained when ω is quite small and the mu-
tation rates are high; furthermore, the proportion of success is generally increasing with
the population size (N); the stopping rule (T) is also relevant in determining the chance of
success. However, when the mutation rates are too small, a poor performace is observed,
irrespective of the value of T; in the same way, if the selection parameter (ω) is high, in-
creasing T does not provide a significant improvement.

In most settings, running the EM from different starting values is enough to find the true
MLE; however, the proposed example shows that optimizing the log-likelihood function
may be a difficult task. The GAs are an useful tool in escaping from local optimizers; un-
fortunately, there is not a general rule to set the operational parameters.

Our GA is unsatisfactory in presence of spurious solutions, that may have a larger log-
likelihood than the true MLE: the algorithm should be able to “recognize” the spurious ma-
xima, in order to discard them from the number of admissible solutions.



In the next chapter, we will illustrate how a multivariate approach may improve the
search for the optimum of the likelihood function; we will also investigate the performance
of a multivariate mixture model in terms of standard errors and posterior classification.

N = 200 N = 100

ω = 0.4 ω = 1 ω = 0.4 ω = 1

π1 = π2 = π3 = 0.4
85.8%

(2’ 55”)
65.4%

(2’ 28”)
69.2%

(1’ 28”)
48.4%

(1’ 21”)

π1 = π2 = π3 = 0.1
23.4%
(1’ 3”)

19.8%
(58”)

17.4%
(37”)

14.2%
(35”)

N = 200 N = 100

ω = 0.4 ω = 1 ω = 0.4 ω = 1

π1 = π2 = π3 = 0.4
99.2%

(6’ 31”)
69.4%
(6’ 4”)

87.8%
(3’ 13”)

48.2%
(3’ 6”)

π1 = π2 = π3 = 0.1
23.6%
(2’ 9”)

21.0%
(2’ 5”)

16.8%
(1’ 9”)

15.4%
(1’ 8”)

Table 2.2 Performance of a GA in finding the true MLE of a data set from a 5-com-
ponents Normal mixture with m = (0, 2, 5, 9, 15), p = (0.2, 0.2, 0.2, 0.2, 0.2) and
known standard deviations s = (0.7, 1, 1, 2, 2); for each combination of T, N, ω, π1,
π2 and π3, the proportion of successes in 500 trials is displayed (between brackets,
the mean computational time). In all simulations, NE = 10 and πc = 0.5.

T = 50

T = 200
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3 Multivariate models

In this chapter, we present some special features of the multivariate approach in estimating
finite mixture models. We denote with Y = (Y1, ..., Yp) the p-variate outcome variable; for
ease of notation, we omit the conditioning to an optional set of covariates. The joint dis-
tribution of the observed y is supposed to have the form:

where f(y | lj) = f(y1, ..., yp | lj).
In many settings, it could be difficult to completely specify the above distribution, es-

pecially when the outcome variables Y1, ..., Yp are supposed to lie in different parametric
families; however, each component density may be specified as the product of the condi-
tional distributions:

f(y | lj) = f(y1 | y2, ..., yp; lj) f(y2 | y3, ..., yp; lj) ... f(yp – 1 | yp; lj) f(yp | lj)

In a homogeneous model (k = 1) this would factorize the log-likelihood function: that is,
the p conditional models would be fitted separately. When working with a mixture model,
this is no longer true: as a consequence, different estimates would be obtained by fitting
the p univariate conditional models and the p-variate one, even if the joint distribution is
specified as the above product.

This chapter proceeds as follows. Section 3.1 is devoted to the special case of the mul-
tivariate Normal mixtures; in Section 3.2, we show how the specification of a multivariate
mixture – in place of the univariate approach – may be helpful in improving the model
identification, with a positive effect on the convergence rate of the EM algorithm and on
the standard errors of the estimates.

3.1 Mixtures of multivariate Normal distributions

The Normal distribution (including linear regression and more sophisticated tools) is
the most frequent choice when dealing with continuous random variables; if compared to
the homogeneous case, a Normal mixture allows for a greater flexibility and can be viewed
as a generalization of the basic approach. In this section, we will stress some important fea-
tures of the multivariate Normal mixture model, with a special care for the marginal and
conditional distributions.

A k-components mixture of p-variate Normal distributions for the response variable
y = (y1, ..., yp) has the component densities of the form:
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In the above formula, mj and Sj are – respectively – the mean and the covariance matrix
of y in the jth subpopulation (mj = {µ1j, ..., µpj}, j = 1, ..., k). In the sequel, we will refer to
this distribution as Np

(j)(y). In Figure 3.1, we illustrate the shape of different bivariate Nor-
mal mixtures with some simple graphical example.

y1 y1

y2

Figure 3.1 Random samples from 2-components mixtures of bivariate Normal distributions; (a) mixture
with common covariance matrix; (b) mixture with different covariance matrices.

(a) (b)
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Without loss of generality, suppose that y, mj and Sj are partitioned in two groups with
size r and p – r, respectively:

For each component density – that is, within the jth subpopulation – the marginal and con-
ditional distributions are, respectively:
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with

For ease of notation, in what follows we will write the above marginal and conditional
distributions as Nr

(j)(ya) and Nr
(j)(ya | yb), respectively.

Being p1, ..., pk the mixing proportions of the mixture model (pk = 1 – p1 – ... – pk – 1),
the distribution of y is given by:

g(y) = p1Np
(1)(y) + ... + pkNp

(k)(y)

According to the same partition as above, ya has the following marginal density:

g(ya) = p1Nr
(1)(ya) + ... + pkNr

(k)(ya)

The conditional distribution of ya given yb can be computed in a simple way:

In the above result, Nr
(j)(ya | yb) is – within the jth component – the conditional distribution

of ya given yb; pj
*(yb) is the ratio between the density of yb in the jth subpopulation and its

marginal density – that is, the conditional membership probability for the jth component.
The mixing proportions (as well as the component densities) vary across the values of yb;
if we consider two distinct components (j and h) we have:

This means that a multinomial logistic model holds for the mixing proportions; each ele-
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ment of yb (y1,b, ..., yp – r,b) gets in the predictor in a linear and quadratic form, including cou-
ple interactions ym,b

.ym',b (m, m' = 1, ..., p – r).
To make an example, let us consider the simplest case – that is, a mixture of k = 2 bi-

variate normal distributions. The density of this model is:

where the parameters of N2
(j)(y1, y2) are {µ1j, µ2j, σ1j

2 , σ2j
2 , ρj}, j = {1, 2}. In Table 3.1, we

provide the estimand parameters of the bivariate model and of the marginal and conditional
models (Z denotes the component membership label).

g y y pN y y p N y y1 2 2
1

1 2 2
2

1 21, , ( ) ,( ) ( )( ) = ( ) + − ( )

Joint distribution

g(y1, y2)
Marginal distributions

g(y1), g(y2)
Conditional distributions

g(y1 | y2), g(y2 | y1)

E[y1 | Z = 1] = m11 E[y1 | Z = 1] = m11 E[y1 | y2, Z = 1] = m11 + (y2 – m21
)r1s11/s21

E[y1 | Z = 2] = m12 E[y1 | Z = 2] = m12 E[y1 | y2, Z = 2] = m12 + (y2 – m22
)r2s12/s22

E[y2 | Z = 1] = m21 E[y2 | Z = 1] = m21 E[y2 | y1, Z = 1] = m21 + (y1 – m11
)r1s21/s11

E[y2 | Z = 2] = m22 E[y2 | Z = 2] = m22 E[y2 | y1, Z = 2] = m22 + (y1 – m12
)r2s22/s12

Var[y1 | Z = 1] = s2
11 Var[y1 | Z = 1] = s2

11 Var[y1 | y2, Z = 1] = s2
11

(1 – r2
1
)

Var[y1 | Z = 2] = s2
12 Var[y1 | Z = 2] = s2

12 Var[y1 | y2, Z = 2] = s2
12

(1 – r2
2
)

Var[y2 | Z = 1] = s2
21 Var[y2 | Z = 1] = s2

21 Var[y2 | y1, Z = 1] = s2
21

(1 – r2
1
)

Var[y2 | Z = 2] = s2
22 Var[y2 | Z = 2] = s2

22 Var[y2 | y1, Z = 2] = s2
22(1 – r2

2)

Corr[y1, y2 | Z = 1] = r1
– –

Corr[y1, y2 | Z = 2] = r2
– –

P(Z = 1) = p P(Z = 1) = p P(Z = 1 | yj) /P(Z = 2 | yj) = exp{g0 + g1yj + g2y
2
j}

Table 3.1 Estimand parameters of the joint, marginal and conditional distributions of a mixture of two
bivariate Normal densities, with parameters (m11, m21, s2

11, s2
21, r1) and (m12, m22, s2

12, s2
22, r2), respectively, and

with mixing proportions p = P(Z = 1) and 1 – p = P(Z = 2). In the conditional distributions, the mixing pro-
portions follow a logistic model with parameters g0, g1 and g2 (see the text for more details).
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In the conditional distribution of y1 given y2, the logistic model for the mixing proportions
has the following parameters:

P Z y P Z y y y( | ) ( | ) exp= = = + +{ }1 22 2 0 1 2 2 2
2γ γ γ
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The analogous result holds for the conditional distribution of y2 given y1. We may express
the coefficients γ0, γ1 and γ2 as a function of the parameters of the mixing densities:

The above results show that a mixture of multivariate Normal distributions may be de-
composed in a very simple way into the corresponding marginal and conditional models;
however, it is very important to understand the impact of different model specification in
the inference: we will deeply investigate this issue in the next section.

3.2 A comparison between multivariate and univariate mixture models

In this section, a comparison between the univariate approach and the multivariate one
is proposed; the differences in the computational time are pointed out; a special attention
is directed to the variance of the estimates and to the discriminating power for clustering
purposes; the issue of the local optimizers is also of interest. Using a simulation approach,
we will illustrate the advantages that a multivariate specification may offer in some special
settings.

Intuitively, we can think at every response variable as a criterion to assign each obser-
vation (i = 1, ..., n) to the cluster (j = 1, ..., k) which the unit is more likely to belong: when
performing the E-step, we assess the cluster membership in a probabilistic way, given the
current parameters vector; in the M-step, we provide new estimates for each component
of the mixture, weighting the observations based on the above allocation. The response
variables can be viewed as an instrument to find out the latent variable Z: for this reason,
using more information will provide a greater discriminating power.

A very simple example of the usefulness of a multivariate approach is given in Figure
3.2, which represents a sample from a mixture of k = 2 bivariate distributions. The red (a)
and the blue (b) data points are clearly belonging to cluster A and B, respectively. Fitting a
mixture model on y1 would imply a weak identification of point a, which is in an ambiguous
place with respect to y1. The same consideration holds for b, if a model for y2 is fitted.
Figure 3.3 displays the marginal distributions of y1 and y2 (the blue and the red line represent
the y1- and y2- coordinates of a and b, respectively). With a model for the couple (y1, y2) we
would getting around this problem and both units a and b would be unambiguously attrib-
uted to the “right” component. As a consequence, a multivariate approach is expected to pro-
vide more information and to improve the model identification. It is very important to realize
that if y1 and y2 are independent given the component membership (as they are in Figure 3.2)
the above argument still holds – since the log-likelihood does not factorize.
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We conclude with a simple example, whose implications are quite surprising for their
strength. To ease the notation, we will write in vector form (θ1,θ2,...,θk)

T the k different
values that the same parameter θ assumes in each component of the mixture.

Figure 3.2 Random sample from a 2-components mixture of bivariate distributions. In the two-dimensional
space (y1, y2), there is a strong evidence that the data point a belongs to the component A of the mixture. This
is no longer true if we look at the marginal density of y1. An analogous argument holds for point b, whose
location is “ambiguous” with respect to the marginal distribution of y2 (see also Figure 3.3).

y1

y2

y1
y2

Figure 3.3 Marginal distributions of the bivariate mixture in Figure 3.2. The red and the blue lines repre-
sent the coordinates of points a and b in Figure 3.2: it is clearly evident that y1 cannot be a “good” classifier
for point a; in the same way, point b is in an ambiguous location with respect to y

2
.
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Figure 3.4 Marginal densities of a mixture of bivariate Normal distributions (the model parameters are in
Table 3.2). The component are strongly overlapping: as a consequence, a very flat log-likelihood is found
when estimating a univariate model.
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Let us suppose to have a mixture model with k = 2 latent clusters, with mixing propor-
tions p and 1 – p, respectively; we observe two variables, say U and V, with the following
distributional assumptions:

We assume that – given the cluster membership – U and V are independent; we can write:

where M1 = (µ1, ν1), M2 = (µ2, ν2), S1 = diag(σ2
1, τ2

1) and S2 = diag(σ2
2, τ2

2). If the difference
between M1 and M2 is small compared to the corresponding variances, the component
densities are strongly overlapping: as a consequence, the log-likelihood is expected to be
very flat and the estimates have a large sampling variance.

For µ1 = 2, µ2 = 2.5, ν1 = 1, ν2 = 1.7, σ1 = 0.25, σ2 = 0.3, τ1 = 0.4, τ2 = 0.35, p = 0.5,
Figure 3.4 displays the marginal distributions of U and V. In Figure 3.5, we plotted the joint
density and a realized sample from the bivariate distribution (n = 10,000). It is clearly vis-
ible that the univariate densities are strongly overlapping, while in the joint distribution
– which appears to be bimodal – the clustering is much more pronounced.
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Given a sample from this random variable, the simplest approach is to formulate a uni-
variate model for U and – separately – for V. Under a theoretical point of view, introducing
a bivariate model leaves the assumptions on the data-generating process unchanged: the
estimand parameters will remain the same (given that the covariances are supposed to be
null) and we need to compute bivariate normal densities to perform the E-step. In concrete,
the strength of a multivariate approach is due to the latter feature: both response variables
contribute to the estimation of the unknown cluster membership. Thereby, a bivariate ap-
proach is expected to reduce the uncertainty about the model parameters and, ultimately,
the variance of estimates.

We drew 1000 samples of size n = 400 from the above mixture distribution: for each
sample, both approaches were used to estimate the 9 model parameters (covariances are
imposed to be 0; the true values were used as starting points); given the final estimates,
each unit was assigned to one of the two latent clusters, according to the conditional mem-
bership probability; the computational time was recorded.

Results are in Tables 3.2 and 3.3 (when estimating the univariate models, 2 different
estimates of p are obtained: both standard errors are returned in Table 3.2). The bivariate
approach leads to more efficient estimates of all parameters (Table 3.2); from Table 3.3,
we can see that the average number of correct allocations (358.4) is much greater than in
the univariate models (302.87 and 304.5 using U and V, respectively). Finally, Table 3.3
shows a remarkable difference in the computation time between the two approaches: about
18 seconds to estimate separately the univariate models; less than 2 seconds in the bivariate
case. This happens because a more peaked log-likelihood function requires less iterations
to reach the convergence criterion.

Figure 3.5 (a) joint density of a mixture of bivariate Normal distributions (the model parameters are in
Table 3.2); (b) random sample from the distribution in (a) (n = 10,000). Unlike the marginal distributions
(Figure 3.4) the joint density is bimodal: as a consequence, a better clustering is obtained from a bivariate
analysis.

(b)(a)
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Parameter True value
Std. Error

(univariate model)
Std. Error

(bivariate model)

µ1
2 0.00754 0.00063

µ2
2.5 0.01713 0.00136

ν1
1 0.02995 0.00239

ν2
1.7 0.01565 0.00126

σ1
0.25 0.00206 0.00026

σ2
0.3 0.00286 0.00054

τ1
0.4 0.00518 0.00099

τ2
0.35 0.00435 0.00048

p 0.5 0.03687; 0.03787 0.00238

Table 3.2 Estimated standard errors (based on 1000 Monte Carlo replications) for the parame-
ters of a mixture of two bivariate Normal distributions (n = 400) with diagonal covariance matrix;
when analyzing separately the two outcome variables (3rd column) greater standard errors are
obtained than in the bivariate approach (4th column); another drawback of the univariate appro-
ach is that two different estimates of p are obtained.

U V U, V

Number of
correct assignations

(n = 400)

mean
std.deviation

min
1st quartile

median
3rd quartile

max

302.87
29.96
188
289
312
325
349

304.50
31.76
181
290
315
327
348

358.40
7.00
336
354
359
363
379

Computational time
total
mean

301’ 1”
18.06’’

33’ 14’’
1.99’’

Table 3.3 Comparison between the univariate and the bivariate approach in estimating a mix-
ture of two bivariate Normal distributions with outcome U, V and sample size n = 400 (the model
parameters are displayed in Table 3.2): the univariate models are found to be less effective in as-
sessing the cluster membership using Bayes’ rule; with respect to the bivariate model, a much
greater computational time is required (in the estimation, the standard EM algorithm has been
used). The summary statistics are referred to 1000 Monte Carlo replications.
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The improvement in the model identification may have a strong effect on the risk of
falling in a local/spurious optimizer. In a multivariate approach, simulation results suggest
that the EM algorithm is usually less likely to be attracted in local patterns; it seems rea-
sonable that, as a consequence of the increased discriminating power, the number of local
maxima becomes smaller than in the univariate case.

In order to see how often the EM falls in local and spurious optimizers in our example,
we drew 100 samples (u*, v*) of size n = 400 from the mixture of bivariate normal distri-



butions; for each dataset, we estimated 100 times the univariate models and the bivariate
one, using the same randomly chosen starting points from a Uniform distribution (between
min(u*) and max(u*) for µ1 and µ2; between min(v*) and max(v*) for ν1 and ν2; between 0
and 1 for the standard deviations and p); among these 100 estimates, the local/spurious
maximizers were identified and their number was recorded. For the 100 simulated data
set, Table 3.4 contains the summary statistics of the proportion of local optimizers: results
indicate that a multivariate approach improves the convergence of the EM algorithm to
the true MLE; the average proportion of local/spurious optimizers was 8.36% and 11.4%
in the two univariate models, versus 0.24% using a bivariate mixture. In the “worst”
dataset, the occurrence of local and spurious optimizers was 46% with the univariate ap-
proach, only 4% using a bivariate model.

Occurrence of local/spurious optimizers
in 100 simulated datasets (%)

U V U, V

min 0 0 0

1st quartile 1 2.75 0

median 4 6.5 0

mean 8.36 11.4 0.24

3rd quartile 10 18 0

max 46 46 4

Table 3.4 Comparison between the univariate and the bivariate approach in estimating a
mixture of two bivariate Normal distributions with outcome U, V and sample size n = 400 (the
model parameters are displayed in Table 3.2). 100 data sets were sampled; for each data set,
100 estimates were obtained and the occurrence of spurious optimizers was recorded; the
bivariate model appears to be more likely to find the “true” estimate: in the worst case, the
occurrence of local maxima was 4% (versus 46% for the univariate models). In the estima-
tion, the standard EM has been used, with randomly chosen starting points from a Uniform
distribution (between 0 and 1 for the standard deviations and p, in the sample range for the
means).
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It is impossible to generalize the above statements to any sort of statistical model; how-
ever, although different settings can lead to very different results, estimating a multivariate
mixture model cannot be detrimental with respect to the univariate approach; adding re-
sponse variables (as well as the introduction of covariates) brings new information and
improves the model identification: the standard errors of the estimates are expected to de-
crease and the optimization algorithm is more likely to converge to a “good” maximum and
with fewer iterations.
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4 The mixglm package for the R environment

We present the documentation of the mixglm package for mixtures of Normal/Pois-
son/Binomial distributions, forthcoming in the R environment. The description of the basic
functions is provided, together with some examples. With respect to other software,(9)

mixglm allows for a greater flexibility in the model specification; covariates may affect
both the mixing distributions and the mixing proportions; each parameter is allowed to
vary or to be constant across components, or to be an offset; the package also handles mix-
tures with partially classified observations. In mixglm, multivariate models are implemen-
ted: since the joint distribution is specified as the product of the conditional densities, the
M outcomes are allowed to belong to different parametric families. Optionally, the starting
values for the EM algorithm are provided by a genetic algorithm; the standard errors of the
estimates may be computed using the asymptotic covariance matrix (with analytical eva-
luation of the Hessian of the log-likelihood function) or with a bootstrap approach (para-
metric or nonparametric); a function for bootstrap-based selection of the optimal number
of components is provided; fitted values and conditional membership probabilities are also
available.

Index

mixglm Fitting of univariate mixture models

MULTmixglm Fitting of multivariate mixture models

gen.start Genetic algorithm for univariate and multivariate mixture models

gen.search Options for gen.start in mixglm and MULTmixglm

asy.ci Asymptotic standard errors and confidence intervals for finite mixtures

boot.ci Bootstrap standard errors and confidence intervals for finite mixtures

simulator Random numbers generation from mixtures of univariate distributions

mult.simulator Random numbers generation from mixtures of multivariate distributions

model.choice Model selection for finite mixtures bootstrapping the LRT statistic

(9) Within the R environment, other packages are flexmix, mixreg, mixdist and mixtools, which provide
functions for estimation of different mixture models with bootstrap-based inference; some multivariate mo-
dels are supported by mixreg. We can also mention mclust and nor1mix (for normal models), bayesmix
and vayabelMix (for bayesian mixture models), mda (discriminant analysis), depmix (Hidden Markov Mo-
dels), mixPHM (mixtures of proportional hazard models). With respect to mixglm, the above packages are ge-
nerally less flexible; in most of them, covariates cannot affect the mixing proportions and multivariate models
are not available; tools for asymptotic/bootstrap inference are rarely implemented.
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mixglm{mixglm}

Fitting Univariate Mixture Models

Description

Univariate mixtures of Normal/Poisson/Binomial distributions via the EM algorithm.

Usage

mixglm(y, x = NULL, x.p = NULL, k, ncomp = NULL, family = "normal",

b.0 = NULL, s.0 = NULL, p.0 = NULL, weights = NULL, Z = NULL,

offset.b = NULL, offset.s = NULL, offset.p = NULL,

maxit = 1000, epsilon = 1e-4, print.level = 1, method = NULL)

Arguments

y The response variable. For binomial family, the response can also be spe-
cified as a two-column matrix with the columns giving the number of suc-
cesses and trials (if missing, the default for the number of trials is 1).

x An optional n*p matrix of covariates, to be used in the prediction of the
expected values (the constant term will be included automatically).

x.p An optional n*q matrix of covariates, to be used in the prediction of the
cluster membership probabilities (the constant term will be included au-
tomatically).

k The number of components of the mixture (allowed k = 1).

ncomp A vector of length p + 1 for binomial and poisson families, p + 2 for
normal family. For the intercept and for each covariate in x, where
ncomp = k the coefficient is allowed to vary across components; where
ncomp = 1, the parameter is the same for all components. In the normal
model, the last element of ncomp contains the number of different stan-
dard deviations to be fitted. By default ncomp = (k,k, ..., k).

family A character string containing the chosen family for the response variable
("normal", "poisson" or "binomial").

b.0 Numerical vector of optional starting values for the coefficients of cova-
riates in x (if x is NULL, only the intercepts need to be provided). The



starting points must be ordered by covariate (the intercept first), then by
component. For each covariate, if the corresponding ncomp is 1, only
one starting value must be provided.

s.0 Numerical vector of optional starting values for the standard deviations
(ignored if family is not "normal").

p.0 Numerical vector of optional starting values for the mixing proportions.
If x.p is NULL, p.0 must contain k proportions summing to 1; other-
wise, p.0 includes the (q + 1)(k - 1) parameters (ordered by com-
ponent, then by covariate in x.p, including the intercept) of a
multinomial logistic model for the mixing proportions (the last compo-
nent is taken as baseline).

weights Optional weights to be used in the fitting procedure.

Z Optional vector of length n, including the cluster membership of each
observation (a value between 1 and k, 0 if unknown); if NULL, the cluster
membership is assumed to be unknown for all observations.

offset.b, Optional vectors – defined in the same way as b.0, s.0, p.0 – containing
offset.s, NA for free parameters, and an offset for parameters whose value is
offset.p known; if NULL, no offsets are used in the fitting procedure.

maxit Maximum number of iterations for the EM algorithm (allowed maxit =

Inf).

epsilon Tolerance for the EM algorithm (see Details).

print.level An integer from 0 to 3, indicating how often the procedure must print the
progress.

method The method to be used in the selection of the starting points. Must be
NULL (randomly chosen starting values) or gen.search(...) if a gene-
tic algorithm is required. See gen.start for the parameters of the gene-
tic algorithm.

Details

The standard EM algorithm is used in the estimation, starting from the chosen initial
parameters; where the starting points are missing, randomly chosen values are used; if
gen.search is used as method, the starting points are used as good.subject and the EM
is runned from all the n.elit “best” individuals (see gen.start for details). The stopping
condition of the EM is reached when the maximum absolute change in the parameters
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vector is smaller than epsilon; otherwise, the procedure is stopped when the maximum
number of iterations has been reached. If an empty component is found, the EM is restarted
with new starting values. The canonical link for the chosen family is used (note that the
parameters are provided in the link scale also in models without covariates).

Value

An object of class "mixglm". The function summary (i.e., summary.mixglm) can be
used to obtain or print a summary of the results. The accessor function fitted.mixglm can
be used to extract the fitted y values (component by component) and the fitted cluster
membership probabilities. The functions post and cluster provide the conditional mem-
bership probabilities and the consequent cluster assignment. Confidence intervals on the
parameters are provided by asy.ci and boot.ci.

An object of class "mixglm" is a list containing at least the following elements:

y, x, x.p The outcome variable and the model matrices.

weights The specified weights.

Z The specified vector of cluster membership labels.

k The number of components of the mixture.

ncomp The number of components, parameter by parameter.

family The chosen parametric family.

offset.b, The model offsets.
offset.s,

offset.p

start The starting parameters; start = (b.0, s.0, p.0).

phi The final parameters estimate, in the same order as in start.

loglik The observed log-likelihood at the last iteration.

coef A summary of the parameters of the k component distributions.

p If x.p = NULL, the estimated mixing proportions. Otherwise, a list of
two elements; the first contains the average probability of each cluster,
the second is a summary of the logistic model.

In addition, if a normal model is fitted, s returns the estimated standard deviations.
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See Also

gen.search for using gen.start in the search of the starting points for the EM.
asy.ci/boot.ci for asymptotic/bootstrap confidence intervals.
The function model.choice can be used for inference on the number of components.
simulator for random sampling from finite mixture distributions.
MULTmixglm for multivariate mixture models.

Examples

# mixture of two poisson distributions with parameters exp(-0.2), exp(4)

# and proportions 0.4 and 0.6

y <- NULL

p <- rbinom(500,1,0.4)

for(i in 1:500){

if(p[i] == 1){y <- c(y, rpois(1, exp(-0.2)))}

else{y <- c(y, rpois(1, exp(4)))}

}

m1 <- mixglm(y, k = 2, family = "poisson") # random starting values

m2 <- mixglm(y, k = 2, family = "poisson",

b.0 = c(-0.2,4), p.0 = c(0.4,0.6)) # true parameters

m3 <- mixglm(y, k = 2, family = "poisson",

method = gen.search()) # genetic algorithm

# mixture of two simple linear regression models, with common intercept

# and variance and known mixing proportions

y <- NULL

x <- runif(500)

p <- rbinom(500,1,0.5)

39



for(i in 1:500){

if(p[i] == 1){y <- c(y, rnorm(1, 2 + 3*x[i], 0.7))}

else{y <- c(y, rnorm(1, 2 - 0.5*x[i], 0.7))}

}

m2 <- mixglm(y, x = cbind(x), k = 2, ncomp = c(1,2,1), family = "normal",

b.0 = c(2,3,-0.5), s.0 = 0.7, offset.p = c(0.5,0.5))
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MULTmixglm{mixglm}

Fitting Multivariate Mixture Models

Description

Multivariate mixtures of Normal/Poisson/Binomial distributions via the EM algorithm.

Usage

MULTmixglm(y1, y2, ..., X = list(), x.p = NULL, k, NCOMP = list(),

family = c(), B.0 = list(), S.0 = list(), p.0 = NULL,

weights = NULL, Z = NULL,

offset.B = list(), offset.S = list(), offset.p = NULL,

maxit = 1000, epsilon = 1e-4, print.level = 1, method = NULL)

Arguments

y1, y2, ... The M response variables. For binomial family, the response can also be
specified as a two-column matrix with the columns giving the number of
successes and trials (if missing, the default for the number of trials is 1).

X An optional list of M (even different) model matrices to be used in the
prediction of the expected values. X[[h]] must be NULL if no covariates
are used for the prediction of the corresponding response variable; the
constant term will be included automatically. In the prediction of each
response variable, all the subsequent responses are automatically added
at the end of the model matrix (see Details).

x.p An optional n*q matrix of covariates, to be used in the prediction of the
cluster membership probabilities (the constant term will be included au-
tomatically).

k The number of components of the mixture (allowed k = 1). In some case,
the parameters of one or more of the M response variables are unaffected
by the latent cluster membership: for this reason, k can be a vector of
length M, with k[h] = 1 if the corresponding response follows a pure
model, and k[h] = k otherwise.

NCOMP A list of M ncomp vectors (see ncomp in mixglm); if NCOMP[[h]] is NULL,
the default value will be used for the corresponding response variable.
Note that in the prediction of each response variable, all the subsequent
responses are used as covariates (their ncomp must be declared).
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family A vector of M character strings containing the chosen family for the cor-
responding response variable ("normal", "poisson" or "binomial").
Mixed families are allowed (see Details).

B.0, S.0, p.0 Optional starting values for the EM.
B.0 and S.0 are lists of length M, containing the b.0 and s.0 vectors for
the response variables (see the b.0 and s.0 arguments in mixglm).
B.0[[h]] and S.0[[h]] may be NULL if no starting values are chosen
for the corresponding response variable. S.0[[h]] is also NULL if the
corresponding family is not "normal".
p.0 follows the same rules of the corresponding argument in mixglm.
Note that in the prediction of each response variable, all the subsequent re-
sponses are used as covariates (B.0must include the respective coefficients).
Where the starting points are missing, randomly chosen values are used.

weights Optional weights to be used in the fitting procedure.

Z Optional vector of length n, including the cluster membership of each
observation (a value between 1 and k, 0 if unknown); if NULL, the cluster
membership is assumed to be unknown for all observations.

offset.B, Optional arguments – defined in the same way as B.0, S.0, p.0 – co-
noffset.S, taining NA for free parameters, and an offset for parameters whose value
offset.p is known; see also the corresponding arguments offset.b, offset.s,

offset.p in mixglm.

maxit Maximum number of iterations for the EM algorithm (allowed maxit =

Inf).

epsilon Tolerance for the EM algorithm (see Details).

print.level An integer from 0 to 3, indicating how often the procedure must print the
progress.

method The method to be used in the selection of the starting points. Must be
NULL (randomly chosen starting values) or gen.search(...) if a gene-
tic algorithm is required. See gen.start for the parameters of the gene-
tic algorithm.

Details

The standard EM algorithm is used in the estimation, starting from the chosen initial
parameters; where the starting points are missing, randomly chosen values are used; if
gen.search is used as method, the starting points are used as good.subject and the EM
is runned from all the n.elit “best” individuals (see gen.start for details). The stopping
criterion is reached when the maximum absolute change in the parameters vector is smaller
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than epsilon; otherwise, the procedure is stopped when the maximum number of itera-
tions has been reached. If an empty component is found, the EM is restarted with new
starting values. The joint distribution of (y1,...,yM) is specified as the product of the
conditional densities; for example, if M = 3:

f(y1,y2,y3) = f(y1|y2,y3)f(y2|y3)f(y3)

Mixed families are allowed; for example:

y3 ~ Poisson
y2|y3 ~ Normal
y1|y2,y3 ~ Binomial

Each response includes the subsequent in the linear predictor; the canonical link for the
chosen family is used (note that the parameters are provided in the link scale also in models
without covariates). If a response is supposed to not affect another response, an offset can
be used to constrain one or more coefficients to be 0.

Value

An object of class "mixglm". The function summary (i.e., summary.mixglm) can be
used to obtain or print a summary of the results. The accessor function fitted.mixglm can
be used to extract the fitted y values (ordered by response variable, component by compo-
nent) and the fitted cluster membership probabilities. The functions post and cluster

provide the conditional membership probabilities and the consequent cluster assignment.
Confidence intervals on the parameters are provided by asy.ci and boot.ci. An object
of class "mixglm" is a list containing at least the following elements:

y, x Lists containing the M outcome variables and model matrices.

x.p The specified matrix of predictors for the mixing proportions.

weights The specified weights.

Z The specified vector of cluster membership labels.

k The number of components of the mixture.

ncomp List containing the number of components, parameter by parameter.

family The chosen parametric families.

offset.b, The model offsets.
offset.s,

offset.p
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start The starting parameters, in the same order as in phi (see below).

phi The final parameters estimate, ordered by response variable (for each
response in y1,...yM, the coefficients of the regression model are retur-
ned – ordered by covariate, then by component – followed by the stan-
dard deviations where family = "normal"). At the end of phi, the
mixing proportions are returned (if x.p is not NULL, the parameters of the
logistic model are ordered by component, then by covariate in x.p; the
last component is taken as baseline).

loglik The observed log-likelihood at the last iteration.

coef A summary of the parameters of the k component distributions.

p If x.p = NULL, the estimated mixing proportions. Otherwise, a list of
two elements; the first contains the average probability of each cluster,
the second is a summary of the logistic model.

In addition, if a normal distribution is assumed for one or more response variables, s re-
turns a list containing the estimated standard deviations (NULL for the responses with non
normal distribution).

References

McCullagh P. and Nelder, J. A. (1989). Generalized Linear Models. London: Chapman
and Hall.

McLachlan, G., Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and
Statistics, New York, USA.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.

See Also

gen.search for using gen.start in the search of the starting points for the EM.
asy.ci/boot.ci for asymptotic/bootstrap confidence intervals.
The function model.choice can be used for inference on the number of components.
mult.simulator for random sampling from finite mixtures of multivariate distributions.
mixglm for univariate mixture models.

Examples

####### EXAMPLE 1 #######

# mixture of two bivariate normal distributions with diagonal covariance

# matrices.
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y1 <- y2 <- NULL

p <- rbinom(500,1,0.4)

for(i in 1:500){

if(p[i] == 1){

y1 <- c(y1, rnorm(1,0,1))

y2 <- c(y2, rnorm(1,1,0.8))

}

else{

y1 <- c(y1, rnorm(1,2,0.4))

y2 <- c(y2, rnorm(1,4,0.8))

}

}

# True parameters

B0 <- list(c(0,2,0,0),c(1,4))

S0 <- list(c(1,0.4),c(0.8,0.8))

p0 <- c(0.4,0.6)

# Unconstrained model (true values used as starting points)

m1 <- MULTmixglm(y1, y2, k = 2, family = c("normal","normal"),

B.0 = B0, S.0 = S0, p.0 = p0)

# y1 and y2 are known to be independent in both clusters

m2 <- MULTmixglm(y1, y2, k = 2, family = c("normal","normal"),

B.0 = B0, S.0 = S0, p.0 = p0,

offset.B = list(c(NA,NA,0,0),NULL))

# y2 has the same standard deviation in both components

m3 <- MULTmixglm(y1, y2, k = 2, family = c("normal","normal"),

NCOMP = list(NULL,c(2,1)),

B.0 = B0, S.0 = list(c(1,0.4),c(0.8)), p.0 = p0,

offset.B = list(c(NA,NA,0,0),NULL))

####### EXAMPLE 2 #######

# y2 ~ Binomial(5,0.4)

# in the first component, y1 | y2, x ~ Poisson(exp(-0.5 + x + 0.2*y2))

# in the second component, y1 | y2, x ~ Poisson(exp(-0.5 + x + 0.6*y2))

# The mixing proportions are 0.4 and 0.6.
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x <- rnorm(500)

y2 <- rbinom(500, 5, 0.4)

y1 <- NULL

p <- rbinom(500,1,0.4)

for(i in 1:500){

if(p[i] == 1){y1 <- c(y1, rpois(1, exp(-0.5 + x[i] + 0.2*y2[i])))}

else{y1 <- c(y1, rpois(1, exp(-0.5 + x[i] + 0.6*y2[i])))}

}

# Unconstrained model

m1 <- MULTmixglm(y1, cbind(y2,5), X = list(cbind(x), NULL),

k = 2, family = c("poisson","binomial"))

# y2 follows a pure model

m2 <- MULTmixglm(y1, cbind(y2,5), X = list(cbind(x), NULL),

k = c(2,1), family = c("poisson","binomial"))

# In y1, the only mixed parameter is the coefficient of y2

m3 <- MULTmixglm(y1, cbind(y2,5), X = list(cbind(x), NULL),

k = c(2,1), NCOMP = list(c(1,1,2),NULL), family = c("poisson","binomial"))
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gen.start{mixglm}

Genetic Algorithm for the starting values
of Finite Mixture Models

Description

Genetic algorithm for univariate and multivariate finite mixture models.

Usage

gen.start(y, x = cbind(), x.p = cbind(), k, ncomp = NULL, good.subject = NULL,

family, offset.b = NULL, offset.s = NULL, offset.p = NULL,

weights = NULL, Z = NULL,

Min = NULL, Max = NULL, N.pop = NULL, N.gen = 150, print.level = 1,

n.elit = 4, p.crossing = 0.5, omega = 0.4,

p.mut1 = 0.2, p.mut2 = 0.2, p.mut3 = 0.1,

stop.time = 10)

Arguments

y In univariate models, the response variable as in mixglm. In multivariate
models, a list of length M containing the response variables.

x, x.p, k, In univariate models, the same as the corresponding arguments in
ncomp, mixglm; in multivariate models, the same as in MULTmixglm, with
family, x, ncomp, offset.b and offset.s corresponding to X, NCOMP, offset.B
offset.b, and offset.S, respectively.
offset.s,

offset.p,

weights, Z,

print.level

good.subject A “good” individual (parameters vector), which contributes to the popu-
lation’s genetic heritage. Must be a vector of length npar (the number of
parameters), with the same structure of the phi outcome in mixglm (for
univariate models) or MULTmixglm (in the multivariate case).

Min, Max Vectors of length npar (the number of parameters). Min and Max represent
the range used in the random generation of each gene (parameter) from a
Uniform distribution. Default values are (0,3) for standard deviations,
(0,1) for mixing proportions (if x.p is NULL), (-3,3) for other parame-
ters. For the offsets, Min and Max must coincide with the offset value.
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N.pop The population size. Defaul is 8 times the number of parameters.

N.gen Maximum number of generations.

n.elit Number of elitists (the best individuals of a generation, preserved in the
subsequent one; they ensure the monotonicity of the algorithm).

p.crossing Probability of crossing-over (a couple of parents swaps each gene ac-
cording to a binomial trial with parameter p.crossing).

omega Selection parameter. Each individual is selected for breeding with pro-
bability proportional to (i)^omega, where (i) is the individual’s posi-
tion after ordering the population by increasing fitness (log-likelihood).
If omega = 0, there is no selection; as omega increases, the selection be-
comes more and more severe.

p.mut1 Probability of type 1 mutation: the selected individuals have a random
shift in all genes. If the new fitness is smaller than the original, the old
individual is restored.

p.mut2 Probability of type 2 mutation: the N.pop*p.mut2 worst individuals are
completely replaced by new chromosomes.

p.mut3 Probability of type 3 mutation: the selected individuals are improved
with one EM iteration.

stop.time Stopping condition: after stop.time generations without significant
(> 0.2%) improvements in the higher population fitness, the algorithm
is stopped.

Details

The log-likelihood function of finite mixture models generally has an unknown number
of local maxima. A genetic algorithm is used in solving this optimization problem. This
function can be used within the mixglm or MULTmixglm procedure via gen.search. Ex-
cluding the operational parameters of the algorithm (Min, Max, N.pop, N.gen, n.elit,
p.crossing, omega, p.mut1, p.mut2, p.mut3, stop.time), the others arguments are
the same as in mixglm and MULTmixglm. A quite small value of omega, together with high
mutation rates ( p.mut1, p.mut2, p.mut3) generally leads to a better result in terms of
fitness (log-likelihood).
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Value

gen.start returns a list with the following elements:

T Number of generations reached by the algorithm.

maxfit The sequence of the maximum observed fitness in the T generations.

chrom The population at the last iteration, composed by N.pop parameters vectors.

elit The n.elit elitists at the last iteration.

References

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.

See Also

gen.search for using gen.start in the search of the starting points for the EM within
the mixglm and MULTmixglm functions.

Examples

# Mixture of two poisson distributions; we use the true values as

# "good.subject".

y <- NULL

p <- rbinom(200,1,0.3)

for(i in 1:200){

if(p[i] == 1){y <- c(y, rpois(1,exp(0.2)))}

else{y <- c(y, rpois(1, exp(1)))}

}

m <- gen.start(y, family = "poisson", k = 2,

good.subject = c(0.2,1,0.3,0.7),

Min = c(-1,-1,0,0), Max = c(2,2,1,1))

# the same as above, but with known mixing proportions

m <- gen.start(y, family = "poisson", k = 2,

good.subject = c(0.2,1,0.3,0.7),

Min = c(-1,-1,0.3,0.7), Max = c(2,2,0.3,0.7),

offset.p = c(0.3,0.7))
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gen.search{mixglm}

Options for gen.start in mixglm and MULTmixglm

Description

This function can be passed as the method argument in mixglm and MULTmixglm; the
EM will start after the gen.start procedure. The arguments of gen.search are the ope-
rational parameters for the genetic algorithm.

Usage

gen.search(Min = NULL, Max = NULL, N.pop = NULL, N.gen = 150,

n.elit = 4, p.crossing = 0.5, omega = 0.4,

p.mut1 = 0.2, p.mut2 = 0.2, p.mut3 = 0.1,

stop.time = 10)

Arguments

The arguments represent the operational parameters of gen.start; see gen.start for
details.

Details

Calls gen.start in mixglm and MULTmixglm, providing the operational parameters of
the genetic algorithm.

Value

The output is a list containing the values in input, to be transmitted to the gen.start

procedure.

See Also

mixglm, MULTmixglm, gen.start.
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asy.ci{mixglm}

Asymptotic standard errors
for Finite Mixture Models

Description

Asymptotic standard errors and confidence intervals for the parameters of a finite mix-
ture model, via analytical evaluation of the Hessian matrix of the log-Likelihood function.

Usage

asy.ci(model, conf = 0.95)

Arguments

model An object of class "mixglm".

conf The desired nominal coverage of the confidence intervals.

Details

The Hessian matrix of the log-Likelihood function is evaluated using analytical deri-
vatives. This ensures an accurate computation of the asymptotic standard errors, even for
very complicate models. The confidence intervals are computed assuming that the esti-
mators follow a normal distribution.

Value

The output is a matrix with 4 columns: the first is the parameters vector; in the second, the
estimated standard errors are returned (0 for the offsets); the last two columns contain the
lower and upper bounds of the confidence interval, according to the chosen nominal coverage.

References

McLachlan, G., Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and
Statistics, New York, USA.

Casella, B., Berger, R.L. (2002). Statistical Inference. Duxbury, USA.

See Also

mixglm, MULTmixglm; boot.ci for bootstrap confidence intervals.

Examples

asy.ci(m1) # m1 is a mixglm object

51



boot.ci{mixglm}

Bootstrap confidence intervals
for Finite Mixture Models

Description

Bootstrap standard errors and confidence intervals for finite mixture models.

Usage

boot.ci(model, B = 100, type = "parametric", conf = 0.95,

epsilon = 1e-4, print.level = 1, maxit = 1000)

Arguments

model An object of class "mixglm".

B The number of bootstrap samples.

type The resampling method. Must be "parametric" or "nonparametric".

conf The desired nominal coverage of the confidence intervals.

epsilon The tolerance for the EM algorithm (see mixglm and MULTmixglm)

print.level An integer between 0 and 2, indicating how often the procedure must
print the progress. If print.level = 2, histograms of the empirical
sampling distributions of the estimators are plotted. See also Value.

maxit Maximum number of iterations for the EM algorithm.

Details

The covariance matrix of the estimates is evaluated using a resampling approach. For
each of B simulated data sets, the same model is estimated (the true values are used as star-
ting points). If the "parametric" bootstrap is chosen, the data sets are obtained as random
samples from the estimated model; with "nonparametric" bootstrap, each data set is sam-
pled with replacement from the original one. Different confidence intervals are provided;
see Value for further details.
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Value

The output is a matrix with 6 columns: the first contains the parameters vector; in the
second, the estimated standard errors are returned (0 for the offsets); 3rd and 4th columns
contain the lower and upper bounds of the confidence interval, based on the percentiles of
the bootstrap sampling distributions. The last two columns return the lower and upper
bounds of a HDF (Highest Density Function) confidence interval, obtained fitting a flexible
density on the sampling distributions and computing the theoretical percentiles (the couple
a,b such that f(a) = f(b) and P(a ≤ t ≤ b) = 1 – α, where t is the sample statistic and α the
nominal coverage probability). A three-parameters Gamma is used for coefficients (if the
sampling distribution has a negative skewness, the same density is fitted on – t); a central
Gamma is used for standard deviations and a Dirichlet for mixing proportions. If the su-
perimposed densities provide a good approximation of the empirical sampling distribution,
the HDF interval is the shortest among all intervals with the same coverage probability;
moreover, it is expected to partially obviate to a small number of bootstrap replications (B).
Setting print.level = 2 will generate the histograms of the sampling distributions of the
estimators, including the fitted densities used in the HDF interval.

References

Casella, B., Berger, R.L. (2002). Statistical Inference. Duxbury, USA.

Efron, B., Tibshirani, R.J. (1993). An introduction to the bootstrap. Chapman & Hall.
McLachlan, G., Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and

Statistics, New York, USA.

See Also

mixglm, MULTmixglm.
asy.ci for asymptotic confidence intervals.
simulator, mult.simulator for simulating from finite mixture models.

Examples

boot.ci(m1) # m1 is a mixglm object
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simulator{mixglm}

Random numbers generation
from univariate Finite Mixture Models

Description

Simulation from univariate mixtures of normal, poisson and binomial distributions.

Usage

simulator(phi, x = NULL, x.p = NULL, k, ncomp = NULL, family = "normal",

bin.trial = 1, nrepl = NULL, membership = FALSE)

Arguments

phi The parameters vector (the location parameters – ordered by predictor,
then by component; if family = "normal", the scale parameters – orde-
red by component; the mixing proportions); see the analogous output of
mixglm for details.

x The optional n*p model matrix for the expected values (not including the
constant term).

x.p The optional n*q model matrix for prediction of the mixing proportions
(not including the constant term).

k The number of components of the mixture.

ncomp The ncomp vector (see mixglm for details).

family The chosen family for the response variable ("normal", "poisson" or
"binomial").

bin.trial The number of trials (ignored if family is not "binomial"). Must be a
positive integer (default is 1) or a vector of length n containing the num-
ber of trials to be used for each randomly generated observation.

nrepl Number of observations to be generated. By default, nrepl is automa-
tically determined from n (the dimensions of x, x.p, or bin.trial).
Otherwise, nrepl can be a multiple of n (in this case, the values in x,
x.p, bin.trial are used repeatedly). In model without covariates,
where n is unknown, by default nrepl = 1.
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membership Logical. If TRUE, the realized component membership of each observation
is returned.

Details

According to the mixing proportions, the cluster membership is drawn; for each obser-
vation, the y is sampled from the respective mixing distribution.

Value

If membership = FALSE (default), the realized y is returned. Otherwise, the output is
a list containing the following elements:

y The realized nrepl-dimensional y vector.

cluster The realized cluster membership for each observation.

See Also

mixglm for the x, x.p, k, ncomp, family arguments. The parameters vector phi has the
same structure as in the mixglm output.
mult.simulator for simulation of multivariate mixture models.

Examples

######## Example 1 ########

# Mixture of 3 binomial distributions. The number of trials varies across

# observations (5 in the first 100, 10 in the remaining 200).

# The probability of success in each trial is (0.2,0.4,0.6) in the three

# components, respectively. The mixing proportions are 0.1,0.3,0.6.

# The parameters in phi must be in the logit scale.

b1 <- log(0.2/(1 - 0.2))

b2 <- log(0.4/(1 - 0.4))

b3 <- log(0.6/(1 - 0.6))

phi <- c(b1, b2, b3, 0.1, 0.3, 0.6)

trials <- c(rep(5,100), rep(10,200))

y <- simulator(phi, k = 3, family = "binomial", bin.trial = trials)
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######## Example 2 ########

# Mixture of two simple linear regressions with common dispersion parameter

# sigma = 0.6.

# In the first component, y = 2 + 3*x + e

# In the second component, y = -1 + 2*x + e

# e ~ N(0, 0.6^2).

x <- rnorm(300)

y <- simulator(phi = c(2,-1,3,2,0.6,0.6), x = cbind(x), k = 2,

family = "normal")

# Or, alternatively:

y <- simulator(phi = c(2,-1,3,2,0.6), x = cbind(x), k = 2,

ncomp = c(2,2,1), family = "normal")
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mult.simulator{mixglm}

Random numbers generation
from multivariate Finite Mixture Models

Description

Simulation from multivariate mixtures of normal, poisson and binomial distributions.

Usage

mult.simulator(phi, X = list(), x.p = NULL, k, NCOMP = list(), family,

bin.trial = list(), nrepl = NULL, membership = FALSE)

Arguments

phi The parameters vector, ordered by response variable (the location para-
meters – ordered by predictor, then by component; where family = "nor-

mal", the scale parameters – ordered by component); at the end, the
mixing proportions. The joint density is specified as in MULTmixglm; see
the analogous output of MULTmixglm for details.

X The optional list of model matrices for the expected value (not including
the constant term); see the analogous argument in MULTmixglm.

x.p The optional n*q model matrix for prediction of the mixing proportions
(not including the constant term).

k The number of components of the mixture (see the analogous argument
in MULTmixglm).

NCOMP The NCOMP list (see MULTmixglm for details).

family Vector of length M containing the chosen families for the response varia-
bles ("normal", "poisson" or "binomial"). See the analogous argu-
ment in MULTmixglm.

bin.trial A list of binomial trials vectors (NULL where family is not "binomial").
Each element of bin.trial must be a positive integer (default is 1) or a
vector of length n containing the number of trials to be used for each ran-
domly generated observation.

nrepl Number of observations to be generated. By default, nrepl is automa-
tically determined from n (the number of observations desumed from X,
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x.p, or bin.trial). Otherwise, nrepl can be a multiple of n (in this
case, the values in X, x.p, bin.trial are used repeatedly). In model wi-
thout covariates, where n is unknown, by default nrepl = 1.

membership Logical. If TRUE, the realized component membership of each observation
is returned.

Details

According to the mixing proportions, the cluster membership is drawn; for each obser-
vation, the y are sampled from the respective mixing distribution. The Mth response variable
is generated first; conditioned on the realized yM, the yM-1 is simulated, and so on. See also
MULTmixglm for the model specification.

Value

If membership = FALSE (default), a list containing the realized y1,...,yM is returned.
Otherwise, the output is a list containing the following elements:

y The realized M-dimensional list of nrepl-dimensional y vectors.

cluster The realized cluster membership for each observation.

See Also

MULTmixglm and mixglm for the X, x.p, k, NCOMP, family arguments. The parameters vec-
tor phi has the same structure as in the MULTmixglm output.
simulator for random sampling from univariate mixture models.

Examples

####### EXAMPLE 1 #######

# mixture of two bivariate normal distributions with diagonal covariance

# matrices.

# In the first component, E(y1) = 0, Sd(y1) = 1; E(y2) = 1, Sd(y2) = 0.8.

# In the second component, E(y1) = 2, Sd(y1) = 0.4; E(y2) = 4, Sd(y2) = 0.8.

# phi has the following composition:

# phi = (E(y1 | y2), Sd(y1 | y2), E(y2), Sd(y2), p) # p are the proportions

phi <- c(0,2,0,0, # linear regression of y1 on y2

1,0.4, # Sd(y1 | y2)

1,4, # E(y2)

0.8,0.8, # Sd(y2)

0.4,0.6) # mixing proportions
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Y <- mult.simulator(phi, k = 2, family = c("normal","normal"), nrepl = 200)

# Alternatively:

Y <- mult.simulator(phi = c(0,2,0, 1,0.4, 1,4, 0.8, 0.4,0.6),

NCOMP = list(c(2,1,2),c(2,1)), k = 2, family = c("normal","normal"),

nrepl = 200)

y1 <- Y[[1]]

y2 <- Y[[2]]

####### EXAMPLE 2 #######

# y2 ~ Binomial(5,0.4)

# in the first component, y1 | y2, x ~ Poisson(exp(-0.5 + x + 0.2*y2))

# in the second component, y1 | y2, x ~ Poisson(exp(-0.5 + x + 0.6*y2))

# The mixing proportions are 0.4 and 0.6.

x <- rnorm(500)

phi <- c(-0.5,1,0.2,0.6, log(0.4/(1 - 0.4)), 0.4,0.6)

Y <- mult.simulator(phi, X = list(cbind(x),NULL), k = c(2,1),

NCOMP = list(c(1,1,2), NULL), family = c("poisson","binomial"),

bin.trial = list(NULL,5))

y1 <- Y[[1]]

y2 <- Y[[2]]
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model.choice{mixglm}

Model selection for finite mixtures
bootstrapping the Likelihood Ratio Statistic

Description

Provides a bootstrap approach to the model selection; see Details.

Usage

model.choice(model1,model2,...,alpha = 0.05, B = 100,

epsilon = 1e-3, maxit = 1000, print.level = 1)

Arguments

model1, Objects of class "mixglm".
model2,...

alpha The nominal significance level for the test.

B Number of bootstrap samples.

epsilon Tolerance criterion for assessing the convergence of the EM (see mixglm).

maxit Maximum number of iterations for the EM algorithm.

print.level An integer between 0 and 2, indicating how often the procedure must
print the progress. If print.level = 2, the histograms of the bootstrap
samples are plotted.

Details

Working with finite mixture models, a common problem is testing for the number (k)
of components. The asymptotic theory of the Likelihood Ratio Test (LRT) is not valid in
this case, since the sampling distribution of the LRT statistic does not generally tend to a
chi-square distribution. A possible solution is to rely on other selection criteria (AIC,
BIC...); alternatively, the sampling distribution of the LRT statistic may be evaluated under
a bootstrap approach. The models to be compared should be nested; models with the same
value of k but different constraints on parameters may be compared. Note that
model1,model2,... should be ordered by increasing observed log-likelihood; otherwise,
an automatic reordering is done: in the output of model.choice, model1 is always the
one with the smallest observed log-likelihood, and so on.
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Value

The output is a list containing the following elements:

win The chosen model among model1,model2,....

k The number of components of the chosen model.

ncomp The ncomp vector/list of the chosen model.

x, x.p The column names for x and x.p in the chosen model.

offset The offsets of the chosen model.

The procedure automatically prints the key results during the computation.

References

McLachlan, G., Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and
Statistics, New York, USA.

Efron, B., Tibshirani, R.J. (1993). An introduction to the bootstrap. Chapman & Hall.

See Also

mixglm, MULTmixglm.

Examples

# True model: mixture of two normal distributions with means 0 and 2

# and with common variance 1. The mixing proportions are 0.7 and 0.3.

y <- NULL

p <- rbinom(200, 1, 0.7)

for(i in 1:200){

if(p[i] == 1){y <- c(y,rnorm(1,0,1))}

else{y <- c(y,rnorm(1,2,1))}

}

m1 <- mixglm(y, k = 1, family = "normal") # pure model

m2 <- mixglm(y, k = 2, family = "normal", ncomp = c(2,1)) # true model

m3 <- mixglm(y, k = 2, family = "normal") # unconstrained variances

m4 <- mixglm(y, k = 3, family = "normal") # overparametrized

m <- model.choice(m1,m2,m3,m4, B = 50, print.level = 2)

61



5 Analysis of causal effects
of job-training programs

Introduction

Estimating causal effects of interventions is often the focus of empirical studies in
medicine and the social sciences. The only generally accepted approach for inferring
causality requires that treatment receipt is randomized. Experiments, however, and social
experiments in particular, often suffer from a number of complications, most notably non-
compliance with assigned treatment, missing outcomes, and truncation by death when the
outcome is not always well-defined.

The evaluation of the training programs enables the policy-makers to make a cost-ben-
efit analysis, comparing the estimated effects of the programs with their cost to the pub-
lic. We evaluate the effects of a randomized job-training program, Job Corps, which stands
out as the largest, most comprehensive US education and job training program for disad-
vantaged youths between the ages of 16 and 24; for our analysis, we use data from the
National Job Corps Study, conducted by Mathematica Policy Research, Inc. The study is
based on a national random sample of all eligible applicants in late 1994 and 1995. Sam-
pled youths were assigned randomly to a program group or a control group. Consistently
with the program’s aim, key outcomes of interest are: employment status, total earnings,
and wages. Usually, the effects on employment and total earnings are of main interest;
the effect on wages – unlike the effect on total earnings – reflects the increase in human
capital due to the training program. In the empirical analysis, we focus on the effect of the
program on wages and employment.

In the study all three complications are present, namely a) compliance with assigned
treatment was not perfect, as only 64% of those assigned to the program group effectively
enrolled in Job Corps; b) due to attrition, outcome is missing on some participants; c) wages
are truncated by death, meaning no wage is defined for those who are not employed.

Previous studies on these data neglected noncompliance, by focusing on intention-to-
treat (ITT) effects of being offered participation in Job Corps (Lee, 2008; Zhang et al.,
2008a and 2008b; Flores-Lagunes et al., 2007). Being in a all-or-none compliance setting
and with access to Job Corps being denied to those assigned to the control group, individ-
uals can be classified as compliers or never-takers (Angrist et al., 1996); in this setting the
ITT effect, under a plausible outcome exclusion restriction assumption, can be regarded
as being conservative for the effect of treatment receipt, i.e., it is possibly diluted by non-
compliance to treatment assignment. This may be a reason why, so far, negligible effects
of Job Corps were found on employment and wages, especially in the long run.

Here, we want to take account of three complications, namely noncompliance, trunca-
tion of wages and missing outcomes, in order to evaluate the effects of Job Corps on those
who were not just assigned but also participated in the program, i.e., the compliers.

The framework we adopt uses potential outcomes to define causal effects regardless of
the mode of inference, often referred to as the Rubin Causal Model (RCM; Holland, 1986);
causal effects are defined by comparisons of potential outcomes for a common set of units
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(Rubin, 1974, 1978, 2005). We apply principal stratification (PS; Frangakis and Rubin, 2002),
which was originally introduced to address post-treatment complications, within RCM.

The framework can be applied in various contexts, leading to both parametric and
semi(non)parametric inference, depending on the set of assumptions that can be reasonably
maintained, as well as whether point (full) or partial identification is to be achieved.

Few papers have dealt with more than one complication simultaneously. In general,
the assumptions being considered are more complicated than those in the presence of each
of the complications separately.

In this work, we develop a likelihood-based approach to estimate the effect on em-
ployment and wages for the compliers. We conduct a likelihood-based analysis using the
EM algorithm, proposing different ways of improving computational efficiency and iden-
tifiability using the theory of finite mixture models. We maintain the assumption of exclu-
sion restriction, while monotonicity of compliance holds by design. We do not however
impose monotonicity of truncation. Thereby, following Frangakis and Rubin (2002), we
classify the individuals into six principal strata according to the joint values of the potential
compliance and employment status when assigned to be trained and when not assigned to
be trained. Our causal estimands are: the average effect on employment for compliers and the
average effect on wages for compliers who are employed irrespective of treatment assignment.

Results show that both these effects are positive for compliers and that there is a group
of participants for whom participation is detrimental in terms of employment. This group,
however, becomes negligible in the long run.

The chapter proceeds as follows. Section 5.1 presents the general framework of the Rubin
Causal Model; Section 5.2 discusses the issue of noncompliance with treatment assignment;
in Section 5.3, we present the general approach to the missing data problem; Section 5.4 is
devoted to causal inference when an outcome is “truncated by death”. Section 5.5 presents
the framework needed for simultaneously addressing both issues of noncompliance and trun-
cation by death of potential wages, under the MAR assumption for the missing data mech-
anism. Section 5.6 illustrates the likelihood approach to the estimation of the average
treatment effects on employment and wages. Section 5.7 presents the application to the Job
Corps data; In Section 5.8, results are discussed and some concluding remarks are provided.

5.1 The Rubin Causal Model

The Rubin Causal Model (RCM; Holland, 1986) is a general framework for causal in-
ference, proposed by Rubin in a series of articles (1974, 1975, 1976, 1977, 1978, 1979,
1980). The RCM represents now the dominant approach to the evaluation of the causal ef-
fects of a treatment in experimental and observational settings.

The RCM framework originates from Neyman’s approach (1923), where each unit has
two “potential” outcomes, one if the unit is treated and the other if untreated: only one
outcome (the one corresponding to the observed treatment assignment) is observed by the
researcher. The use of the “potential outcomes” framework constitutes the first element of
the RCM: at the unit level, causal effects are defined as a function (tipically the difference)
of (a) the outcomes that would be observed if the unit received the active treatment, and
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(b) the values that would be observed if the unit were assigned to the control group. The
second part of the RCM is the assignment mechanism, that is a probabilistic model describ-
ing how the N units are assigned to the treatment or to the control group. A third, optional
part of the RCM is a set of distributional assumptions on the potential outcomes, allowing
for a model-based inference.

According to the RCM, the potential outcomes are the values that would be observed on
the same unit at the same time, under the two treatment conditions; the use of potential out-
comes in defining causal effects has relevant implications in the notion itself of “causality”
and characterizes causal inference as a missing data problem: since for each unit only one
of two potential outcomes is realized, at least 50% of outcomes is unobserved. With these set-
tings, it is impossible to learn about the causal effects from a single observation, because the
causal effect involves the comparison of both potential outcomes. In order to make causal in-
ference, multiple units (exposed to both treatment conditions) must be observed.

In many situations, it is reasonable to assume that the treatment assignment of each unit
does not affect the potential outcomes of other units; this is known as the Stable Unit Treat-
ment Value Assumption (SUTVA; Rubin, 1978, 1980, 1990); however, there are many ex-
amples in which SUTVA is not a plausible assumption, especially in observational settings.

For unit i (i = 1, ..., N), we denote with Yi the observed outcome and with Zi the actual
treatment assignment (1 = treatment, 0 = control); Y and Z are the N-dimensional vectors
of observed outcomes and assignment indicators, respectively. We denote as Yi(Z) the po-
tential outcome of unit i, given the vector of treatment assignments Z; Y(Z) is the N-di-
mensional vector of potential outcomes: with this notation, Y(0) represents the outcomes
we would observe if all units were assigned to the control group; analogously, Y(1) is the
vector of outcomes we would observe under the treatment condition: clearly, we never ob-
serve the couple Yi(0), Yi(1).

The SUTVA consists in the following statement:

• Assumption 1: Stable Unit Treatment Value Assumption (SUTVA)

The potential outcome of each unit is unrelated with the treatment assignment of any
other units, and there are no different versions of the treatment.

The SUTVA states that there is no interference between units: this allows us to write the
potential outcome as Yi(Zi) instead of Yi(Z). This means that Yi(1) is the outcome of unit
i when assigned to the treatment, and Yi(0) is the outcome for unit i when assigned to the
control group. SUTVA also implies that there are no hidden versions of the treatment. When
the SUTVA is not a plausible assumption, the interactions between units must be taken in
account in drawing inference on the causal effects; making this assumption more realistic
is the aim of experimentals design; in observational studies, the plausibility of SUTVA
must be evaluated according to the specific settings.

Using the potential outcomes notation the role of the assignment mechanism – the sec-
ond component of the RCM – can be explicitely taken in account. Prior to the Rubin’s
work, causal effects were often defined as parameters of a regression model, relating the
observed outcome Yi to an optional set of covariates (Xi) and to the treatment indicator Zi

(i = 1, ..., N); this was the standard approach in medical and social sciences: however,
using the observed outcome notation completely neglects the role of the assignment mech-
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anism (e.g., randomization). In causal inference, the assignment mechanism represents
the probabilistic models for the “missing data” process; that is, it specifies the conditional
probability of Z and defines the design for how some potential outcomes are revealed and
some others are unobserved.

In principle, the assignment mechanism may depend on both pre-treatment covariates
(X) and potential outcomes Y(1) and Y(0); for example, individuals may optimize a func-
tion involving the expectation of potential outcomes (see, e.g., Imbens and Rubin, 2006).
A special case is represented by the randomized experiments, where the assignment mech-
anism is “unconfounded” and “probabilistic”.

Unconfounded assignment mechanisms (Rubin, 1990) are free of dependence on either
Y(0) and Y(1):

P(Z | X, Y(0), Y(1)) = P(Z | X) [1]

Under a probabilistic assignment (Rubin, 1990), each unit has a positive probability of
receiving either treatment:

0 < P(Zi = 1 | X, Y(0), Y(1)) < 1 [2]

The assignment mechanism is said to be “strongly ignorable” (Rosenbaum and Rubin,
1983) if satisfies [1] and [2]; if the conditional probability in [1] is free from missing but
not from observed potential outcomes, the assignment mechanism is said to be ignorable:

P(Z | X, Y(0), Y(1)) = P(Z | X, Yobs) [3]

where Yobs is the vector of observed outcomes. Clearly, uncounfonded mechanisms are ig-
norable, but an ignorable assignment can be confounded (e.g., in sequential experiments).
Very often, the analysis of experiments relies on strong ignorability: this allows for a
straightforward estimation of the causal effects; in this case, it is very common to have a
“regular” assignment mechanism, where the probability of each assignment vector is pro-
portional to the product of the propensity scores:

A special case of randomization is when

P(Zi = 1 | Xi) = P(Zi = 1) [5]

that is, each unit is assigned to the treatment or to the control group according to a binomial
trial, with the same probability for all units. This is common in experimental settings,
whereas in observational studies (the so-called “natural” experiments) this assumption is
generally not plausible. However, under regular assignment, units with the same propensity
score are randomized into the two treatment conditions; matching on the propensity score
(e.g., Rosenbaum and Rubin, 1984) or subclassifying on it (e.g., Rosenbaum and Rubin, 1985)
reproduces the condition of an experimental design and makes the inference straightforward.

In this work, we will assume that both SUTVA and strongly ignorable assignment
mechanism hold; in the analysis of the Job Corps Study (Section 5.7), randomization holds

P P Zi i
i

N

( | , ( ), ( )) |Z X Y Y X0 1 1
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by design and the no-interference between units may be reasonably assumed. For our set-
tings, the randomization assumption may be written as follows:

• Assumption 2: Random Assignment

P(Z = c) = P(Z = c') for all c and c' such that uTc = uTc', where u is the N-dimensional
unit vector.

that is, all units have the same probability of being assigned to the treatment group.
We define the individual treatment effect as the difference of the two potential outcomes:

δi
(ZY) = Yi(1) – Yi(0)

where the generic δi
(AB) denotes the causal effect of A on B for unit i. Under SUTVA, how-

ever, we can define an average treatment effect (ATE) as follows:

∆(ZY) = E[Yi(1)] – E[Yi(0)]

where the generic ∆(AB) denotes the average causal effect of A on B. In an experimental set-
ting, ∆(ZY) can be consistently estimated using the difference in the sample means of the
treatment and control group.

Very often, complications arise and this simple model must be extended to more com-
plex settings. In Section 5.2 we will discuss how the RCM can be used in addressing the
issue of noncompliance; the link between the Instrumental Variable estimator and the
Rubin Causal Model will be analyzed.

5.2 Noncompliance in randomized studies

In many fields of science, researchers are often interested in evaluating the effectiveness
of a new treatment. Experiments are accepted tools to infer on causal effects. The key feature
of experiments is that units are randomly assigned to the treatment or to the control group;
this ensures that treated and untreated units have the same distribution of the (observed and
unobserved) individual characteristics; inference in this case is straightforward, because
the sample means are unbiased estimates of expected outcomes in the two groups.

The theory of inference based on randomization (Neyman, 1923; Fisher, 1925) requires
that all experimental units comply with the treatment assignment; in practice, noncompli-
ance is a common issue, especially in experiments with human subjects. Different ap-
proaches have been proposed to deal with the nonrandom receipt of the treatment due to
noncompliance. In the presence of this complication, comparing subjects by treatment re-
ceived – rather than by treatment assigned – generally leads to a biased estimate of the
treatment effect; this is also true with a “per-protocol” approach, where only units who
comply with treatment assignment are included in the analysis (Robins and Greenland, 1994;
Sheiner and Rubin, 1995; Barnard et al., 1998). For these reasons, the standard approach
to noncompliance is to compare average outcomes by assignment – ignoring the compli-
ance behavior – as if compliance had been perfect; this is often referred to as the intention-
to-treat (ITT) analysis (Breslow, 1982; Fisher et al., 1990; Lee et al., 1991; Meier, 1991).

The problem of evaluating the effect of a binary treatment has a long history in both
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econometrics and statistics. The econometric literature (Ashenfelter, 1978; Ashenfelter
and Card, 1985; Heckman and Robb; 1985, Lalonde, 1986; Fraker and Maynard, 1987;
Card and Sullivan, 1988; Manski, 1990) focuses on the issue of endogeneity (self-selec-
tion) in observational settings; units who choose to enroll in a training program are ex-
pected to be different from those who choose not to enroll: for this reason, a simple
comparison of the average outcomes by treatment status – even adjusting for covariates –
may lead to a wrong inference on the causal effect. A different approach dominates the sta-
tistical literature, which originates with the analysis of randomized experiments (Ney-
man, 1923; Fisher, 1925) and was developed by Rubin (1974, 1978, 2005). We adopt the
general framework of potential outcomes; the issue of noncompliance is addressed using
a principal stratification approach, where potential outcomes are compared for a common
set of units – those who comply with treatment assignment.

PS can be seen as a generalization of the IV model proposed in Angrist et al. (1996) to
address noncompliance in randomized studies; in what follows, we describe the relation-
ship between the traditional IV structural equation model and the RCM.

IV estimation in Structural Equation Models

In a sample of N units, we suppose to random assign each unit to a treatment or to a
control group; we denote with Zi the observed assignment for unit i, and with Di the re-
ceived treatment: only if the compliance is perfect, we observe Di = Zi. As before, we also
assume that the treatment is binary (1 = treatment, 0 = control): that is, Di and Zi are di-
chotomous; however, it is possible to generalize to more complex treatments and to settings
with partial compliance. For all units, we observe an outcome variable Yi.

The dummy endogenous variable model (see, e.g., Maddala, 1983) is defined as follows:

where

The parameter of interest is β1, which represents the causal effect of D on Y; the model
identification is driven by the following assumptions:

The absence of correlation between Z and υ is typical of standard regression models; the
assumption that Z and ε are uncorrelated – together with the absence of Z in the equation
for Y – reflects the fact that any effect of Z on Y is through an effect of Z on D.

The latent variable Di
* may be interpreted as the expected utility of receiving or not re-

ceiving the treatment: we assume α1 ≠ 0, that is,
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If Zi satisfies the above assumption, Z is said to be an instrumental variable, in the
sense that it determines the compliance status but it does not affect the outcome variable,
given the observed treatment Di. In the above settings, the IV estimator is the ratio of the
sample covariances (Durbin, 1954); from the binary nature of D and Z, we have:

IV estimation in the Rubin Causal Model

Let Z be the N-dimensional vector of randomly chosen treatment assignments, with el-
ements Zi = 0 if unit i is assigned to the control group and Zi = 1 if unit i is assigned to the
treatment group. We denote with Di(Z) the indicator for wether unit i would receive the
treatment, given the vector Z: clearly, if the compliance is perfect, Di(Z) = Zi for each i.
In a similar way, we define Yi(Z, D) to be the response of the unit i, given the assignment
vector Z and the N-dimensional vector D with elements Di(Z). We refer to Di(Z) andYi(Z, D)
as “potential outcomes”, because only one value (corresponding to the observed assign-
ment for the unit i) can be observed.

With these settings, we can write the SUTVA assumption as follows:

• Assumption 1: Stable Unit Treatment Value Assumption (SUTVA)

i) If Zi = Zi', then Di(Z) = Di(Z')

ii) If Zi = Zi' and Di = Di', then Yi(Z, D) = Yi(Z', D')

As before, we also assume randomization of the treatment assignment (Assumption 2).
Since the SUTVA assumption implies that the treatment status of each unit does not affect
the potential outcomes of the others units, we can write Yi(Z, D) and Di(Z) as Yi(Zi, Di)
and Di(Zi), respectively. Using the same notation of Section 5.1, we define the following
causal effects at the individual level:

• Causal effect for unit i of Z on D: δi
(ZD) = Di(1) – Di(0)

• Causal effect for unit i of Z on Y: δi
(ZY) = Yi(1, Di(1)) – Yi(0, Di(0))

We refer to these causal effects as the individual intention-to-treat (ITT) effects. Clearly,
the above quantities are unknown, because only the outcomes corresponding to the actual
Zi are observed; given the assumption of random assignment, we can obtain an unbiased
estimator of the average ITT effects. The average causal effects of Z on Y and D – that is,
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the expected values of the above δi
(ZY) and δi

(ZD) – may be unbiasedly estimated as

and

respectively. We can see that

that is, the limit of the IV estimator (the IV estimand) equals the ratio of the average ITT effects.
In order to provide an unbiased estimator of ∆(DY) – the average causal effect of D on

Y – additional assumptions are required. Tipically, the actual receipt of the treatment Di is
nonignorable: that is, cov(ε, υ) ≠ 0 and Di (the endogenous regressor in the structural equa-
tion model) is correlated with εi. This implies that the data-generating process of Y, given
D, and of D, given Z, are not independent: for this reason, the difference of outcome av-
erages by treatment received does not represent an unbiased – or even consistent – estimator
of the causal effect of interest – the average effect of D on Y. As showed in Angrist et al.
(1996), the key assumption requires that any effect of Z onY is through an effect of Z on D:

• Assumption 3: Exclusion Restriction

Y(Z, D) = Y(Z', D) for all Z, Z' and for all D.

The exclusion restriction implies that the potential outcome does not depend on the
treatment assignment, given the observed treatment receipt: this allows us to denote the po-
tential outcome as Yi(Di), being Y(Z, D) = Y(Z', D) = Y(D) for all Z, Z' and for all D. The
causal effect of D onY for unit i is δi

(DY) = Yi(1) –Yi(0): this individual effect is only defined
for units with Di(1) ≠ Di(0); for those units, only one term of the above difference (corre-
sponding to the assigned treatment Zi) is observed.

In order to illustrate the relationship between the IV estimator and the causal effect of
D on Y, two more assumptions are needed:

• Assumption 4: Nonzero Average Causal Effect of Z on D

∆(ZD) = E[Di(1) – Di(0)] ≠ 0

that is, the treatment assignment has an effect on the average probability of treatment.

• Assumption 5: Monotonicity of Compliance (Imbens and Angrist, 1994)

Di(1) ≥ Di(0) for all i
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that is, there is no units that do the opposite of what they are assigned to do. If assumptions
1-5 hold, we say that Z is an Instrumental Variable for the causal effect of D on Y.

Exploiting SUTVA and the exclusion restriction, we can obtain the following relationship
between the intention-to-treat effects of Z on Y and D and the causal effect of D on Y:

that is, for unit i we can express the causal effect of Z on Y as the product of the causal ef-
fect of D on Y and the causal effect of Z on D. Taking the expectation, we obtain:

The monotonicity of compliance rules out the units for which Di(1) – Di(0) = –1, leading
to the following simplification:

where ∆*
(DY) is the average treatment effect of D on Y for the subpopulation for which

Di(1) – Di(0) = 1 (that is, Di(1) = 1 and Di(0) = 0); E[Di(1) – Di(0)] = P[Di(1) – Di(0) = 1]
by virtue of the monotonicity assumption. This ultimates in the result:
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The indicators Di(z) (z = 0, 1) describe the compliance behavior and define four subpop-
ulations: compliers (c), for whom Di(z) = z; never-takers (n), for whom Di(z) = 0; always-
takers (a), for whom Di(z) = 1; defiers (d), for whom Di(z) = 1 – z. Without additional
assumptions, the compliance status of unit i is never observed; by virtue of randomization,
however, the four types have the same distribution in both treatment groups. Table 5.1 con-
tains the causal effect of Z on Y for the four subpopulations classified by Di(0) and Di(1).

The intention-to-treat analysis compares outcomes according to the assignment Zi, ig-
noring the compliance behavior: this implies that the ITT effects estimate the effect of as-
signment, whereas the parameter of interest is – in most cases – the causal effect of the
treatment receipt. The global ITT may be written as the weighted average of the ITT effects
across the four subpopulations:

ITT = πcITTc + πnITTn + πaITTa + πdITTd

where ITTj is the effect of the treatment assignment on units of type j and πj is the propor-
tion of units of type j (j = c, n, a, d).

The exclusion restriction states that ITTn = ITTa = 0: because for never-takers and al-
ways-takers the assignment does not affect the receipt of the treatment, it is sometimes
reasonable to assume a null effect of Z on the outcome variable; the monotonicity of com-
pliance rules out the existence of defiers, πd = 0. These two assumptions allow the identi-
fication of the ITT effect for compliers, ITTc = ITT/πc. The global ITT may be viewed as
a conservative estimate of the treatment effect: with the implicit assumptions that πd = 0
and that both ITTn and ITTa are strictly less than ITTc, it should be expected that ITT <
ITTc. The proportion of compliers equals the average causal effect of Z on D, and the av-
erage causal effect of Z on Y is proportional to the average causal effect of D on Y for the
compliers – which is the parameter of interest and corresponds to the IV estimand.

Usually, the no-defiers assumption holds by design, i.e., the access to treatment is de-
nied to those assigned to the control group. The exclusion restriction plays a critical role
in separating the distributions of compliers and non-compliers and could be more or less
plausible depending on the context; for example, in clinical trials, blinding, double blinding
and using placebos justify this critical assumption.

Some testable constraints are implied by the exclusion restriction (Balke and Pearl, 1997;
Imbens and Rubin, 1997b), but in order to relax it, it is useful to make additional assump-
tions. Various strategies have been proposed in the literature to achieve identification in the
absence of exclusion restrictions. Little andYau (1997) and Hirano et al. (2000) extend the
analysis of Imbens and Rubin (1997b) to allow for the presence of pre-treatment covariates;
if they are available, more modelling options other than strictly forcing the exclusion restric-
tion can be considered to achieve identifiability. In Hirano et al. (2000) relaxing exclusion
restrictions (but maintaining monotonicity) within a full Bayesian analysis allows the esti-
mation of the effect of assignment for various subpopulations defined by compliance status.
Covariates can also be exploited to achieve identification and improve efficiency. In the
framework of principal stratification, plausible behavioral hypotheses within or among
groups defined by the values of the covariates can be translated into restrictions on coef-
ficients within or among strata. For some covariates, the same coefficient across strata can



Di(0)

0 1

Di(1)

0 Yi(1, 0) – Yi(0, 0) = 0
Never-takers

Yi(1, 0) – Yi(0, 1)
= Yi(0) – Yi(1)

Defiers

1
Yi(1, 1) – Yi(0, 0)

= Yi(1) – Yi(0)
Compliers

Yi(1, 1) – Yi(0, 1) = 0
Always-takers

Table 4.1 Two-way classification of the population, according to the compliance behavior; in the
cells, the value of the causal effect of Z on Y under the exclusion restriction.

be imposed (Frangakis, 2006), or some interaction terms can be excluded (Jo, 2002).
In the present work we will maintain both monotonicity of compliance and the exclu-

sion restriction on noncompliers, even if the plausibility of the latter can be questioned.
Some remarks will be addressed later, giving suggestions for future developments.

72

5.3 Missing outcomes

A common complication in observational data is the presence of missing outcomes. As
well as noncompliance, missing outcomes are a post-treatment variable: in order to adjust for
this complication, a critical role is played by the assumptions on the missing data mechanism;
proceeding in inference requires some form of imputation of the missing data, either implicit
or explicit. The appropriate set of assumptions, however, depends on the scientific settings.

Randomized experiments often suffer from both complications (noncompliance with
the assigned treatment and missing outcomes); a great care is needed in analyzing the
causal effects of a treatment in presence of any of these complications. An account of the
different approaches proposed in the literature is in Mealli and Rubin (2002).

The standard ITT analysis based on the complete case leads to an unbiased estimate of
the treatment effect only under the very restrictive assumption that the data are Missing
Completely at Random (MCAR; Rubin, 1976; Little and Rubin, 1987). This assumption
has testable implication and is often rejected by the data. A more convenient assumption
is that the outcomes are Missing and Random (MAR; Rubin, 1976); this assumption allows
the probability of response to depend on observed but not on unobserved quantities. The
MCAR is a special case of the MAR model, arising when the response indicator is unre-
lated with both observed and unobserved variables. If MAR holds and the parameters of
the missing data process are distinct from those of the outcome distribution, the missing
mechanism is said to be ignorable, meaning that the missing data values are not informative
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about the probability of response, given the observed quantities; unfortunately, this very
attractive assumption is not testable without auxiliary information, because the data cannot
provide any evidence against MAR.

An assumption that links noncompliance with nonreponse is the Latent Ignorability
(LI; Frangakis and Rubin, 1999). Under LI, the missing data process would be ignorable
if the compliance behavior were known for all units; since the true compliance type is un-
observed for those who are assigned to the control group, the missing mechanism is in
fact nonignorable. To achieve full identification of the ITT effect for compliers under LI,
additional assumptions are required; different forms of response exclusion restriction have
been discussed in Frangakis and Rubin (1999) and Mealli and Rubin (2002).

In the next section, we briefly present the most frequent assumptions on the missing
data mechanism in presence of noncompliance with the treatment assignment.

5.3.1 Analysis of randomized experiments
with noncompliance and missing outcomes

As usual, Zi and Di represent the indicators of the treatment assignment and treatment
receipt for unit i, respectively (i = 1, ..., N); as before, we assume that the monotonicity of
compliance holds, such that the population is only composed of compliers and never-tak-
ers. For unit i, we denote as Ri(z) the potential response indicator, assumed to be dichoto-
mous (1 = respondent, 0 = nonrespondent); Ri = Ri(Zi) is the observed response indicator.
We denote with Yi the (multivariate) outcome for unit i, which is only observed if Ri = 1,
and with Xi an optional vector of observed pre-treatment covariates.

The standard model for missing data makes use of the Missing and Random assumption
(MAR; Rubin, 1976):

Ri ⊥ Yi | Zi, Di, Xi

that is, P(Ri = 1 | Yi, Zi, Di, Xi) = P(Ri = 1 | Zi, Di, Xi); under this assumption, which is often
relatively plausible, the compliers and the never-takers are allowed to have a different re-
sponse behavior in the treatment group – since their Di would differ – but not in the control
group, where the observed Di would be the same. A special case of the MAR model is when

Ri ⊥ Zi, Di, Xi

In this case, the outcome is said to be Missing Completely at Random (MCAR; Rubin,
1976; Little and Rubin, 1987).

Under MCAR, the inference can be performed without conditioning to the observed co-
variates; the usual IV estimator (computed on the units with observed outcome) provides
an unbiased estimate of the treatment effect. However, the MCAR can be viewed as a very
restrictive model: for each unit, the response indicator is assumed to be a bernoulli trial,
whose parameter is independent of the pre-treatment covariates, the treatment assignment,
the treatment receipt and the realized outcome; in other words, the respondent are a random
sample of the N units. The MCAR assumption has testable implication and is often rejected
by the data; the MAR assumption is generally more plausible, but is not testable – since



the data cannot provide any evidence against MAR. If the parameters of the MAR model
are distinct from those of the outcome distribution, the missing data process is said to be
ignorable; in this case, the likelihood function factorizes and the two sets of parameters
can be estimated independently. In most cases, the missing data process is not of interest
and the probabilities of response are nuisance parameters: an appealing feature of this
framework is that it avoid to estimate – and even formulate – a model for the missing
data mechanism.

An alternative assumption is Latent Ignorability (LI; Frangakis and Rubin, 1999):

Ri ⊥ Yi | Zi, Ui, Xi

In the above statement, Ui = Di(1) is the true compliance type of unit i: under LI, the miss-
ing data process is in fact nonignorable, because the compliance type is unobserved for
those who are assigned to the control group; as a consequence, this assumption alone does
not lead to full identification of the treatment effect for compliers. Frangakis and Rubin
(1999) achieve the full identification by exploiting response exclusion restriction for never-
takers and always-takers; using a different rationale, Mealli and Rubin (2002) propose the
response exclusion restriction for always-takers and compliers. We will not use such as-
sumptions here; however, the response exclusion restriction for never-takers is often que-
stionable: among never-takers, those who refuse the participation to the program – that is,
those who are assigned to the treatment group – may be less willing to reveal their outco-
mes. On the other hand, since the compliers are willing to follow the protocol they are as-
signed to, it is reasonable that their response behavior is unaffected by the treatment
assignment: this would justify the response exclusion restriction for compliers.

In this work, we assume that the MAR assumption holds; we will provide further de-
tails in Section 5.5.

5.4 Outcomes truncated by death

The advantages of random assignment may be lost if the outcome is not defined for all
sample members. This problem has been dubbed truncation by death (Zhang and Rubin, 2003;
Rubin, 2006), borrowing the term from medical clinical trials where the outcome – for ex-
ample, quality of life – is undefined for those patients who die. This problem also fre-
quently arises in the evaluation of social policy interventions, such as school dropout
prevention programs (the students’ test scores are only defined if they stay in school), in-
terventions to improve teacher quality (teacher quality is only defined for those who con-
tinue teaching) and employment and training programs, designed to affect both the
probability of employment and the quality of the employment obtained, such as the wage
(wages are observed, and well defined, only for employed individuals).

As pointed out in Rosenbaum (1984), a misleading inference could be obtained by
simply comparing employed treated participants and employed controls; this is because the
employment status is a post-treatment variable: even under randomization of the treatment
assignment, the characteristics of the employed units in the two groups are expected to
differ and, in this case, a biased estimate of the causal effect is obtained.
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As the intervention had two effects, i.e., it affected the survivor status and it affected
the outcome of those who survived, the treatment-control difference-in-means is not in-
formative on the treatment effect. Rubin (2000) and Zhang and Rubin (2003) argue that,
because the outcome is undefined for non survivors, the only question that does make
sense is what is the impact on the individuals who would survive irrespective of whether
they receive the intervention. Rubin (2000) first used the term survivor average causal ef-
fect (SACE) for the impact on the sample members whose outcomes are observed whether
they are assigned to the treatment or control group. Unfortunately, it is not straightforward
to estimate the SACE because we only observe what each couple does either with or with-
out the intervention, but not both. Zhang and Rubin (2003) derived bounds on the possible
range of values within which the SACE must lie, which are similar in spirit but narrower
than bounds presented in Horowitz and Manski (2000). However, without any assumptions,
the Zhang and Rubin bounds on the SACE can still be quite wide. These bounds can be
narrowed, however, by specifying additional assumptions; Zhang and Rubin (2003) discuss
two particular assumptions that can help narrow the bounds on the SACE, namely monot-
onicity and stochastic dominance on the outcome distribution. Those bounds have been ex-
ploited by Lee (2005) in the analysis of the Job Corps data. In the original paper, finding
the bounds involves numerical optimization; a closed form is provided in the recent work
of Imai (2007a).

In a parametric setting some authors address this issue using sample selection models
(Heckman, 1979); this approach, however, presents the difficulty of finding a set of covari-
ates that are “instruments” in the sense that they determine the survivor status but do not
directly affect the outcomes of those who are survived (Heckman and Vytlacil, 1999).

The principal stratification approach allows to explicitly models the truncation process
and the outcome (Rubin 2006; Zhang, Rubin, and Mealli, 2008a, 2008b). In this work, we
follow this approach, focussing on identification and estimation of intervention’s effect
on the subpopulation of the always survivors.

In the evaluation of the effectiveness of government-sponsored training programs, we
are interested on the treatment effect on wages: an increase in the expected wage for the
treated participants would reflect the raise in the human capital due to the training. The
main difficulty in estimating the effect on wages is that wages are observed (and well de-
fined) only for employed individuals.(10) Our aim is to evaluate the effect on wages for the
subpopulation of always employed, those who would be employed regardless the treatment
assignment.

Following the recent work by Zhang, Rubin and Mealli (2008b), we now illustrate how
the Rubin Causal Model works in this case. In this section, we assume perfect compliance
with the treatment assignment and we only focus on the estimation of the causal effect on
wages, assuming that there are not missing outcomes; in Section 5.5 we provide a unified
framework to simultaneously address all these issues.

(10) For those who are unemployed, it could be argued that the wages are also defined but lower than their
“reservation wage”: we will not discuss this issue here; under a statistical point of view, the relevant question
is that the wages are only observed for employed people.



5.4.1 Estimating the causal effect of job-training programs on wages

For unit i, we denote with Si the indicator for the employment status (0 = unemployed,
1 = employed) and with Wi the observed hourly wage; using the extended space {ℜ+, ∗},
we define the wages for unemployed people to be Wi = ∗. As before, we denote with Zi the
binary treatment assignment of unit i and with Z the N-dimensional vector of assignments.
We denote as Wi(Z) and Si(Z) the potential outcomes for unit i.

As usual, before proceeding in the inference, we make the SUTVA and randomization
assumptions: in this case, the SUTVA may be written as follows:

• Assumption 1: Stable Unit Treatment Value Assumption (SUTVA)

If Zi = Zi', then Si(Z) = Si(Z') and Wi(Z) = Wi(Z')

With the SUTVA assumption, we can write the potential outcomes as Wi(Zi) and Si(Zi), re-
spectively; by virtue of the randomization process, we can estimate an average causal
effect taking the expected value of the individual effect.

According to the RCM – and using the same notation as in Section 5.1 – we define the
causal effects of the treatment for the unit i as the differences in the potential outcomes:

δi
(ZW) = Wi(1) – Wi(0)
δi

(ZS) = Si(1) – Si(0)

We can see thath only for units with Wi(1) ∈ℜ+ and Wi(0) ∈ℜ+ (that is, Si(1) = Si(0) = 1)
we can define in ℜ+ the individual effect on wages δi

(ZW); using the same notation as in
Zhang et al., we classify the units in the following 4 strata, G = {EE, EN, NE, NN}, ac-
cording to the values of Si(1) and Si(0):

• EE = {i: Si(1) = Si(0) = 1}, those who would be employed regardless of the treatment
assignment; for this stratum, Wi(1) and Wi(0) are defined in ℜ+;

• EN = {i: Si(1) = 1 and Si(0) = 0}, those who would be employed only under treatment;
for this stratum, Wi(1) ∈ℜ+ and Wi(0) = ∗;

• NE = {i: Si(1) = 0 and Si(0) = 1}, those who would be employed only if assigned to
the control group; for this stratum, Wi(1) = ∗ and Wi(0) ∈ℜ+;

• NN = {i: Si(1) = Si(0) = 0}, those who would be unemployed regardless of the treat-
ment assignment; for this stratum, Wi(1) = Wi(0) = ∗.

Only for the EE group we can define the causal effect on wages in a meaningful way; for
this reason, the parameter of interest is the average treatment effect (ATE) on wages in the
EE group:

∆∗
(ZW) = E[Wi(1) | Gi = EE] – E[Wi(0) | Gi = EE]

where the notation ∆∗
(ZW) instead of ∆(ZW) means that the expected value is only taken on the

EE group. The average treatment effect on employment is defined on the whole population:

∆(ZS) = E[Si(1)] – E[Si(0)] = P[Gi = EN] – P[Gi = NE]
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Clearly, we cannot observe the principal stratum Gi for individual i: for those assigned
to the treatment group, we only observe Si(1); for those assigned to the control group, we
only observe Si(0). This configures our estimation issue as a missing data problem. What
we can directly observe are the following groups:

• O(1,1) = {i: Zi = 1 and Si = 1}, those who are assigned to the treatment group and em-
ployed; they are a mixture of the principal strata EE and EN;

• O(1,0) = {i: Zi = 1 and Si = 0}, those who are assigned to the treatment group and un-
employed; they are a mixture of the principal strata NN and NE;

• O(0,1) = {i: Zi = 0 and Si = 1}, those who are assigned to the control group and em-
ployed; they are a mixture of the principal strata EE and NE;

• O(0,0) = {i: Zi = 0 and Si = 0}, those who are assigned to the control group and un-
employed; they are a mixture of the principal strata NN and EN.

A common assumption is the following:

• Assumption 6 (Monotonicity of Truncation): P[Gi = NE] = 0

that is, there is no NE group, meaning that the treatment is not harming anyone. This as-
sumption is in general less plausible than the analogous monotonicity of compliance as-
sumption made in Section 5.2 (which rules out the defiers); in this case, such assumption rules
out, a priori, a negative treatment effect on the employment: in a short run, it seems plausible
that treated individuals choose to be unemployed and wait for a “good” work; as a conse-
quence, in some setting the monotonicity of truncation may have little justification.

Another assumption, considered in Zhang and Rubin (2003) is stochastic dominance:
the wage distribution for the EE group is assumed to be stochastically larger than the wage
distribution for the EN group when trained and the NE group when not trained.

Usually, additional hypotheses are done: a common choice is to specify a parametric
model and use the standard mixture analysis in the estimation. In Section 5.5, we propose
a complex framework to estimate the effect on wages in presence of noncompliance and
missing outcomes; in Section 5.6, we illustrate how to obtain the parameters estimates
using the EM algorithm under a likelihood approach.

5.5 Estimating the effect on wages with noncompliance
and missing outcomes under the MAR assumption

As before, we denote with Zi the treatment assignment and with Di the treatment receipt
for unit i (1 = treatment, 0 = control) whereas Ri denotes the response indicator (1 = re-
spondent, 0 = nonrespondent).(11) Among respondent units, Si and Wi represent, respec-
tively, the observed employment status (1 = employed, 0 = unemployed) and the wage for
individual i – which is only observed if Si = 1; as usual, we define the wages for unem-

(11) For ease of presentation, in what follows we denote as “nonrespondent” each unit whose outcome is
missing due to both nonresponse or attrition.



ployed people to be Wi = ∗. Nonrespondent units have an unknown value for both Si and
Wi. We denote as Z, D, R, S and W the N-dimensional vectors with elements Zi, Di, Ri, Si

and Wi, respectively. The potential outcomes for unit i are Di(Z), Ri(Z, D), Si(Z, D) and
Wi(Z, D): we emphasize the fact that the response indicator is a post-treatment measure-
ment, as well as the outcome variables.

In what follows, we will consider that assumptions 1-5 (SUTVA, randomization, ex-
clusion restriction, nonzero average effect of Z on D, monotonicity of compliance) hold;
for this setting, we can rewrite the SUTVA as follows:

• Assumption 1: Stable Unit Treatment Value Assumption (SUTVA)

i) If Zi = Zi', then Di(Z) = Di(Z')

ii) If Zi = Zi' and Di = Di', then Ri(Z, D) = Ri(Z', D')

iii) If Zi = Zi' and Di = Di', then Si(Z, D) = Si(Z', D')

iv) If Zi = Zi' and Di = Di', then Wi(Z, D) = Wi(Z', D')

We do not repeat here the assumptions 2-5, which remain unchanged; the exclusion restric-
tion for never-takers is assumed to hold for both W and S. However, we do not impose any
exclusion restriction on the potential response indicator: as a consequence, units with the
same treatment receipt may have a different missing data mechanism, according to their
treatment assignment. In virtue of this set of assumptions, we can unambiguously write the
potential outcomes as Di(Zi), Ri(Zi,Di), Si(Di) and Wi(Di).

With respect to the compliance behavior, we assume that the population is only com-
posed of compliers (C) and never-takers (N): assumption 5 (monotonicity of compliance)
rules out the defiers; the always-takers are also excluded in this case, because the units as-
signed to the control group (Zi = 0) are not allowed to enroll in Job Corps. If we ignore the
response behavior, units can be cross-classified [{C, N}×{EE, EN, NE, NN}] in 8 groups:

{C.EE, C.EN, C.NE, C.NN, N.EE, N.EN, N.NE, N.NN}.

By virtue of the exclusion restriction on the employment status, we can cross out the N.EN
group and the N.NE group, which would entail a direct effect of Z on S for never-takers:
the groups reduce to

G = {C.EE, C.EN, C.NE, C.NN, N.EE, N.NN}.

Optionally, if also monotonicity of truncation holds, there is no C.NE group and we can write

G = {C.EE, C.EN, C.NN, N.EE, N.NN}.

As shown in Section 5.2, the causal effect of interest is the differences in the potential
outcomes for the subpopulation of compliers; in Section 5.4, we argued that the causal ef-
fect on wages is only defined for the EE group. In this more complex framework, a critical
role is played by the C.EE group: we will now proceed in defining the causal effects of in-
terest whitin the common framework of the Rubin Causal Model. The causal effects at the
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individual level on D, S and W are defined as follows:

• Causal effect of Z on D: δi
(ZD) = Di(1) – Di(0)

• Causal effect of D on S: δi
(DS) = Si(1) – Si(0)

• Causal effect of D on W: δi
(DW) = Wi(1) – Wi(0)

Taking back the results of Sections 5.2-5.4, we obtain the following statements:

• the average treatment effect of Z on D equals the proportion of compliers in the pop-
ulation (compare Section 5.2):

∆(ZD) = E[Di(1)] – E[Di(0)] = P[Di(1) – Di(0) = 1]

• the average treatment effects of D on S and W are, respectively:

∆*
(DS) = E[Si(1) | Di(1) – Di(0) = 1] – E[Si(0) | Di(1) – Di(0) = 1]

= P[Gi = C.EN] – P[Gi = C.NE]

∆*
(DW) = E[Wi(1) | Gi = C.EE] – E[Wi(0) | Gi = C.EE]

where in the above formula we wrote ∆*
(DS) and ∆*

(DW) instead of ∆(DS) and ∆(DW), respectively,
to emphasize that the expected values are only taken on a subset of the whole population
(the compliers for ∆*

(DS) and the C.EE group for ∆*
(DW)).

Without further assumptions on the response behavior (such as monotonicity of re-
sponse and exclusion restrictions for some subgroup of units), each of the above principal
strata is composed of 4 subgroups, according to the couple Ri(1, Di(1)), Ri(0, Di(0)) of po-
tential response indicators; the causal effect of Z on R is known to be zero for the always-
respondent (RR) and the never-respondent (rr): within each stratum in G, the average
treatment effect is defined as the difference between the proportion of the Rr group (units
who would respond only under treatment) and the proportion of the rR group (units who
would respond only under control). With these settings, 24 latent strata are supposed to
exist (20 if the monotonicity of truncation is assumed for the potential employment status);
in order to simplify this very general framework, we assume Latent Ignorability (Frangakis
and Rubin, 1999):

Wi ⊥ Ri | Zi, Ui, Si(1), Si(0), Xi

where Ui = Di(1) is the true compliance behavior (1 = complier, 0 = never-taker) and Xi is
an optional vector of pre-treatment covariates. Under this assumption, given the covariates
and the treatment assignment, units with the same compliance behavior and potential em-
ployment status have the same expected wage, regardless of the response behavior. The La-
tent Ignorability implies that P(Ri = 1 | Wi, Gi, Xi) = P(Ri = 1 | Gi, Xi), Gi∈G: if we knew
the group membership (Gi) of each unit, the missing data mechanism would be ignorable.
This allows us to define the following probabilities:

ρi:g,z = P(Ri = 1 | Zi = z, Gi = g, Xi)
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that is, ρi:g,z is the probability of observing the outcomes of the unit i, given that this unit
belongs to the gth stratum and is assigned to the treatment z (g ∈G, z = {0,1}, i = 1, ..., N).

Since the true compliance behavior and the potential employment status are partially
unobserved, the missing data process is in fact nonignorable. An alternative missing data
model is obtained exploiting the Missing at Random assumption (MAR; Rubin, 1976):

Si ,Wi ⊥ Ri | Zi, Di, Xi

The MAR requires that P(Ri = 1 | Si ,Wi, Zi, Di, Xi) = P(Ri = 1 | Zi, Di, Xi): the probability
of observing the outcomes (S and W) is the same for all units with the same treatment as-
signment, treatment receipt and pre-treatment covariates; in other words, the missing mech-
anism is unaffected by the outcomes Si and Wi. If we assume LI and we impose the
following restrictions on response probabilities, we can prove that the missing mechanism
is ignorable and the MAR assumption holds:

ρi:C.EE,1 = ρi:C.EN,1 = ρi:C.NE,1 = ρi:C.NN,1 [5.1]

ρi:N.EE,1 = ρi:N.NN,1 [5.2]

ρi:C.EE,0 = ρi:C.EN,0 = ρi:C.NE,0 = ρi:C.NN,0 = ρi:N.EE,0 = ρi:N.NN,0 [5.3]

Compliers and never-takers are allowed to have a different response behavior under
treatment – sincer their Di would differ – but not under the control condition, where the two
groups have the same value of Di. The couple of potential outcomes Si(1) and Si(0) does
not affect the response behavior. We will illustrate in the next section how the Latent Ig-
norability and the MAR assumptions are used in writing the observed likelihood function.

The estimation issue is a missing data problem, because we cannot observe which stra-
tum each unit comes from; among the respondent units, what we can directly observe are
the following groups, defined according to different combinations of Z, D and S:

• O(1,1,1) = {i: Zi = 1, Di = 1 and Si = 1}, those who are assigned to the treatment
group, compliers with the assignment and employed; they are a mixture of the two
principal strata C.EE and C.EN;

• O(1,1,0) = {i: Zi = 1, Di = 1 and Si = 0}, those who are assigned to the treatment
group, compliers and unemployed; they are a mixture of the two principal strata
C.NN and C.NE;

• O(1,0,1) = {i: Zi = 1, Di = 0 and Si = 1}, those who are assigned to the treatment
group, noncompliers and employed; they belong to the principal stratum N.EE;

• O(1,0,0) = {i: Zi = 1, Di = 0 and Si = 0}, those who are assigned to the treatment
group, noncompliers and unemployed; they belong to the principal stratum N.NN;

• O(0,0,1) = {i: Zi = 0, Di = 0 and Si = 1}, those who are assigned to the control group
and employed; they are a mixture of the three principal strata C.EE, C.NE, N.EE;

• O(0,0,0) = {i: Zi = 0, Di = 0 and Si = 0}, those who are assigned to the control group
and unemployed; they are a mixture of the three principal strata C.NN, C.EN, N.NN.
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For the non respondent, the value of S is unobserved; according to the couple of indicators
(Z, D), we observe the following groups:

• O'(1,1) = {i: Zi = 1 and Di = 1}, those who are assigned to the treatment group and
compliers; they are a mixture of the four principal strata C.EE, C.EN, C.NE, C.NN;

• O'(1,0) = {i: Zi = 1 and Di = 0}, those who are assigned to the treatment group and
noncompliers; they are a mixture of the two principal strata N.EE, N.NN;

• O'(0,0) = {i: Zi = 0 and Di = 0}, those who are assigned to the control group; they are
a mixture of all strata in G.

In the above notation, we denoted with O(·) the respondent units and with O'(·) the
nonrespondent. For those who are assigned to the treatment group, the compliance behav-
ior is known; the employment status brings information about the couple Si(1), Si(0) and
narrows the admissible strata. Among the nonrespondent, the latter information is unavail-
able: as a consequence, within the treatment group, we can only classify the units as com-
pliers (the O'(1,1) group) or as never-takers (the O'(1,0) group), whereas in the control
arm (the O'(0,0) group), when also the compliance behavior is unobserved, it is completely
unknown which stratum the units come from.

In the next section, we will illustrate how to obtain the parameters estimates under a
likelihood approach, exploiting standard mixture modeling.

5.6 Likelihood approach

We now assign a parametric distribution to the potential outcomes; this enables us to
consider the effect of pre-treatment covariates (X), using a regression model to describe
the expected outcomes and the unobserved group membership; a finite mixture model
(see, e.g., McLachlan and Peel, 2000) can be fitted using the EM (Expectation-Maximiza-
tion) algorithm (Dempster, Laird and Rubin, 1977).

We denote with Gi the unobserved component membership label for unit i; G = G1, ...
GN is the N-dimensional vector of unknown group labels. In the present work, we will as-
sume that the exclusion restriction holds: this implies that Gi is a random draw from the
set G = {C.EE, C.EN, C.NE, C.NN, N.EE, N.NN}; in this case, the number of components
of the mixture is k = 6. If we assume monotonicity of truncation, we cross out the C.NE
component and we have k = 5.

For ease of notation, we assume that X includes the constant term – that is, a column
containing the unit vector. We assume a multinomial logistic model for the k-dimensional
vector of cluster membership indicators:
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where g ∈ G and the kth principal stratum (N.NN) is taken as baseline (that is, aN.NN = 0).
We denote with πi:g the probability of the stratum g for unit i, given the pre-treatment vector
of covariates Xi.

Assuming a Normal distribution for the log wages, the general model specification is
as follows:

• if Gi = C.EE, log[Wi(1, Di(1))] = log[Wi(1)] ~ N(XibC.EE,1, σ2
C.EE,1)

log[Wi(0, Di(0))] = log[Wi(0)] ~ N(XibC.EE,0, σ2
C.EE,0)

• if Gi = C.EN, log[Wi(1, Di(1))] = log[Wi(1)] ~ N(XibC.EN,1, σ2
C.EN,1)

• if Gi = C.NE, log[Wi(0, Di(0))] = log[Wi(0)] ~ N(XibC.NE,0, σ2
C.NE,0)

• if Gi = N.EE, log[Wi(1, Di(1))] = log[Wi(0, Di(0))] = log[Wi] ~ N(XibN.EE, σ2
N.EE)

If unit i is a complier, Zi = Di; for never-takers, Di = 0, regardless the treatment assignment.
For the C.EE group, the parameters of the wage distribution vary across the two treatment
levels; in the C.EN group, the wages are only defined if Zi = 1; in the C.NE group, only if
Zi = 0 (optionally, the monotonicity of truncation rules out this group). The exclusion re-
striction implies that in the N.EE group the parameters of the wage distribution are unaf-
fected by the treatment assignment; at the same time, as showed before, the exclusion
restriction rules out the N.EN and N.NE groups. Clearly, for the C.NN and N.NN groups,
there are no associated wages.

We denote as x = {a, b, s, q} the parameters vector of this model, where

a = {aC.EE, aC.EN, aC.NE, aC.NN, aN.EE}

b = {bC.EE,1, bC.EE,0, bC.EN,1, bC.NE,0, bN.EE}

s = {sC.EE,1, sC.EE,0, sC.EN,1, sC.NE,0, sN.EE}

and q is the parameters vector of the probabilistic model for the missing data mechanism.
We denote as N(µ, σ2) the probability density function of a Normal distribution with mean
µ and variance σ2 evaluated at log(Wi). We will assume MAR: in order to show the like-
lihood function under missing at random we first assume Latent Ignorabiliy. If LI holds,
the likelihood can be written as:
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where ωi are optional sample weights. The assumptions needed to make the missing data
mechanism ignorable (so that the likelihood factorizes and the probabilities of observing
the outcomes can be estimated indipendently of all other parameters) require equalities
[5.1]-[5.3] to hold. The likelihood function simplifies as follows under MAR:
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The units in the O'(1,1) and O'(1,0) groups bring information on their compliance be-
havior and affect the estimates of the πi:g (i = 1, ..., N; g ∈G); the units in the O'(0,0) group
are uninformative and disappear from the likelihood function (since Σgπi:g = 1). Once again,
assuming monotonicity of truncation would imply to set πi:C.NE = 0 and proceed with k = 5
instead of k = 6. The complete-data log-likelihood function may be written as follows:

where I(·) is the general indicator function and l(q) contains the parameters of the missing
data process; since q is not of interest under the MAR assumption, we focus on the remain-
ing parameters. Once an initial value x(0) for the parameters vector has been chosen, the E-
step of the EM algorithm computes the conditional probabilities of each stratum, given the
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current estimates x(t):

for i ∈ O(1,1,1),

for i ∈ O(1,1,0),

for i ∈ O(1,0,1),

for i ∈ O(1,0,0),
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for i ∈ O(0,0,1),

for i ∈ O(0,0,0),

for i ∈ O'(1,1),
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for i ∈ O'(1,0),

The above conditional probabilities are the estimates of the unknown indicator func-
tions I(·) in the complete-data log-likelihood function; replacing the I(Gi = g) with the
P(t)(Gi = g) we obtain the expected log-likelihood lE(x | Z, D, R, S, W, X). The M-step
consists in optimizing lE(·) with respect to the parameters vector x, leading to a new esti-
mate x(t + 1): to update b and s, a standard routine for linear regression models can be used;
a procedure for multinomial logistic models is needed in estimating a, given the current
posterior probabilities. As showed in Dempster et al., iterating this process monotonically
increases the likelihood function, or at least leaves it unchanged; the algorithm runs until
a stopping criterion has been satisfied.

As in any finite mixture of Normal distributions, the log-likelihood function is un-
bounded and the EM algorithm may fall in a spurious maximum: in this case, the proce-
dure must be restarted with new starting values. In addition, there often exist other solutions
which may be regarded as spurious, lying very close to the edge of the parameter space:
this happens when a component with very small variance is fitted; usually, this component
density constitutes a cluster containing a few data points, very close together or almost
lying in the same subspace. Such estimate tends to “interpolate” a local pattern and pro-
vides a bad fit for the remaining observations; as a consequence, the fitted model is not of
practical use in inference.

Another complication is that the log-likelihood function presents an unknown number
of local solutions: the best one – that is, the one with the higher log-likelihood value – is
usually chosen as the MLE. For this reason, a great number of different starting values for
the EM algorithm should be used.

Once a parameter estimate has been obtained, the causal effects of interest can be eval-
uated. In a regression approach, this requires to average on the covariates distribution;
moreover, the causal effects are expressed in the natural scale, whereas the model is esti-
mated on the logarithm of the wages. Following Zhang et al. (2007), we estimate the pro-
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portion of each stratum as

the causal effect of Z on D (which is not of special interest) is estimated as the proportion
of compliers:

Consistent estimates of the average treatment effects on wages and employment are ob-
tained as

and

respectively. We can see that the monotinicity of truncation – setting π̂C.NE = 0 – forces the
estimate of the treatment effect on employment to be positive. Once the asymptotic covari-
ance matrix of the estimates has been obtained, the standard errors of the above quantities
may be computed using the Delta method.

In Section 5.7, we present the application of this framework to the Job Corps Study;
the model has been estimated on the outcomes of the 45th, 135th and 208th week: very dif-
ferent treatment effects are obtained in the short and in the long run; we will see that the
monotonicity of truncation plays a very critical role in the model identification.

5.7 Application to the Job Corps Study

The evaluation of government-sponsored job-training programs is a difficult task, un-
dertaken by a number of authors in last decades (Heckman and Hotz, 1989, Lalonde, 1995,
Burghardt et al., 2001, Zhang, Rubin and Mealli, 2008a, 2008b).

For our analysis, we use the data from the National Job Corps Study (conducted by
Mathematica Policy Research, Inc. for the U.S. Department of Labor) and estimate the ef-
fect of the program on employment and wages. The data are from a random sample of all
selected applicants (N = 15,386) in 1994 and 1995: among them, a random assignment to
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the program or to the control group were done; only those assigned to the program group
(9,409 units, about 61%) were admitted to enroll in the Job Corps: among them, 6,039
(64%) complied with the assignment.

For all units, pre-treatment covariates (X) were collected. In principle, including covari-
ates in the analysis is not fundamental in estimating the treatment effects: the covariates
effect is not of main interest and – by virtue of the randomization process – the covariates
distribution is independent of the treatment assignment. However, the covariates are helpful
and necessary for three main reasons: first, they generally improve the model identification
and the prediction of the unobserved potential outcomes; second, they allow a more plau-
sible generalization to a population with different characteristics; third, conditioning on co-
variates is explicitly required by the MAR assumption. The summary statistics of the
pre-treatment covariates (X) are displayed in Table 5.2 (N = 15,376: we removed 2 obser-
vations aged more than 30 – all others units are aged 16-24 – and 8 units with overly large
(> 50,000) values for earnings in the previous year). We imputed the missing values in X
using the mice procedure in R, which generates multiple imputations for incomplete mul-
tivariate data by Gibbs Sampling; we used only the baseline covariates as predictor in the
chained equations. Linear regression has been used for numerical covariates; binary/multi-
nomial logistic models for dichotomous/polytomous variables. Ten different imputation
have been generated, leading to very similar estimates of the model parameters: for this rea-
son, we only present the results from one single imputed data set. In the linear predictor,
the education degree (number of scholar years attended by the young and his parents) has
been included as a dummy variable (= 1 if greater than the sample median); we also col-
lapsed the information on the marital status in the dummy “partnered”.

In our analysis, we considered as missing all inadmissible outcomes (units with more
than 84 weekly hours, employed people with zero weekly earnings or hours). Table 5.3
presents the summary statistics of the outcome variables Y (employment, total earnings and
weekly hours at 45th, 135th and 208th week after treatment).

For simplicity, we assumed that the treatment assignment for compliers enters in the
linear predictor without interactions with the covariates; that is, bC.EE,1 and bC.EE,0 only differ
in the intercept, so that

for each i. As in a standard linear model, we also assumed that the treatment receipt in the
C.EE group has no effect on the variance: this implies σ2

C.EE,0 = σ2
C.EE,1. The exclusion re-

striction is always maintained – that is, we constrained the causal effects for never-takers
to be zero. Violations of the exclusion restriction have no testable consequences and – in
this case – we believe that this assumption is plausible; however, units who refused the
treatment could regret the vanished opportunity: we do not know if this eventuality would
have some consequences in terms of potential employment status and potential wages.

With the above set of assumptions and simplifications, the model has 221 parameters;
the monotonicity of truncation assumption rules out the C.NE group and reduces the num-
ber of parameters to 175. For the 3 weeks under study, we estimated the model with and
without monotonicity assumption; a genetic algorithm was used in the search of the “best”
local maximum of the log-likelihood function; the EM algorithm was stopped when the
maximum absolute change in the parameters vector between two consecutive iterations

X Xi C EE i C EEb b. , . ,1 0= + γ
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was smaller than 0.0001. For each model, the asymptotic covariance matrix was obtained
by analytical evaluation of the Hessian of the log-likelihood function. The causal effects
on employment and wages have been computed and approximate standard errors have
been obtained by means of the Delta method; also in this case, analytical derivatives have
been used.

5.8 Results

Tables 5.4 and 5.5 present results without and with monotonicity of truncation assump-
tion, respectively. Without imposing monotonicity (Table 5.4), for week 45 we found ev-
idence of all latent strata; we estimated a negative treatment effect on employment (– 8.22%),
whereas the effect on wages is found to be positive (about 0.276 $/hour). For weeks 135
and 208, a positive treatment effect was found on both employment (+ 4.87% and + 4.85%,
respectively) and wages (0.210 and 0.337 $/hour, respectively). The estimated probability
of the C.NE group was found to be very high (15.47%) in week 45, but negligible in the
subsequent weeks (1.37% in week 135, 1.35% in week 208).

Because of this lack of evidence of the C.NE group, we also estimated the model im-
posing monotonicity of truncation; results are displayed in Table 5.5. With respect to
Table 5.4, completely different estimates are found for week 45: the effect on employment
is constrained to be positive and very different probabilities are obtained for the C.EE,
C.EN and C.NN strata. According to the AIC (Akaike’s Information Criterion) the monot-
onicity of truncation should be rejected, whereas the BIC (Bayesian Information Criterion),
which generally penalizes models with a great number of parameters, indicates that setting
pi:C.NE = 0 causes a nonsignificant reduction of the model fit; however, we have no reason
to cross out a component which is known a priori to exist: since we found a strong evidence
of the C.NE stratum, we believe that the monotonicity of truncation does not hold for week
45. In week 135 and 208, the estimates under monotonicity are very similar to those of
Table 5.4; in both cases, the BIC suggests that the model with monotonicity should be pre-
ferred, whereas the opposite conclusion is drawn according to the AIC; however, for weeks
135 and 208 this assumption appears to be quite reasonable.

In the short run, there are trained units that choose to be unemployed and wait for a bet-
ter job: this results in a negative effect on the employment; in the long run, the C.NE group
tends to disappear and a greater employment rate is observed among trained units. These
results are consistent with the empirical literature on the effect of active labor market poli-
cies, which suggest that almost all programs reduce employment and earnings in the short
run. This so-called “lock-in” effect is well documented in many studies and can be also at-
tributed to reduced search intensity of participants or fewer job offers during the program
(Lechner and Wunsch, 2007; van Ours, 2004).

The effect on wages is found to be higher in week 45 than in week 135; this corrobo-
rates the above arguments: in the short run, treated units generally have a well remunerated
job or, otherwise, choose to be unemployed; in the long run, different criteria are used and
the job selection become less strict: for this reason, a still positive but lower effect on
wages (together with a positive effect on employment) is observed in week 135. However,
the gap between treated and untreated units increases over time, as comes out from the es-
timates of the treatment effect on wages for week 208.
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These results also demonstrate how crucial is the monotonicity of truncation in this
case: for weeks 135 and 208, it seems reasonable that this assumption holds, because there
is a very weak evidence of the C.NE group, whereas in week 45 – according to the former
estimates – monotonicity is not a plausible assumption.

The obtained results may be sensitive to our working assumptions; in particular, the ex-
clusion restriction could be questionable, because units who refused the treatment could
regret the vanished opportunity; however, removing this assumptions may be detrimental
in terms of model identification. A possible strategy to improve identification is to use a mul-
tivariate model – e.g., a bivariate normal distribution for the couple (log(W), log(H)), where
W denotes the hourly wage and H the weekly working hours. With a bivariate approach, an
increased efficiency could be achieved; with the aim of decomposing a finite mixture with
a great number of component (k = 8 if the exclusion restriction and the monotonicity of trun-
cation are assumed to not hold), using a double classification criterion (wages and hours
worked) is also expected to reduce the occurrence of spurious optimizers, which represents
a serious problem in the estimation of the univariate model we presented here.
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Treatment Control Difference

Variable
Prop.

non-miss.
Mean Std. Dev.

Prop.
non-miss.

Mean Std. Dev. Diff. Std. Err.

Female 0.96 0.41 0.49 0.95 0.40 0.49 0.00 0.01
Age at baseline 0.96 18.85 2.18 0.95 18.82 2.15 0.03 0.04

White, non-Hispanic 1.00 0.30 0.46 1.00 0.30 0.46 0.00 0.01
Black, non-Hispanic 1.00 0.46 0.50 1.00 0.45 0.50 0.01 0.01

Hispanic 1.00 0.17 0.37 1.00 0.17 0.38 0.00 0.01
Other race 1.00 0.07 0.26 1.00 0.07 0.26 0.00 0.00

Never married 0.94 0.91 0.28 0.92 0.91 0.28 0.00 0.00
Married 0.94 0.02 0.14 0.92 0.02 0.14 0.00 0.00

Living together 0.94 0.04 0.20 0.92 0.04 0.20 0.00 0.00
Separated 0.94 0.02 0.16 0.92 0.02 0.14 0.00 0.00
Partnered 0.94 0.06 0.24 0.92 0.06 0.24 0.00 0.00

Has children 0.99 0.17 0.38 0.99 0.17 0.38 0.00 0.01
Number of children 0.99 0.24 0.61 0.98 0.23 0.59 0.01 0.01

Education 0.93 10.06 1.52 0.92 10.07 1.52 – 0.01 0.03
Mother’s education 0.76 11.52 2.56 0.74 11.53 2.62 – 0.01 0.05
Father’s education 0.58 11.47 2.87 0.56 11.57 2.84 – 0.10 0.06

Ever arrested 0.94 0.26 0.44 0.92 0.26 0.44 0.00 0.01

Household Inc. < 3000 0.59 0.26 0.44 0.59 0.25 0.43 0.01 0.01
3000-6000 0.59 0.20 0.40 0.59 0.21 0.41 – 0.01 0.01
6000-9000 0.59 0.11 0.32 0.59 0.11 0.31 0.00 0.01
9000-18000 0.59 0.25 0.43 0.59 0.25 0.43 0.00 0.01

> 18000 0.59 0.19 0.39 0.59 0.19 0.39 0.00 0.01

Personal Inc. < 3000 0.87 0.79 0.41 0.86 0.79 0.40 0.00 0.01
3000-6000 0.87 0.13 0.33 0.86 0.13 0.33 0.00 0.01
6000-9000 0.87 0.05 0.22 0.86 0.04 0.20 0.01 0.00 (*)

> 9000 0.87 0.03 0.18 0.86 0.03 0.18 0.00 0.00

At baseline:
Have job 0.92 0.21 0.41 0.91 0.21 0.41 0.00 0.01

Had job, prev. yr. 0.94 0.65 0.48 0.92 0.64 0.48 0.01 0.01
Months empl., prev. yr. 0.89 3.77 4.26 0.88 3.75 4.30 0.01 0.07

Earnings, prev. yr. 0.87 2859.89 4210.62 0.86 2868.57 4350.31 – 8.69 74.16

N 9409 5977

Table 5.2 Summary statistics of the pre-treatment covariates; in the last column, (*) denotes that the difference bet-
ween the treatment and the control group is statistically significant at 0.05 level (all statistics have been computed
before the imputation). All computations use design weights.
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Treatmnt Control Difference

Variable
Prop.

non-miss.
Mean Std. Dev.

Prop.
non-miss.

Mean Std. Dev. Diff. Std. Err.

Week 45

Employed 0.88 0.35 0.48 0.85 0.43 0.49 – 0.08 0.01 (*)
Weekly earnings 0.88 89.19 154.32 0.85 103.39 150.82 – 14.19 2.64 (*)

Weekly hours 0.88 14.49 21.83 0.85 17.49 22.52 – 3.01 0.38 (*)

Week 135

Employed 0.76 0.54 0.49 0.76 0.52 0.50 0.03 0.01 (*)
Weekly earnings 0.76 182.16 217.87 0.76 164.24 201.59 17.92 3.88 (*)

Weekly hours 0.76 23.92 24.31 0.76 22.51 24.07 1.41 0.45 (*)

Week 208

Employed 0.67 0.60 0.49 0.68 0.56 0.50 0.04 0.01 (*)
Weekly earnings 0.67 220.15 240.66 0.68 194.88 219.51 25.27 4.52 (*)

Weekly hours 0.67 26.54 24.12 0.68 24.41 23.86 2.13 0.47 (*)

Table 5.3 Summary statistics of the outcome variables. In the last column, (*) denotes that the difference
between the treatment and the control group is statistically significant at 0.05 level. All computations use de-
sign weights.
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week π̂C.EE π̂C.EN π̂C.NN π̂N.EE π̂N.NN ∆^ *
(DS) ∆^ *

(DW) BIC AIC

45
0.2468

(0.0045)
0.0294

(0.0025)
0.4382

(0.0048)
0.1333

(0.0041)
0.1523

(0.0043)
0.0294

(0.0025)
0.1693

(0.0426)
28505.7 27191.5

135
0.3389

(0.0057)
0.0592

(0.0047)
0.3001

(0.0049)
0.1652

(0.0046)
0.1364

(0.0045)
0.0592

(0.0047)
0.2070

(0.0571)
28127.5 26813.3

208
0.3865

(0.0059)
0.0559

(0.0047)
0.2672

(0.0050)
0.1724

(0.0052)
0.1181

(0.0049)
0.0559

(0.0047)
0.3217

(0.0669)
25696.1 24381.9

Table 5.5 Maximum likelihood estimates – adjusted for covariates and assuming monotonicity of
truncation – of the average treatment effects on employment (∆*

(DS)) and wages (∆*
(DW)) for week 45,

135 and 208 (asymptotic standard errors between brackets). For each week, we provide the estimated
proportion of each principal stratum; the BIC and AIC are returned for a comparison with the results
in Table 5.4.

week π̂C.EE π̂C.EN π̂C.NE π̂C.NN π̂N.EE π̂N.NN ∆^ *
(DS) ∆^ *

(DW) BIC AIC

45
0.1643

(0.0059)
0.0725

(0.0054)
0.1547

(0.0072)
0.3223

(0.0074)
0.1205

(0.0041)
0.1656

(0.0048)
– 0.0822
(0.0072)

0.2757
(0.0523)

28553.4 26864.8

135
0.3328

(0.0057)
0.0624

(0.0049)
0.0137

(0.0016)
0.2894

(0.0051)
0.1636

(0.0045)
0.1381

(0.0045)
0.0487

(0.0050)
0.2099

(0.0576)
28292.9 26604.4

208
0.3789

(0.0060)
0.0620

(0.0049)
0.0135

(0.0015)
0.2549

(0.0052)
0.1713

(0.0051)
0.1194

(0.0050)
0.0485

(0.0051)
0.3374

(0.0668)
25821.2 24132.6

Table 5.4 Maximum likelihood estimates – adjusted for covariates and without monotonicity of truncation
– of the average treatment effects on employment (∆*

(DS)) and wages (∆*
(DW)) for week 45, 135 and 208 (asym-

ptotic standard errors between brackets). For each week, we provide the estimated proportion of each prin-
cipal stratum; the BIC and AIC are returned for a comparison with the results in Table 5.5.







Concluding remarks

In this thesis, the general framework of finite mixture models has been presented. In
Chapter 2, the very relevant issue of maximizing the log-likelihood function has been dis-
cussed under different viewpoints. With a simulation study, we demonstrated that finding
the true MLE of a mixture model can be a very difficult task. In many settings, the EM al-
gorithm has a great risk of falling in a spurious/local optimizer or in a saddle point; more-
over, the local maxima are not generally recognizable. For these reasons, running the EM
from a variety of starting values is always recommended.

Using a genetic algorithm can be a valid approach to this optimization problem. A wide
simulation study has been carried out using the gen.start procedure of the mixglm pack-
age, presented in Chapter 4. Our genetic algorithm is found to be effective: however, very
different results are obtained according to the operational parameters. Simulations indicate
that a slow selection process, together with a continuous renewal of the genetic heritage,
leads to more satisfactory results; the convergence criterion and the population size are
also relevant parameters.

A related issue has been presented in Chapter 3, where the advantages of using multi-
variate mixture models have been discussed. For a simulated data set with two responses
variables (y1 and y2), we estimated the parameters vector using a) the univariate approach,
where two independent models are specified for y1 and y2; b) a bivariate model for the
couple (y1, y2). Results indicate that the bivariate approach leads to more efficient esti-
mates, together with a considerable gain in the computation time; due to the increased dis-
criminating power, a better estimate of the unknown cluster membership is obtained;
finally, we found evidence that using a bivariate model decreases the risk of falling in a
local/spurious optimizer.

The last part of this work is devoted to the analysis of treatment effects in randomized
studies. In our dissertation, we followed the general framework of the Rubin Causal Model;
a special attention is devoted to three post-treatment complications, namely noncompli-
ance, missing outcomes, and outcomes truncated by death.

In Chapter 5, we evaluated the effects of the Job Corps training program on employ-
ment and wages, using data from a randomized study, the National Job Corps Study, and
the principal stratification approach to simultaneously address the issues of noncompliance
and truncation of wages – meaning that no wages are observed for those who are unem-
ployed – under the MAR assumption for the missing outcome mechanism. The Principal
Stratification approach consists in estimating the causal effects of interest for a common
set of units: the average treatment effect on employment is estimated on the subpopulation
of compliers; among them, only for the always employed the effect on wages is defined
and estimated in a meaningful way.

Pre-treatment covariates were used in the prediction of the outcomes and of the com-
pliance behavior; we focused our analysis on the observed outcomes at 45th, 135th and
208th week after participation in the program. The exclusion restriction for never-takers was
maintained, whereas the presence of always-takers and defiers is excluded by design. Some
restrictions on covariates reduced the number of parameters and improved model identi-
fication.

The treatment effects were found to be increasing in the course of time; the effect on
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employment was negative at week 45, whereas the estimated effect on wages is always pos-
itive. A critical role is played by the monotonicity of truncation assumption, which rules
out those who would be unemployed if treated and employed if not treated: this assumption
does not seem to hold at week 45, but becomes more plausible at weeks 135 and 208. We
may argue that, in a short run, there are trained units who choose to be unemployed, wait-
ing for a “good” job; in the long run, trained units are more likely to find a job, and a pos-
itive treatment effect on employment is found. These results are consistent with the
empirical literature on the effect of active labor market policies, which suggest that almost
all programs reduce employment and earnings in the short run (the so-called “lock-in” ef-
fect). Finally, the effect on wages reflects the increase in the human capital due to the pro-
gram participation.

The obtained results may be sensitive to our working assumptions; however, relaxing
some hypotheses may weaken identification and lead to poor estimates in terms of effi-
ciency. In order to overcome the difficulties inherent in the lack of full identification when
the exclusion restriction is relaxed, a possible strategy could be the simultaneous modelling
of more than one outcome; indeed, the use of multivariate models generally provides a
greater discriminant power in disentangling mixtures.
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APPENDIX A
Parameters estimates

We provide the parameters estimates for all fitted models. The following covariates
have been used in the linear predictors:

age
female (=1 if the unit is a female)
evarrst (= 1 if the unit has been arrested one or more times)
haschld (= 1 if the unit has children)
nchld (number of children)
partnered (= 1 if the unit is married or living together a partner)

Education

educ (= 1 if the unit’s education is greater than the sample median [10])
educ.f (= 1 if the father’s education is greater than the sample median [12])
educ.m (= 1 if the mother’s education is greater than the sample median [12])

Race (base = other)

white (race = white)
hisp (race = hispanic)
black (race = black)

Employment

yr.work1 (= 1 if the unit had job in previous year)
earn.yr (earnings in previous year, standardized)
mosinjob (months employed in previous year)
currjob (= 1 if unit has job at baseline)

Personal income (base: < 3000)

p.inc 3000-6000
p.inc 6000-9000
p.inc > 9000

Household income (base: < 3000)

h.inc 3000-6000
h.inc 6000-9000
h.inc 9000-18000
h.inc > 18000

The treatment indicator enters in the linear predictors as a dummy variable, without in-
teraction with other covariates; only in the C.EE group the effect is allowed to differ from
zero. The estimated models for week 45, 135 and 208 are named as follows: a.45, a.135,
a.208 (without monotonicity of truncation); b.45, b.135, b.208 (with monotonicity of trun-
cation). For each model, the estimates of all parameters are returned (between brackets, the
estimated standard errors).



Model: a.45
(week 45, without monotonicity of truncation)

b
^

C.EE b
^

C.EN,1 b
^

C.NE,0 b
^

N.EE

intercept 1.4999 (0.0613) 1.6962 (0.3588) 1.6454 (0.1234) 1.3475 (0.1551)

age 0.0084 (0.0031) – 0.0006 (0.0178) 0.0082 (0.0053) 0.0154 (0.0076)

female – 0.0220 (0.0096) – 0.1892 (0.0661) – 0.0412 (0.0225) – 0.1849 (0.0286)

evarrst – 0.0094 (0.0105) – 0.0078 (0.0654) 0.0893 (0.0299) – 0.0116 (0.0314)

haschld 0.0415 (0.0255) 0.0853 (0.1724) 0.1200 (0.0527) 0.0576 (0.0672)

nchld – 0.0096 (0.0175) – 0.0286 (0.1094) – 0.0677 (0.0299) 0.0154 (0.0420)

partnered 0.0069 (0.0176) 0.1738 (0.1452) – 0.0801 (0.0499) 0.0669 (0.0467)

educ – 0.0079 (0.0112) 0.0518 (0.0678) 0.0457 (0.0219) 0.0309 (0.0304)

educ.f 0.0137 (0.0135) 0.1344 (0.0759) 0.0038 (0.0288) – 0.0004 (0.0357)

educ.m 0.0245 (0.0128) – 0.0678 (0.0727) 0.0023 (0.0264) 0.0307 (0.0349)

white 0.0112 (0.0203) – 0.0232 (0.1172) – 0.1162 (0.0496) – 0.0159 (0.0555)

hisp – 0.0037 (0.0218) 0.0046 (0.1297) – 0.1121 (0.0473) 0.0256 (0.0591)

black – 0.0007 (0.0199) – 0.0203 (0.1157) – 0.1500 (0.0415) – 0.0057 (0.0544)

yr.work1 – 0.0030 (0.0135) 0.1044 (0.0847) 0.0441 (0.0303) 0.0395 (0.0398)

earn.yr 0.0866 (0.0157) 0.1028 (0.0544) 0.0128 (0.0170) 0.0428 (0.0263)

mosinjob – 0.0085 (0.0023) – 0.0259 (0.0126) – 0.0020 (0.0044) 0.0010 (0.0055)

currjob 0.0103 (0.0118) 0.0157 (0.0736) 0.0006 (0.0264) – 0.0148 (0.0317)

p.inc 3000-6000 0.0181 (0.0151) 0.1931 (0.0895) 0.1001 (0.0330) – 0.0402 (0.0383)

p.inc 6000-9000 0.0529 (0.0217) 0.2200 (0.1277) 0.1531 (0.0506) 0.0368 (0.0563)

p.inc > 9000 – 0.0049 (0.0321) 0.1576 (0.1471) 0.0861 (0.0491) – 0.0153 (0.0628)

h.inc 3000-6000 0.0173 (0.0149) 0.0969 (0.0898) – 0.0476 (0.0332) 0.0922 (0.0432)

h.inc 6000-9000 – 0.0127 (0.0176) 0.1261 (0.1153) 0.0414 (0.0330) 0.0622 (0.0511)

h.inc 9000-18000 0.0117 (0.0132) 0.1683 (0.0919) 0.0660 (0.0400) 0.1257 (0.0416)

h.inc > 18000 0.0065 (0.0153) 0.1674 (0.0916) 0.0128 (0.0315) 0.1529 (0.0440)

Treatment 0.0513 (0.0098) 0 (–) 0 (–) 0 (–)

s^ C.EE s^ C.EN,1 s^ C.NE,0 s^ N.EE

0.1442 (0.0060) 0.5806 (0.0252) 0.1655 (0.0089) 0.4936 (0.0094)
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a^ C.EE a^ C.EN a^ C.NE a^ C.NN a^ N.EE

intercept – 0.5950 (0.4940) – 2.5135 (0.7561) – 2.7430 (0.5730) 3.1296 (0.5406) – 2.4265 (0.5336)

age – 0.0032 (0.0247) 0.0725 (0.0371) 0.0082 (0.0273) – 0.1152 (0.0283) 0.0710 (0.0266)

female – 0.2143 (0.0885) – 0.5907 (0.1453) – 0.5242 (0.1093) – 0.2624 (0.0886) – 0.2979 (0.0981)

evarrst – 0.3664 (0.0928) – 0.3814 (0.1460) – 0.5729 (0.1165) – 0.4333 (0.0933) – 0.3575 (0.1051)

haschld 0.1565 (0.2113) – 0.2553 (0.3964) – 0.2059 (0.2835) – 0.2481 (0.2032) – 0.0027 (0.2045)

nchld – 0.3192 (0.1387) – 0.2008 (0.2510) – 0.2615 (0.1815) – 0.0558 (0.1240) – 0.2158 (0.1230)

partnered – 0.0478 (0.1484) – 0.5744 (0.2972) – 0.8328 (0.2325) – 0.4027 (0.1847) – 0.0391 (0.1585)

educ 0.0304 (0.0983) 0.1262 (0.1508) 0.0675 (0.1109) – 0.0552 (0.1054) 0.3276 (0.1073)

educ.f 0.0211 (0.1190) 0.1511 (0.1752) 0.0454 (0.1336) – 0.1596 (0.1262) 0.0219 (0.1314)

educ.m 0.0684 (0.1206) 0.3823 (0.1725) 0.3194 (0.1318) 0.2003 (0.1215) 0.2066 (0.1302)

white 0.4175 (0.1809) 0.3207 (0.2748) -0.0082 (0.1935) – 0.3478 (0.1751) 0.2955 (0.1933)

hisp – 0.0231 (0.1925) 0.0276 (0.2954) -0.0499 (0.2058) – 0.0927 (0.1748) 0.0825 (0.1907)

black 0.0856 (0.1734) 0.0309 (0.2646) -0.1943 (0.1878) – 0.0442 (0.1582) – 0.0363 (0.1727)

yr.work1 0.4167 (0.1177) 0.3766 (0.1833) 0.3625 (0.1437) 0.0348 (0.1183) 0.3110 (0.1488)

earn.yr 0.0010 (0.1092) 0.2407 (0.1616) 0.0631 (0.1148) – 0.4503 (0.1660) 0.0917 (0.1206)

mosinjob 0.0449 (0.0205) 0.0051 (0.0309) 0.0619 (0.0223) 0.0165 (0.0263) 0.0508 (0.0228)

currjob 0.2306 (0.1123) 0.1735 (0.1670) 0.1565 (0.1218) – 0.4115 (0.1395) 0.2050 (0.1403)

p.inc 3000-6000 0.0151 (0.1306) 0.0096 (0.2052) – 0.1386 (0.1482) – 0.1260 (0.1554) 0.1515 (0.1419)

p.inc 6000-9000 0.2582 (0.2013) 0.0695 (0.3100) – 0.2090 (0.2329) 0.1750 (0.2476) 0.1561 (0.2197)

p.inc > 9000 0.2388 (0.2975) 0.5379 (0.3852) 0.2544 (0.2964) 0.2824 (0.3887) 0.5709 (0.3031)

h.inc 3000-6000 0.0752 (0.1231) 0.2436 (0.1990) 0.0170 (0.1510) 0.0058 (0.1151) 0.1472 (0.1352)

h.inc 6000-9000 0.1361 (0.1526) 0.0146 (0.2655) 0.1314 (0.1770) 0.1020 (0.1452) 0.1716 (0.1706)

h.inc 9000-18000 0.4058 (0.1230) 0.0881 (0.2126) – 0.0029 (0.1586) 0.2404 (0.1193) 0.3617 (0.1392)

h.inc > 18000 0.2906 (0.1386) 0.4999 (0.2092) 0.5136 (0.1518) – 0.1058 (0.1456) 0.5111 (0.1532)
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Model: a.135
(week 135, without monotonicity of truncation)

b
^

C.EE b
^

C.EN,1 b
^

C.NE,0 b
^

N.EE

intercept 1.7834 (0.0506) 1.9857 (0.4730) 2.6356 (0.0071) 1.7670 (0.1390)

age 0.0056 (0.0025) 0.0100 (0.0238) – 0.0129 (0.0004) 0.0040 (0.0070)

female – 0.0661 (0.0089) – 0.1499 (0.0919) – 0.5128 (0.0012) – 0.1295 (0.0254)

evarrst – 0.0168 (0.0098) – 0.0454 (0.0954) – 0.1047 (0.0011) 0.0765 (0.0278)

haschld 0.0150 (0.0238) – 0.0995 (0.2912) – 0.2428 (0.0037) 0.0405 (0.0574)

nchld – 0.0059 (0.0147) 0.1451 (0.2182) 0.0827 (0.0036) 0.0163 (0.0343)

partnered 0.0231 (0.0210) – 0.3762 (0.1786) 0.1100 (0.0023) 0.0292 (0.0434)

educ 0.0217 (0.0100) 0.0902 (0.0981) 0.0246 (0.0010) 0.1302 (0.0278)

educ.f 0.0188 (0.0117) 0.0217 (0.1240) 0.0708 (0.0020) 0.0549 (0.0338)

educ.m 0.0068 (0.0116) 0.1116 (0.1141) – 0.0550 (0.0013) 0.0776 (0.0332)

white – 0.0084 (0.0183) – 0.0747 (0.1475) 0.1423 (0.0014) – 0.0458 (0.0489)

hisp 0.0160 (0.0197) – 0.0657 (0.1588) 0.3006 (0.0015) 0.0212 (0.0515)

black – 0.0174 (0.0175) – 0.2046 (0.1499) 0.1149 (0.0012) – 0.1162 (0.0479)

yr.work1 0.0240 (0.0120) 0.1182 (0.1208) 0.0109 (0.0015) 0.1016 (0.0347)

earn.yr 0.0327 (0.0128) 0.0296 (0.0699) 0.1546 (0.0008) 0.0475 (0.0248)

mosinjob – 0.0025 (0.0021) – 0.0127 (0.0170) – 0.0197 (0.0002) – 0.0030 (0.0052)

currjob 0.0070 (0.0114) 0.1811 (0.1054) 0.0916 (0.0012) – 0.0141 (0.0305)

p.inc 3000-6000 0.0420 (0.0132) 0.2046 (0.1404) 0.0717 (0.0405) 0.0397 (0.0352)

p.inc 6000-9000 0.0732 (0.0212) 0.3075 (0.1903) – 0.0004 (0.0013) 0.0127 (0.0571)

p.inc > 9000 0.0605 (0.0270) 0.2608 (0.2309) 0.2475 (0.0017) 0.0782 (0.0630)

h.inc 3000-6000 0.0097 (0.0124) – 0.1573 (0.1298) – 0.0662 (0.0013) – 0.0057 (0.0375)

h.inc 6000-9000 0.0071 (0.0159) – 0.1268 (0.1483) – 0.0351 (0.0028) – 0.0081 (0.0438)

h.inc 9000-18000 0.0033 (0.0124) – 0.1191 (0.1205) – 0.0326 (0.0015) 0.0291 (0.0358)

h.inc > 18000 0.0254 (0.0134) – 0.1233 (0.1339) – 0.0509 (0.0015) 0.0518 (0.0397)

Treatment 0.0302 (0.0083) 0 (–) 0 (–) 0 (–)

s^ C.EE s^ C.EN,1 s^ C.NE,0 s^ N.EE

0.2093 (0.0039) 0.7093 (0.0324) 0.0025 (0.0003) 0.4867 (0.0084)
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a^ C.EE a^ C.EN a^ C.NE a^ C.NN a^ N.EE

intercept 0.2376 (0.4281) – 1.2779 (0.8549) – 0.9570 (1.5180) 2.1216 (0.5108) – 0.7597 (0.5397)

age 0.0313 (0.0217) 0.0442 (0.0431) – 0.1088 (0.0821) – 0.0557 (0.0262) 0.0342 (0.0276)

female – 0.4378 (0.0779) – 0.5472 (0.1677) 1.2512 (0.3038) – 0.2034 (0.0904) – 0.3019 (0.0992)

evarrst – 0.4669 (0.0801) – 0.5191 (0.1736) 0.3903 (0.2494) – 0.3934 (0.0939) – 0.3923 (0.1050)

haschld – 0.1803 (0.1658) 0.2274 (0.5020) 3.6714 (0.9129) – 0.2588 (0.2032) – 0.0129 (0.1983)

nchld – 0.1675 (0.0977) – 0.4498 (0.3643) – 2.0196 (0.8282) – 0.1238 (0.1206) – 0.1130 (0.1141)

partnered – 0.7811 (0.1342) – 0.6306 (0.3143) – 1.0121 (0.3982) – 0.7969 (0.1782) – 0.3248 (0.1543)

educ 0.2040 (0.0884) 0.1981 (0.1781) – 0.2162 (0.2966) 0.0284 (0.1054) 0.4002 (0.1113)

educ.f – 0.0066 (0.1036) – 0.2380 (0.2176) – 1.3513 (0.5063) – 0.0607 (0.1218) – 0.0785 (0.1336)

educ.m 0.0779 (0.1029) 0.2283 (0.2053) 0.7380 (0.3216) 0.0630 (0.1202) 0.0315 (0.1307)

white 0.1453 (0.1537) 0.0428 (0.2925) – 1.1238 (0.3457) – 0.1067 (0.1849) 0.1887 (0.1922)

hisp 0.0392 (0.1583) 0.0365 (0.3151) – 1.4018 (0.3870) 0.0568 (0.1874) 0.1279 (0.1916)

black – 0.0781 (0.1415) – 0.7010 (0.2964) – 2.2587 (0.3675) 0.1026 (0.1684) – 0.2660 (0.1732)

yr.work1 0.1096 (0.1046) – 0.0492 (0.2138) 0.3852 (0.3688) – 0.0491 (0.1215) 0.2495 (0.1470)

earn.yr – 0.1118 (0.0979) 0.1459 (0.1564) – 0.1324 (0.2212) – 0.0437 (0.1190) 0.0849 (0.1138)

mosinjob 0.0719 (0.0192) 0.0692 (0.0342) 0.1027 (0.0500) 0.0235 (0.0232) 0.0429 (0.0232)

currjob – 0.0399 (0.1108) – 0.0714 (0.2037) 0.1179 (0.2865) – 0.2400 (0.1340) – 0.0248 (0.1502)

p.inc 3000-6000 0.1247 (0.1216) – 0.2861 (0.2518) – 8.7798 (5.4578) – 0.1055 (0.1486) 0.1776 (0.1487)

p.inc 6000-9000 – 0.1024 (0.1796) – 0.5319 (0.3614) 1.8550 (0.4034) – 0.4735 (0.2455) – 0.2168 (0.2243)

p.inc > 9000 0.2153 (0.2844) 0.0220 (0.4634) 1.1715 (0.5669) 0.2021 (0.3528) 0.3593 (0.3344)

h.inc 3000-6000 0.0480 (0.1048) 0.1032 (0.2406) 0.4373 (0.3723) 0.0166 (0.1190) 0.1061 (0.1366)

h.inc 6000-9000 – 0.0334 (0.1305) 0.2314 (0.2770) – 1.0518 (0.5925) – 0.0180 (0.1477) 0.1627 (0.1652)

h.inc 9000-18000 0.1209 (0.1089) 0.3517 (0.2311) 0.3180 (0.3499) 0.0362 (0.1250) 0.2359 (0.1400)

h.inc > 18000 0.1087 (0.1170) 0.0871 (0.2490) 0.2988 (0.3903) – 0.2521 (0.1389) 0.1107 (0.1520)
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b
^

C.EE b
^

C.EN,1 b
^

C.NE,0 b
^

N.EE

intercept 1.9167 (0.0537) 2.8806 (0.6339) 2.0168 (0.0016) 1.8335 (0.1570)

age 0.0042 (0.0027) – 0.0459 (0.0334) 0.0024 (0.0001) 0.0082 (0.0078)

female – 0.0741 (0.0094) – 0.2331 (0.1063) – 0.1124 (0.0003) – 0.1201 (0.0289)

evarrst – 0.0156 (0.0108) – 0.0184 (0.1125) 0.0737 (0.0004) – 0.0155 (0.0312)

haschld 0.0012 (0.0246) 0.2071 (0.3923) – 0.1956 (0.0009) – 0.0150 (0.0649)

nchld 0.0050 (0.0163) – 0.0219 (0.2904) 0.1906 (0.0007) 0.0009 (0.0397)

partnered – 0.0166 (0.0209) 0.2831 (0.2641) 0.0003 (0.0005) 0.0044 (0.0471)

educ 0.0327 (0.0105) 0.0823 (0.1240) – 0.0317 (0.0003) 0.0307 (0.0312)

educ.f – 0.0128 (0.0125) 0.1818 (0.1430) 0.3408 (0.0005) 0.0765 (0.0386)

educ.m – 0.0020 (0.0124) 0.2147 (0.1278) – 0.2022 (0.0003) 0.0601 (0.0385)

white – 0.0504 (0.0199) – 0.0047 (0.1697) – 0.0910 (0.0003) 0.0220 (0.0576)

hisp – 0.0194 (0.0211) 0.0029 (0.1962) 0.3447 (0.0004) 0.0800 (0.0604)

black – 0.0674 (0.0190) 0.0026 (0.1754) – 0.0152 (0.0011) – 0.0359 (0.0564)

yr.work1 0.0326 (0.0126) 0.0682 (0.1402) – 0.0029 (0.0005) 0.1083 (0.0387)

earn.yr 0.0267 (0.0105) 0.1357 (0.1372) 0.1936 (0.0002) 0.0477 (0.0304)

mosinjob 0.0005 (0.0020) – 0.0159 (0.0241) – 0.0026 (0.0001) 0.0006 (0.0061)

currjob – 0.0113 (0.0119) 0.1200 (0.1233) 0.0063 (0.0004) – 0.0649 (0.0345)

p.inc 3000-6000 0.0484 (0.0141) 0.0147 (0.1691) – 0.1112 (0.0005) – 0.0268 (0.0403)

p.inc 6000-9000 0.1034 (0.0244) 0.1030 (0.2176) – 0.1367 (0.0006) – 0.0288 (0.0642)

p.inc > 9000 0.0726 (0.0265) 0.0952 (0.2970) – 0.0752 (0.0007) – 0.0382 (0.0728)

h.inc 3000-6000 0.0026 (0.0127) – 0.1541 (0.1683) – 0.0683 (0.0005) 0.0282 (0.0421)

h.inc 6000-9000 0.0264 (0.0166) – 0.1189 (0.1623) 0.0986 (0.0005) – 0.0660 (0.0497)

h.inc 9000-18000 0.0230 (0.0127) – 0.1488 (0.1488) 0.1368 (0.0004) – 0.0194 (0.0401)

h.inc > 18000 0.0456 (0.0146) 0.1345 (0.1601) 0.3483 (0.0004) – 0.0094 (0.0449)

Treatment 0.0440 (0.0087) 0 (–) 0 (–) 0 (–)

s^ C.EE s^ C.EN,1 s^ C.NE,0 s^ N.EE

0.2245 (0.0040) 0.7868 (0.0376) 0.0008 (0.0001) 0.5320 (0.0096)
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Model: a.208
(week 208, without monotonicity of truncation)



a^ C.EE a^ C.EN a^ C.NE a^ C.NN a^ N.EE

intercept 1.2391 (0.4777) 0.5403 (0.9834) – 1.0423 (1.3725) 1.9856 (0.5878) – 0.0090 (0.6214)

age – 0.0088 (0.0240) – 0.0457 (0.0508) – 0.0404 (0.0715) – 0.0437 (0.0298) – 0.0033 (0.0315)

female – 0.4318 (0.0873) – 0.1445 (0.1784) 0.1753 (0.2492) – 0.1507 (0.1046) – 0.2073 (0.1137)

evarrst – 0.5439 (0.0894) – 0.3530 (0.1836) – 0.2895 (0.2731) – 0.2778 (0.1072) – 0.2780 (0.1192)

haschld 0.1410 (0.1812) 0.1117 (0.6597) 1.0653 (0.6429) – 0.0672 (0.2275) 0.2058 (0.2206)

nchld – 0.2610 (0.1051) – 0.4385 (0.4956) – 0.5636 (0.4747) – 0.1766 (0.1316) – 0.1205 (0.1237)

partnered – 0.5970 (0.1480) – 0.7882 (0.3940) – 0.3523 (0.3727) – 0.5927 (0.2092) – 0.1210 (0.1774)

educ 0.2212 (0.0987) 0.3828 (0.1968) 0.3489 (0.2770) – 0.0197 (0.1221) 0.5412 (0.1270)

educ.f – 0.0795 (0.1148) – 0.2377 (0.2270) – 1.2580 (0.4284) – 0.2025 (0.1400) – 0.1173 (0.1520)

educ.m 0.1054 (0.1196) 0.5030 (0.2141) 1.0124 (0.3010) 0.2052 (0.1413) 0.0276 (0.1578)

white 0.1985 (0.1855) – 0.0487 (0.3140) – 1.0273 (0.3219) – 0.2572 (0.2293) 0.2798 (0.2432)

hisp 0.0355 (0.1815) – 0.5984 (0.3472) – 1.4806 (0.3698) – 0.0663 (0.2218) 0.1417 (0.2322)

black – 0.1168 (0.1650) – 1.0148 (0.3095) – 6.3867 (4.5485) 0.0290 (0.2018) – 0.2516 (0.2136)

yr.work1 0.0716 (0.1230) – 0.0614 (0.2259) 0.3688 (0.4126) – 0.3263 (0.1470) – 0.0123 (0.1756)

earn.yr – 0.0932 (0.1177) 0.0669 (0.2174) 0.0659 (0.1934) – 0.1269 (0.1617) 0.0037 (0.1435)

mosinjob 0.0602 (0.0226) 0.0200 (0.0418) 0.1249 (0.0480) 0.0197 (0.0294) 0.0498 (0.0281)

currjob 0.1186 (0.1426) 0.3227 (0.2315) – 0.0976 (0.2932) – 0.1085 (0.1756) 0.1427 (0.1983)

p.inc 3000-6000 0.0077 (0.1339) – 0.0926 (0.2701) 0.1291 (0.3646) – 0.2182 (0.1724) 0.0119 (0.1703)

p.inc 6000-9000 0.1578 (0.2142) 0.1101 (0.4027) 0.9841 (0.4146) – 0.2925 (0.2884) 0.0229 (0.2707)

p.inc > 9000 0.4147 (0.3401) 0.6326 (0.5238) 0.7984 (0.6249) 0.0691 (0.4328) 0.3693 (0.4119)

h.inc 3000-6000 0.1407 (0.1146) 0.0098 (0.2740) – 0.3487 (0.4970) 0.1191 (0.1351) 0.1322 (0.1540)

h.inc 6000-9000 0.0773 (0.1444) 0.5389 (0.2795) 0.3539 (0.4231) – 0.0627 (0.1738) 0.2262 (0.1911)

h.inc 9000-18000 0.2050 (0.1210) 0.3269 (0.2479) 0.1141 (0.3956) 0.2214 (0.1427) 0.3684 (0.1578)

h.inc > 18000 – 0.0324 (0.1287) 0.0206 (0.2711) 0.0543 (0.4133) – 0.1004 (0.1574) 0.1466 (0.1693)
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b
^

C.EE b
^

C.EN,1 b
^

N.EE

intercept 1.4856 (0.0466) 1.6949 (0.7170) 1.3884 (0.1380)

age 0.0125 (0.0023) – 0.0161 (0.0360) 0.0148 (0.0068)

female – 0.0368 (0.0079) – 0.3167 (0.1333) – 0.1726 (0.0258)

evarrst 0.0012 (0.0089) 0.0464 (0.1268) 0.0066 (0.0279)

haschld 0.0465 (0.0208) 0.1491 (0.3376) 0.0641 (0.0617)

nchld – 0.0201 (0.0139) – 0.0361 (0.2043) 0.0073 (0.0391)

partnered – 0.0236 (0.0152) 0.3358 (0.2794) 0.0481 (0.0435)

educ 0.0029 (0.0089) 0.0675 (0.1359) 0.0387 (0.0275)

educ.f 0.0173 (0.0103) 0.2008 (0.1591) – 0.0054 (0.0323)

educ.m 0.0271 (0.0103) – 0.1553 (0.1525) 0.0245 (0.0317)

white – 0.0261 (0.0172) 0.0716 (0.2420) – 0.0450 (0.0479)

hisp – 0.0240 (0.0184) 0.0829 (0.2681) – 0.0048 (0.0512)

black – 0.0384 (0.0168) 0.0706 (0.2385) – 0.0425 (0.0470)

yr.work1 0.0062 (0.0111) 0.1888 (0.1686) 0.0439 (0.0363)

earn.yr 0.0626 (0.0108) 0.1529 (0.1015) 0.0379 (0.0239)

mosinjob – 0.0055 (0.0019) – 0.0529 (0.0252) 0.0010 (0.0050)

currjob 0.0000 (0.0095) 0.1278 (0.1502) – 0.0144 (0.0286)

p.inc 3000-6000 0.0414 (0.0123) 0.3781 (0.1859) – 0.0216 (0.0343)

p.inc 6000-9000 0.0631 (0.0179) 0.4716 (0.2532) 0.0490 (0.0511)

p.inc > 9000 0.0303 (0.0252) 0.3329 (0.2740) – 0.0075 (0.0566)

h.inc 3000-6000 0.0016 (0.0118) 0.2662 (0.1789) 0.0672 (0.0395)

h.inc 6000-9000 0.0029 (0.0136) 0.3103 (0.2666) 0.0623 (0.0460)

h.inc 9000-18000 0.0140 (0.0110) 0.3134 (0.1951) 0.1170 (0.0372)

h.inc > 18000 0.0184 (0.0120) 0.3013 (0.1873) 0.1354 (0.0394)

Treatment 0.0299 (0.0075) 0 (–) 0 (–)

s^ C.EE s^ C.EN,1 s^ N.EE

0.1764 (0.0033) 0.7736 (0.0417) 0.4745 (0.0087)

106

Model: b.45
(week 45, with monotonicity of truncation)



a^ C.EE a^ C.EN a^ C.NN a^ N.EE

intercept – 0.8988 (0.4128) – 2.2234 (1.0198) 1.8857 (0.4209) – 2.3079 (0.5194)

age 0.0473 (0.0207) 0.0106 (0.0500) – 0.0212 (0.0214) 0.0808 (0.0260)

female – 0.3346 (0.0745) – 0.5327 (0.1895) – 0.3286 (0.0756) – 0.3206 (0.0966)

evarrst – 0.4884 (0.0780) – 0.2499 (0.1926) – 0.4711 (0.0791) – 0.3520 (0.1023)

haschld 0.0690 (0.1680) – 0.3785 (0.5200) – 0.2412 (0.1642) – 0.0263 (0.2027)

nchld – 0.3220 (0.1054) – 0.1154 (0.3208) – 0.1349 (0.0983) – 0.2271 (0.1231)

partnered – 0.2704 (0.1327) – 0.4083 (0.3802) – 0.5391 (0.1467) – 0.1164 (0.1586)

educ 0.0110 (0.0839) 0.1998 (0.2011) – 0.0556 (0.0864) 0.3511 (0.1065)

educ.f 0.0634 (0.1020) – 0.0172 (0.2356) – 0.0634 (0.1055) 0.0039 (0.1305)

educ.m 0.1642 (0.1028) 0.3743 (0.2273) 0.2317 (0.1046) 0.2059 (0.1291)

white 0.3471 (0.1503) 0.2760 (0.3654) – 0.2398 (0.1478) 0.1405 (0.1873)

hisp 0.0232 (0.1550) 0.0335 (0.3960) – 0.1015 (0.1480) 0.0071 (0.1850)

black 0.0620 (0.1401) 0.0413 (0.3561) – 0.1128 (0.1332) – 0.1751 (0.1673)

yr.work1 0.3858 (0.0995) 0.3592 (0.2431) 0.0175 (0.1024) 0.3348 (0.1463)

earn.yr 0.0794 (0.1026) 0.2658 (0.2436) – 0.0587 (0.1144) 0.0882 (0.1186)

mosinjob 0.0514 (0.0186) – 0.0050 (0.0434) 0.0212 (0.0201) 0.0609 (0.0224)

currjob 0.2356 (0.1037) 0.2023 (0.2146) – 0.1368 (0.1123) 0.1940 (0.1413)

p.inc 3000-6000 – 0.0444 (0.1148) – 0.0477 (0.2860) – 0.1550 (0.1223) 0.1672 (0.1391)

p.inc 6000-9000 0.0624 (0.1856) 0.3373 (0.3982) 0.0200 (0.1955) 0.1274 (0.2179)

p.inc > 9000 0.2049 (0.2747) 0.8999 (0.4693) 0.3569 (0.2888) 0.6187 (0.3015)

h.inc 3000-6000 0.0697 (0.1001) 0.5132 (0.2625) – 0.0129 (0.0989) 0.0744 (0.1351)

h.inc 6000-9000 0.1502 (0.1256) – 0.3130 (0.3986) 0.0479 (0.1265) 0.1517 (0.1674)

h.inc 9000-18000 0.2929 (0.1033) 0.0944 (0.2914) 0.1291 (0.1044) 0.3342 (0.1363)

h.inc > 18000 0.3854 (0.1169) 0.6204 (0.2784) 0.1078 (0.1190) 0.5066 (0.1520)
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b
^

C.EE b
^

C.EN,1 b
^

N.EE

intercept 1.7905 (0.0502) 1.9894 (0.4887) 1.7698 (0.1376)

age 0.0053 (0.0025) 0.0103 (0.0247) 0.0037 (0.0069)

female – 0.0678 (0.0088) – 0.1454 (0.0960) – 0.1325 (0.0252)

evarrst – 0.0166 (0.0097) – 0.0427 (0.0994) 0.0778 (0.0275)

haschld 0.0100 (0.0232) – 0.0752 (0.2996) 0.0427 (0.0567)

nchld – 0.0044 (0.0146) 0.1360 (0.2198) 0.0161 (0.0340)

partnered 0.0231 (0.0208) – 0.3894 (0.1834) 0.0325 (0.0429)

educ 0.0231 (0.0099) 0.0917 (0.1016) 0.1298 (0.0275)

educ.f 0.0186 (0.0117) 0.0190 (0.1280) 0.0548 (0.0336)

educ.m 0.0072 (0.0114) 0.1152 (0.1186) 0.0756 (0.0329)

white – 0.0053 (0.0177) – 0.0877 (0.1551) – 0.0424 (0.0484)

hisp 0.0219 (0.0191) – 0.0830 (0.1670) 0.0244 (0.0510)

black – 0.0155 (0.0169) – 0.2232 (0.1575) – 0.1128 (0.0474)

yr.work1 0.0239 (0.0118) 0.1170 (0.1254) 0.1004 (0.0344)

earn.yr 0.0362 (0.0124) 0.0229 (0.0675) 0.0483 (0.0243)

mosinjob – 0.0028 (0.0021) – 0.0121 (0.0174) – 0.0027 (0.0051)

currjob 0.0070 (0.0113) 0.1906 (0.1097) – 0.0147 (0.0302)

p.inc 3000-6000 0.0416 (0.0132) 0.2032 (0.1442) 0.0371 (0.0350)

p.inc 6000-9000 0.0777 (0.0207) 0.3345 (0.2027) 0.0158 (0.0560)

p.inc > 9000 0.0673 (0.0263) 0.2735 (0.2414) 0.0737 (0.0623)

h.inc 3000-6000 0.0096 (0.0123) – 0.1616 (0.1342) – 0.0065 (0.0373)

h.inc 6000-9000 0.0056 (0.0158) – 0.1260 (0.1535) – 0.0090 (0.0436)

h.inc 9000-18000 0.0024 (0.0122) – 0.1196 (0.1251) 0.0307 (0.0355)

h.inc > 18000 0.0252 (0.0133) – 0.1281 (0.1388) 0.0525 (0.0394)

Treatment 0.0297 (0.0082) 0 (–) 0 (–)

s^ C.EE s^ C.EN,1 s^ N.EE

0.2101 (0.0039) 0.7210 (0.0335) 0.4850 (0.0084)
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Model: b.135
(week 135, with monotonicity of truncation)



a^ C.EE a^ C.EN a^ C.NN a^ N.EE

intercept 0.3484 (0.4273) – 1.3895 (0.8661) 2.2787 (0.4960) – 0.6812 (0.5394)

age 0.0283 (0.0217) 0.0489 (0.0437) – 0.0583 (0.0256) 0.0318 (0.0276)

female – 0.3845 (0.0776) – 0.5979 (0.1703) – 0.1431 (0.0884) – 0.2838 (0.0991)

evarrst – 0.4372 (0.0799) – 0.5437 (0.1760) – 0.3566 (0.0917) – 0.3703 (0.1048)

haschld – 0.0503 (0.1644) 0.0509 (0.5032) – 0.0634 (0.1935) 0.0621 (0.1972)

nchld – 0.2152 (0.0973) – 0.3608 (0.3586) – 0.1922 (0.1179) – 0.1352 (0.1136)

partnered – 0.8049 (0.1340) – 0.5634 (0.3145) – 0.8037 (0.1689) – 0.3267 (0.1540)

educ 0.1878 (0.0883) 0.1984 (0.1804) 0.0058 (0.1033) 0.3909 (0.1114)

educ.f – 0.0413 (0.1033) – 0.2194 (0.2197) – 0.1205 (0.1200) – 0.0970 (0.1334)

educ.m 0.0971 (0.1027) 0.2277 (0.2081) 0.0947 (0.1171) 0.0368 (0.1307)

white 0.0772 (0.1533) 0.0799 (0.2998) – 0.2196 (0.1743) 0.1509 (0.1925)

hisp – 0.0404 (0.1577) 0.0614 (0.3229) – 0.0876 (0.1770) 0.0802 (0.1918)

black – 0.1756 (0.1408) – 0.6611 (0.3030) – 0.0733 (0.1577) – 0.3230 (0.1734)

yr.work1 0.1174 (0.1044) – 0.0622 (0.2170) – 0.0474 (0.1197) 0.2555 (0.1472)

earn.yr – 0.1321 (0.0979) 0.1588 (0.1535) – 0.0583 (0.1150) 0.0856 (0.1130)

mosinjob 0.0752 (0.0193) 0.0681 (0.0344) 0.0298 (0.0225) 0.0443 (0.0232)

currjob – 0.0282 (0.1114) – 0.0818 (0.2070) – 0.2068 (0.1314) – 0.0213 (0.1509)

p.inc 3000-6000 0.0786 (0.1210) – 0.2809 (0.2540) – 0.1930 (0.1472) 0.1347 (0.1482)

p.inc 6000-9000 0.0227 (0.1808) – 0.6016 (0.3706) – 0.1625 (0.2168) – 0.1229 (0.2243)

p.inc > 9000 0.2773 (0.2861) – 0.0200 (0.4697) 0.2677 (0.3424) 0.3709 (0.3361)

h.inc 3000-6000 0.0546 (0.1044) 0.0981 (0.2433) 0.0319 (0.1169) 0.1121 (0.1366)

h.inc 6000-9000 – 0.0588 (0.1299) 0.2218 (0.2802) – 0.0610 (0.1459) 0.1413 (0.1649)

h.inc 9000-18000 0.1311 (0.1087) 0.3333 (0.2341) 0.0563 (0.1230) 0.2492 (0.1400)

h.inc > 18000 0.1187 (0.1171) 0.0796 (0.2521) – 0.2106 (0.1356) 0.1340 (0.1521)
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b
^

C.EE b
^

C.EN,1 b
^

N.EE

intercept 1.9225 (0.0531) 3.0103 (0.6993) 1.8635 (0.1558)

age 0.0040 (0.0027) – 0.0531 (0.0370) 0.0071 (0.0078)

female – 0.0735 (0.0093) – 0.2559 (0.1154) – 0.1192 (0.0288)

evarrst – 0.0117 (0.0107) – 0.0265 (0.1217) – 0.0133 (0.0310)

haschld – 0.0007 (0.0246) 0.2712 (0.4425) – 0.0026 (0.0645)

nchld 0.0053 (0.0162) – 0.0552 (0.3315) – 0.0027 (0.0397)

partnered – 0.0148 (0.0209) 0.3137 (0.2846) 0.0081 (0.0467)

educ 0.0334 (0.0105) 0.0868 (0.1348) 0.0345 (0.0310)

educ.f – 0.0095 (0.0125) 0.1901 (0.1543) 0.0746 (0.0385)

educ.m – 0.0029 (0.0123) 0.2473 (0.1392) 0.0564 (0.0383)

white – 0.0503 (0.0189) 0.0124 (0.1892) 0.0101 (0.0570)

hisp – 0.0154 (0.0203) 0.0101 (0.2180) 0.0770 (0.0597)

black – 0.0685 (0.0180) 0.0244 (0.1947) – 0.0466 (0.0559)

yr.work1 0.0328 (0.0125) 0.0608 (0.1506) 0.1052 (0.0387)

earn.yr 0.0280 (0.0103) 0.1649 (0.1512) 0.0608 (0.0300)

mosinjob 0.0006 (0.0020) – 0.0196 (0.0261) – 0.0001 (0.0061)

currjob – 0.0120 (0.0118) 0.1350 (0.1334) – 0.0643 (0.0344)

p.inc 3000-6000 0.0476 (0.0140) 0.0042 (0.1849) – 0.0312 (0.0401)

p.inc 6000-9000 0.1016 (0.0236) 0.0989 (0.2455) – 0.0308 (0.0635)

p.inc > 9000 0.0735 (0.0264) 0.0960 (0.3270) – 0.0364 (0.0719)

h.inc 3000-6000 0.0008 (0.0128) – 0.1629 (0.1814) 0.0313 (0.0420)

h.inc 6000-9000 0.0287 (0.0165) – 0.1303 (0.1748) – 0.0658 (0.0496)

h.inc 9000-18000 0.0227 (0.0127) – 0.1577 (0.1599) – 0.0172 (0.0400)

h.inc > 18000 0.0486 (0.0145) 0.1340 (0.1726) – 0.0011 (0.0446)

Treatment 0.0418 (0.0087) 0 (–) 0 (–)

s^ C.EE s^ C.EN,1 s^ N.EE

0.2272 (0.0040) 0.8095 (0.0401) 0.5311 (0.0095)
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a^ C.EE a^ C.EN a^ C.NN a^ N.EE

intercept 1.3542 (0.4793) 0.4194 (1.0224) 2.2326 (0.5715) 0.0837 (0.6226)

age – 0.0085 (0.0242) – 0.0461 (0.0529) – 0.0445 (0.0291) – 0.0052 (0.0316)

female – 0.4160 (0.0874) – 0.2168 (0.1846) – 0.1252 (0.1027) – 0.2023 (0.1136)

evarrst – 0.5418 (0.0896) – 0.3629 (0.1895) – 0.2794 (0.1054) – 0.2695 (0.1193)

haschld 0.1450 (0.1813) 0.0662 (0.6850) – 0.0190 (0.2224) 0.2398 (0.2203)

nchld – 0.2614 (0.1050) – 0.4169 (0.5125) – 0.1939 (0.1295) – 0.1320 (0.1240)

partnered – 0.5915 (0.1490) – 0.7492 (0.4089) – 0.5597 (0.1949) – 0.1003 (0.1778)

educ 0.2179 (0.0990) 0.3858 (0.2036) – 0.0060 (0.1193) 0.5457 (0.1274)

educ.f – 0.1045 (0.1147) – 0.2134 (0.2358) – 0.2530 (0.1376) – 0.1302 (0.1519)

educ.m 0.1299 (0.1197) 0.4602 (0.2225) 0.2554 (0.1380) 0.0359 (0.1577)

white 0.1219 (0.1868) 0.0626 (0.3274) – 0.3716 (0.2163) 0.2403 (0.2440)

hisp – 0.0663 (0.1822) – 0.5223 (0.3637) – 0.2535 (0.2093) 0.1090 (0.2321)

black – 0.2428 (0.1657) – 0.8774 (0.3232) – 0.2178 (0.1893) – 0.3124 (0.2135)

yr.work1 0.0707 (0.1233) – 0.0634 (0.2322) – 0.3418 (0.1452) – 0.0243 (0.1760)

earn.yr – 0.0820 (0.1174) 0.0446 (0.2200) – 0.0495 (0.1471) 0.0317 (0.1401)

mosinjob 0.0622 (0.0225) 0.0168 (0.0426) 0.0231 (0.0278) 0.0508 (0.0278)

currjob 0.1148 (0.1441) 0.3369 (0.2375) – 0.0886 (0.1730) 0.1374 (0.1999)

p.inc 3000-6000 0.0102 (0.1342) – 0.0966 (0.2807) – 0.2194 (0.1673) 0.0043 (0.1707)

p.inc 6000-9000 0.2080 (0.2163) 0.0230 (0.4292) – 0.1215 (0.2646) 0.0503 (0.2712)

p.inc > 9000 0.4249 (0.3382) 0.5623 (0.5403) 0.1551 (0.4070) 0.3852 (0.4058)

h.inc 3000-6000 0.1283 (0.1148) 0.0135 (0.2821) 0.1012 (0.1339) 0.1324 (0.1543)

h.inc 6000-9000 0.0802 (0.1447) 0.5318 (0.2881) – 0.0471 (0.1708) 0.2179 (0.1919)

h.inc 9000-18000 0.1984 (0.1212) 0.3322 (0.2542) 0.2045 (0.1408) 0.3656 (0.1580)

h.inc > 18000 – 0.0419 (0.1290) – 0.0059 (0.2802) – 0.0945 (0.1534) 0.1476 (0.1695)
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APPENDIX B
Baseline characteristics

For each pre-treatment covariate, we provide the (fitted) average in each stratum, for
all estimated models; the aim is to illustrate how the baseline characteristics of each indi-
vidual may affect the compliance behavior and the couple of potential employment status.
Tables in the next pages describe the mean covariates values in the k groups; additionally,
a summary of the baseline covariates for compliers and never-takers is returned. The im-
puted matrix was used; all computations involve design weights. We refer to Appendix A
for the description of covariates.

In the NN groups, we generally observe a lower education degree and a prevalence of
non-white race, together with a poorer occupational background (as summarized by
yr.work1, earn.yr, mosinjob, currjob) and a lower personal income. It is difficult to describe
the other groups, whose characteristics are generally less marked. For the C.NE group,
we can observe a higher education in week 45; for the remaining weeks, due to the small
consistency of this group, we prefer to avoid any remarks.

Great differences are observed between compliers and never-takers: with respect to
compliers, never-takers are more often females, with a partner, and with one or more chil-
dren; we can also note that never-takers have a higher mean education. This suggests that
the choice of participating to the training program depends on familiar conditions, rather
than on personal/household income and job experiences.

Although many remarks could be done, we prefer to not discuss here the issue of how
each individual chooses to be or not to be a complier and – given the treatment assignment
and compliance status – to have a job or to be unemployed. To see how the pre-treatment
covariates affect the expected wages, we refer again to Appendix A.
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C.EE C.EN C.NE C.NN
Com-
pliers

N.EE N.NN
Never-
takers

age 18.8877 19.2098 19.4367 18.1577 18.7098 19.4720 18.8571 19.1160

female 0.4049 0.3109 0.3400 0.4115 0.3843 0.3928 0.4807 0.4437

evarrst 0.2720 0.2764 0.2300 0.2534 0.2550 0.2632 0.3244 0.2986

haschld 0.1686 0.1378 0.1404 0.1539 0.1527 0.1891 0.2512 0.2250

nchld 0.2223 0.1894 0.1904 0.2160 0.2092 0.2620 0.3779 0.3291

partnered 0.0788 0.0507 0.0409 0.0406 0.0505 0.0948 0.0870 0.0903

educ 0.4096 0.4620 0.4825 0.2846 0.3743 0.5306 0.3689 0.4370

educ.f 0.1717 0.2215 0.1995 0.1326 0.1651 0.1934 0.1504 0.1685

educ.m 0.1685 0.2292 0.2122 0.1594 0.1800 0.1978 0.1442 0.1668

white 0.3924 0.3859 0.3421 0.2093 0.2982 0.3810 0.2669 0.3149

hisp 0.1418 0.1468 0.1730 0.1824 0.1674 0.1653 0.1767 0.1719

black 0.4067 0.4018 0.4029 0.5294 0.4608 0.3871 0.4833 0.4428

yr.work1 0.7483 0.7421 0.7686 0.4890 0.6350 0.7698 0.5645 0.6510

earn.yr 0.1514 0.2431 0.2474 – 0.2487 0.0009 0.2934 – 0.0914 0.0706

mosinjob 4.9203 4.8924 5.3397 2.3175 3.8332 5.4892 3.1649 4.1436

currjob 0.3189 0.3048 0.3213 0.1239 0.2299 0.3343 0.1987 0.2558

p.inc 3000-6000 0.1467 0.1563 0.1486 0.0756 0.1160 0.1862 0.1226 0.1494

p.inc 6000-9000 0.0638 0.0600 0.0564 0.0251 0.0443 0.0728 0.0352 0.0510

p.inc > 9000 0.0344 0.0567 0.0488 0.0140 0.0305 0.0640 0.0190 0.0379

h.inc 3000-6000 0.1813 0.2067 0.1769 0.2152 0.1982 0.1798 0.2276 0.2075

h.inc 6000-9000 0.1065 0.0929 0.1111 0.1126 0.1089 0.1046 0.1072 0.1061

h.inc 9000-18000 0.2942 0.2205 0.2108 0.2503 0.2488 0.2763 0.2100 0.2379

h.inc > 18000 0.2000 0.2730 0.2699 0.1215 0.1871 0.2460 0.1472 0.1888
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Model: b.45
(week 45, with monotonicity of truncation)

C.EE C.EN C.NN
Com-
pliers

N.EE N.NN
Never-
takers

age 19.0415 18.9657 18.5036 18.7085 19.5050 18.7830 19.1201

female 0.3804 0.3192 0.3932 0.3858 0.3878 0.4858 0.4400

evarrst 0.2532 0.3078 0.2516 0.2545 0.2668 0.3289 0.2999

haschld 0.1605 0.1353 0.1514 0.1539 0.1849 0.2550 0.2223

nchld 0.2129 0.1903 0.2117 0.2112 0.2554 0.3845 0.3242

partnered 0.0666 0.0568 0.0420 0.0511 0.0897 0.0879 0.0888

educ 0.4279 0.4423 0.3351 0.3716 0.5400 0.3596 0.4438

educ.f 0.1859 0.1955 0.1513 0.1651 0.1928 0.1474 0.1686

educ.m 0.1864 0.2194 0.1724 0.1792 0.1987 0.1426 0.1688

white 0.3791 0.3749 0.2485 0.2988 0.3727 0.2615 0.3134

hisp 0.1488 0.1471 0.1783 0.1668 0.1709 0.1755 0.1733

black 0.4114 0.4146 0.4931 0.4617 0.3824 0.4914 0.4405

yr.work1 0.7521 0.7187 0.5609 0.6334 0.7762 0.5486 0.6549

earn.yr 0.1860 0.1980 – 0.1180 0.0000 0.2959 – 0.1224 0.0729

mosinjob 5.0385 4.5638 3.0868 3.8218 5.5361 2.9788 4.1727

currjob 0.3191 0.2927 0.1767 0.2307 0.3314 0.1862 0.2540

p.inc 3000-6000 0.1494 0.1379 0.0934 0.1146 0.1896 0.1207 0.1529

p.inc 6000-9000 0.0607 0.0626 0.0331 0.0439 0.0726 0.0343 0.0522

p.inc > 9000 0.0376 0.0655 0.0230 0.0298 0.0656 0.0173 0.0398

h.inc 3000-6000 0.1826 0.2509 0.2062 0.1999 0.1720 0.2307 0.2033

h.inc 6000-9000 0.1102 0.0636 0.1101 0.1082 0.1065 0.1089 0.1078

h.inc 9000-18000 0.2664 0.2098 0.2392 0.2474 0.2759 0.2114 0.2415

h.inc > 18000 0.2219 0.2832 0.1590 0.1859 0.2506 0.1406 0.1919
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Model: a.135
(week 135, without monotonicity of truncation)

C.EE C.EN C.NE C.NN
Com-
pliers

N.EE N.NN
Never-
takers

age 18.9747 19.0294 18.8950 18.3669 18.7261 19.2645 18.8120 19.0574

female 0.3607 0.3262 0.7127 0.4169 0.3878 0.3972 0.4741 0.4324

evarrst 0.2515 0.2502 0.3749 0.2584 0.2567 0.2604 0.3305 0.2925

haschld 0.1475 0.1387 0.4223 0.1492 0.1528 0.1969 0.2498 0.2211

nchld 0.2050 0.1759 0.4462 0.2084 0.2086 0.2802 0.3767 0.3244

partnered 0.0489 0.0630 0.0846 0.0382 0.0464 0.0911 0.1052 0.0976

educ 0.4264 0.4243 0.3577 0.3135 0.3781 0.4887 0.3496 0.4250

educ.f 0.1822 0.1588 0.0732 0.1506 0.1649 0.1749 0.1617 0.1689

educ.m 0.1862 0.1930 0.2235 0.1637 0.1782 0.1785 0.1633 0.1715

white 0.3358 0.3946 0.3433 0.2270 0.2961 0.3625 0.2671 0.3188

hisp 0.1589 0.2095 0.1707 0.1647 0.1660 0.1838 0.1641 0.1748

black 0.4365 0.3060 0.2571 0.5418 0.4649 0.3814 0.4965 0.4341

yr.work1 0.6900 0.6945 0.7632 0.5467 0.6325 0.7276 0.5711 0.6560

earn.yr 0.0833 0.1863 0.1854 – 0.1358 0.0037 0.1859 – 0.0879 0.0606

mosinjob 4.4574 4.7717 5.2723 2.9448 3.8746 4.7865 3.1376 4.0317

currjob 0.2705 0.2816 0.3310 0.1725 0.2321 0.2831 0.2095 0.2494

p.inc 3000-6000 0.1462 0.1184 0.0001 0.0885 0.1169 0.1698 0.1167 0.1455

p.inc 6000-9000 0.0532 0.0503 0.2240 0.0232 0.0439 0.0571 0.0456 0.0518

p.inc > 9000 0.0350 0.0428 0.0655 0.0207 0.0304 0.0511 0.0225 0.0380

h.inc 3000-6000 0.1920 0.1722 0.1857 0.2190 0.2013 0.1884 0.2135 0.1999

h.inc 6000-9000 0.1021 0.1183 0.0517 0.1096 0.1057 0.1157 0.1111 0.1136

h.inc 9000-18000 0.2504 0.2902 0.2922 0.2316 0.2470 0.2676 0.2132 0.2427

h.inc > 18000 0.2193 0.2033 0.2442 0.1389 0.1850 0.2116 0.1721 0.1935
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Model: b.135
(week 135, with monotonicity of truncation)

C.EE C.EN C.NN
Com-
pliers

N.EE N.NN
Never-
takers

age 18.9723 19.0424 18.3827 18.7249 19.2654 18.8118 19.0603

female 0.3689 0.3125 0.4262 0.3887 0.3972 0.4703 0.4303

evarrst 0.2537 0.2451 0.2624 0.2567 0.2627 0.3284 0.2924

haschld 0.1526 0.1304 0.1579 0.1530 0.1996 0.2463 0.2207

nchld 0.2094 0.1694 0.2163 0.2090 0.2822 0.3734 0.3234

partnered 0.0489 0.0652 0.0398 0.0464 0.0919 0.1048 0.0977

educ 0.4251 0.4270 0.3139 0.3775 0.4886 0.3510 0.4264

educ.f 0.1801 0.1626 0.1476 0.1647 0.1745 0.1632 0.1694

educ.m 0.1869 0.1934 0.1655 0.1783 0.1785 0.1630 0.1715

white 0.3354 0.3959 0.2322 0.2962 0.3630 0.2651 0.3187

hisp 0.1595 0.2084 0.1650 0.1660 0.1837 0.1642 0.1749

black 0.4339 0.3113 0.5296 0.4646 0.3803 0.5008 0.4348

yr.work1 0.6911 0.6907 0.5537 0.6320 0.7293 0.5695 0.6570

earn.yr 0.0821 0.1870 – 0.1247 0.0021 0.1912 – 0.0896 0.0642

mosinjob 4.4651 4.7402 3.0254 3.8697 4.8046 3.1209 4.0432

currjob 0.2715 0.2773 0.1790 0.2323 0.2833 0.2076 0.2490

p.inc 3000-6000 0.1435 0.1234 0.0849 0.1166 0.1682 0.1195 0.1462

p.inc 6000-9000 0.0558 0.0450 0.0299 0.0438 0.0594 0.0431 0.0520

p.inc > 9000 0.0358 0.0412 0.0220 0.0304 0.0512 0.0220 0.0380

h.inc 3000-6000 0.1917 0.1742 0.2177 0.2014 0.1876 0.2145 0.1997

h.inc 6000-9000 0.1016 0.1195 0.1074 0.1056 0.1149 0.1124 0.1138

h.inc 9000-18000 0.2515 0.2862 0.2340 0.2469 0.2684 0.2121 0.2429

h.inc > 18000 0.2188 0.2020 0.1431 0.1848 0.2134 0.1705 0.1940
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Model: a.208
(week 208, without monotonicity of truncation)

C.EE C.EN C.NE C.NN
Com-
pliers

N.EE N.NN
Never-
takers

age 18.9152 18.7614 19.4255 18.3956 18.7248 19.2237 18.8570 19.0731

female 0.3604 0.3926 0.4592 0.4214 0.3870 0.4163 0.4643 0.4360

evarrst 0.2376 0.2743 0.2889 0.2752 0.2553 0.2752 0.3285 0.2971

haschld 0.1559 0.1113 0.2046 0.1585 0.1539 0.2117 0.2347 0.2211

nchld 0.2111 0.1419 0.2496 0.2229 0.2100 0.3018 0.3590 0.3253

partnered 0.0518 0.0438 0.1198 0.0404 0.0483 0.0968 0.0923 0.0949

educ 0.4114 0.4264 0.4906 0.3001 0.3742 0.4975 0.3481 0.4362

educ.f 0.1760 0.1842 0.1131 0.1436 0.1639 0.1745 0.1671 0.1715

educ.m 0.1765 0.2334 0.2810 0.1695 0.1809 0.1698 0.1574 0.1647

white 0.3303 0.4398 0.5149 0.2020 0.2973 0.3588 0.2567 0.3169

hisp 0.1666 0.1469 0.1886 0.1648 0.1647 0.1865 0.1670 0.1785

black 0.4388 0.3030 0.0046 0.5625 0.4631 0.3882 0.5079 0.4373

yr.work1 0.7010 0.6755 0.8564 0.5025 0.6304 0.7038 0.6017 0.6619

earn.yr 0.0925 0.1009 0.5166 – 0.1787 0.0039 0.1501 – 0.0638 0.0623

mosinjob 4.4820 4.3146 6.6762 2.6514 3.8514 4.6557 3.2886 4.0943

currjob 0.2701 0.3058 0.3353 0.1562 0.2335 0.2814 0.1965 0.2465

p.inc 3000-6000 0.1380 0.1233 0.1640 0.0846 0.1180 0.1566 0.1258 0.1440

p.inc 6000-9000 0.0536 0.0560 0.1770 0.0217 0.0447 0.0579 0.0386 0.0500

p.inc > 9000 0.0372 0.0450 0.0750 0.0168 0.0312 0.0463 0.0216 0.0362

h.inc 3000-6000 0.2011 0.1509 0.0944 0.2250 0.2033 0.1831 0.2121 0.1950

h.inc 6000-9000 0.1072 0.1515 0.1635 0.0940 0.1074 0.1123 0.1060 0.1097

h.inc 9000-18000 0.2523 0.2697 0.2748 0.2335 0.2475 0.2696 0.2008 0.2414

h.inc > 18000 0.1970 0.2205 0.2916 0.1466 0.1827 0.2126 0.1806 0.1994
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Model: b.208
(week 208, with monotonicity of truncation)

C.EE C.EN C.NN
Com-
pliers

N.EE N.NN
Never-
takers

age 18.9223 18.7160 18.4401 18.7245 19.2309 18.8453 19.0741

female 0.3627 0.3776 0.4244 0.3871 0.4168 0.4636 0.4358

evarrst 0.2380 0.2749 0.2755 0.2550 0.2769 0.3282 0.2978

haschld 0.1555 0.1081 0.1600 0.1535 0.2142 0.2336 0.2221

nchld 0.2106 0.1383 0.2236 0.2098 0.3039 0.3579 0.3259

partnered 0.0522 0.0431 0.0433 0.0481 0.0987 0.0905 0.0954

educ 0.4121 0.4202 0.3085 0.3737 0.4994 0.3470 0.4374

educ.f 0.1751 0.1834 0.1433 0.1638 0.1743 0.1679 0.1717

educ.m 0.1785 0.2267 0.1745 0.1808 0.1707 0.1567 0.1650

white 0.3338 0.4398 0.2164 0.2979 0.3581 0.2529 0.3153

hisp 0.1663 0.1444 0.1650 0.1641 0.1890 0.1668 0.1800

black 0.4316 0.3188 0.5381 0.4628 0.3855 0.5148 0.4380

yr.work1 0.7032 0.6660 0.5173 0.6303 0.7055 0.5989 0.6622

earn.yr 0.0963 0.0666 – 0.1468 0.0024 0.1607 – 0.0726 0.0659

mosinjob 4.5085 4.1530 2.8275 3.8475 4.6927 3.2445 4.1041

currjob 0.2707 0.3004 0.1662 0.2337 0.2819 0.1942 0.2462

p.inc 3000-6000 0.1386 0.1220 0.0873 0.1180 0.1567 0.1255 0.1440

p.inc 6000-9000 0.0559 0.0494 0.0270 0.0445 0.0596 0.0374 0.0506

p.inc > 9000 0.0374 0.0404 0.0195 0.0309 0.0478 0.0211 0.0370

h.inc 3000-6000 0.1991 0.1541 0.2195 0.2032 0.1827 0.2134 0.1952

h.inc 6000-9000 0.1087 0.1510 0.0965 0.1075 0.1122 0.1059 0.1096

h.inc 9000-18000 0.2529 0.2711 0.2347 0.2475 0.2696 0.2004 0.2414

h.inc > 18000 0.1980 0.2135 0.1535 0.1825 0.2141 0.1798 0.2002
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