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The Alexander–Hirschowitz theorem says that a general collection of

k double points in Pn imposes independent conditions on homoge-

neous polynomials of degree d with a well known list of exceptions.

We generalize this theorem to arbitrary zero-dimensional schemes

contained in a general union of double points. We work in the poly-

nomial interpolation setting. In this framework our main result says

that the affine space of polynomials of degree ≤ d in n variables,

with assigned values of any number of general linear combinations

of first partial derivatives, has the expected dimension if d �= 2 with

only five exceptional cases. If d = 2 the exceptional cases are fully

described.

© 2011 Published by Elsevier Inc.

1. Introduction24

Let Rd,n = K[x1, . . . , xn]d be the vector space of polynomials of degree ≤ d in n variables over

an infinite field K . Note that dim Rd,n =
(

n+d

d

)
. Let p1, . . . , pk ∈ Kn be k general points and assume

that over each of these points a general affine proper subspace Ai ⊂ Kn × K of dimension ai is given.

Assume that a1 � · · · � ak . Let Γf ⊆ Kn × K be the graph of f ∈ Rd,n and Tpi
Γf be its tangent space

at the point (pi, f (pi)). Note that dim Tpi
Γf = n for any i. Consider the conditions

Ai ⊆ Tpi
Γf , for i = 1, . . . , k (1)

When ai = 0, the assumption (1) means that the value of f at pi is assigned. When ai = n, (1) means25

that the value of f at pi and the values of all first partial derivatives of f at pi are assigned. In the26

intermediate cases, (1) means that the value of f at pi and the values of some linear combinations of27

first partial derivatives of f at pi are assigned.28

∗ Corresponding author.
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Consider now the affine space

Vd,n(p1, . . . , pk, A1, . . . , Ak) = {f ∈ Rd,n|Ai ⊆ Tpi
Γf , i = 1, . . . , k} (2)

The polynomials in this space solve a partial polynomial interpolation problem. The conditions in (1)29

correspond to (ai + 1) affine linear conditions on Rd,n. Our main result describes the codimension of30

the above affine space. Since the description is different for d = 2 and d �= 2, we divide the result in31

two parts.32

Theorem 1.1. Let d �= 2 and char (K) = 0. For a general choice of points pi and subspaces Ai, the affine

space Vd,n(p1, . . . , pk, A1, . . . , Ak) has codimension in Rd,n equal to

min

⎧⎨⎩
k∑

i=1

(ai + 1), dim Rd,n

⎫⎬⎭
with the following list of exceptions33

(a) n = 2, d = 4, k = 5, ai = 2 for i = 1, . . . , 5

(b) n = 3, d = 4, k = 9, ai = 3 for i = 1, . . . , 9

(b′) n = 3, d = 4, k = 9, ai = 3 for i = 1, . . . , 8 and a9 = 2

(c) n = 4, d = 3, k = 7, ai = 4 for i = 1, . . . , 7

(d) n = 4, d = 4, k = 14, ai = 4 for i = 1, . . . , 14

In particular when
∑k

i=1(ai + 1) =
(

n+d

d

)
there is a unique polynomial f in Vd,n(p1, . . . , pk, A1, . . . ,34

Ak), with the above exceptions (a), (b′), (c), (d). In the exceptional cases the space Vd,n(p1, . . . , pk, A1, . . . ,35

Ak) is empty.36

The “general choice” assumption means that the points can be taken in a Zariski open set (i.e.37

outside the zero locus of a polynomial) and for each of these points the space Ai can be taken again in38

a Zariski open set. On the real numbers this assumption means that the choices can be done outside a39

set of measure zero. Our result is not constructive but it ensures that in the case
∑k

i=1(ai +1) =
(

n+d

d

)
40

the linear system computing the interpolating polynomial with general data has a unique solution.41

Hence any algorithm solving linear systems can be successfully applied. Actually our proof shows that42

Theorem 1.1 holds on any infinite field, with the possible exception of finitely many values of char K43

(see the appendix). For finite fields the genericity assumption is meaningless.44

The case in which ai = n for all i was proved by Alexander and Hirschowitz in [1,2], see [4] for45

a survey. The most notable exception is the case of seven points with seven tangent spaces for cubic46

polynomials in four variables, as in c). This example was known to classical algebraic geometers and47

it was rediscovered in the setting of numerical analysis in [11]. The case of curvilinear schemes was48

proved as a consequence of a more general result by [5] on P2 and by [8] in general.49

The case d = 1 follows from elementary linear algebra. The case n = 1 is easy and well known: in50

this case the statement of Theorem 1.1 is true with the only requirement that the points pi are distinct51

and the spaces Ai are not vertical, that is their projections π(Ai) on Kn satisfy dim Ai = dim π(Ai).52

Assume now d = 2. We set ai = −1 for i > k. For any 1 ≤ i ≤ n we denote

δa1,...,ak
(i) = max

⎧⎨⎩0,
i∑

j=1

aj −
i∑

j=1

(n + 1 − j)

⎫⎬⎭
53

Theorem 1.2. Let K be an infinite field. For a general choice of points pi and subspaces Ai, the affine space

V2,n(p1, . . . , pk, A1, . . . , Ak) has codimension in R2,n equal to

min

⎧⎨⎩
k∑

i=1

(ai + 1), dim R2,n

⎫⎬⎭
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if and only if one of the following conditions takes place:54

(1) either δa1,...,ak
(i) = 0 for all 1 � i � n;55

(2) or
∑

i(ai + 1) �
(

n+2

2

)
+ max{δa1,...,ak

(i) : 1 � i � n}.56

In particular when
∑k

i=1(ai +1) =
(

n+2

2

)
there is a unique polynomial f in V2,n(p1, . . . , pk, A1, . . . , Ak)

if and only if, for any 1 ≤ i ≤ n, we have

i∑
j=1

aj ≤
i∑

j=1

(n + 1 − j).

The first nontrivial example which explains Theorem 1.2 is the following. Consider k = 2 and57

(a1, a2) = (n, n). Then the affine space V2,n(p1, p2, A1, A2) is given by quadratic polynomials with58

assigned tangent spaces A1, A2 at two points p1, p2. This space is not empty if and only if the inter-59

section space A1 ∩ A2 is not empty and its projection on Kn contains the midpoint of p1p2, which is a60

codimension one condition. In order to prove this fact restrict to the line through p1 and p2 and use61

a well known property of the tangent lines to the parabola. In this case δn,n(i) =
⎧⎨⎩ 0 i �= 1

1 i = 1
and the62

two conditions of Theorem 1.2 are not satisfied. In Section 3 we will explain these two conditions in63

graphical terms.64

Let π(Ai) be the projection of Ai on Kn. For i = 1, . . . , k we consider the ideal

Ii =
⎧⎨⎩f ∈ K[x1, . . . , xn]|f (pi) +

n∑
j=1

(xj − (pi)j)
∂ f

∂xj

(pi) = 0 for any x ∈ π(Ai)

⎫⎬⎭
Notice that we have m2

pi
⊆ Ii ⊆ mpi

and the ring K[x1, . . . , xn]/Ii corresponds to a zero-dimensional65

scheme ξi of length ai +1, supported at pi and contained in the double point p2
i . When Vd,n(p1, . . . , pk,66

A1, . . . , Ak) is not empty, its associated vector space (that is its translate containing the origin) consists67

of the hypersurfaces of degree d through ξ1, . . . , ξk . Moreover, when this vector space has the expected68

dimension, it follows that Vd,n(p1, . . . , pk, A1, . . . , Ak) has the expected dimension too.69

The space Kn can be embedded in the projective space Pn. Since the choice of points is general,70

we can always avoid the “hyperplane at infinity”. In order to prove the above two theorems, we will71

reformulate them in the projective language of hypersurfaces of degree d through zero-dimensional72

schemes. More precisely we refer to Theorem 3.2 for d = 2, Theorem 4.1 for d = 3 and Theorem 5.6 for73

d � 4. This reformulation is convenient mostly to rely on the wide existing literature on the subject.74

In this setting Alexander and Hirschowitz proved that a general collection of double points imposes75

independent conditions on the hypersurfaces of degree d (with the known exceptions) and our result76

generalizes to a general zero-dimensional scheme contained in a union of double points. It is possible77

to degenerate such a scheme to a union of double points only in few cases, in such cases of course our78

result is trivial from [1].79

Our proof of Theorem 5.6, and hence of Theorem 1.1, is by induction on n and d. Since it is enough80

to find a particular zero-dimensional scheme which imposes independent condition on hypersurfaces81

of degree d, we specialize some of the points on a hyperplane, following a technique which goes back82

to Terracini. We need a generalization of the Horace method, like in [1], that we develop in the proof of83

Theorem 5.6. The case of cubics, which is the starting point of the induction, is proved by generalizing84

the approach of [4], where we restricted to a codimension three linear subspace. This case is the crucial85

step which allows to prove the Theorem 1.1. Section 4 is devoted to this case, which requires a lot of86

effort and technical details, in the setting of discrete mathematics. Compared with the quick proof we87

gave in [4], here we are forced to divide the proof in several cases and subcases. While the induction88

argument works quite smoothly for n, d 	 0, it is painful to cover many of the initial cases. In the case89

d = 3 we need the help of a computer, by a Montecarlo technique explained in the appendix.
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A further remark is necessary. In [1,4] the result about the independence of double points was90

shown to be equivalent, through Terracini lemma, to a statement about the dimension of higher secant91

varieties of the Veronese varieties, which in turn is related to the Waring problem for polynomials. Here92

the assumption that K is algebraically closed of zero characteristic is necessary to translate safely the93

results, see also Theorem 6.1 and Remark 6.3 in [10]. For example, on the real numbers, the closure in94

the euclidean topology of the locus of secants to the twisted cubic is a semi-algebraic set, corresponding95

to the cubic polynomials which have not three distinct real roots, and it is defined by the condition96

that the discriminant is nonpositive. Indeed a real cubic polynomial can be expressed as the sum of97

two cubes of linear polynomials (Waring problem) if and only if it has two distinct complex conjugate98

roots or a root of multiplicity three.99

2. Preliminaries100

Let X be a scheme contained in a collection of double points of Pn. We say that the type of X is101

(m1, . . . , mn+1) if X contains exactly mi subschemes of a double point of length i, for i = 1, . . . , n+1.102

For example the type of k double points is (0, . . . , 0, k). The degree of X is deg X = ∑
imi. A scheme103

of type (m1, . . . , mn+1) corresponds to a collection of mi linear subspaces Li ⊆ Pn with dim Li = i−1104

and with a marked point on each Li.105

Algebraic families of such schemes can be defined over any field K with the Zariski topology.106

Any irreducible component ζ of length k contained in a double point supported at the point p107

corresponds to a linear space L of projective dimension k − 1 passing through p. The hypersurfaces108

containing ζ are exactly the hypersurfaces F such that TpF ⊇ L.109

This description allows to consider a degeneration (or collision) of two components as the span of110

the corrisponding linear spaces. More precisely, consider two irreducible schemes ζ0, ζ1, supported111

respectively at p0, p1, of length respectively k0, k1 and consider the space V(ζ0, ζ1) of the hypersurfaces112

containing ζ0 and ζ1. Let Li be the space corresponding to ζi. By the above remark this space consists113

of the hypersurfaces F such that Tp0
F ⊇ L0 and Tp1

F ⊇ L1.114

Let L = 〈L0, L1〉 be the projective span of L0 and L1, that is the smallest projective space containing115

L0 and L1. If L0 and L1 are general, and if moreover k0 + k1 − 1 ≤ n, then dim L = k0 + k1 − 1 and L116

corresponds to an irreducible scheme ζ of length k0 + k1 supported at p0 (or at p1). It is not difficult117

to construct a degeneration of ζ0 ∪ ζ1 which has ζ as limit.118

This implies, by semicontinuity, that dim V(ζ0 ∪ ζ1) ≤ dim V(ζ ).119

In particular if we prove that V(ζ ) has the expected dimension, the same is true for V(ζ0 ∪ ζ1). We120

will use often this remark through the paper.121

We recall now some notation and results from [4].122

Given a zero-dimensional subscheme X ⊆ Pn, the corresponding ideal sheaf IX and a linear system

D on Pn, the Hilbert function is defined as follows:

hPn(X, D) := dim H0(D) − dim H0(IX ⊗ D).

If hPn(X, D) = deg X , we say that X is D-independent, and in the case D = OPn(d), we say d-123

independent.124

A zero-dimensional scheme is called curvilinear if it is contained in the smooth part of a curve.125

Notice that a curvilinear scheme contained in a double point has length 1 or 2.126

Lemma 2.1 (Curvilinear Lemma [6,4]). Let X be a zero-dimensional scheme of finite length contained in127

a union of double points of Pn and D a linear system on Pn. Then X is D-independent if and only if every128

curvilinear subscheme of X is D-independent.129

For any scheme X ⊂ L in a projective space L, we denote IX(d) = IX ⊗ OL(d) and130

IX,L(d) = H0(IX(d)). The expected dimension of the vector space IX,Pn(d) is expdim(IX,Pn(d)) =131

max
((

n+d

n

)
− deg X, 0

)
.132
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For any scheme X ⊂ Pn and any hyperplane H ⊆ Pn, the residual of X with respect to H is denoted

by X : H and it is defined by the ideal sheaf IX:H = IX : IH . We have, for any d, the well known

Castelnuovo sequence

0 → IX:H,Pn(d − 1) → IX,Pn(d) → IX∩H,H(d).

Remark 2.2. If Y ⊆ X ⊆ Pn are zero-dimensional schemes, then133

• if X is d-independent, then so is Y ,134

• if hPn(Y, d) =
(

d+n

n

)
, then hPn(X, d) =

(
d+n

n

)
.135

It follows that if any zero-dimensional scheme X ⊆ Pn with deg X =
(

d+n

n

)
is d-independent, then136

any scheme contained in X imposes independent conditions on hypersurfaces of degree d in Pn.137

Remark 2.3. Fix n � 2 and d � 3. Assume that if a scheme X with degree
(

d+n

n

)
does not impose138

independent conditions on hypersurfaces of degree d in Pn, then it is of type (m1, . . . , mn+1) for some139

given mi. It follows that any subscheme of X is d-independent. Indeed any proper subscheme Y of X is140

also a subscheme of a scheme X′ with degree
(

d+n

n

)
and of type (m′

1, . . . , m′
n+1) �= (m1, . . . , mn+1),141

for some m′
i and since X′ is d-independent, so is Y . Moreover any scheme Z containing X impose142

independent conditions on hypersurfaces of degree d if it contains a scheme X′′ with degree
(

d+n

n

)
143

and of type (m′′
1, . . . , m′′

n+1) �= (m1, . . . , mn+1) for some m′′
i . Indeed since X′′ imposes independent144

conditions on hypersurfaces of degree d, also Z does.145

3. Quadratic polynomials146

Assume that X is a general scheme of type (m1, . . . , mn+1). Let us fix an order on the irreducible

components ξ1, . . . , ξm of X (where m = ∑
mi) such that

length(ξ1) � · · · � length(ξm)

and for any 1 ≤ i ≤ m let us denote by li the length of ξi and by pi the point where ξi is supported. Set

li = 0 for i > m. For any 1 ≤ i ≤ n let us denote

δX(i) = max

⎧⎨⎩0,
i∑

j=1

lj −
i∑

j=1

(n + 2 − j)

⎫⎬⎭ .

Note that δX(1) = 0 for any scheme X . Clearly δX(2) = 0 unless X is the union of two double points147

and in this case δX(2) = 1. If δX(2) = 0, then δX(3) = 0 unless l1 = n + 1, l2 = l3 = n, where148

δX(3) = 1. If δX(2) = δX(3) = 0, then δX(4) = 0 unless either l1 = n + 1, l2 = n, l3 = l4 = n − 1,149

where δX(4) = 1, or l1 = l2 = l3 = n and l4 � n − 1, where 1 � δX(4) � 2.150

Lemma 3.1. If δX(i) > 0 for some 1 ≤ i ≤ n, then the quadrics containing {ξ1, . . . , ξi} are exactly the151

quadrics singular along the linear space spanned by p1, . . . , pi.152

Proof. Let us denote Pn = P(V), fix a basis {e0, . . . , en} of V and assume that pj = [en+2−j] for all153

j = 1, . . . , i. Let A be the symmetric matrix defining a quadric Q in P(V) passing through the scheme154

{ξ1, . . . , ξi}. Therefore Q is defined in V by the equation {v ∈ V : vT Av = 0} and the condition that155

the quadric contains ξj means that eT
n+2−jAw = 0 for any w ∈ W , where W is a general subspace of V156

of dimension lj . Then, it is easy to see that the condition
∑i

j=1 lj � ∑i
j=1(n + 2 − j) implies that the157
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elements of the last i columns and rows of the matrix A are all equal to 0. This implies that the quadric158

Q is singular along the linear space spanned by {p1, . . . , pi}. �159

From the previous lemma it follows that if δX(i) is positive for some 1 ≤ i ≤ n, then the scheme160

{ξ1, . . . , ξi} does not impose independent conditions on quadrics. Indeed the scheme {ξ1, . . . , ξi} has161

degree
∑i

j=1 lj , but imposes only
∑i

j=1(n + 2 − j) =
(

n+2

2

)
−

(
n−i+2

2

)
conditions on quadrics.162

The following result describes all the schemes which impose independent conditions on quadrics,163

giving necessary and sufficient conditions.164

Theorem 3.2. A general zero-dimensional scheme X ⊂ Pn contained in a union of double points of type165

(m1, . . . , mn+1) imposes independent conditions on quadrics if and only if one of the following conditions166

takes place:167

(1) either δX(i) = 0 for all 1 � i � n;168

(2) or deg X �
(

n+2

2

)
+ max{δX(i) : 1 � i � n}.169

Proof. First we prove that if X does impose independent conditions on quadrics, then either condition

1 or 2 hold. Assume that both conditions are false and let us prove that IX(2) has not the expected

dimension max
{
0,

(
n+2

2

)
− deg(X)

}
. In particular assume that there is an index i ∈ {1, . . . , n} such

that δX(i) > 0 and deg(X) <
(

n+2

2

)
+ δX(i). Consider the family C of quadratic cones with vertex

containing the linear space Pi−1 spanned by p1, . . . , pi. Of course we have

dim IX(2) � dim(C) −
⎛⎝deg(X) −

i∑
j=1

lj

⎞⎠ =
(

n − i + 2

2

)
− deg(X) +

i∑
j=1

lj =: c

Now, using
(

n+2

2

)
−

(
n−i+2

2

)
= ∑i

j=1(n + 2 − j), we compute

dim IX(2) − expdimIX(2) � min

⎧⎨⎩c,
i∑

j=1

lj −
(

n + 2

2

)
+

(
n − i + 2

2

)⎫⎬⎭ = min{c, δX(i)}

By assumption δX(i) > 0 and

c >

(
n − i + 2

2

)
−

(
n + 2

2

)
− δX(i) +

i∑
j=1

lj =
i∑

j=1

lj −
i∑

j=1

(n + 2 − j) − δX(i) = 0

Hence the dimension of IX(2) is higher than the expected dimension and we have proved that X does170

not impose independent conditions on quadrics.171

Now we want to prove that if either condition 1 or condition 2 hold, then X imposes independent172

conditions on quadrics. We work by induction on n � 2. If n = 2 it is easy to check directly our claim.173

Consider a scheme X in Pn which satisfies condition 1 and fix a hyperplane H ⊂ Pn. We specialize

all the components of X on H in such a way that the residual of each of the components ξ1, . . . , ξn is

1 (if the component is not empty) and the residual of the remaining components is zero. Indeed the

vanishing δX(2) = 0 implies that lj � n for all j � 2, and so such a specialization is possible. Then we

get the Castelnuovo sequence

0 → IX:H,Pn(1) → IX,Pn(2) → IX∩H,H(2)

where X : H is the residual given by at most n simple points and X ∩ H is the trace in H. Hence we174

conclude by induction once we have proved that the trace X ∩ H satisfies condition 1 or 2.175
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Note that in order to compute δX∩H(i) we need to choose an order on the components ξi ∩ H of

X ∩ H such that the sequence of their lengths is not increasing. If

length(ξn) − 1 = length(ξn ∩ H) � length(ξn+1 ∩ H) = length(ξn+1) (3)

then we can choose the same order on the components of X ∩ H chosen for the components of X . In

this case it is easy to prove that X ∩ H satisfies condition 1. Indeed for any i ≥ 1, let us denote by

l′i = length(ξi ∩ H). Recall that m is the number of components of X . By construction we have that

l′i = li − 1 for any 1 � i � min{n, m}. Then for all 1 � i � min{n − 1, m} we have

i∑
j=1

l′j −
i∑

j=1

(n + 1 − j) =
i∑

j=1

lj − i −
i∑

j=1

(n + 2 − j) + i =
i∑

j=1

lj −
i∑

j=1

(n + 2 − j)

from which we have

δX∩H(i) = max

⎧⎨⎩0,
i∑

j=1

l′j −
i∑

j=1

(n + 1 − j)

⎫⎬⎭ = max

⎧⎨⎩0,
i∑

j=1

lj −
i∑

j=1

(n + 2 − j)

⎫⎬⎭ = δX(i) = 0

Now assume that (3) does not hold. This implies in particular that ln = ln+1, and so when we176

compute δX∩H(i) we have to change the order on the components. In order to better understand the177

situation, let us consider the following example: X in P5 given by 9 components of length 4. Note that178

δX(i) = 0 for any 1 ≤ i ≤ 5. After the specialization described above we get a scheme X ∩ H in179

H ∼= P4 given by 5 components of length 3 and 4 components of length 4. We easily compute that180

δX∩H(4) = 2 > 0.181

Now we will prove that if X ∩ H does not satisfy condition 1, then it satisfies 2. Assume that for182

X in Pn we have δX(i) = 0 for all 1 � i � n, while for X ∩ H in H we have δX∩H(i) > 0 for some183

1 � i � n − 1.184

Let us denote l := ln = ln+1 and let 1 ≤ k < n be the index such that lk > lk+1 = · · · = ln =185

ln+1 = l. Let h be the index such that δX∩H(h) = max{δX∩H(i)} and note that h > k.186

As above we denote by l′i the lenghts of the components of X ∩ H ordered in a not increasing way.

Hence we have,

l′1 = l1 − 1, . . . , l′k = lk − 1, l′k+1 = l, . . . , l′h = l, . . .

and this implies that lk > lk+1 = · · · = ln = · · · = ln+h−k = l.187

Now since δX∩H(h) > 0 we obtain

h∑
i=1

l′i =
k∑

i=1

li − k + (h − k)l >
h∑

i=1

(n + 1 − i) =
h∑

i=1

(n + 2 − i) − h

and since δX(k) = 0 we have
∑k

i=1 li � ∑k
i=1(n + 2 − i), and combining these two inequalities we188

have189

(h − k)l >
h∑

i=k+1

(n + 2 − i) − (h − k) > (h − k)(n + 1 − h)

from which it follows:

l � (n + 2 − h). (4)

Now in order to prove that X ∩ H satisfies 2 we need to show that

deg(X ∩ H) �
(

n + 1

2

)
+ δX∩H(h).
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Notice that

deg(X ∩ H) � deg X − n �
n+h−k∑

i=1

li − n,

hence if we prove the following inequality we are done:

n+h−k∑
i=1

li − n �
(

n + 1

2

)
+ δX∩H(h)

i.e.

k∑
i=1

li + (n + h − 2k)l − n �
(

n + 1

2

)
+

k∑
i=1

li − k + (h − k)l −
h∑

i=1

(n + 1 − i)

which reduces to

(n − k)l �
(

n + 1

2

)
+ n − k − h(n + 1) +

(
h + 1

2

)
By using inequality (4) it is enough to prove, for any n � 2, any 1 � k < h � n − 1, the inequality

(n − k)(n + 2 − h) �
(

n + 1

2

)
+ (n − k) − h(n + 1) +

(
h + 1

2

)
(5)

and we prove this inequality by induction on h � n − 1. First fix n, k and choose h = n − 1. In this

case (5) becomes

3(n − k) �
(

n + 1

2

)
+ (n − k) − (n2 − 1) +

(
n

2

)
= n − k + 1

which is true. Now if we assume that (5) is verified for h′ � n − 1, it is easy to check it for h = h′ − 1,190

thus completing the proof of (5).191

It remains to prove that if X satisfies condition 2, then the system of quadrics |IX(2)| containing X192

is empty. If δX(i) = 0 for all 1 � i � n then we are in the previous case. We may assume that there193

exists i such that δX(i) > 0.194

Assume that the sequence {δX(i)} is nondecreasing Then δX(n) > 0 and by Lemma 3.1 we know195

that the quadrics containing the first n components {ξ1, . . . , ξn} are singular along the hyperplane196

H = 〈p1, . . . , pn〉, so the only existing quadric is the double hyperplane H2. By assumption deg X >197 [(
n+2

2

)
− 1

]
+δX(n) = ∑n

j=1 lj , hence there is at least an extra condition given by another component198

ξn+1 of X and so |IX(2)| = ∅ as we wanted.199

Therefore we may assume that there exists 1 � i < n such that δX(i + 1) < δX(i) and we pick the

first such i. In particular it follows

li+1 < n + 1 − i (6)

As above, by Lemma 3.1 all the quadrics containing X0 = {ξ1, . . . , ξi} are singular along the linear200

space L0 =< p1, . . . , pi >. Let X1 = X\X0. By definition deg X0 = ∑i
j=1 lj =

(
n+2

2

)
−

(
n+2−i

2

)
+δX(i).201

Let π be a general projection from L0 on a linear space L1 � Pn−i. By (6) we have deg X1 =202

deg π(X1). Hence there is a bijective correspondence between |IX(2)| and |Iπ(X1)(2)| ⊆ |OL1
(2)|. By203

generality we may assume that X1 is supported outside L0.204

Note that

deg π(X1) −
(

n − i + 2

2

)
= deg X −

(
n + 2

2

)
− δX(i) ≥ max

h
{δX(h)} − δX(i) ≥ 0
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hence if δπ(X1)(h) = 0 for h = 1, . . . , n − i we conclude again by the first case. If there exists

1 � j � n − i such that δπ(X1)(j) > 0, notice that in this case we have

δπ(X1)(j) = δX(j + i) − δX(i),

hence

max
p

{δπ(X1)(p)} = max
h

{δX(h)} − δX(i).

So we proved that

deg π(X1) −
(

n + 2 − i

2

)
≥ max

p
{δπ(X1)(p)}

This means that π(X1) satisfies the assumption 2 on L1 and then by (complete) induction on n we205

get that |Iπ(X1)(2)| = ∅ as we wanted. �206

A straightforward consequence of the previous theorem is the following corollary.207

Corollary 3.3. A general zero-dimensional scheme X ⊂ Pn contained in a union of double points with208

deg X =
(

n+2

2

)
imposes independent conditions on quadrics if and only if δX(i) = 0 for all 1 � i � n.209

Theorem 3.2 provides a classification of all the types of general subschemes X of a collection of210

double points of Pn which do not impose independent conditions on quadrics. For example in P2, the211

only case is X given by two double points. In P3 and in P4 we have the following lists of subschemes212

which do not impose independent conditions on quadrics.213

4. Cubic polynomials214

In this section we generalize the approach of [4, Section 3] to our setting and we prove the following215

result.216

Theorem 4.1. A general zero-dimensional scheme X ⊂ Pn contained in a union of double points imposes217

independent conditions on cubics with the only exception of n = 4 and X given by 7 double points.218

First we give the proof of the previous theorem in cases n = 2, 3, 4.219

Lemma 4.2. Let be n = 2, 3 or 4. Then a general zero-dimensional scheme X ⊂ Pn contained in a union220

of double points imposes independent conditions on cubics with the only exception of n = 4 and X given221

by 7 double points.222

Proof. By Remark 2.2 it is enough to prove the statement for X with degree
(

n+3

3

)
. Note that if X is a223

union of double points the statement is true by the Alexander–Hirschowitz theorem.224

Let n = 2 and X a subscheme of a collection of double points with deg X = 10. Fix a line H in P2

and consider the Castelnuovo exact sequence

0 → IX:H,P2(2) → IX,P2(3) → IX∩H(3)

It is easy to prove that it is always possible to specialize some components of X on H so that deg(X ∩225

H) = 4 and that the residual X : H does not contain two double points. The last condition ensures226

that δX:H(i) = 0 for i = 1, 2. Hence we conclude by Corollary 3.3.227

In the case n = 3, the scheme X has degree 20. Since there are no cubic surfaces with five singular228

points (in general position) we can assume that X contains at most three double points. Indeed if X229

contains 4 double points we can degenerate it to a collection of 5 double points, in general position.230
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Table 1

List of exceptions in P3.

X deg X max{δX(i)} (m1, . . . , m4) dim IX(2)

4,4,4 12 3 (0, 0, 0, 3) 1

4,4,3 11 2 (0, 0, 1, 2) 1

4,4,2 10 1 (0, 1, 0, 2) 1

4,4,1,1 10 1 (2, 0, 0, 2) 1

4,4,1 9 1 (1, 0, 0, 2) 2

4,4 8 1 (0, 0, 0, 2) 3

4,3,3 10 1 (0, 0, 2, 1) 1

We fix a plane H in P3 and we want to specialize some components of X on H so that deg(X ∩ H) = 10231

and that the residual X : H imposes independent conditions on quadrics. By looking at Table 1, since232

deg(X : H) = 10, it is enough to require that X : H is not of the form (0, 1, 0, 2), (2, 0, 0, 2) or233

(0, 0, 2, 1). It is easy to check that this is always possible: indeed specialize on H the components234

of X starting from the ones with higher length and keeping the residual as minimal as possible until235

the degree of the trace is 9 or 10. If the degree of the trace is 9 and there is in X a component with236

length 1 or 2 we can obviously complete the specialization. The only special case is given by X of type237

(0, 0, 4, 2) and in this case we specialize on H the two double points and two components of length238

3 so that each of them has residual 1.239

If n = 4 the case of 7 double points is exceptional. Assume that X has degree 35 and contains at240

most 6 double points. We fix a hyperplane H of P4 and we want to specialize some components of X on241

H so that deg(X ∩ H) = 20 and that the residual X : H imposes independent conditions on quadrics.242

By looking at Table 2, it is enough to require that X : H does not contain two double points, does243

not contain one double point and two components of length 4 and it is not of the form (0, 0, 1, 3, 0).244

It is possible to satisfy this conditions by specializing the components of X in the following way: we245

specialize the components of X on H starting from the ones with higher length and keeping the residual246

as minimal as possible until the degree of the trace is maximal and does not exceed 20. Then we add247

some components allowing them to have residual 1 in order to reach the degree 20. It is possible to248

check that this construction works, except for the case (0, 0, 5, 0, 4) where we have to specialize on H249

all the double points and 2 of the components with length 3 so that both have residual 1. It is easy also250

to check that following the construction above the residual has always the desired form, except for X251

of the form (0, 0, 1, 8, 0), where the above rule gives a residual of type (0, 0, 1, 3, 0). In this case we252

make a specialization ad hoc: for example we can put on H six components of length 4 and the unique253

component of length 3 in such a way that all them have residual 1 and we obtain a residual of type254

(7, 0, 0, 2, 0) which is admissible.255

Now we have to check the schemes either contained in 7 double points or containing 7 double256

points. But this follows immediately by Remark 2.3. �257

We want to restrict a zero dimensional scheme X of Pn to a given subvariety L. We could define the

residual X : L as a subscheme of the blow-up of Pn along L [3], but we prefer to consider deg(X : L)
just as an integer associated to X and L. More precisely given a subvariety L ⊂ Pn, we denote deg(X :
L) = deg X − deg(X ∩ L). In particular we will use this notion in the following cases:

deg(X : L), deg(X : (L ∪ M)), deg(X : (L ∪ M ∪ N))

where L, M, N ⊂ Pn are three general subspaces of codimension three. We also recall that

deg(X ∩ (L ∪ M)) = deg(X ∩ L) + deg(X ∩ M) − deg(X ∩ (L ∩ M))

and258

deg(X ∩ (L ∪ M ∪ N)) = deg(X ∩ L) + deg(X ∩ M) + deg(X ∩ N) − deg(X ∩ L ∩ M)

− deg(X ∩ L ∩ N) − deg(X ∩ M ∩ N) + deg(X ∩ L ∩ M ∩ N).

The proof of Theorem 4.1 relies on a preliminary description, which is inspired to the approach of259

[4]. More precisely the proof is structured as follows:260
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Table 2

List of exceptions in P4.

X deg X max{δX(i)} (m1, . . . , m5) dim IX (2)

5,5,5,5 20 6 (0, 0, 0, 0, 4) 1

5,5,5,4 19 5 (0, 0, 0, 1, 3) 1

5,5,5,3 18 4 (0, 0, 1, 0, 3) 1

5,5,5,2 17 3 (0, 1, 0, 0, 3) 1

5,5,5,1,1 17 3 (2, 0, 0, 0, 3) 1

5,5,5,1 16 3 (1, 0, 0, 0, 3) 2

5,5,5 15 3 (0, 0, 0, 0, 3) 3

5,5,4,4 18 4 (0, 0, 0, 2, 2) 1

5,5,4,3 17 3 (0, 0, 1, 1, 2) 1

5,5,4,2 16 2 (0, 1, 0, 1, 2) 1

5,5,4,1,1 16 2 (2, 0, 0, 1, 2) 1

5,5,4,1 15 2 (1, 0, 0, 1, 2) 2

5,5,4 14 2 (0, 0, 0, 1, 2) 3

5,5,3,3 16 2 (0, 0, 2, 0, 2) 1

5,5,3,2 15 1 (0, 1, 1, 0, 2) 1

5,5,3,1,1 15 1 (2, 0, 1, 0, 2) 1

5,5,3,1 14 1 (1, 0, 1, 0, 2) 2

5,5,3 13 1 (0, 0, 1, 0, 2) 3

5,5,2,2,1 15 1 (1, 2, 0, 0, 2) 1

5,5,2,2 14 1 (0, 2, 0, 0, 2) 2

5,5,2,1,1,1 15 1 (3, 1, 0, 0, 2) 1

5,5,2,1,1 14 1 (2, 1, 0, 0, 2) 2

5,5,2,1 13 1 (1, 1, 0, 0, 2) 3

5,5,2 12 1 (0, 1, 0, 0, 2) 4

5,5,1,1,1,1,1 15 1 (5, 0, 0, 0, 2) 1

5,5,1,1,1,1 14 1 (4, 0, 0, 0, 2) 2

5,5,1,1,1 13 1 (3, 0, 0, 0, 2) 3

5,5,1,1 12 1 (2, 0, 0, 0, 2) 4

5,5,1 11 1 (1, 0, 0, 0, 2) 5

5,5 10 1 (0, 0, 0, 0, 2) 6

5,4,4,2 15 1 (0, 1, 0, 2, 1) 1

5,4,4,1,1 15 1 (2, 0, 0, 2, 1) 1

5,4,4,1 14 1 (1, 0, 0, 2, 1) 2

5,4,4 13 1 (0, 0, 0, 2, 1) 3

4,4,4,4 16 2 (0, 0, 0, 4, 0) 1

4,4,4,3 15 1 (0, 0, 1, 3, 0) 1

– in Proposition 4.3 below we generalize [4, Proposition 5.2],261

– in Proposition 4.7 and Proposition 4.8 we generalize [4, Proposition 5.3],262

– the analogue of [4, Proposition 5.4] is contained in Lemma 4.9, Lemma 4.10, Lemma 4.11 and Propo-263

sition 4.12.264

Proposition 4.3. Let n ≥ 8 and let L, M, N ⊂ Pn be general subspaces of codimension 3. Let X =265

XL ∪ XM ∪ XN be a general scheme contained in a union of double points, where XL (resp. XM, XN) is266

supported on L (resp. M, N), such that the triple (deg(XL : L), deg(XM : M), deg(XN : N)) is one of the267

following268

(i) (6, 9, 12)269

(ii) (3, 12, 12)270

(iii) (0, 12, 15)271

(iv) (6, 6, 15)272

(v) (0, 9, 18)273

then there are no cubic hypersurfaces in Pn which contain L ∪ M ∪ N and which contain X.274

Proof. For n = 8 it is an explicit computation, which can be easily performed with the help of a275

computer (see the appendix).276
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For n ≥ 9 the statement follows by induction on n. Indeed if n ≥ 8 it is easy to check that there are

no quadrics containing L ∪ M ∪ N. Then given a general hyperplane H ⊂ Pn the Castelnuovo sequence

induces the isomorphism

0−→IL∪M∪N,Pn(3)−→I(L∪M∪N)∩H,H(3)−→0

hence specializing the support of X on the hyperplane H, since the space

IL∪M∪N,Pn(2) is empty, we get

0−→IX∪L∪M∪N,Pn(3)−→I(X∪L∪M∪N)∩H,H(3)

then our statement immediately follows by induction. �277

Remark 4.4. It seems likely that the previous proposition holds with much more general assumption.278

Anyway the general assumption deg(XL : L) + deg(XM : M) + deg(XN : N) = 27 is too weak,279

indeed the triple (0, 6, 21) cannot be added to the list of the Proposition 4.3. Indeed there are two280

independent cubic hypersurfaces in P8, containing L, M, N, two general double points on M and seven281

general double points on N, as it can be easily checked with the help of a computer (see the appendix).282

Quite surprisingly, the triple (0, 0, 27) could be added to the list of the Proposition 4.3, and we think283

that this phenomenon has to be better understood. In Proposition 4.3 we have chosen exactly the284

assumptions that we will need in the following propositions, in order to minimize the number of the285

initial checks.286

For the specialization technique we need the following two easy remarks.287

Remark 4.5. Let L, N be two codimension three subspaces of Pn, for n ≥ 5. Let ξ be a general288

scheme contained in a double point p2 supported on L such that deg(ξ : L) = a, 0 ≤ a ≤ 3.289

Then there is a specialization η of ξ such that the support of η is on L ∩ N, deg(η : L) = a and290

deg((η ∩ N) : (L ∩ N)) = a.291

Remark 4.6. Let L be a codimension three subspaces of Pn. Let X be a scheme contained in a double292

point p2.293

(i) If deg X = n + 1 then there is a specialization Y of X which is supported at q ∈ L such that294

deg(Y : L) = 3.295

(ii) If deg X = n then there are two possible specializations Y of X which are supported at q ∈ L296

such that deg(Y : L) = 3 or 2.297

(ii) If deg X = n − 1 then there are three possible specializations Y of X which are supported at298

q ∈ L such that deg(Y : L) = 3, 2 or 1.299

(v) If deg X ≤ n − 2 then there are four possible specializations Y of X which are supported at q ∈ L300

such that deg(Y : L) = 3, 2, 1 or 0.301

Proposition 4.7. Let n ≥ 5 and let L, M ⊂ Pn be subspaces of codimension three. Let X = XL ∪ XM ∪ XO302

be a scheme contained in a union of double points such that XL (resp. XM) is supported on L (resp. M) and it303

is general among the schemes supported on L (resp. M) and XO is general. Assume that the following further304

conditions hold:305

deg(XL : L) + deg(XM : M) + deg XO = 9(n − 1),

n − 2 ≤ deg(XL : L) ≤ deg(XM : M) ≤ 4n − 6,

3n + 3 ≤ deg XO ≤ 3n + 6.

Then there are no cubic hypersurfaces in Pn which contain L ∪ M and which contain X.306

Proof. For n = 5, 6, 7 it is an explicit computation (see the appendix).307
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For n ≥ 8, the statement follows by induction from n − 3 to n. Indeed given a third general

codimension three subspace N, we get the exact sequence

0−→IL∪M∪N,Pn(3)−→IL∪M,Pn(3)−→I(L∪M)∩N,N(3)−→0

where the dimensions of the three spaces in the sequence are respectively 27, 9(n − 1) and 9(n − 4).308

We will specialize now some components of XL on L ∩ N and some components of XM on M ∩ N.309

We denote by X′
L the union of the components of XL supported on L \ N and by X′′

L the union of the310

components of XL supported on L ∩ N. Since n ≥ 5 we may assume also that deg(X′′
L : (L ∪ N)) = 0.311

Analogously let X′
M and X′′

M denote the corresponding subschemes of XM . Now we describe more312

explicitly the specialization.313

From the assumption

3n + 3 ≤ deg XO ≤ 3n + 6

it follows that in particular X has at least three irreducible components and so we may specialize all314

the components of XO on N in such a way that deg(XO : N) = 9.315

Notice that the degree of the trace XO ∩ N = deg XO − 9 satisfies the same inductive hypothesis

3(n − 3) + 3 ≤ deg(XO ∩ N) ≤ 3(n − 3) + 6

and we have

6n − 15 ≤ deg(XL : L) + deg(XM : M) ≤ 6n − 12

If deg(XM : M) ≤ 3n, by using that

deg(XL : L) ≤ 1

2
(deg(XL : L) + deg(XM : M)) ≤ deg(XM : M)

we get

3n − 7 ≤ deg(XM : M) ≤ 3n

3n − 15 ≤ deg(XL : L) ≤ 3n − 6

then we can specialize XM and XL in such a way that deg(X′
M : M) = 12 and deg(X′

L : L) = 6, indeed

the conditions

n − 5 ≤ deg(XM : M) − 12 ≤ 4n − 18

n − 5 ≤ deg(XL : L) − 6 ≤ 4n − 18

are true for n ≥ 8 and guarantee that the inductive assumptions are true on the trace.316

Now if deg(XM : M) ≥ 3n + 1, we have

3n + 1 ≤ deg(XM : M) ≤ 4n − 6

2n − 9 ≤ deg(XL : L) ≤ 3n − 13

and we can specialize in such a way that deg(X′
L : L) = 0 and deg(X′

M : M) = 18. Indeed we have, for

n ≥ 6

n − 5 ≤ deg(XM : M) − 18 ≤ 4n − 18

n − 5 ≤ deg(XL : L) ≤ 4n − 18

In any of the previous cases, the residual satisfies the assumptions of Proposition 4.3, while the

trace (X ∪ L ∪ M) ∩ N satisfies the inductive assumptions on N = Pn−3. In conclusion by using the

sequence

0−→IX∪L∪M∪N,Pn(3)−→IX∪L∪M,Pn(3)−→I(X∪L∪M)∩N,N(3)

we complete the proof. �317
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The following proposition is analogous to the previous one, with a different assumption on deg XO.318

In this case we need an extra assumption on XL and XM , namely that in one of them there are enough319

irreducible components with residual different from 2. The reason for this choice is that it makes320

possible to find a suitable specialization with residual 3, 9 or 15, by the Remark 4.5 (if all the components321

have residual 2, this should not be possible).322

From now on we denote by Xi
L (resp. Xi

M) for i = 1, 2, 3 the union of the irreducible components ξ323

of XL (resp. XM) such that deg(ξ : L) = i (resp. deg(ξ : M) = i).324

Proposition 4.8. Let n ≥ 5 and let L, M ⊂ Pn be subspaces of codimension three. Let X = XL ∪ XM ∪ XO325

be a scheme contained in a union of double points such that XL (resp. XM) is supported on L (resp. M) and326

it is general among the schemes supported on L (resp. M) and XO is general. Assume that either the number327

of the irreducible components of X1
L ∪ X3

L , or that the number of the irreducible components of X1
M ∪ X3

M is328

at least n−2
3

. Assume that the following further conditions hold:329

deg(XL : L) + deg(XM : M) + deg XO = 9(n − 1),

n − 2 ≤ deg(XL : L) ≤ deg(XM : M) ≤ 4n − 6,

3n + 7 ≤ deg XO ≤ 5n + 2.

Then there are no cubic hypersurfaces in Pn which contain L ∪ M and which contain X.330

Proof. For n = 5, 6, 7 it is an explicit computation (see the appendix), and the thesis is true even331

without the assumption on X1
L ∪ X3

L .332

For n ≥ 8 the statement follows by induction from n−3 to n, by using possibly also Proposition 4.7.

As in the previous proof, given a third general codimension three subspace N, we get the exact sequence

0−→IL∪M∪N,Pn(3)−→IL∪M,Pn(3)−→I(L∪M)∩N,N(3)−→0

We will specialize now some components of XL on L ∩ N and some components of XM on M ∩ N.333

We use the same notations as in the previous proof, and we describe more precisely the specialization334

in the following two cases.335

1. Assume first that

3n + 7 ≤ deg XO ≤ 4n + 7

In particular X has at least four irreducible components and we may specialize all the compo-

nents of XO on N in such a way that

deg((XO ∩ N) : N) = 12

and so we have

5n − 16 ≤ deg(XL : L) + deg(XM : M) ≤ 6n − 16

In particular it follows

5n

2
− 8 ≤ deg(XM : M) ≤ 4n − 6

n − 2 ≤ deg(XL : L) ≤ 3n − 8

We divide into two subcases.336

In the first one we assume that the number of the irreducible components of X1
L ∪ X3

L is at337

least n−2
3

. In this case we can specialize XM and XL in such a way that deg(X′
M : M) = 12 and338

deg(X′
L : L) = 3. Moreover there exists a specialization such that X′′

L has at least n−5
3

= n−2
3

−1339

components with residual 1 or 3. Indeed in X′
L we keep at most one of these components, and if340
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we are forced to keep three components of length one, it means that there are no components341

of length 2 in XL , which implies our claim.342

Notice that the conditions

n − 5 ≤ deg(XM : M) − 12 ≤ 4n − 18

n − 5 ≤ deg(XL : L) − 3 ≤ 4n − 18

are true for n ≥ 10. They are also true for n ≥ 8 as soon as deg(XM : M) ≥ n+7, so we need only343

to check the cases 8 ≤ n ≤ 9 and deg(XM : M) ≤ n + 6, which implies deg(XL : L) ≥ 4n − 22.344

In this case we specialize XM and XL in such a way that deg(X′
M : M) = 6, deg(X′

L : L) = 9 and

X′′
L has at least n−5

3
= n−2

3
− 1 components with residual 1 or 3. The conditions

n − 5 ≤ deg(XM : M) − 6 ≤ 4n − 18

n − 5 ≤ deg(XL : L) − 9 ≤ 4n − 18

are true if n = 9 or if n = 8 and deg(XL : L) ≥ n + 4.345

So the remaining cases to be considered are when n = 8, deg(XM : M) ≤ n + 6 = 14, and

deg(XL : L) ≤ n + 3 = 11, that is when the triple

(deg(XL : L), deg(XM : M), deg XO)

is one of the following: (10, 14, 39), (11, 13, 39), (11, 14, 38), which have been checked with346

random choices (see the appendix) with a computer.347

In the second subcase, we know that the number of the irreducible components of X1
M ∪ X3

M348

is at least n−2
3

. Then we can specialize XM and XL in such a way that deg(X′
M : M) = 9 and349

deg(X′
L : L) = 6. As above it is easy to check that there exists a specialization such that X′′

M has350

at least n−5
3

= n−2
3

− 1 components with residual 1 or 3.351

Notice that the conditions

n − 5 ≤ deg(XM : M) − 9 ≤ 4n − 18

n − 5 ≤ deg(XL : L) − 6 ≤ 4n − 18

are true for n ≥ 8 as soon as one of the following conditions is satisfied352

(a) deg(XM : M) ≤ 4n − 17 , which implies deg(XL : L) ≥ n + 1.353

(b) n = 8, deg(XL : L) ≥ n + 1 = 9, which implies deg(XM : M) ≤ 5n − 17 = 23354

Assume then that (a) and (b) are not satisfied.355

We have 4n − 16 ≤ deg(XM : M) ≤ 4n − 6 and we specialize XM and XL in such a way that

deg(X′
M : M) = 15 and deg(X′

L : L) = 0. The conditions

n − 5 ≤ deg(XM : M) − 15 ≤ 4n − 18

n − 5 ≤ deg(XL : L) ≤ 4n − 18

are true for n ≥ 9 or if n = 8 and deg(XM : M) ≥ n + 10.356

So the remaining cases to be considered are when n = 8, 4n − 16 = 16 ≤ deg(XM : M) ≤
n + 9 = 17 and (by case (b)) deg(XL : L) ≤ 8. The only remaining case are

(deg(XL : L), deg(XM : M), deg XO) = (7, 17, 39), (8, 16, 39), (8, 17, 38)

which we have checked with a computer.357

2. Assume now that

4n + 8 ≤ deg XO ≤ 5n + 2

which implies

4n − 11 ≤ deg(XL : L) + deg(XM : M) ≤ 5n − 17
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In particular X has at least five irreducible components and we may specialize all the components358

of XO on N in such a way that deg((XO ∩ N) : N) = 15.359

In this case we have

2n − 5 ≤ deg(XM : M) ≤ 4n − 6

n − 2 ≤ deg(XL : L) ≤ 5n − 17

2

and we can specialize XM and XL in such a way that deg(X′
M : M) = 12 and deg(X′

L : L) = 0.

Notice that the conditions

n − 5 ≤ deg(XM : M) − 12 ≤ 4n − 18

n − 5 ≤ deg(XL : L) ≤ 4n − 18

are true for n ≥ 12 and also for n ≥ 8 as soon as deg(XM : M) ≥ n + 7.360

Assume now that 8 ≤ n ≤ 11 and deg(XM : M) ≤ n+6, which implies deg(XL : L) ≥ 3n−17.361

In this case we specialize XM and XL in such a way that deg(X′
M : M) = 6 and deg(X′

L : L) = 6.

The conditions

n − 5 ≤ deg(XM : M) − 6 ≤ 4n − 18

n − 5 ≤ deg(XL : L) − 6 ≤ 4n − 18

are true for n ≥ 9 and also for n = 8 if deg(XL : L) ≥ n + 1.362

The only remaining cases to be considered are then363

n = 8, 7 ≤ deg(XL : L) ≤ 8, and deg(XM : M) ≤ n + 6 = 14 that is when the triple

(deg(XL : L), deg(XM : M), deg XO)

is one of the following: (7, 14, 42) , (8, 13, 42) , (8, 14, 41) which we have checked with a364

computer.365

In conclusion in any previous case we conclude by using the sequence

0−→IX∪L∪M∪N,Pn(3)−→IX∪L∪M,Pn(3)−→I(X∪L∪M)∩N,N(3)

since the trace (X ∪ L ∪ M) ∩ N satisfies the inductive assumptions on N = Pn−3 and the residual366

satisfies the hypotheses of Proposition 4.3. �367

Let XO ⊂ Pn be a scheme, contained in a union of double points, of degree (n + 1)2 + α with368

0 ≤ α ≤ n − 1 and M be a subspace of codimension three. Assume that n ≥ 8 and that XO contains369

at most one component of degree ≤ 3. Let hi be the number of components of XO of degree i for370

i = 4, . . . , n + 1 and let h (0 ≤ h ≤ 3) be the degree of the component of XO of degree ≤ 3. Note that371 ∑n+1
i=4 ihi + h = (n + 1)2 + α. Let us choose an order on the irreducible components of XO in such a372

way the length of any component is non increasing.373

We consider one of the following two specializations XO = X′
O ∪ XM where XM is supported on M374

and it contains the possible component of degree ≤ 3, and X′
O is supported outside M:375

(a) we choose as X′
O the union of the irreducible components of XO, starting from the ones with

maximal length, in such a way that deg X′
O = 3(n + 1) + β ≥ 3(n + 1) + α and it is minimal. By

construction 0 ≤ β − α ≤ n. Let ai be the number of components of XM = XO \ X′
O of degree i for

i = 4, . . . , n + 1. Then

n+1∑
i=4

iai + h = deg(XM) = (n + 1)(n − 2) + α − β

(̂a) we choose as X′
O the union of the irreducible components of XO, starting from the ones with

maximal length, in such a way that deg X′
O = 3(n+1)+β̂ ≥ 3(n+1) and it is minimal. By construction
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0 ≤ β̂ ≤ n − 1. Let âi be the number of components of XM = XO \ X′
O of degree i for i = 4, . . . , n + 1.

Then

n+1∑
i=4

îai + h = deg(XM) = (n + 1)(n − 2) + α − β̂

In both the specializations let us denote: γ = deg(XM ∩M)− (n−2)2 and note that we have some376

freedom to specialize XM on M, according to Remark 4.6. If we have a specialization with deg(XM∩M) =377

p and another specialization with deg(XM ∩ M) = q then for any value between p and q there is a378

suitable specialization such that deg(XM ∩ M) attains that value. We will use often this technique by379

evaluating the maximum (resp. the minimum) possible value of deg(XM ∩ M) under a specialization.380

Lemma 4.9. If in the specialization (a) we have

an + 2an−1 + 3

n−2∑
i=4

ai ≤ 1

then we have an+1 �= 0 and there exists a specialization of type (a) such that γ = α ≤ n − 4.381

Proof. From the assumptions it follows that aj = 0 for any j = 4, . . . , n−1 and an = i with 0 ≤ i ≤ 1.382

Then XM consists of points of maximal length n + 1 with at most one component of of length h and383

at most one component of length n. Hence X′
O consists only of double points and this implies that384

β is a multiple of n + 1. Hence we have an+1 = (n+1)(n−2)+α−β−h−in

n+1
, which is an integer, so that385

α−h−i(n+1)+i

n+1
is an integer, so that α = h − i ≤ n − 4.386

It follows that an+1 = n − 2 − i, hence the maximum degree of XM ∩ M is (n − 2)2 + h, the387

minimum degree is (n − 2 − i)(n − 2) + i(n − 3) + (h − 1) = (n − 2)2 + (h − i − 1), and we can388

choose γ = h − i = α. �389

Lemma 4.10. If in the specialization (a) we have

3an+1 + 2an + an−1 ≥ 3n − 7 + α − β

then there exists a specialization of type (̂a) such that either γ = α ≤ n − 4 or γ = α − 3 ≤ n − 4.390

Proof. Assume first an+1 = 0. Since α − β ≥ −n, from the assumption it follows

2an + an−1 ≥ 2n − 7

Notice also that

an + an−1 ≤ (n + 1)(n − 2) + α − β

n
≤ n − 2 + n − 2

n

hence

an + an−1 ≤ n − 2.

These two conditions imply that we have only the following possibilities:

(an, an−1) ∈ {(n − 2, 0)(n − 3, 0), (n − 4, 1), (n − 3, 1), (n − 4, 2), (n − 5, 3)}
In all these cases, by performing the specialization of type (̂a), we have n − 3 ≤ β̂ ≤ n − 1 or

β̂ = 0. Moreover it is easy to check that ân = an if α ≤ β̂ , ân = an + 1 if α > β̂ , and âj = aj for

any j ≤ n − 1. In any case the difference δ between the maximum degree of the trace XM ∩ M and the

minimum degree satisfies

δ ≥ ân + 2̂an−1 + 3

n−2∑
i=4

âi + max{h − 1, 0}.
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We have deg(XM) = ∑n
i=4 îai + h = (n + 1)(n − 2) + α − β̂ and so

n−2∑
i=4

îai + h ≥ (n + 1)(n − 2) − β̂ − n̂an − (n − 1)̂an−1.

In the first two cases, where (an, an−1) = (a, 0) and n−3 ≤ a ≤ n−2, we assume first n−3 ≤ β̂ ,

then the maximal degree of the trace XM ∩ M is

(n − 2)2 + α + 1 ≤ (n + 1)(n − 2) + α − β̂ − 2̂an ≤ (n − 2)2 + α + 3

since ân ≥ n − 3, moreover δ ≥ n − 2 ≥ 6 and so we have that either γ = α, or γ = α − 3 work.

It remains the case β̂ = 0 where we get that in X′
O we have three points of length n + 1, then either

β = 0 and α = 0, or β = n and α > 0. By substituting in the hypothesis of our lemma the values

(an+1, an, an−1) = (0, a, 0) we get β = n and 0 < α ≤ 3. In this case the maximal degree M of the

trace XM ∩ M satisfies

(n + 1)(n − 2) + α + (n − 4) ≤ M ≤ (n − 2)2 + α + (n − 2)

and, since δ ≥ n − 2, the choice γ = α works.391

Now consider the case (an, an−1) = (a, 1), where n − 4 ≤ a ≤ n − 3. Assume first n − 3 ≤ β̂ ,

then the maximal degree of the trace XM ∩ M is

(n − 2)2 + α ≤ (n + 1)(n − 2) + α − β̂ − 2̂an − 1 ≤ (n − 2)2 + α + 4

since n − 4 ≤ ân ≤ n − 2, moreover δ ≥ n − 1 ≥ 7 so that either γ = α, or γ = α − 3 work. It

remains the case β̂ = 0, where we have either β = 0 and α = 0, or β = n and α > 0. By substituting

in the hypothesis of our lemma the values (an+1, an, an−1) = (0, a, 1), for n − 4 ≤ a ≤ n − 3, we get

β = n and 0 < α ≤ 2. Then we have ân = n − 2 and so the maximal degree of the trace XM ∩ M is

(n + 1)(n − 2) + α − 2(n − 2) − 1 = (n − 2)2 + α + (n − 3)

and since the difference δ ≥ n − 1, the choice γ = α works.392

In the case (an, an−1) = (n − 4, 2), if n − 3 ≤ β̂ , then the maximal degree of the trace XM ∩ M is

(n − 2)2 + α + 1 ≤ (n + 1)(n − 2) + α − β̂ − 2̂an − 2 ≤ (n − 2)2 + α + 3

and since δ ≥ n ≥ 6 it follows that either γ = α, or γ = α − 3 work. It remains the case β̂ = 0

where β = 0 or β = n. By substituting in the hypothesis of our lemma the values (an+1, an, an−1) =
(0, n − 4, 2) we get β = n and α = 1. In this case the maximal degree of the trace XM ∩ M is

(n + 1)(n − 2) + 1 − 2(n − 3) − 2 = (n − 2)2 − 1 + n

and since δ ≥ n + 1 we can choose γ = α = 1.393

In the last case (an, an−1) = (n−5, 3), if n−3 ≤ β̂ , then the maximal degree of the trace XM ∩M is

(n − 2)2 + α ≤ (n + 1)(n − 2) + α − β̂ − 2̂an − 3 ≤ (n − 2)2 + α + 4

and since δ ≥ n ≥ 7 it follows that either γ = α, or γ = α − 3 work. It remains the case β̂ = 0394

where β = 0 or β = n. By substituting in the hypothesis of our lemma the values (an+1, an, an−1) =395

(0, n − 5, 3) we get β = n and α = 0, which is a contradiction. Then this case is impossible.396

Now assume that an+1 �= 0. In this case we have also β = 0, hence it follows β̂ = 0 and âj = aj

for any 4 ≤ j ≤ n + 1. By assumption we have

3an+1 + 2an + an−1 ≥ 3n − 7

and, as in the first case, we also have

an+1 + an + an−1 ≤ n − 2
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These two inequalities imply that (an+1, an, an−1) lies in the tetrahedron with vertices (n−2, 0, 0),397

(n − 3, 1, 0), (n − 7
3
, 0, 0), (n − 5

2
, 0, 1

2
). The only integer points in this tetrahedron are (n − 2, 0, 0)398

and (n − 3, 1, 0).399

In the case (n − 2, 0, 0) the maximal degree of the trace XM ∩ M is

(n + 1)(n − 2) + α − 3(n − 2) = (n − 2)2 + α

and clearly the minimal degree is (n − 2)2, thus one of the choices γ = α or γ = α − 3 works. In the

case (n − 3, 1, 0) the maximal degree of the trace XM ∩ M is

(n + 1)(n − 2) + α − 3(n − 3) − 2 = (n − 2)2 + α + 1

and the minimal degree is obviously (n−2)2, so that one of the choices γ = α or γ = α−3 works. �400

Lemma 4.11. If all the assumptions of Lemma 4.9 and Lemma 4.10 are not satisfied, then there exists γ ′ ≥ 0401

satisfying γ ′ + 2 ≤ n − 4, and every γ ∈ [γ ′, γ ′ + 2] can be attained by a convenient specialization of402

type (a).403

Proof. The maximal degree of the trace XM ∩ M is

M := (n + 1)(n − 2) + α − β − 3an+1 − 2an − an−1

Since the assumption of Lemma 4.10 are not satisfied, we have M ≥ (n − 2)2 + 2.404

The minimal possible degree of the trace XM ∩ M is405

m :=
n+1∑
i=4

(i − 3)ai + min{1, h} = (n + 1)(n − 2) + α − β − 3

n+1∑
i=4

ai + min{1 − h, 0}

≤ (n + 1)(n − 2) − 3

n+1∑
i=4

ai ≤ (n + 1)(n − 2) − 3(n − 2) = (n − 2)2

where we use the fact that
∑n+1

i=4 ai ≥ n − 2. This is true because either an+1 = n − 2 or an+1 ≤ n − 3

and we have

n∑
i=4

ai ≥ (n + 1)(n − 2 − an+1) + α − β

n
> n − 2 − an+1 − 1.

Hence if M ≤ n − 4 we choose γ ′ = M − (n − 2)2 − 2. Otherwise if M ≥ n − 3 we choose406

γ ′ = n − 6.407

Both cases work because of the assumption

M − m = an + 2an−1 + 3

n−2∑
i=4

ai − min{1 − h, 0} ≥ 2. �

We can now prove the last preliminary proposition. Recall that we denote by Xi
L for i = 1, 2, 3 the408

union of the irreducible components ξ of XL such that deg(ξ : L) = i.409

Proposition 4.12. Let n ≥ 5 and let L ⊂ Pn be a subspace of codimension three. Let X = XL ∪ XO be a410

scheme contained in a union of double points such that XL is supported on L and is general among the schemes411

supported on L and XO is general. Assume that deg(XL : L) + deg XO =
(

n+3

3

)
−

(
n

3

)
= 3

2
n2 + 3

2
n + 1,412

and that deg XO = (n + 1)2 + α, for 0 ≤ α ≤ n − 1. We also assume that the number of the irreducible413

components of X1
L ∪ X3

L is ≥ n
3

. Then there are no cubic hypersurfaces in Pn which contain L and which414

contain X.415

Proof. For n = 5, 6, 7 it is a direct computation (see the appendix).416
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For n ≥ 8 the statement follows by induction, and by the sequence

0−→IL∪M,Pn(3)−→IL,Pn(3)−→IL∩M,M(3)−→0

where M is a general codimension three subspace. We get

0−→IX∪L∪M,Pn(3)−→IX∪L,Pn(3)−→I(X∪L)∩M,M(3).

First by Lemmas 4.9, 4.10, 4.11 we can specialize XO = X′
O ∪ XM in such a way that deg X′

O = 3(n +
1) + β (we will call in the following β̂ = β), XM is supported on M and deg(XM ∩ M) = (n − 2)2 + γ ,

where 0 ≤ β ≤ 2n − 1, 0 ≤ γ ≤ n − 4, γ = α (mod 3) and α − β − n ≤ γ ≤ α. Notice also that

we have α − β − γ ≥ −2n + 4. It follows that

n − 2 ≤ deg(XM : M) = 3(n − 2) + α − β − γ ≤ 4n − 6

Moreover let us specialize XL = X′
L ∪ X′′

L where X′
L is supported on L \ M and X′′

L is supported on

L ∩ M. We may also assume that the number of irreducible components of (X′′
L )1 ∪ (X′′

L )3 is ≥ n−3
3

.

We may assume that

2n − 5 ≤ deg(X′
L : L) = 3(n − 2) + γ − α ≤ 3(n − 2)

indeed note that 3(n − 2) + γ − α = 0 (mod 3) and there exist at least n
3

irreducible component in

(X′
L)

1 ∪ (X′
L)

3. Note that by using the minimal number of irreducible component in (X′
L)

1 ∪ (X′
L)

3, at

least n
3

− 1 components remain in X′′
L , preserving our inductive assumption. It follows that

deg(X′
L : L) + deg(XM : M) + deg X′

O = 9(n − 1)

moreover we have clearly

4n − 11 ≤ deg(X′
L : L) + deg(XM : M) ≤ 6n − 12

and we may apply Proposition 4.7 and Proposition 4.8, since the scheme X′
L ∪ XM ∪ X′

O satisfies the

corresponding assumptions. Then we conclude by induction, indeed the scheme (XM ∪X′′
L )∩M satisfies

our assumptions with respect to the spaces M and M ∩ L ⊂ M. Precisely we have (by subtraction)

deg((X′′
L ∩ M) : (L ∩ M)) + deg(XM ∩ M) = 3

2
(n − 3)2 + 3

2
(n − 3) + 1,

and deg(XM ∩ M) = (n − 2)2 + γ , where 0 ≤ γ ≤ n − 4 �417

We are finally in position to give the proof of the main theorem.418

Proof of Theorem 4.1. We fix a codimension three linear subspace L ⊂ Pn and we prove the statement

by induction by using the exact sequence

0−→IL,Pn(3)−→H0(OPn(3))−→H0(OL(3)).

We prove the claim by induction on n from n − 3 to n. By Lemma 4.2 we know that the theorem419

holds for n = 2, 3, 4. Let X be a general scheme contained in a collection of double points and with420

deg X =
(

n+3

3

)
421

Since n � 5 we can assume that X contains at most one component of length ≤ 3. Fix a codimension

three linear subspace L ⊂ Pn and consider the exact sequence

0−→IX∪L,Pn(3)−→IX,Pn(3)−→IX∩L,L(3) (7)

We want to specialize on L some components of X so that deg(X ∩L) =
(

n

3

)
and apply Proposition 4.12.422

We keep outside L the irreducible components of X starting from the ones with maximal length in423

such a way that deg XO = (n + 1)2 + α ≥ (n + 1)2 and it is minimal. We get by construction that424

Please cite this article in press as: M.C. Brambilla, G. Ottaviani, On partial polynomial interpolation, Linear Algebra

Appl. (2011), doi:10.1016/j.laa.2011.03.024

http://dx.doi.org/10.1016/j.laa.2011.03.024


LAA 11096 No. of pages: 31, Model 1G
5/4/2011

M.C. Brambilla, G. Ottaviani / Linear Algebra and its Applications xxx (2011) xxx–xxx 21

α ≤ n − 1. Let ai be the number of components of XL = X \ XO of degree i for i = 4, . . . , n + 1 and425

let h be the degree of the component of X of length ≤ 3. Then
∑n+1

i=4 iai + h =
(

n+3

3

)
− (n + 1)2 − α.426

After the specialization, the minimum degree of the trace XL ∩ L is

n+1∑
i=4

(i − 3)ai + 1 =
(

n + 3

3

)
− (n + 1)2 − α − h − 3

n+1∑
i=4

ai + 1

if h ≥ 1 or

n+1∑
i=4

(i − 3)ai =
(

n + 3

3

)
− (n + 1)2 − α − 3

n+1∑
i=4

ai

if h = 0. On the other hand the maximum degree of the trace XL ∩ L is(
n + 3

3

)
− (n + 1)2 − α − 3an+1 − 2an − an−1

We want to prove that
(

n

3

)
belongs to the range between the minimum and the maximum of

deg(XL ∩ L). This is implied by the inequalities

α + 3an+1 + 2an + an−1 ≤ n(n − 1)

2
(8)

and

n(n − 1)

2
≤ α + h + 3

n+1∑
i=4

ai − 1, or
n(n − 1)

2
≤ α + 3

n+1∑
i=4

ai (9)

In order to prove the inequality (8), consider first the case an+1 �= 0. Then α = 0 and we have427

an+1 + 2

3
an + 1

3
an−1 ≤ 1

n + 1

n+1∑
i=4

iai = 1

n + 1

[(
n + 3

3

)
− (n + 1)2 − h

]

= n(n − 1)

6
− h

n + 1
≤ n(n − 1)

6

as we wanted. If an+1 = 0 we get428

2an + an−1 + α ≤ 2

n

n+1∑
i=4

iai + α = 2

n

[(
n + 3

3

)
− (n + 1)2 − h − α

]

+ α ≤ 2

n

[(
n + 3

3

)
− (n + 1)2

]
+ (n − 1)

(
1 − 2

n

)
which is ≤ n(n−1)

2
if n ≥ 6, as we wanted. In order to prove the inequality (9), notice that

n+1∑
i=4

ai ≥ 1

n + 1

n+1∑
i=4

iai = n(n − 1)

6
− α + h

n + 1

then if h = 0 we conclude since α
(
1 − 3

n+1

)
≥ 0, while if h ≥ 1 we conclude by the inequality429

(α + h)(1 − 3
n+1

) ≥ 1, which is true if α + h ≥ 2, in particular if α ≥ 1.430

Consider the last case α = 0 and h ≥ 1. If n �= 2 (mod 3), so that
n(n−1)

6
is an integer, then X \ XO431

contains at least
n(n−1)

6
+1 irreducible components and this confirms the inequality. If n = 2 (mod 3),432
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even � n(n−1)
6

� double points and one component of length 3 are not enough to cover all X \ XO. Then433

X \ XO contains at least � n(n−1)
6

� + 2 irreducible components and again the inequality is confirmed.434

Then a suitable specialization of XL exists such that deg(XL ∩ L) =
(

n

3

)
. We denote again by Xi

L for435

i = 1, 2, 3 the union of irreducible components ξ of XL such that deg(ξ : L) = i.436

In order to apply Proposition 4.12 we need only to show that the irreducible components of X1
L ∪X3

L437

are at least n
3

. If this condition is not satisfied, we show now that it is possible to choose another438

suitable specialization such that again deg(XL ∩ L) =
(

n

3

)
but the number of irreducible components439

of X1
L ∪ X3

L is ≥ n
3

. We assume that the number of irreducible components of X1
L ∪ X3

L is ≤ n
3

. Indeed440

we may perform the following operations, that leave the degree of the trace and of the residual both441

constant.442

• Pull out a component from X2
L to X3

L and push down another component from X2
L to X1

L .443

• Pull out a component from X2
L to X3

L and push down a component of X1
L .444

• Pull out two components from X2
L to X3

L and push down a component from X3
L to X1

L .445

After such operations have been performed, we get that XL is still a specialization of a subscheme446

of X , allowing our semicontinuity argument.447

If none of the above operations can be performed, then X1
L contains only an−1 components of length448

n − 1, X2
L contains only a′

n components of length n X3
L contains only a′′

n components of length n and449

an+1 components of length n + 1.450

Then we get

deg(XL : L) = an−1 + 2a′
n + 3a′′

n + 3an+1 = n(n − 1)

2
− α

hence

a′
n = n(n − 1)

4
− α

2
− an−1

2
− 3a′′

n

2
− 3an+1

2
≥ n(n − 1)

4
− α

2
− 3

2

(
an−1 + a′′

n + an+1

)
On the other hand, we have also451

deg(XL ∩ L) =
(

n

3

)
≥ (n − 2)

(
an−1 + a′

n + a′′
n + an+1

)
≥ (n − 2)

[
n(n − 1)

4
− α

2
− 1

2
(an−1 + a′′

n + an+1)

]

> (n − 2)

[
n(n − 1)

4
− n − 1

2
− n − 1

6

]
≥

(
n

3

)
where the last inequality is true for n ≥ 8. This contradiction concludes the proof. �452

5. Induction453

In order to prove Theorem 1.1 we will work by induction on the dimension and the degree. In the454

following lemmas we describe case by case the initial and special instances, while in Theorem 5.6455

below we present the general inductive procedure, which involves the differential Horace method.456

Lemma 5.1. A general zero-dimensional scheme X ⊂ P2 contained in a union of double points imposes457

independent conditions on OP2(d) for any d � 4, with the only exception of d = 4 and X given by the458

collection of 5 double points.459
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Proof. Assume that X is a general subscheme of a union of double points with deg(X) =
(

d+2

2

)
. If X460

is a collection of double points the statement follows from the Alexander–Hirschowitz theorem on P2461

(for an easy proof see for example [4, Theorem 2.4]).462

If X is not a collection of double points, fix a hyperplane P1 ⊂ P2. Note that since deg(X) =
(

d+2

2

)
and d ≥ 4, then X has at least d + 1 components. Since X contains at least a component of length 1 or

2, it is clearly always possible to find a specialization of X such that the trace has degree exactly d + 1.

Then we conclude by induction from the Castelnuovo sequence:

0 → IX:P1,P2(d − 1) → IX,P2(d) → IX∩P1,P1(d).

Notice that any subscheme of 5 double points and any scheme containing 5 double points impose463

independent conditions on quartics, by Remark 2.3. �464

We give now an easy technical lemma that we need in the following.465

Lemma 5.2. Assume that X is a general zero-dimensional scheme contained in a union of double points466

of Pn, which contains at least n − 1 components of length less than or equal to n. Then if deg(X) =467 (
n+d

n

)
it is possible to specialize some components of X on a fixed hyperplane Pn−1 in such a way that468

deg(X ∩ Pn−1) =
(

n−1+d

n−1

)
.469

Proof. By assumption there exist at least n − 1 components {η1, . . . , ηn−1} with length(ηi) � n.

Specialize η1, . . . , ηn−1 on the hyperplane Pn−1 in such a way that the residual of each component is

zero. Then specialize other components so that

δ =
(

n − 1 + d

n − 1

)
− deg(X ∩ Pn−1) � 0

is minimal. If δ = 0 the claim is proved, so assume δ � 1. Obviously we have δ < k−1 � n, where k is470

the minimal length of the components of X which lie outside Pn−1. Let ζ be a component with length471

k. Now we make the first components η1, . . . , ηk−1−δ having residual 1 with respect to Pn−1 and we472

specialize ζ on Pn−1 with residual 1. Notice that this is possible since 0 < k − 1 − δ � n − 1. �473

Lemma 5.3. Fix 3 � n � 4. A general zero-dimensional scheme X ⊂ Pn contained in a union of double474

points imposes independent conditions on OPn(4), with the following exceptions:475

• n = 3 and either X is the union of 9 double points, or X is the union of 8 double points and a component476

of length 3;477
• n = 4 and X is the union of 14 double points.478

Proof. If X is a collection of double points, the statement holds by the Alexander–Hirschowitz theorem.479

We may assume that X is a scheme with degree
(

n+4

4

)
which is not a union of double points. Let us480

denote by D the number of double points in X and by C the number of the components with length481

less than or equal to n.482

If n = 3 and C = 1, then D = 8 and X is one exceptional case of the statement. If n = 3 and C = 2,

then D = 8 and the two components η1 and η2 with length less than or equal to 3 have necessarily

length 1 and 2. In this case we specialize X on P2 in such a way that the trace is given exactly by the

union of η1, η2 and by the intersection of 4 of the 8 double points with P2. Hence we conclude by the

Castelnuovo sequence

0 → IX:P2,P3(3) → IX,P3(4) → IX∩P2,P2(4) (10)

and by induction. If C � 3, then we denote by η the component of X with minimal length. We specialize483

η on P2 in such a way that its residual is 1 if length(η) � 2, and 0 if η is a simple point. Then we apply484
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the construction of Lemma 5.2 on X \ η (which has at least two components with length less than485

or equal to 3) and we obtain a trace different from 5 double points. Hence we conclude again by the486

Castelnuovo sequence (10) and by induction.487

If n = 4 and C = 2, then X is given either by the union of 13 double points, a component of length488

3 and one of length 2, or by the union of 13 double points, a component of length 4 and a simple489

point. In the first case we specialize X obtaining a trace given by 8 double points, a component of490

length 2 and a simple point. Then we conclude by induction as before. In the second case we cannot491

use the Castelnuovo sequence since we would obtain an exceptional case. In order to conclude we492

prove that a general union of 13 double points and a component of length 4 imposes independent493

conditions on quartics. Indeed we know by the Alexander–Hirschowitz theorem that there exists a494

unique quartic hypersurface through 14 double points supported at p1, . . . , p14. This implies that for495

any i = 1, . . . , 14 there is a unique line ri through pi such that r1, . . . , r14 are contained in a hyperplane.496

Then we consider the scheme Y given by the union of 13 double points supported at {p1, . . . , p13} and497

the component of length 4 corresponding to a linear space of dimension 3 which does not contain r14.498

It is clear that the scheme Y imposes independent conditions on quartics, then also the scheme given499

by the union of Y and a general simple point does the same.500

Assume now that n = 4 and C = 3. If D = 13, then we can degenerate X to one of the previous501

cases where the components with length less than or equal to 4 are two. If D = 12, then the remaining502

three components have length either 3, 3, 4, or 2, 4, 4. In these cases we can obtain as a trace 7 double503

points and three components of length either 2, 2, 3, or 1, 3, 3, and we conclude by the Castelnuovo504

sequence.505

If n = 4 and C � 4, we denote by η the component of X with minimal length. If length(η) = 1 we506

can degenerate X to a scheme X′ where the components with length less than or equal to 4 are one507

less and we apply the argument to X′. If 2 � length(η) � 3, then we specialize η on P3 in such a way508

that the residual of η is 1. Then we apply the construction of Lemma 5.2 on X \ η (which has at least509

three components with length less than or equal to 3) and we obtain a trace different from 8 double510

points and a component of length 3. Moreover with this construction we always avoid a residual given511

by 7 double points. Hence we conclude by the Castelnuovo sequence. If length(η) = 4, we have only512

the following possibilities: 5 components of length 4 and 10 double points, 10 components of length513

4 and 6 double points, 15 components of length 4 and 2 double points. In the first two cases we can514

obtain trace on P3 given by 5 components of length 3 and 5 double points, while in the third case we515

can obtain a trace equal to 9 components of length 3 and 2 double points. Then we conclude by the516

Castelnuovo sequence. �517

Lemma 5.4. Fix 5 � n � 9. A general zero-dimensional scheme X ⊂ Pn contained in a union of double518

points imposes independent conditions on OPn(4).519

Proof. If X is a collection of double points, the statement holds by the Alexander–Hirschowitz theorem.520

We may assume that X is a scheme with degree
(

n+4

4

)
which is not a union of double points. Let us521

denote by D the number of double points in X and by C the number of the components with length522

less than or equal to n.523

If n ∈ {5, 6, 8} and C = 2, then we conclude by degenerating X to a union of double points, avoiding524

special cases.525

If n = 5 and C = 3, then we get either D = 20, or D = 19. In the first case we conclude degenerating526

X to the union of 21 double points. In the second case the remaining three components have length527

2, 5, 5, or 3, 4, 5, or 4, 4, 4. Then we can obtain a trace equal to 12 double points and three components528

of length respectively 2, 4, 4 in the first case, or 3, 3, 4 in the second and third cases. Then we conclude529

by induction.530

If n = 5 and C = 4, then we have D ∈ {20, 19, 18}. In the first case we can degenerate X to a union531

of 21 double points. If X can be degenerate to a scheme which contains only three components with532

length less than or equal to 5, we conclude by using the previous results. Then we have to consider only533

the two cases where X is given by 18 double points and four components of length either 3, 5, 5, 5,534

or 4, 4, 5, 5. In these cases we can obtain a trace equal to 12 double points and three components535
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of length respectively 2, 4, 4 in the first case, and 3, 3, 4 in the second case. Hence we conclude by536

induction.537

If n = 5 and C � 5, we denote by η the component with minimal length. Then we specialize η on538

P4 in such a way that the residual of η is 1 if η if length(η) � 2, and 0 if η is a simple point. Then we539

apply the construction of Lemma 5.2 on X \ η (which has at least four components with length less540

than or equal to 5) and we obtain a trace different from 14 double points. Hence we conclude by the541

Castelnuovo sequence and by induction.542

If n = 6 and D � 21, we specialize 21 double points on P5 and we conclude by the Castelnuovo543

sequence. If D < 21, then we have C � 5 and we can apply Lemma 5.2, concluding by the Castelnuovo544

sequence.545

If n = 7 and D � 30, we specialize 30 double points on P6 and we conclude by the Castelnuovo546

sequence. If D < 30, then we have C � 6 and we can apply Lemma 5.2.547

If n = 8 and C = 3, then either D = 58 and X can be degenerated to the union of 59 double points,548

or D = 57. In this case the remaining three components can have length 5, 5, 8, or 5, 6, 7, or 6, 6, 6.549

In all these case we can obtain a trace on P7 given by 40 double points and two components of total550

degree 10.551

If n = 8 and C = 4 and X can be degenerated to a scheme with less than 4 components with length552

less than or equal to 8, then we conclude. Then we have only to consider the case where D = 56 and553

the remaining four components of X have length 3, 8, 8, 8, or 4, 7, 8, 8, or 5, 6, 8, 8, or 5, 7, 7, 8, or554

6, 6, 7, 8, or 6, 7, 7, 7. In all these cases we obtain a trace on P7 given by 40 double points and two555

components of total degree 10, with the exception of the last case, where we can obtain a trace given556

by 39 double points and three components of total degree 18.557

If n = 8 and C = 5 and X can be degenerated to a scheme with less than 5 components with length558

less than or equal to 8, then we conclude. Hence we have only to consider the cases D = 56 or D = 55.559

Listing all the possible lengths of the remaining five components we easily notice that we can always560

obtain a trace on P7 given either by 40 double points and two components of total degree 10, or by 39561

double points and three components of total degree 18.562

If n = 8 and C = 6 and X can be degenerated to a scheme with less than 6 components with length563

less than or equal to 8, then we conclude. Hence we have only to consider the cases D = 55 or D = 54.564

Listing all the possible lengths of the remaining six components, we easily notice, as before, that we565

can always obtain a trace on P7 given either by 40 double points and two components of total degree566

10, or by 39 double points and three components of total degree 18.567

If n = 8 and C � 7, we apply Lemma 5.2 and we conclude by the Castelnuovo sequence.568

If n = 9 and D � 59, we specialize 59 double points on P8 and we conclude by the Castelnuovo569

sequence. If D < 59, then we get C � 8 and we conclude by applying Lemma 5.2 and by the Castelnuovo570

sequence. �571

Lemma 5.5. Fix 3 � n � 4 and 5 � d � 6. A general zero-dimensional scheme X ⊂ Pn contained in a572

union of double points imposes independent conditions on OPn(d).573

Proof. If X is a collection of double points, the statement holds by the Alexander–Hirschowitz theorem.574

Assume that X is a scheme with degree
(

n+d

n

)
which is not a union of double points.575

If (n, d) �= (4, 5) and X has only 2 components with length less than or equal to n, we conclude by576

degenerating X to a union of double points.577

If (n, d) = (3, 5) and X contains at least 7 double points, we specialize them on the trace and we578

conclude by the Castelnuovo sequence, since the residual contains 7 simple points. If X has less than579

7 double points, then X has obviously at least 3 components with length less than or equal to 3. In580

this case we specialize a component with minimal length making it having residual 1, then we apply581

the construction of Lemma 5.2 on the remaining components and we conclude by the Castelnuovo582

sequence, since the residual contains at least a simple point.583

If (n, d) = (4, 5) and X contains at least 14 double points, we specialize them on the trace and we584

conclude by the Castelnuovo sequence, since the residual contains 14 simple points. If X has less than585

14 double points, then X has obviously at least 4 components with length less than or equal to 4. In586
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this case we specialize a component with minimal length making it having residual 1, then we apply587

the construction of Lemma 5.2 on the remaining components and we conclude by the Castelnuovo588

sequence, since the residual contains at least a simple point.589

If either (n, d) = (3, 6), or (n, d) = (4, 6) and X has at least 3 components with length less than590

or equal to 3, we conclude by Lemma 5.2 and by induction. �591

We are now in position to give the general inductive argument which completes the proof of The-592

orem 1.1.593

Given a scheme X ⊆ Pn of type (m1, . . . , mn+1) and a fixed hyperplane Pn−1 ⊆ Pn, we denote for594

any 1 � i � n + 1:595

• by m
(1)
i the number of component of length i completely contained in Pn−1,596

• by m
(2)
i the number of component of length i supported on Pn−1 and with residual 1 with respect597

to Pn−1, and598

• by m
(3)
i the number of component of length i whose support does not lie in Pn−1.599

Obviously we have m
(1)
i + m

(2)
i + m

(3)
i = mi, and m

(1)
n+1 = 0, m

(2)
1 = 0. We denote ti = m

(1)
i + m

(2)
i+1,600

for i = 1, . . . , n + 1, r1 = m
(3)
1 + ∑

m
(2)
i , and ri = m

(3)
i for i = 2, . . . , n + 1. Note that, for any i, ti is601

the number of components of length i in the scheme X ∩ Pn−1, while ri is the number of components602

of length i in the scheme X : Pn−1.603

Theorem 5.6. Fix the integers n � 2 and d � 4. A general zero-dimensional scheme X ⊂ Pn contained604

in a union of double points imposes independent conditions on OPn(d) with the following exceptions605

• n = 2, d = 4 and X is the union of 5 double points;606
• n = 3 and either X is the union of 9 double points, or X is the union of 8 double points and a component607

of length 3;608
• n = 4 and X is the union of 14 double points.609

Proof. We prove the statement by induction on n and d. In Lemma 5.1 we have proved the statement610

for n = 2, d � 4, in Lemma 5.3 and Lemma 5.4 for d = 4, 3 � n � 9 and in Lemma 5.5 for611

d = 5, n = 3, 4 and d = 6, n = 3, 4. Then we need to prove the remaining cases. Assume n � 3 and612

in particular when d = 4 assume n � 10, and when 5 � d � 6 assume n � 5.613

The proof by induction is structured as follows:614

• for d = 4 and n � 10, we assume that any scheme in Pn imposes independent conditions on615

OPn−1(4). Recall that any scheme in Pn imposes independent conditions on OPn(3) (by Theorem616

4.1) and any scheme of degree greater than or equal to (n + 1)2 imposes independent conditions617

on OPn(2) (by Theorem 3.2). Then we prove the statement for d = 4, n � 10;618
• for d � 5 we assume that any scheme in Pa imposes independent conditions on OPa(b) for (a, b) ∈619

{(n − 1, d), (n, d − 1), (n, d − 2)} and we prove it for (a, b) = (n, d).620

It is enough to prove the statement for a scheme X with degree deg X =
(

d+n

n

)
.621

Let X ⊆ Pn be a scheme of type (m1, . . . , mn+1) contained in a union of double points and suppose622

deg X = ∑
imi =

(
d+n

n

)
. Fix a hyperplane Pn−1 in Pn. In order to apply induction, we want to623

degenerate X so that some of the components fall in the hyperplane Pn−1. By abuse of notation we call624

again X the scheme after the degeneration.625

Now if there exists a degeneration such that

deg(X ∩ Pn−1) = ∑
iti =

(
d + n − 1

n − 1

)
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where m
(1)
i , m

(2)
i , m

(3)
i and ti, ri are defined as above, then we can conclude by the Castelnuovo se-

quence

0 → IX:Pn−1(d − 1) → IX(d) → IX∩Pn−1(d)

and by induction. Then we may assume that such a degeneration does not exist. Let us choose a

degeneration of X such that
(

d+n−1

n−1

)
− ∑

iti > 0 is minimal and define

ε :=
(

d + n − 1

n − 1

)
− ∑

iti. (11)

Obviously 0 < ε < n and ε < min
{
i : m

(3)
i �= 0

}
− 1. By the minimality assumption we have626

m
(3)
1 = m

(3)
2 = 0 and we have also m

(2)
i = 0 for all i �= n + 1.627

Now let us define

εn+1 = min
{
ε, m

(3)
n+1

}
, εn = min

{
ε − εn+1, m(3)

n

}
and, for any i = n − 1, . . . , 1,

εi = min

⎧⎨⎩ε −
n+1∑

k=i+1

εk, m
(3)
i

⎫⎬⎭ .

Obviously we have ε1 = ε2 = 0 and
∑n+1

i=3 εi = ε.628

Step 1: Let Γ ⊆ Pn−1 be a general scheme of type (0, ε3, . . . , εn+1, 0) supported on a collection629

{γ1, . . . , γε} ⊆ Pn−1 of points and Σ ⊆ Pn a general scheme of type (0, 0, m
(3)
3 − ε3, . . . , m

(3)
n+1 −630

εn+1) supported at points which are not contained in Pn−1.631

By induction we know that

hPn(Γ ∪ Σ, d − 1) = min

(
deg(Γ ∪ Σ),

(
n + d − 1

n

))

where deg(Γ ∪ Σ) = ∑
(i − 1)εi + ∑

i(m
(3)
i − εi) = ∑

im
(3)
i − ε.632

Recall that
(

n+d−1

n

)
=

(
n+d

n

)
−

(
n+d−1

n−1

)
. From the definition of ε it follows that

(
n+d−1

n

)
=633 (

n+d

n

)
−∑

iti −ε = m
(2)
n+1 +∑

im
(3)
i −ε and since of course m

(2)
n+1 � 0, we obtain hPn(Γ ∪Σ, d−1) =634 ∑

im
(3)
i − ε635

Step 2: Now we want to add a collection Φ of m
(2)
n+1 simple points in Pn−1 to the scheme Γ ∪Σ and we

want to obtain a (d−1)-independent scheme. From the previous step it is clear that dim IΓ ∪Σ(d−1) =
m

(2)
n+1. Hence we have only to prove that there exist no hypersurfaces of degree d − 2 through Σ . Let

us show that for d � 5 we have

deg(Σ) = ∑
i(m

(3)
i − εi) �

(
n + d − 2

n

)
(12)

and for d = 4 and n � 10 we have

deg(Σ) = ∑
i(m

(3)
i − εi) � (n + 1)2 �

(
n + 2

n

)
(13)

Indeed by definition of ε, we have

∑
i(m

(3)
i − εi) =

(
n + d − 1

n

)
+ ε − ∑

iεi − m
(2)
n+1
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and since∑
iεi − ε = ∑

(i − 1)εi � nε � (n − 1)n and m
(2)
n+1 � 1

n

(
n + d − 1

n − 1

)
we obtain∑

i(m
(3)
i − εi) �

(
n + d − 1

n

)
− (n − 1)n − 1

n

(
n + d − 1

n − 1

)
=: S(n, d).

It is easy to check that for any d � 5 and n � 3 we have S(n, d) >
(

n+d−2

n

)
, which proves inequality636

(12). On the other hand one can also check that S(n, 4) > (n + 1)2 for any n � 10, proving thus637

inequality (13).638

Then by induction we know that Σ imposes independent conditions on OPn(d − 2), and so we get

dim IΣ(d − 2) = 0. Thus we obtain

hPn(Γ ∪ Σ ∪ Φ, d − 1) = ∑
im

(3)
i − ε + m

(2)
n+1 =

(
n + d − 1

n

)
.

Step 3: Let us choose a family of general points {δ1
t1

, . . . , δε
tε

} ⊆ Pn, with parameters (t1, . . . , tε) ∈639

Kε , such that for any i = 1, . . . , ε we have δi
0 = γi ∈ Pn−1 and δi

ti
�∈ Pn−1 for any ti �= 0.640

Now let us consider a family of schemes �(t1,...,tε) of type (ε2, . . . , εn+1, 0) supported at the points641

{δ1
t1

, . . . , δε
tε

}. Note that�(0,...,0) is the schemeΓ defined in Step 1. Moreover letΨ ⊆ Pn−1 be a scheme642

of type (m
(1)
1 , . . . , m

(1)
n , 0) supported at general points of Pn−1, and recall that in Step 2 we have in-643

troduced the scheme Φ ⊂ Pn−1. Let Φ2 be the union of double points, supported on the scheme Φ .644

By induction the scheme (Ψ ∪ Φ2|Pn−1 ∪ Γ ) ⊆ Pn−1 has Hilbert function

hPn−1(Ψ ∪ Φ2|Pn−1 ∪ Γ , d) = ∑
im

(1)
i + nm

(2)
n+1 + ε = ∑

iti + ε =
(

d + n − 1

n − 1

)
i.e. it is d-independent.645

We will work now with the following schemes:646

• �(t1,...,tε) the family of schemes introduced in Step 3, of type (ε2, . . . , εn+1, 0) supported at647

the points {δ1
t1

, . . . , δε
tε

} and such that �(0,...,0) = Γ ;648

• Ψ ⊆ Pn−1 the scheme introduced in Step 3, of type (m
(1)
1 , . . . , m

(1)
n , 0) supported at general649

points of Pn−1;650

• Φ2 of type (0, . . . , 0, m
(2)
n+1), that is the union of double points supported on the scheme651

Φ ⊂ Pn−1 introduced in Step 2;652

• Σ ⊆ Pn, the scheme defined in Step 1, of type (0, 0, m
(3)
3 − ε3, . . . , m

(3)
n+1 − εn+1).653

In order to prove that X imposes independent conditions on OPn(d), it is enough to prove the fol-654

lowing claim.655

656

Claim. There exist (t1, . . . , tε) such that the scheme �(t1,...,tε) is D-independent, where D is the linear657

system determined by the vector space IΨ ∪Φ2∪Σ(d).658

Assume by contradiction that the claim is false. Then by Lemma 2.1 for any (t1, . . . , tε) there exist

pairs (δi
ti
, ηi

ti
) for all i = 1, . . . , ε, with ηi

ti
a curvilinear scheme supported at δi

ti
and contained in

�(t1,...,tε) such that

hPn(Ψ ∪ Φ2 ∪ Σ ∪ η1
t1

∪ . . . , ηε
tε

, d) <

(
d + n

n

)
− ∑

(i − 2)εi. (14)
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Let ηi
0 be the limit of ηi

ti
, for i = 1, . . . , ε.659

Suppose that ηi
0 �⊂ Pn−1 for i ∈ F ⊆ {1, . . . , ε} and ηi

0 ⊂ Pn−1 for i ∈ G = {1, . . . , ε} \ F .660

Given t ∈ K , let us denote ZF
t = ∪i∈F(ηi

t) and ZG
t = ∪i∈G(ηi

t). Denote by η̃i
0 for i ∈ F the residual661

of ηi
0 with respect to Pn−1 and by f and g the cardinalities respectively of F and G.662

By the semicontinuity of the Hilbert function and by (14) we get

hPn(Ψ ∪ Φ2 ∪ Σ ∪ ZF
0 ∪ ZG

t , d) � hPn(Ψ ∪ Φ2 ∪ Σ ∪ ZF
t ∪ ZG

t , d) <

(
d + n

n

)
− ∑

(i − 2)εi.

On the other hand, by the semicontinuity of the Hilbert function there exists an open neighborhood

O of 0 such that for any t ∈ O

hPn(Φ ∪ Σ ∪ (∪i∈F η̃i
0) ∪ ZG

t , d − 1) � hPn(Φ ∪ Σ ∪ (∪i∈F η̃i
0) ∪ ZG

0 , d − 1)

Since the scheme Φ ∪ Σ ∪ (∪i∈F η̃i
0) ∪ ZG

0 is contained in Φ ∪ Σ ∪ Γ , which is (d − 1)-independent

by Step 2, we have

hPn(Φ ∪ Σ ∪ (∪i∈F η̃i
0) ∪ ZG

0 , d − 1) = m
(2)
n+1 + ∑

i(m
(3)
i − εi) + f + 2g.

Since Ψ ∪ Φ2|Pn−1 ∪ (∪i∈Fγi) is a subscheme of Ψ ∪ Φ2|Pn−1 ∪ Γ , which is d-independent by Step

3, it follows that

hPn−1(Ψ ∪ Φ2|Pn−1 ∪ (∪i∈Fγi), d) = ∑
im

(1)
i + nm

(2)
n+1 + f

Hence for any t ∈ O, by applying the Castelnuovo exact sequence to the scheme Ψ ∪Φ2∪Σ∪ZF
0 ∪ZG

t ,663

we get664

hPn(Ψ ∪ Φ2 ∪ Σ ∪ ZF
0 ∪ ZG

t , d)

� hPn(Φ ∪ Σ ∪ (∪i∈F η̃i
0) ∪ ZG

t , d − 1) + hPn−1(Ψ ∪ Φ2|Pn−1 ∪ (∪i∈Fγi), d)

� (m
(2)
n+1 + ∑

i(m
(3)
i − εi) + f + 2g) +

(∑
im

(1)
i + nm

(2)
n+1 + f

)
= ∑

imi − ∑
iεi + 2ε =

(
d + n

n

)
− ∑

(i − 2)εi

contradicting (14). This completes the proof of the claim. �665

6. Appendix666

Here we explain how to compute the dimension of the space

Vd,n(p1, . . . , pk, A1, . . . , Ak)

defined in (2) in the introduction.667

These computations are performed in characteristic 31991 using the program Macaulay2 [9], and668

consist essentially in checking that several square matrices, randomly chosen, have maximal rank.669

We underline that if an integer matrix has maximal rank in positive characteristic, then it has also670

maximal rank in characteristic zero. Very likely Theorem 1.1 should be true on any infinite field, but a671

finite number of values for the characteristic (not including 31991) require further and tedious checks,672

that we have not performed.673

Assume that dim Ai = ai are given and that
∑k

i=1(ai + 1) =
(

n+d

n

)
= dim Rd,n. Consider the674

monomial basis for Rd,n as a matrix T of size
(

n+d

n

)
× 1. Consider the jacobian matrix J computed at675

pi, which has size
(

n+d

n

)
× (n + 1). Choose a random (n + 1) × ai integer matrix A. We concatenate T676
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computed at pi with J · A. It results a matrix of size
(

n+d

n

)
× (ai + 1). When ai = n (this is the case of677

Alexander–Hirschowitz theorem) there is no need to use a random matrix, and by Euler identity we678

can simply take the jacobian matrix J computed at pi. By repeating this construction for every point,679

and placing side by side all these matrices, we get a square matrix of order
(

n+d

n

)
. This is the matrix of680

coefficients of the system (1), which corresponds to our interpolation problem. Then there is a unique681

polynomial f satisfying (1) if and only if the above matrix has maximal rank. We emphasize that this682

Montecarlo technique provides a proof, and not only a probabilistic proof. Indeed consider the subset683

S of points (p1, . . . , pk, A1, . . . , Ak) (lying in a Grassmann bundle, which locally is isomorphic to the684

product of affine spaces and Grassmannians, hence irreducible) such that the corresponding matrix685

has maximal rank. The subset S is open and if it is not empty, because it contains a random point, then686

it is dense.687

In Proposition 4.3, Proposition 4.7, Proposition 4.8, Proposition 4.12 we need a modification of the688

above strategy, since the points are supported on some given codimension three subspaces.689

As a sample we consider the case considered in Proposition 4.8 where n = 8, l = deg(XL : L) = 10,690

m = deg(XM : M) = 14, and F = deg(XO) = 39 and we list below the Macaulay2 script. Given691

monomial subspaces L and M, we first compute the cubic polynomials containing L and M, finding a692

basis of 63 monomials. Then we compute all the possible partitions of 10 and 14 in integers from 1 to693

3 (which are the possible values of deg(ξ : L), resp. deg(ξ : M), where ξ is an irreducible component694

of XL , resp. XM), and of 39 in integers from 1 to 9 (which are the possible lengths of a subscheme of a695

double point in P8), by excluding the cases which can be easily obtained by degeneration. We collect696

the results in the matrices tripleL, tripleM and XO, each row corresponds to a partition. Then for697

any combination of rows of the three matrices the program computes a matrix mat of order 63 and its698

rank. If the rank is different from 63 the program prints the case. Running the script we see that the699

output is empty, as we want.700

KK=ZZ/31991;701
E=KK[e_0..e_8];702
--coordinates in P8703

704
f=ideal(e_0..e_8);705
g=ideal(e_0..e_2);706
h=ideal(e_3..e_5);707
T1=f*g*h;708
T=gens gb(T1)709
--basis for the space of cubics containing710
--L (e_0=e_1=e_2=0) and M (e_3=e_4=e_5=0)711
--T is a (63x1) matrix712

713
J=jacobian(T);714
-- J is a (63x9) matrix715

716
--first case: for the other cases of Proposition 4.8 it is enough717
--to change to following line718
l=10;m=14;F=39;719

720
---start program721
tripleL=matrix{{0,0,0}};722
for t from 0 to ceiling(l/3) do723
for d from 0 to ceiling(l/2) do724
for u from 0 to 1 do725

(if (3*t+2*d+u==l) then tripleL=(tripleL||matrix({{t,d,u}})));726
727

tripleM=matrix{{0,0,0}},728
for t from 0 to ceiling(m/3) do729
for d from 0 to ceiling(m/2) do730
for u from 0 to 1 do731

(if (3*t+2*d+u==m) then tripleM=(tripleM||matrix({{t,d,u}})));732
733

XO=matrix{{0,0,0,0,0,0,0,0,0}};734
for n from 0 to ceiling(F/9) do735

(if (9*n+1==F) then XO=(XO||matrix({{n,0,0,0,0,0,0,0,1}})));736
(for n from 0 to ceiling(F/9) do737
(for o from 0 to ceiling(F/8) do738

(if (9*n+8*o+2==F) then XO=(XO||matrix({{n,o,0,0,0,0,0,1,0}})))));739
(for n from 0 to ceiling(F/9) do740
(for o from 0 to ceiling(F/8) do741
(for s from 0 to ceiling(F/7) do742
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(if (9*n+8*o+7*s+3==F) then XO=(XO||matrix({{n,o,s,0,0,0,1,0,0}}))))));743
(for n from 0 to ceiling(F/9) do744
(for o from 0 to ceiling(F/8) do745
(for s from 0 to ceiling(F/7) do746
(for e from 0 to ceiling(F/6) do747
(for c from 0 to ceiling(F/5) do748

(if (9*n+8*o+7*s+6*e+5*c==F)749
then XO=(XO||matrix({{n,o,s,e,c,0,0,0,0}}))))))));750

751
k=1;752
for a from 1 to (numgens(target(tripleL))-1) do753
for b from 1 to (numgens(target(tripleM))-1) do754
for c from 1 to (numgens(target(XO))-1) do755

(k=k+1,756
mat=random(Eˆ1,Eˆ63)*0,757
for i from 1 to tripleL_(a,0) do758
(q1=(matrix(E,{{0,0,0}})|random(Eˆ1,Eˆ6)), mat=mat||random(Eˆ3,Eˆ9)*sub(J,q1)),759
for i from 1 to tripleL_(a,1) do760
(q1=(matrix(E,{{0,0,0}})|random(Eˆ1,Eˆ6)), mat=mat||random(Eˆ2,Eˆ9)*sub(J,q1)),761
for i from 1 to tripleL_(a,2) do762
(q1=(matrix(E,{{0,0,0}})|random(Eˆ1,Eˆ6)), mat=mat||random(Eˆ1,Eˆ9)*sub(J,q1)),763
for i from 1 to tripleM_(b,0) do764
(r1=(random(Eˆ1,Eˆ3)|matrix(E,{{0,0,0}})|random(Eˆ1,Eˆ3)),mat=mat||random(Eˆ3,Eˆ9)*sub(J,r1)),765
for i from 1 to tripleM_(b,1) do766
(r1=(random(Eˆ1,Eˆ3)|matrix(E,{{0,0,0}})|random(Eˆ1,Eˆ3)),mat=mat||random(Eˆ2,Eˆ9)*sub(J,r1)),767
for i from 1 to tripleM_(b,2) do768
(r1=(random(Eˆ1,Eˆ3)|matrix(E,{{0,0,0}})|random(Eˆ1,Eˆ3)),mat=mat||random(Eˆ1,Eˆ9)*sub(J,r1)),769
for i from 1 to XO_(c,0) do770
(p1=random(Eˆ1,Eˆ9), mat=mat||sub(J,p1)),771
for i from 1 to XO_(c,1) do772
(p1=random(Eˆ1,Eˆ9), mat=mat||sub(T,p1)||random(Eˆ(8-1),Eˆ9)*sub(J,p1)),773
for i from 1 to XO_(c,2) do774
(p1=random(Eˆ1,Eˆ9), mat=mat||sub(T,p1)||random(Eˆ(7-1),Eˆ9)*sub(J,p1)),775
for i from 1 to XO_(c,3) do776
(p1=random(Eˆ1,Eˆ9), mat=mat||sub(T,p1)||random(Eˆ(6-1),Eˆ9)*sub(J,p1)),777
for i from 1 to XO_(c,4) do778
(p1=random(Eˆ1,Eˆ9), mat=mat||sub(T,p1)||random(Eˆ(5-1),Eˆ9)*sub(J,p1)),779
for i from 1 to XO_(c,5) do780
(p1=random(Eˆ1,Eˆ9), mat=mat||sub(T,p1)||random(Eˆ(4-1),Eˆ9)*sub(J,p1)),781
for i from 1 to XO_(c,6) do782
(p1=random(Eˆ1,Eˆ9), mat=mat||sub(T,p1)||random(Eˆ(3-1),Eˆ9)*sub(J,p1)),783
for i from 1 to XO_(c,7) do784
(p1=random(Eˆ1,Eˆ9), mat=mat||sub(T,p1)||random(Eˆ(2-1),Eˆ9)*sub(J,p1)),785
for i from 1 to XO_(c,8) do mat=mat||sub(T,random(Eˆ1,Eˆ9)),786
if (rank(mat)!=63)787
then (print(tripleL_(a,0),tripleL_(a,1),tripleL_(a,2),tripleM_(b,0),tripleM_(b,1),tripleM_(b,2),788
XO_(c,0),XO_(c,1),XO_(c,2),XO_(c,3),XO_(c,4),XO_(c,5),XO_(c,6),XO_(c,7),XO_(c,8))),789

if (mod(k,29)==0) then print(k));790

All the others scripts are available at the page <http://web.math.unifi.it/users/brambill/homepage/791

macaulay.html>.792
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