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Yolanda González Irazabal62, Lawrence C. Greed, BSc63, Robert Grier, PhD64, Elyse Grycki, MS1, Xuefan Gu, PhD65,
Fizza Gulamali-Majid, PhD66, Arthur F. Hagar, PhD67, Lianshu Han, MD65, W. Harry Hannon, PhD68, Christa Haslip69,
Fayza Abdelhamid Hassan, MD54, Miao He, PhD70, Amy Hietala71, Leslie Himstedt, BSMT (ASCP)55, Gary L. Hoffman13,

William Hoffman, BS41, Philis Hoggatt72, Patrick V. Hopkins22, David M. Hougaard, MD73, Kerie Hughes2, Patricia R. Hunt74,
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Purpose: To achieve clinical validation of cutoff values for newborn
screening by tandem mass spectrometry through a worldwide collaborative
effort. Methods: Cumulative percentiles of amino acids and acylcarnitines

in dried blood spots of approximately 25–30 million normal newborns and
10,742 deidentified true positive cases are compared to assign clinical
significance, which is achieved when the median of a disorder range is, and
usually markedly outside, either the 99th or the 1st percentile of the normal
population. The cutoff target ranges of analytes and ratios are then defined
as the interval between selected percentiles of the two populations. When
overlaps occur, adjustments are made to maximize sensitivity and speci-
ficity taking all available factors into consideration. Results: As of Decem-
ber 1, 2010, 130 sites in 45 countries have uploaded a total of 25,114
percentile data points, 565,232 analyte results of true positive cases with 64
conditions, and 5,341 cutoff values. The average rate of submission of true
positive cases between December 1, 2008, and December 1, 2010, was 5.1
cases/day. This cumulative evidence generated 91 high and 23 low cutoff
target ranges. The overall proportion of cutoff values within the respective
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target range was 42% (2,269/5,341). Conclusion: An unprecedented level
of cooperation and collaboration has allowed the objective definition of
cutoff target ranges for 114 markers to be applied to newborn screening of
rare metabolic disorders. Genet Med 2011:13(3):230–254.

Key Words: acylcarnitines, amino acids, inborn errors of metabolism,
newborn screening, tandem mass spectrometry

Since the publication of the recommendations by an expert
panel assembled by the American College of Medical Ge-

netics (ACMG),1 substantial progress has been made in the
adoption of the uniform newborn screening panel by public
health programs, culminating in their recent ratification by the
US Secretary of Health and Human Services as a national
standard.2 A major contribution to the expansion process has
come from the Regional Genetics and Newborn Screening
Collaboratives funded by the Health Resources and Service
Administration of the Maternal and Child Health Bureau.3 The
main goal of these projects has been to enhance and support the
genetics and newborn screening capacity across the nation by
undertaking a regional approach toward addressing the maldis-
tribution of genetic resources. Notably, to be eligible for fund-
ing a regional proposal had to include at least four participating
states. The initial application for Region 4 (principal investiga-
tor: Cynthia A. Cameron, PhD) involved all seven states in the
region (Illinois, Indiana, Kentucky, Michigan, Minnesota, Ohio,
and Wisconsin) and included a project to facilitate the universal
implementation of newborn screening by tandem mass spec-
trometry (MS/MS) and confirmatory testing of newborns for
inborn errors of amino acid, organic acid, and fatty acid metab-
olism. The specific objectives of this project were (a) to achieve
uniformity of testing panels by MS/MS to maximize detection
of affected newborns within the region; (b) to improve overall
analytical performance; and (c) to set and sustain the lowest
achievable rates of false positive and false negative results. The
last two objectives were chosen as part of an effort to call more
attention to “how well” conditions are screened for,4 as an
alternative to merely counting “how many” of them are in-
cluded in the panel of a given program.5 The rationale for this
work also came from the need to address the considerable
confusion, and, at times, vigorous controversy about the scien-
tific basis of the uniform panel,6–9 and speculations of severe
consequences of poor performance.10 When dealing with rare
disorders, even long-term experiences of single sites11,12 are un-
likely to generate adequate evidence for many if not most
conditions, so it became apparent that only an unprecedented
level of cooperation and collaboration among providers of
screening services could lead to the creation of a body of
evidence adequate for the clinical validation of cutoff values for
most if not all markers measured by MS/MS.

Since its 2005 launch on a regional basis, this project has
grown nationally and also internationally with the active par-
ticipation of 48 US states and territories, plus 80 programs in 45
other countries. A milestone of this project took place in No-
vember 2008 when the Region 4 Stork (R4S) website went live
(http://www.region4genetics.org/msms_data_project), ending
the cumbersome use of offline spreadsheets. The website allows
users to submit data independently and to have on demand
access to up-to-date tools and reports based on the entire body
of collective experience.

For the first time, we describe in this study the disorder
ranges for amino acids, acylcarnitines, and related ratios in a
total of 64 conditions. This group includes the 20 primary
conditions in the ACMG uniform panel (detected by MS/MS),

21 of the 22 secondary targets, eight maternal conditions (lead-
ing to secondary abnormalities in the screening profile of the
newborn), and 15 other conditions that manifest with biochem-
ical phenotypes mimicking those of primary and/or secondary
targets. The disorder ranges are then linked to cumulative pop-
ulation percentile data to define high and, when applicable, low
cutoff target ranges. These ranges are automatically updated
after any new submission and are available on demand to
participants through a web-based interface.

MATERIALS AND METHODS

Participating sites
The collaborative project started in June 2005. As of Decem-

ber 1, 2010, the status of the United States and international
participation is shown in Figure 1, A and B. Forty-seven US
states and Puerto Rico are active participants. International
participation includes 80 programs in 45 countries. Most sites
have one primary contact, the user with read/write access to
the project website who is responsible for data submission.
The professional background of other users with read-only
access span over a large variety of roles, including program
directors, laboratory supervisors and technologists, follow-up
coordinators, genetic counselors, dieticians, residents, fel-
lows training in genetics, and a growing number of metabolic
specialists who are providers of patient care. The total num-
ber of users with an active password is 602 (range: 1–53 per
US site, average 8; 1–14 per international site, average 4),
double the earliest available count (N � 300) that was
recorded in June 2009.

R4S website
R4S is a custom-designed and -coded application for the

collection and reporting of possibly any type of newborn
screening data based on numerical results. The system is a
web-based application that implements a three-tier client-server
architectural model. The client or presentation tier is the user
interface, which can be accessed using popular web browsers
from any computer with internet access. The R4S software is
compatible with Internet Explorer 6� and Firefox 2� (as well
as other browsers such as Safari, Opera, and Chrome). The logic
and business tier applications are located on a web server and
implementing Microsoft Internet Information Server version
6. The application code is written in ASP and C# for Mi-
crosoft .NET version 3.5.Winnovative HTML to PDF Con-
verter version 4.0 for .NET and dotnetCharting version 5.3
are used by the web software for pdf and chart generation,
respectively. The data tier, located on a database server, uses
Microsoft SQL Server 2008 with custom-written T-SQL
stored procedures.

Over the last 5 years this project has evolved into an orga-
nized, web-based data collection system with a computer pro-
gram tailored to meet the needs of a diverse population of users.
National and international participants are provided with a user
ID and password to gain access to a secure section of the R4S
website. Once logged in, users have access to profiles unique to
their screening program for data submission and to comparison
tools, as well as to common folders inclusive of more than 30
project tools and reports. Access to the MS/MS application
can be personalized for individual users, including read/write
(or read only) privileges and administrative oversight. The
database is set to automatically perform basic calculation of
descriptive statistics, particularly the calculation of pre-
defined percentiles. These values (and the number of data
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points used to calculate them) are automatically linked to
descriptive and comparative tools, which will be described in
complete details elsewhere.

Data submission
Participants submit five types of data: (a) five selected per-

centiles of individual markers and ratios in the normal popula-
tion; (b) all cutoff values used in routine screening practice; (c)
the complete set of available amino acid and acylcarnitine
results in true positive cases (according to case definition as
established by local protocols and/or professional guidelines;

for example, the ACMG act sheets13); (d) performance metrics
(detection rate, false positive rate, and positive predictive
value4), and (e) answers to a series of multiple choice questions
to define a participant profile (e.g., source of reagents, use of
derivatization, date of collection, and punch size). On average,
25–30 users log-in daily (�40% are international), ranging from
0 to 145 in a given day.

Percentiles
Five percentile values (1%, 10%, 50%, 90%, and 99%) of

each marker are calculated by standard statistical methods.

Fig. 1. Status of the R4S collaborative project as of December 1, 2010. Gray color indicates active participation. A,
Participants in the United States. B, Worldwide participants. In countries outside of the United States, multiple sites may
be involved.
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Fig. 2. Number of available cases per condition as of December 1, 2010, sorted in descending order. The split scale on the
Y-axis and the darker color are used to highlight those conditions with at least 50 cases, the initial goal of the collaborative
project. Panels A–C: primary targets of the ACMG uniform panel; panels D–F: secondary targets; and panels G–I: other
conditions, including carriers and maternal conditions. Left column: amino acid disorders; middle column: fatty acid oxidation
disorders; and right column: organic acid disorder. Abbreviations (in alphabetical order): 2M3HBA, 2-methyl 3-hydroxybutyryl-
CoA dehydrogenase deficiency (OMIM number 300438); 2MBG, 2-short/branched chain acyl-CoA dehydrogenase deficiency
(610006); 3MCC, 3-methylcrotonyl-CoA carboxylase deficiency (210200,210210); 3MGA, 3-methylglutaconyl-CoA hydratase
deficiency (250950); ARG, argininemia (207800); ASA, argininosuccinic acidemia (207900); B12 def, vitamin B12 deficiency;
BIOPT (Reg), disorders of biopterin regeneration (261630); BIOPT (BS), disorders of biopterin biosynthesis (261640); BKT,
�-ketothiolase deficiency (203750); CACT, carnitine:acylcarnitine translocase deficiency (212138); Cbl, cobalamin (comple-
mentation group); CIT-I, citrullinemia type I (215700); CIT-II, citrullinemia type II (605814,603471); CPT-I, carnitine palmi-
toyltransferase Ia deficiency (255120); CPT-II, carnitine palmitoyltransferase II deficiency (255110); CPS, carbamylphosphate
synthase deficiency (237300); CUD, carnitine uptake defect (212140); EE, ethylmalonic encephalopathy (602473); FIGLU,
formiminoglutamic acidemia (229100); GA-II, glutaric acidemia type II (608053, 130410, 231675); GA-I, glutaric acidemia
type I (231670); H-PHE, hyperphenylalaninemia (261600); HCY, homocystinuria (236200); het, heterozygote (carrier status);
HMG, 3-hydroxy-3-methylglutaryl-CoA lyase deficiency (300438); IBG, isobutyryl-CoA dehydrogenase deficiency (611283);
IVA, isovaleryl-CoA dehydrogenase deficiency (243500); LCHAD, long-chain L-3-Hydroxy dehydrogenase deficiency (609016);
M/SCHAD, medium/short-chain L-3-hydroxy acyl-CoA dehydrogenase def. (601609); MAL, malonyl-CoA decarboxylase
deficiency (248360); (mat), maternal; MCAD, medium-chain acyl-CoA dehydrogenase deficiency (607008); MCD, holocar-
boxylase synthetase deficiency (253270); MCKAT, medium-chain ketoacyl-CoA thiolase deficiency (602199); MET, hyperme-
thioninemias (250850); MSUD, maple syrup urine disease (248600); MTHFR, methylene tetrahydrofolate reductase deficiency
(607093); MUT, methylmalonic acidemia (251000, 251100, 251110); NKHG, nonketotic hyperglycinemia (605899); OTC,
ornithine transcarbamylase deficiency (300461); PA, propionic acidemia (606054); PC, pyruvate carboxylase deficiency
(266150); PKU, phenylketonuria (261600); RED, 2,4-dienoyl-CoA reductase deficiency (222745); SCAD, short-chain acyl-CoA
dehydrogenase deficiency (201470); TFP, trifunctional protein deficiency (609015); TYR-I, tyrosinemia type I (276700); TYR-II,
tyrosinemia type II (276600); TYR-III, tyrosinemia type III (276710); TYR (trans), transient tyrosinemia; VLCAD, very long-chain
acyl-CoA dehydrogenase deficiency (201475). Condition codes are according to Watson et al.1
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Table 1 Amino acid and acylcarnitine cumulative percentiles in neonatal dried blood spots analyzed by tandem mass
spectrometry by participants of the Region 4 Stork collaborative project (as of December 1, 2010)

Normal population (�mol/L)

Percentile
1%ile 50%ile 99%ile

Marker N Value CV Value CV Value CV

Ala 58 117 22% 233 19% 507 22%

Arg 79 2.3 48% 8.7 38% 32 39%

Asa 26 0.04 140% 0.19 98% 0.66 94%

Cit 93 6.0 28% 12 24% 28 22%

Glu 27 158 37% 294 31% 551 30%

Gln 6 24 64% 50 33% 117 73%

Gly 60 185 40% 348 34% 767 30%

Met 94 11 29% 21 22% 44 25%

Phe 100 33 18% 54 15% 97 15%

Suac 22 0.21 85% 0.66 54% 1.4 84%

Tyr 97 34 19% 80 16% 207 17%

Val 86 57 18% 103 18% 212 20%

Xle 95 64 21% 115 22% 235 17%

C0 93 11 28% 24 25% 59 26%

C2 76 10 32% 23 19% 52 17%

C3 93 0.57 28% 1.75 20% 4.74 20%

C4 89 0.080 29% 0.24 14% 0.75 15%

C5:1 81 0.001 145% 0.021 56% 0.080 59%

C5 95 0.050 33% 0.12 15% 0.39 21%

C4-OH (D) 43 0.050 28% 0.18 27% 0.49 28%

C4-OH & C3-DC (U) 11 0.040 52% 0.12 56% 0.33 66%

C6 93 0.020 89% 0.062 28% 0.18 35%

C5-OH (D) 69 0.060 35% 0.15 24% 0.38 26%

C5-OH & C4DC (U) 21 0.090 46% 0.19 23% 0.45 30%

C6-OH (D) 12 0.004 108% 0.041 42% 0.12 49%

C8 97 0.020 78% 0.070 21% 0.21 23%

C3-DC & C8-OH (D) 48 0.020 78% 0.067 46% 0.15 35%

C10:2 48 0.001 125% 0.020 59% 0.08 55%

C10:1 86 0.020 76% 0.060 24% 0.18 30%

C10 92 0.022 28% 0.090 19% 0.26 22%

C4-DC (D) 26 0.12 64% 0.28 55% 0.71 49%

C5-DC & C10-OH (D) 58 0.020 77% 0.065 39% 0.17 36%

C5-DC & C6-OH (U) 18 0.020 86% 0.095 54% 0.25 47%

C12:1 58 0.010 88% 0.063 33% 0.27 31%

C12 71 0.040 39% 0.14 36% 0.41 36%

C6-DC 64 0.022 88% 0.070 50% 0.17 45%

C14:2 68 0.010 82% 0.036 44% 0.090 43%

(Continued)

McHugh et al. Genetics IN Medicine • Volume 13, Number 3, March 2011

234 © 2011 Lippincott Williams & Wilkins



When requested, assistance with data processing has been pro-
vided to 26 participating sites who send the project coordinator
anonymized raw data for calculation and submission on their
behalf of percentile values. Data can be entered manually or,
preferably, by a semiautomated procedure based on the upload-
ing of a comma separated value file (.csv) suitable for data
transmission using LOINC codes.14 As of December 1, 2010, a
total of 25,108 percentile values have been submitted by 102
participants, 70% of them have updated their profile after Jan-
uary 1, 2010. The age of specimen collection was 24–48 hours
(57% of participating sites), 3 days (34%), or 5 days (9%). Each
value is based on a variable number of cases, ranging from a
few hundreds to more than 1 million. As an example, the current
percentile values of the Minnesota program alone are derived
from 517,283 newborns tested by MS/MS15 between July 1,
2004, and August 31, 2010. Although the total number of
subjects included in the calculation of percentiles at each site is
not consistently available, an extrapolation of the data collected
for calculation of performance metrics (total numbers of true
positives, false positives, false negatives, and true negatives;
data have been submitted by 59% of participants) leads to an
estimate of approximately 25–30 million individuals.

Cutoff values
The website is currently configured to upload 24 low and 90

high cutoff values. The standard unit is �mol/L. Data entry is
manual only, divided into five categories: amino acids, amino
acid ratios, acylcarnitines, acylcarnitine ratios, and second tier
tests. The specific data of the latter group will not be discussed
further in this study because they are not part of the primary
screening by MS/MS. As of December 1, 2010, 5341 cutoff
values (638 low and 4703 high, respectively) have been sub-

mitted by 113 participants, 69% of them have posted and/or
updated their profile since January 1, 2010. The number of
active cutoffs varies considerably from site to site (range:
2–114, average 44), but there has been a steady trend to include
additional cutoffs once the clinical utility of a given marker has
been highlighted by the collaborative project. For example, 43
participants have added a low cutoff for the amino acid methi-
onine in response to the emerging evidence of its clinical utility
for the primary identification of asymptomatic newborns af-
fected with remethylation disorders.16

True positive cases
The website is configured to upload newborn screening data

of 25 amino acid disorders (6 primary targets of the ACMG
uniform panel, 8 secondary targets, and 11 other conditions
[6/8/11]), 18 fatty acid oxidation disorders (5/8/5), counting as
separate conditions maternal cases and carriers for very long-
chain acyl-CoA dehydrogenase deficiency (OMIM number
201475) and medium-chain acyl-CoA dehydrogenase defi-
ciency (MCAD, 607008), and 22 organic acid disorders (9/6/7).
Figure 2 shows a summary of the number of cases entered into
the R4S database (updated as of December 1, 2010). A total of
75 cases are annotated as false negatives (i.e., results that were
reported as normal, but a diagnosis was made later based on
clinical presentation), it is more than likely that a larger number
of false negative cases were submitted but not disclosed. Non-
ketotic hyperglycinemia (OMIM# 605899), tyrosinemia type I
(OMIM# 276700), ornithine transcarbamylase deficiency
(OMIM# 300461), and different types of methylmalonic aci-
demia (Cbl A,B; OMIM# 251000, 2511100, 251110) are the
conditions with greater representation in the false negative
group. The database also includes 670 cases (6.3%) extracted

Table 1 Continued

Normal population (�mol/L)

Percentile
1%ile 50%ile 99%ile

Marker N Value CV Value CV Value CV

C14:1 94 0.030 34% 0.12 28% 0.37 18%

C14 90 0.071 34% 0.23 17% 0.50 17%

C16 93 0.80 41% 2.8 18% 6.0 15%

C16:1-OH 61 0.011 83% 0.050 23% 0.13 33%

C16-OH 94 0.010 99% 0.030 39% 0.08 40%

C18:2 63 0.060 33% 0.18 27% 0.60 32%

C18:1 84 0.49 22% 1.2 15% 2.5 12%

C18 83 0.31 29% 0.81 16% 1.7 15%

C18:1-OH 82 0.010 96% 0.023 28% 0.070 44%

C18-OH 66 0.001 248% 0.020 42% 0.060 57%

Ala, alanine; Arg, arginine; Asa, argininosuccinic acid; C0, free carnitine; C10:2, decadienoylcarnitine; C10:1, decenoylcarnitine; C10, decanoylcarnitine; C12:1,
dodecenoylcarnitine; C12, dodecanoylcarnitine; C14:1, tetradecenoylcarnitine; C14, tetradecanoylcarnitine; C14:2, tetradecadienoylcarnitine; C16-OH, hydroxy palmi-
toylcarnitine; C16:1-OH, hydroxy hexadecenoylcarnitine; C16, palmitoylcarnitine; C18:1-OH, hydroxy oleylcarnitine; C18:2, linoleylcarnitine; C18:1, oleylcarnitine;
C18, stearylcarnitine; C18:1-OH, hydroxy oleylcarnitine; C18-OH, hydroxy stearylcarnitine; C2, acetylcarnitine; C3, propionylcarnitine; C3DC�C8-OH, malonyl-/
hydroxy octanoylcarnitine; C4, butyryl-/isobutyrylcarnitine; C4-OH, hydroxy butyrylcarnitine; C4DC, succinyl-/methylmalonylcarnitine; C5, isovaleryl-/2-methylbutyryl-
carnitine; C5-OH, hydroxy isovalerylcarnitine; C5:1, tiglylcarnitine; C5DC � C10-OH, glutarylcarnitine plus hydroxy decanoylcarnitine; C6, hexanoylcarnitine; C6-OH,
hydroxy hexanoylcarnitine; C6DC, methylglutarylcarnitine; C8, octanoylcarnitine; Cit, citrulline; CV, coefficient of variation (calculated from values within the
interquartile range: median � [(75%ile–25%ile) � 1.5]); (D), derivatized (see text for details); Gln, glutamine; Glu, glutamic acid; Gly, glycine; Met, methionine; N,
number of participants who have submitted %ile values; Phe, phenylalanine; Suac, succinylacetone; Tyr, tyrosine; (U), underivatized; Val, valine; Xle, isoleucine and
leucine.

Genetics IN Medicine • Volume 13, Number 3, March 2011 Cutoff target ranges for newborn screening by MS/MS

Genetics IN Medicine • Volume 13, Number 3, March 2011 235



from the literature. These cases are not duplicate entries because
they were published by laboratories who have declined invita-
tions to be active participants of the collaborative project. Con-
ditions are sorted in descending order by group (left: amino acid
disorders; center: fatty acid oxidation disorders; and right: or-
ganic acid disorders) and by status in the ACMG uniform panel
(top: primary targets; center: secondary targets; and bottom:
other conditions1). The darker bar color and the higher section
of the Y-axis scale reflect the project goal to collect at least 50
cases of each condition. A case is considered eligible for sub-
mission if the following conditions have been met: (a) the
diagnosis was confirmed by biochemical and in vitro testing
according to local protocols; (b) results were from the first
specimen only (no repeat samples); and (c) age at collection was
between 1 and 7 days of life. A separate application in the
newborn screening website domain has been activated to pro-
cess the same types of data derived from routine second samples
(project lead: Marzia Pasquali, PhD, University of Utah). Each

case is assigned a unique code separate from any other traceable
identifier, and no demographic information is collected except
for the calendar year of birth. Accordingly, this project has been
reviewed and approved as a minimum risk protocol by the
Mayo Clinic Institutional Review Board (no. PR09-001709-01).

The average rate of submission of true positive cases
between December 1, 2008, and December 1, 2010, was 5.1
cases/day (3,651 cases). The total number of true positive
cases is approaching 11,000, and the range of number
of cases per condition is 1–2,057, with a median of 47.
However, if only the primary targets of the ACMG panel
were to be considered (N � 7,288), the range and median are
18 –2,057 and 210, respectively. All primary conditions have
exceeded 50 cases except 3-hydroxy 3-methylglutaryl-CoA
lyase deficiency (OMIM number 300438; N � 35), �-keto-
thiolase deficiency (BKT, 203750; N � 26), and multiple
carboxylase deficiency (MCD, 253270; N � 18). As of
December 1, 2010, a total of 562,609 results (analyte values

Fig. 3. R4S analyte comparison tool for the amino acid phenylalanine in neonatal dried blood spots. Each box represents
the interval between the 10%ile and 90%ile, the upper and lower lines extend to the 99%ile and 1%ile, respectively. The
median is shown as a white circle in the body of the box. Color coding: dark green: cumulative percentiles; light green:
percentiles of individual participants, sorted in descending order of the 99%ile value; orange: cutoff target range (see text
for details); light blue diamonds: actual cutoff values of participants; the marker size is proportional to the number of
laboratories using the same value; and bright red bars: disorder ranges (partially hidden by Y-axis reduction to allow the
normal percentiles to be visible). For the number of cases included in each disorder range, see Table 2. Abbreviations are
listed in the legend of Figure 2.
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and calculated ratios) have been submitted by 113 sites; 85%
of the active participants have posted at least one new case
since January 1, 2010. Not surprisingly, the number of cases
submitted by individual sites varies considerably, ranging
from 1 to 870, with an average of 130.

RESULTS

The main deliverable of the R4S collaborative project is the
definition of evidence-based cutoff target ranges for all analytes
detected by MS/MS and related ratios. The cutoff target range
could be either above (high) or below (low) the normal popu-
lation: the high target range is defined as the interval between
the cumulative 99th percentile of the normal population and the
lowest 5th percentile of all disorder ranges of the same marker
(if the analyte is informative for multiple conditions). On the
other hand, the low target range is defined as the interval
between the highest 99th percentile of disorder ranges and the
1st percentile of the normal population.

Table 1 presents the 1st percentile, 50th percentile (median),
and 99th percentile cumulative values of amino acid and acyl-
carnitine species. In response to the recent introduction of a
modified commercial kit17 that does not include derivatization
to butyl esters18 (used by 31% of R4S participants), the differ-
ent overlaps of isobaric acylcarnitine species with and without
derivatization (shown as [D] and [U], respectively; the two
analytes are combined by the symbol “&”) are shown sepa-
rately. For each percentile value, the coefficient of variation
(calculated as standard deviation/mean) is also shown. Despite
existing differences in preanalytical and analytical variables,
including collection age,19 and the inconsistent use and report-
ing of decimal digits at the submicromolar level, overall vari-
ability of the median values was on average 23% for amino
acids (Fig. 3, analyte comparison tool for the amino acid
phenylalanine; see figure legend for details) and 27% for acyl-
carnitines. Similar results were observed for all calculated
amino acid and acylcarnitine ratios (data not shown; available
on request). Notable exceptions that showed greater variability

Fig. 4. R4S plot by condition for �-ketothiolase (BKT) deficiency. This plot converts each case value to the corresponding
multiple of the cumulative median (MoM). Each box represents the interval between the 10%ile and 90%ile, the upper
and lower lines extend to the 99%ile and 1%ile, respectively. The median is shown as a white circle in the body of the
box. Color coding: red: disorder ranges of informative markers; gray: disorder range of uninformative markers; and green:
range of normal population. For the number of cases for informative analytes, see Table 4. Abbreviations are listed in the
legend of Figure 2.
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were argininosuccinic acid (Asa) and succinylacetone
(Suac). The former showed significant differences between
sites, with approximately half of the participants reporting
normal values at a level much higher than seen in plasma,
where Asa is usually undetectable.20 The remaining sites
reported normal percentiles comparable with concentrations
seen in plasma of normal newborns. Such a difference is
unlikely to be explained solely by the analysis of a different
specimen, neonatal dried blood spots, hence there seems to
be some analytical factor behind these observations other
than reagents and derivatization mode. There were no obvi-
ous differences based on the R4S participant profile compar-

ison tool (data not shown), which is not fully informative
because of the relatively small number of participants who
are actively monitoring this analyte (N � 26). Suac is a
relatively recent addition, also with limited participation (N � 22),
and is measured using a variety of methods.21–24 It has been
suggested that the observed variability could be improved by
standardization of preanalytical variables.25,26 Despite these issues,
both Asa and Suac are absolutely required for the reliable detection
of two primary targets of the uniform panel, argininosuccinic
acidemia (OMIM number 207900), and tyrosinemia type I
(276700). Every effort should be made to expand their utilization
and to mitigate existing differences among laboratories.

Table 2 Amino acid disorder ranges in neonatal dried blood spots analyzed by tandem mass spectrometry by
participants of the Region 4 Stork collaborative project (as of December 1, 2010)

Amino acids
Percentiles of disorder ranges (�mol/L)

Marker Condition N 1% 5% 10% 25% 50% 75% 90% 99%

Arg (low) OTC/CPS 46 1.3 2.8 3.1 4.8 8.1 11 19 41

Arg ARG 22 35 51 72 95 138 209 286 336

Asa ASA 51 0.12 0.25 0.42 1.5 3.8 12 61 110

Cit (low) OTC/CPS 60 1.0 1.3 1.8 2.3 3.0 4.8 6.5 17

Cit CIT-I 215 54 72 102 172 366 745 1107 2213

PC 2 90 100 112 148 208 269 305 327

CIT-II 58 10 15 28 48 100 193 346 1047

ASA 108 22 32 40 65 95 141 177 342

CIT-I (mat) 2 41 44 49 62 84 105 119 126

Gln OTC/CPS 28 34 43 47 62 81 150 264 426

Glu OTC/CPS 31 153 183 205 227 308 393 519 818

Gly NKHG 44 113 435 539 656 940 1203 1360 1663

Met (low) Cbl E 1 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8

Cbl G 3 4.8 5.0 5.4 6.4 8.1 8.9 9.4 9.7

MTHFR 4 4.2 4.3 4.4 4.7 5.4 6.4 7.3 7.9

Met HCY 89 31 48 55 67 106 188 474 900

MET 91 45 49 57 77 103 126 146 364

Phe BIOPT (BS) 46 128 292 340 391 726 1342 2131 3281

PKU 1922 162 233 267 342 480 707 971 1805

BIOPT (Reg) 16 152 156 185 265 478 938 1504 1967

H-PHE 1124 107 135 150 180 227 285 349 549

Suac TYR-I 59 3.8 8.8 13 20 35 47 66 148

Tyr TYR-III 1 907 907 907 907 907 907 907 907

TYR (trans) 71 160 219 301 444 563 777 876 1110

TYR-II 45 186 226 260 448 546 852 1105 1297

TYR-I 86 66 89 111 141 201 302 489 834

Val MSUD 199 57 168 218 290 359 493 647 1080

Xle MSUD 236 68 260 325 453 740 1429 2573 4313

For abbreviations of analytes and conditions, see legends of Table 1 and Figure 2, respectively. Amino acids are listed in alphabetical order. When multiple conditions
are shown, they are sorted in descending order of the median value of the disorder range. N, number of cases.
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Table 3 Disorder ranges of amino acid ratios in neonatal dried blood spots analyzed by tandem mass spectrometry by
participants of the Region 4 Stork collaborative project (as of December 1, 2010)

Amino acids
Percentiles of disorder ranges

Marker Condition N 1% 5% 10% 25% 50% 75% 90% 99%

Arg/Ala ARG 14 0.10 0.15 0.18 0.30 0.57 0.75 1.0 1.5

Arg/Phe ARG 17 0.58 0.75 0.97 1.7 2.3 3.8 4.3 6.1

Asa/Arg ASA 44 0.008 0.027 0.034 0.19 0.81 1.9 3.8 28

Cit/Arg (low) OTC/CPS 46 0.066 0.11 0.20 0.25 0.36 0.59 0.92 2.6

ARG 17 0.058 0.068 0.074 0.082 0.12 0.22 0.28 0.29

Cit/Arg CIT-I 118 2.3 4.2 6.8 14 34 67 120 518

PC 2 18 18 18 20 21 23 25 25

ASA 81 1.5 2.8 3.2 6.1 9.7 16 27 49

CIT-I (mat) 1 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0

CIT-II 53 0.73 1.1 1.6 3.0 6.0 12 20 42

Cit/Phe (low) OTC/CPS 60 0.013 0.027 0.033 0.041 0.054 0.090 0.15 0.44

Cit/Phe CIT-I 159 0.48 0.98 1.8 2.9 5.6 13 19 44

ASA 88 0.40 0.48 0.70 1.1 1.7 2.9 4.2 7.1

PC 2 1.3 1.3 1.4 1.5 1.6 1.8 1.9 2.0

CIT-II 57 0.24 0.33 0.61 0.84 1.4 2.3 6.6 13

CIT-I (mat) 2 1.0 1.0 1.1 1.1 1.3 1.4 1.5 1.5

Gln/Cit (low) CIT-I 5 0.022 0.029 0.038 0.064 0.16 0.28 1.0 1.4

Gln/Cit OTC/CPS 28 12 13 15 20 30 55 72 104

Glu/Cit (low) CIT-II 10 0.7 1.1 1.6 2.0 2.6 19 26 28

CIT-I 34 0.16 0.21 0.25 0.33 0.58 1.0 1.4 3.6

Glu/Cit OTC/CPS 31 38 54 58 80 105 155 261 284

Met/Cit (low) Cbl E 1 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89

Cbl G 3 0.59 0.60 0.62 0.66 0.75 0.91 1.0 1.1

Cbl D v1 1 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64

MTHFR 4 0.41 0.41 0.43 0.46 0.49 0.60 0.79 0.91

Met/Cit OTC/CPS 60 1.7 2.5 3.9 7.0 11 23 41 110

HCY 64 1.6 2.9 3.7 6.0 8.5 14 27 49

MET 84 2.9 3.7 4.0 5.5 7.7 10 15 22

Met/Phe (low) Cbl E 1 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

Cbl G 3 0.10 0.11 0.11 0.12 0.14 0.15 0.15 0.16

MTHFR 4 0.095 0.096 0.097 0.10 0.11 0.12 0.14 0.15

Met/Phe HCY 74 0.75 1.0 1.1 1.4 2.2 3.4 7.2 26

MET 85 0.79 0.98 1.1 1.4 1.8 2.4 3.2 5.4

Met/Tyr (low) Cbl E 1 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Cbl G 3 0.067 0.070 0.074 0.085 0.10 0.10 0.11 0.11

MTHFR 4 0.045 0.049 0.054 0.068 0.076 0.091 0.12 0.13

Cbl D v1 1 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048
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The second defining element of the target range is calculated
from the disorder ranges of all conditions related to a specific
marker or ratio. The attribution of a marker to a condition stems
from an objective process applied to establish a threshold of
clinical utility. In the R4S project, clinical significance is attrib-
uted to a marker-to-condition association when at least half of
the true positive cases with a given condition have values
outside the normal population, defined as the interval between
the average 1% and 99% percentiles calculated from the data
submitted by all participating sites. An example of the above
process is shown in Figure 4, the plot by condition for BKT.
This R4S plot shows, on a log scale, a comparison between
normal and disorder ranges after conversion of all quantitative
values to the corresponding multiple of the average median.
BKT was chosen as an example in this study because the R4S
plots were instrumental for the initial recognition that hydroxy
butyrylcarnitine (C4-OH) is a highly informative marker of this
condition, one that moving forward should not be overlooked in
the complex differential diagnosis of an elevated concentration
of hydroxy isovalerylcarnitine (C5-OH).27

Based on the results of 10,679 true positive cases, the disorder
ranges of amino acids, amino acid ratios, acylcarnitines, and acyl-
carnitine ratios are listed in Tables 2–5, respectively. The suffix
“(low)” attached to a marker indicates clinical significance below
the normal population, triggering the selection of a low cutoff
value. A need for a low threshold was documented for all types of
analytes: amino acids (3), amino acid ratios (7), acylcarnitines (7),
and acylcarnitine ratios (6), underscoring how underused they
currently are. The disorder ranges for a given analyte are condition-
specific and listed together to facilitate comparative analysis. Rows
are sorted in a descending order based on the median value; the
number of cases for each condition is also provided. Differences
between analyte counts related to the same condition reflect the

variability of past and current testing panels of the participants. For
example, 107 participants have a cutoff for octanoylcarnitine (C8),
but only 87 of them also monitor decenoylcarnitine (C10:1). How-
ever, these differences have declined substantially since the begin-
ning of the collaborative project.

All data shown earlier in the text are combined to achieve the
primary objective of this project, which is the definition of clini-
cally relevant cutoff target ranges. Table 6 presents all markers
with a low cutoff target range. In addition to the number of cases,
and how many conditions could be detected, it introduces the key
concept of “override.” One or both limits of a target range may
need to be adjusted in response to the degree of overlap between
normal population and disorder range. The ideal situation (no
override at either end) occurs in 35% of all markers combined
(40/114), amino acids 32%, and acylcarnitines 38%. The opposite
scenario (need to override at both ends because of pervasive
overlap) was encountered in 25% of the markers. The intermediate
situation (partial overlap at either limit) is frequent (40%) and
reflects the variability of the biochemical phenotype of these dis-
orders in asymptomatic newborns and underscores the importance
of using an evidence-based rather than statistical approach to the
selection of a cutoff value. Tables 7 and 8 present the high cutoff
target ranges for amino acids and acylcarnitines, respectively. The
only difference is found in the reliance on the lowest 5th percentile
of all disorder ranges for a given analyte. The choice of a slightly
higher limit is driven by the recognition that false negative cases
have been encountered in virtually all conditions.28–30 Once the
possibility of a cutoff value set too high has been considered,31 it
must be recognized that a small number of cases could just be
undetectable on the sole basis of their biochemical phenotype.
Although this is unfortunate, the quest for perfect sensitivity should
not be a reason to artificially set cutoff values so close to the

Table 3 Continued

Amino acids
Percentiles of disorder ranges

Marker Condition N 1% 5% 10% 25% 50% 75% 90% 99%

Met/Tyr HCY 67 0.38 0.63 0.68 0.87 1.2 2.0 3.7 9.3

MET 84 0.28 0.47 0.57 0.79 1.1 1.7 2.2 3.7

Met/Xle (low) Cbl E 1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

MTHFR 4 0.043 0.046 0.049 0.058 0.067 0.073 0.077 0.080

Cbl G 3 0.038 0.039 0.041 0.047 0.057 0.10 0.13 0.15

Cbl D v1 1 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046

Met/Xle HCY 64 0.20 0.32 0.44 0.62 0.92 1.2 2.3 6.9

MET 80 0.28 0.32 0.38 0.48 0.66 0.91 1.3 3.0

Phe/Tyr PKU 1779 2.1 3.4 4.3 6.4 9.4 14 19 46

BIOPT (Reg) 5 1.8 2.4 3.0 5.0 5.7 9.1 9.2 9.3

BIOPT (BS) 8 1.3 1.6 2.0 3.1 5.0 8.2 15 18

H-PHE 1034 1.1 1.5 1.8 2.4 3.3 4.5 6.3 11

Val/Phe MSUD 172 1.1 2.3 3.4 5.3 7.5 9.8 13 23

Xle/Ala MSUD 145 0.35 0.73 1.1 2.7 5.3 10 25 42

Xle/Phe MSUD 193 1.4 3.8 5.4 9.3 15 27 55 76

For abbreviations of analytes and conditions, see legends of Table 1 and Figure 2, respectively. Amino acid ratios are listed in alphabetical order. When multiple conditions
are shown, they are sorted by descending order (highest first) of the median value of the disorder range.
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Table 4 Acylcarnitine disorder ranges in neonatal dried blood spots analyzed by tandem mass spectrometry by
participants of the Region 4 Stork collaborative project (as of December 1, 2010)

Marker Condition N

Percentiles of disorder ranges

1% 5% 10% 25% 50% 75% 90% 99%

C0 (low) 3MCC (mat) 95 3.8 5.0 5.4 7.8 14 23 34 59

MCAD (mat) 3 5.2 5.3 5.6 6.3 7.4 9.2 10 11

CUD 193 1.9 2.6 3.1 4.4 6.2 8.7 11 17

CUD (mat) 86 0.53 2.3 2.5 3.7 5.1 6.8 8.3 11

GA-I (mat) 4 3.4 3.5 3.6 3.8 4.4 5.5 6.8 7.6

C0 CPT-I 56 37 42 57 93 118 140 166 360

CPT-1 (P479L) 11 28 38 51 60 76 81 99 113

C2 (low) CUD 179 2.9 4.0 5.1 6.9 10 14 19 30

CUD (mat) 69 2.7 5.4 5.7 6.8 9.8 13 15 22

CPT-II 35 1.0 1.4 2.4 5.4 8.0 16 32 54

MCAD (mat) 3 3.3 3.6 3.9 4.9 6.5 7.3 7.8 8.1

C3 (low) CUD (mat) 71 0.18 0.23 0.26 0.33 0.54 0.70 0.88 1.7

CUD 173 0.079 0.13 0.20 0.30 0.45 0.62 0.90 1.3

C3 PROP 201 2.3 5.5 6.3 8.9 14 19 24 51

MUT/Cbl A,B 328 1.1 3.5 4.8 7.1 9.5 14 18 40

Cbl C,D 124 2.8 3.6 4.5 6.2 8.4 10 13 20

B12 def (mat) 47 2.55 3.0 4.0 5.9 7.8 9.0 15 22

MCD 15 1.6 1.6 1.7 2.3 4.6 6.5 14 16

C4 SCAD 572 1.0 1.3 1.4 1.7 2.0 2.4 3.0 4.8

EE 8 1.2 1.2 1.3 1.4 2.0 2.3 2.7 2.7

IBG 82 0.88 1.1 1.2 1.6 2.0 2.4 2.8 3.8

FIGLU 26 0.79 1.0 1.1 1.6 1.7 2.4 3.2 5.5

GA-II 99 0.19 0.41 0.50 0.79 1.7 2.6 4.4 6.9

C5:1 2M3HBA 1 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63

BKT 23 0.22 0.24 0.27 0.37 0.51 0.58 0.69 0.89

C5 IVA 216 0.58 1.2 1.5 2.2 3.8 8.8 12 19

GA-II 95 0.091 0.16 0.18 0.36 0.97 2.2 4.8 8.7

2MBG 210 0.44 0.47 0.52 0.60 0.71 0.92 1.2 2.7

EE 6 0.010 0.017 0.026 0.12 0.38 0.66 0.81 0.87

C4-OH BKT 11 0.62 0.69 0.77 1.2 1.4 1.9 2.5 2.9

M/SCHAD 3 0.73 0.77 0.82 0.97 1.2 1.6 1.9 2.0

C6 MCAD 1690 0.13 0.24 0.32 0.62 1.1 1.9 2.7 4.6

GA-II 91 0.069 0.11 0.15 0.22 0.36 0.68 1.6 3.9

MCAD (het) 121 0.092 0.10 0.12 0.16 0.19 0.23 0.33 0.71
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Table 4 Continued

Marker Condition N

Percentiles of disorder ranges

1% 5% 10% 25% 50% 75% 90% 99%

C5-OH 3MCC (mat) 129 0.90 1.1 1.4 3.0 5.8 9.6 13 37

3MCC 597 0.64 0.81 1.0 1.4 3.3 6.8 11 20

HMG 34 0.26 0.69 1.1 1.4 2.0 3.3 4.6 7.6

MCD 14 0.79 0.85 0.97 1.3 1.8 2.5 3.0 9.3

3MGA 18 0.72 0.74 0.79 1.1 1.7 2.2 2.8 3.7

BIOT (P) 10 0.20 0.53 0.96 1.3 1.5 1.1 1.9 2.9

BKT 25 0.66 0.73 0.89 0.95 1.2 1.4 1.6 2.4

2M3HBA 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

C6-OH M/SCHAD 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

C8 MCAD 2026 0.40 0.70 1.1 2.5 7.1 14 23 40

GA-II 101 0.050 0.090 0.12 0.31 0.63 1.2 2.4 6.3

MCAD (het) 137 0.19 0.22 0.24 0.31 0.42 0.57 0.79 3.3

MCAD (mat) 3 0.031 0.035 0.040 0.055 0.080 0.11 0.13 0.14

C3-DC MAL 25 0.40 0.44 0.51 0.80 1.5 2.7 3.9 6.2

MCAD 905 0.020 0.050 0.070 0.12 0.22 0.37 0.57 1.0

C10:2 RED 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

C10:1 MCAD 1612 0.070 0.15 0.20 0.32 0.51 0.76 1.0 1.9

MCAD (het) 123 0.070 0.074 0.085 0.11 0.14 0.18 0.24 0.44

C10 GA-II 94 0.038 0.11 0.18 0.48 0.92 1.6 2.6 5.9

MCAD 1796 0.080 0.15 0.24 0.47 0.83 1.3 2.0 3.6

MCAD (het) 137 0.21 0.25 0.27 0.38 0.55 0.72 0.94 1.3

C5-DC GA-I 273 0.12 0.21 0.35 0.54 1.2 2.1 3.7 6.6

GA-II 88 0.016 0.045 0.067 0.16 0.30 0.63 0.84 1.7

MCAD 1382 0.008 0.020 0.040 0.11 0.21 0.35 0.53 1.1

C12:1 GA-II 53 0.020 0.030 0.054 0.16 0.44 0.80 1.4 2.9

VLCAD (het) 59 0.15 0.20 0.26 0.35 0.43 0.57 0.74 0.94

VLCAD 242 0.035 0.083 0.13 0.22 0.34 0.50 0.64 1.3

C12 GA-II 70 0.14 0.20 0.32 0.71 1.5 2.1 3.1 6.0

CPT-II 28 0.10 0.21 0.32 0.64 0.83 1.7 2.3 3.0

CACT 6 0.20 0.23 0.28 0.42 0.71 0.91 1.0 1.1

VLCAD 287 0.096 0.26 0.34 0.48 0.62 0.92 1.2 2.4

VLCAD (het) 68 0.28 0.33 0.37 0.48 0.58 0.73 0.85 1.4

C6-DC HMG 17 0.028 0.060 0.087 0.13 0.18 0.20 0.51 0.92

C14:2 VLCAD 275 0.042 0.079 0.10 0.15 0.24 0.38 0.53 1.3

GA-II 44 0.037 0.051 0.070 0.10 0.17 0.25 0.35 0.44

LCHAD/TFP 109 0.021 0.054 0.064 0.10 0.15 0.23 0.32 1.6

VLCAD (het) 63 0.061 0.070 0.082 0.10 0.12 0.18 0.22 0.27

C14:1 VLCAD 438 0.41 0.71 0.83 1.1 1.8 3.3 5.0 10

GA-II 91 0.11 0.17 0.20 0.49 1.1 1.7 2.7 4.2

VLCAD (het) 91 0.49 0.63 0.66 0.72 0.86 0.97 1.2 1.7

LCHAD/TFP 156 0.098 0.16 0.23 0.38 0.63 1.0 1.4 2.1

(Continued)
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Table 4 Continued

Marker Condition N

Percentiles of disorder ranges

1% 5% 10% 25% 50% 75% 90% 99%

C14 GA-II 93 0.14 0.25 0.36 0.76 1.6 2.3 3.6 7.0

CPT-II 37 0.24 0.33 0.44 0.85 1.4 2.1 3.0 4.3

VLCAD 403 0.24 0.50 0.62 0.83 1.3 2.5 4.1 7.4

CACT 10 0.66 0.67 0.68 0.78 1.2 1.5 1.7 3.1

VLCAD (het) 88 0.36 0.49 0.53 0.61 0.73 0.89 1.0 1.8

LCHAD/TFP 140 0.15 0.22 0.27 0.41 0.63 0.95 1.4 2.5

C16 (low) CPT-I (P479L) 11 0.30 0.30 0.30 0.70 1.1 1.6 2.4 3.1

CUD (mat) 71 0.30 0.45 0.50 0.76 0.99 1.3 1.5 2.0

CUD 176 0.15 0.23 0.40 0.64 0.88 1.2 1.5 2.4

CPT-I 54 0.14 0.16 0.20 0.37 0.73 1.3 1.7 2.8

C16 CACT 15 6.0 6.8 7.5 11 18 21 24 31

CPT-II 47 4.0 7.1 7.7 9.9 15 23 32 44

C18:2 (low) CPT-I (P479L) 11 0.066 0.090 0.12 0.13 0.15 0.27 0.48 0.62

CPT-I 31 0.010 0.012 0.020 0.040 0.061 0.15 0.21 0.40

C18:2 CPT-II 23 0.12 0.20 0.43 0.54 0.75 2.4 3.1 5.4

CACT 5 0.28 0.31 0.34 0.43 0.46 0.53 0.64 0.70

C18:1 (low) CPT-I (P479L) 11 0.35 0.46 0.60 0.70 0.81 1.1 1.3 1.4

CPT-I 34 0.014 0.047 0.09 0.19 0.38 0.63 0.76 1.3

CUD (mat) 62 0.053 0.16 0.21 0.31 0.38 0.47 0.52 0.71

CUD 150 0.053 0.17 0.20 0.28 0.37 0.45 0.63 1.6

GA-I (mat) 2 0.29 0.29 0.29 0.30 0.31 0.31 0.32 0.32

C18:1 CPT-II 39 0.80 1.9 2.3 3.2 5.0 8.5 14 21

CACT 9 2.1 2.4 2.7 3.4 4.4 5.0 5.7 6.8

C18 (low) CPT-I (P479L) 11 0.25 0.26 0.27 0.32 0.45 0.63 0.70 0.83

CPT-I 54 0.035 0.047 0.09 0.16 0.29 0.42 0.54 0.89

CUD 129 0.051 0.11 0.14 0.20 0.27 0.37 0.49 0.94

CUD (mat) 56 0.067 0.11 0.14 0.18 0.25 0.32 0.40 0.49

GA-I (mat) 2 0.18 0.18 0.18 0.18 0.19 0.19 0.19 0.19

C18 CPT-II 34 0.84 1.0 1.8 2.5 3.6 6.1 8.9 10

CACT 10 1.2 1.3 1.4 2.2 3.1 3.3 4.0 5.5

C16:1-OH PROP 70 0.010 0.024 0.030 0.084 0.18 0.29 0.41 0.68

LCHAD/TFP 72 0.061 0.080 0.091 0.11 0.18 0.28 0.38 0.76

MUT/Cbl A,B 97 0.002 0.011 0.033 0.070 0.15 0.27 0.35 0.57

C16-OH LCHAD/TFP 168 0.074 0.19 0.27 0.39 0.71 1.3 2.0 4.1

C18:1-OH LCHAD/TFP 153 0.032 0.081 0.14 0.26 0.55 0.82 1.1 2.0

C18-OH LCHAD/TFP 113 0.032 0.069 0.15 0.34 0.57 0.93 1.3 2.7

CACT 5 0.022 0.028 0.036 0.060 0.080 0.11 0.11 0.11

For abbreviations of analytes and conditions, see legends of Table 1 and Figure 2, respectively. Acylcarnitines are listed in increasing molecular weight order. When
multiple conditions are shown, they are sorted by descending order (highest first) of the median values of the disorder range.
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Table 5 Disorder ranges of acylcarnitine ratios in neonatal dried blood spots analyzed by tandem mass spectrometry
by participants of the Region 4 Stork collaborative project (as of December 1, 2010)

Marker Condition N

Percentiles of disorder ranges

1% 5% 10% 25% 50% 75% 90% 99%

ACs/Cit (low) CUD (mat) 50 0.70 0.79 0.94 1.3 1.6 2.0 2.6 3.5

CUD 116 0.51 0.77 0.94 1.2 1.6 2.2 3.3 4.5

ACs/Cit OTC/CPS 47 3.5 5.7 8.5 14 24 33 38 81

C0/(C16�C18) (low) CPT-II 30 0.31 0.31 0.40 0.53 1.0 2.0 4.1 8.4

CACT 9 0.17 0.19 0.21 0.23 0.85 1.1 2.0 4.6

C0/(C16�C18) CPT-I 54 21 41 49 72 105 182 311 774

CPT-I (P479L) 11 19 26 35 38 44 59 77 91

C3/C2 PROP 184 0.10 0.24 0.31 0.47 0.78 1.4 1.7 3.5

MUT/Cbl A,B 303 0.055 0.16 0.21 0.30 0.45 0.62 0.90 3.1

Cbl C,D 118 0.12 0.18 0.21 0.27 0.38 0.50 0.68 3.1

B12 def (mat) 47 0.067 0.088 0.11 0.20 0.25 0.31 0.39 0.67

MCD 15 0.040 0.055 0.064 0.13 0.17 0.26 0.50 0.69

C3/C16 PROP 169 0.98 2.0 2.6 3.8 5.6 8.5 14 44

MUT/Cbl A,B 288 0.42 1.3 1.7 2.5 3.7 5.4 8.3 28

Cbl C,D 112 0.82 1.5 1.7 2.3 3.1 4.3 5.6 12

CPT-I 35 0.81 1.2 1.3 2.4 3.1 5.6 12 19

B12 def (mat) 46 0.90 1.0 1.3 1.9 2.8 4.0 5.5 11

CPT-I (P479L) 11 0.62 0.87 1.2 1.7 2.4 3.5 5.1 10

MCD 15 0.36 0.42 0.56 1.1 1.9 3.2 5.0 13

C3/Met (low) CUD (mat) 67 0.007 0.010 0.011 0.015 0.021 0.034 0.046 0.065

CUD 158 0.003 0.005 0.007 0.012 0.021 0.030 0.041 0.088

MET 85 0.005 0.007 0.008 0.012 0.018 0.028 0.040 0.068

HCY 64 0.001 0.002 0.004 0.008 0.013 0.025 0.032 0.30

C3/Met Cbl C,D 110 0.11 0.16 0.23 0.35 0.73 1.3 1.6 2.5

PROP 127 0.12 0.22 0.25 0.42 0.62 1.1 1.5 6.8

MUT/Cbl A,B 256 0.046 0.12 0.19 0.26 0.40 0.56 0.99 3.2

B12 def (mat) 47 0.082 0.11 0.13 0.21 0.30 0.44 0.68 1.0

MTHFR 4 0.089 0.10 0.12 0.18 0.22 0.28 0.36 0.41

Cbl G 3 0.15 0.15 0.16 0.17 0.20 0.30 0.36 0.39

Cbl E 1 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

C4/C2 SCAD 449 0.024 0.034 0.040 0.052 0.069 0.092 0.13 0.19

GA-II 84 0.008 0.010 0.015 0.027 0.067 0.14 0.35 1.6

IBG 56 0.025 0.032 0.042 0.051 0.064 0.085 0.11 0.19

EE 6 0.052 0.053 0.055 0.059 0.064 0.096 0.18 0.24

FIGLU 25 0.026 0.029 0.038 0.050 0.062 0.091 0.15 0.18

C4/C3 (low) MCD 11 0.016 0.016 0.017 0.024 0.059 0.096 0.11 0.16

B12 def (mat) 47 0.027 0.028 0.030 0.041 0.052 0.070 0.083 0.11

Cbl C,D 104 0.015 0.018 0.020 0.026 0.039 0.059 0.094 0.21

MUT/Cbl A,B 264 0.008 0.013 0.015 0.020 0.031 0.047 0.067 0.22

PROP 134 0.004 0.007 0.008 0.011 0.018 0.028 0.040 0.059

(Continued)
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Table 5 Continued

Marker Condition N

Percentiles of disorder ranges

1% 5% 10% 25% 50% 75% 90% 99%

C4/C3 EE 6 0.77 0.81 0.85 0.97 1.1 2.5 3.2 3.5

IBG 66 0.41 0.54 0.62 0.76 1.0 1.3 1.6 2.1

FIGLU 24 0.42 0.45 0.47 0.68 1.0 1.2 1.6 3.6

GA-II 90 0.079 0.15 0.21 0.42 0.96 2.4 6.5 13

SCAD 506 0.29 0.41 0.51 0.67 0.96 1.4 1.8 3.3

C4/C8 IBG 65 6.6 10 11 16 25 36 46 93

SCAD 510 6.0 10 13 17 25 33 43 89

EE 6 8.2 8.3 8.6 10 18 23 45 63

FIGLU 23 6.0 7.1 7.1 11 15 24 54 83

C5/C0 IVA 183 0.012 0.031 0.046 0.087 0.16 0.41 0.72 1.6

2MBG 170 0.011 0.016 0.018 0.023 0.028 0.042 0.055 0.12

GA-II 90 0.002 0.004 0.005 0.011 0.024 0.091 0.27 0.83

EE 6 0.001 0.001 0.001 0.004 0.017 0.027 0.031 0.035

C5/C2 IVA 166 0.012 0.032 0.057 0.10 0.18 0.43 0.74 1.3

GA-II 84 0.002 0.004 0.006 0.014 0.035 0.15 0.41 1.0

2MBG 179 0.009 0.014 0.019 0.023 0.031 0.047 0.064 0.14

EE 6 0.001 0.001 0.001 0.007 0.021 0.036 0.052 0.062

C5/C3 (low) MCD 14 0.009 0.013 0.017 0.022 0.045 0.064 0.12 0.15

B12 def (mat) 47 0.012 0.015 0.018 0.021 0.032 0.044 0.056 0.14

MUT/Cbl A,B 270 0.006 0.011 0.014 0.018 0.025 0.035 0.048 0.12

PROP 147 0.004 0.005 0.005 0.007 0.011 0.016 0.022 0.053

C5/C3 IVA 171 0.19 0.48 0.64 1.3 2.6 8.5 13 29

GA-II 90 0.034 0.063 0.082 0.20 0.55 2.3 6.8 30

EE 6 0.005 0.009 0.013 0.10 0.43 0.80 1.0 1.1

2MBG 178 0.11 0.14 0.17 0.25 0.32 0.49 0.78 1.5

C5-OH/C0 3MCC (mat) 94 0.028 0.043 0.050 0.10 0.49 0.87 1.6 2.6

3MCC 491 0.019 0.026 0.031 0.048 0.10 0.28 0.51 1.2

HMG 27 0.012 0.025 0.031 0.051 0.075 0.19 0.31 0.97

MCD 13 0.015 0.021 0.030 0.049 0.059 0.11 0.12 0.23

3MGA 16 0.031 0.032 0.038 0.046 0.056 0.069 0.089 0.15

2M3HBA 1 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054

BKT 19 0.020 0.025 0.026 0.033 0.051 0.066 0.075 0.092

C5-OH/C8 3MCC (mat) 97 7.4 12 16 30 75 190 291 630

3MCC 502 5.3 8.3 12 18 40 95 175 378

MCD 14 1.0 4.4 8.0 14 32 45 51 105

HMG 28 2.2 7.1 12 15 21 47 68 82

3MGA 18 8.5 9.2 9.8 14 18 27 38 47

2M3HBA 1 18 18 18 18 18 18 18 18

BKT 19 4.0 5.2 5.4 11 16 21 26 66

(Continued)
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normal population that they trigger very large numbers of false
positive events.

In addition, Tables 6–8 also present the distribution of cutoff
values below, within, and above the respective target range.
Overall, 42% (2269/5341) of all submitted values are within the
target range, 15% (788) are positioned to have low specificity
but high sensitivity, and the rest (43%, 2282/5341) are set at a
level where false negative outcomes are likely to occur. The
most striking observation is that 42% of these cutoffs with
potentially poor sensitivity are applied to 37 markers with no
overlap between normal population and disorder range. This
group should be scrutinized closely to identify adjustments,

which could be relatively easy to implement in the pursuit of
performance improvement.

DISCUSSION

We have reported the status of a worldwide collaborative
project aimed at laboratory quality improvement of newborn
screening by MS/MS. The central strategy of this effort is to
assemble enough evidence to establish clinical utility using a
more effective method for the selection of cutoff values. Tra-
ditionally, this is done by statistical elaboration, either as a
given percentile of the normal population or by adding multi-

Table 5 Continued

Marker Condition N

Percentiles of disorder ranges

1% 5% 10% 25% 50% 75% 90% 99%

C8/C2 MCAD 1486 0.011 0.029 0.048 0.11 0.29 0.57 0.94 1.7

GA-II 83 0.003 0.004 0.005 0.013 0.035 0.068 0.12 0.28

MCAD (mat) 3 0.004 0.005 0.007 0.013 0.022 0.023 0.024 0.024

MCAD (het) 119 0.004 0.005 0.006 0.007 0.010 0.018 0.033 0.14

C8/C10 MCAD 1796 0.80 1.5 2.3 5.4 10 13 16 22

MCAD (het) 137 0.51 0.54 0.60 0.68 0.75 0.93 1.2 6.2

C3-DC/C10 MAL 19 5.0 5.7 6.2 11 19 46 67 88

C5-DC/C5-OH GA-I 214 0.89 1.3 1.7 3.7 7.8 15 25 46

GA-II 82 0.093 0.22 0.40 1.0 2.3 3.9 9.1 26

GA-I (mat) 2 0.96 1.1 1.2 1.6 2.2 2.9 3.2 3.5

C5-DC/C8 GA-I 224 0.94 1.7 3.1 7.5 16 34 70 163

C5-DC/C16 GA-I 242 0.034 0.062 0.11 0.20 0.44 0.84 1.6 6.1

GA-I (mat) 2 0.15 0.16 0.16 0.17 0.18 0.20 0.21 0.22

C14:1/C2 VLCAD 329 0.016 0.025 0.030 0.043 0.089 0.18 0.31 0.71

GA-II 82 0.002 0.005 0.008 0.023 0.062 0.089 0.14 0.35

LCHAD/TFP 125 0.004 0.009 0.011 0.019 0.039 0.062 0.11 0.15

VLCAD (het) 87 0.015 0.017 0.020 0.024 0.030 0.036 0.048 0.062

C14:1/C12:1 VLCAD 242 1.1 1.6 2.1 3.3 5.2 10 18 38

VLCAD (het) 59 0.93 1.1 1.2 1.5 2.0 2.4 2.9 4.4

C14:1/C16 VLCAD 400 0.059 0.18 0.22 0.28 0.41 0.59 0.83 1.8

VLCAD (het) 87 0.12 0.13 0.15 0.18 0.24 0.32 0.37 0.50

GA-II 90 0.016 0.033 0.044 0.097 0.22 0.31 0.42 0.60

LCHAD/TFP 140 0.035 0.058 0.084 0.14 0.20 0.30 0.44 0.79

(C16�C18:1)/C2 (low) CPT-I (P479L) 11 0.030 0.032 0.034 0.054 0.073 0.092 0.14 0.36

CPT-I 34 0.007 0.011 0.014 0.020 0.039 0.070 0.083 0.11

(C16�C18:1)/C2 CPT-II 32 0.20 0.27 0.40 0.96 2.2 5.3 10 20

CACT 7 0.25 0.28 0.33 0.59 1.8 2.9 20 42

C16-OH/C16 LCHAD/TFP 142 0.025 0.072 0.10 0.17 0.26 0.38 0.44 0.69

C18-OH/C18 LCHAD/TFP 97 0.013 0.062 0.14 0.39 0.67 0.96 1.2 1.5

For abbreviations of analytes and conditions, see legends of Table 1 and Figure 2, respectively. Acylcarnitine ratios are listed in increasing molecular weight order of the
numerator. When multiple conditions are shown, they are sorted by descending order (highest first) of the median values of the disorder range.
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ples of the standard deviation to the mean value. Hence, the
criteria to define abnormality are almost exclusively based on
normal results. Once cutoffs selected in this manner are imple-
mented, negative feedback from the follow-up system (too
many false positives) or the dreaded occurrence of a false
negative case may lead to abrupt changes, often resulting in the
opposite problem. This situation is compounded by the reality
that most programs have actually never encountered a case
affected with 30–80% of the conditions that they are testing for.
A large repository of true positive cases exists and could have
been helpful to advance this project further, but it is under the
control of a commercial entity, and the information is treated as
proprietary.32 However, four programs who outsource testing to
the same company have nevertheless joined the project and
have submitted limited sets of data (true positive cases only).

In the interest of time, and particularly of the vulnerable
population we serve, the lack of available information had to
be addressed because of the anecdotal nature of single site
experiences and of the inherent risk of making uninformed
choices. These are often caused by limited familiarity with
the complexity of the biochemical phenotype of metabolic
disorders and to some extent with the technology being used.

Tolerance of some degree of analytical variability and an
unprecedented willingness to share data have resulted in a vast
body of evidence, which has been used for clinical validation of
amino acid and acylcarnitine cutoff values. Rather than the
conventional statistical approach, we have sought the definition
of gaps in analyte concentrations between the normal popula-
tion and the disorder range of rare disorders. These gaps were
either naturally occurring or carefully selected by consensus

Table 6 Low cutoff target ranges of amino acids, acylcarnitines, and ratios

Analyte
No. of
cases

No. of
conditions

O/R
99%ile

DRa

Low cutoff
target range O/R

1%ile
NPb

Current cutoff
values (n � 638)

Below Within Above

Low High N Percentage N Percentage N Percentage

Arg 46 2 Yes 2.0 — 5.0 Yes 12 33 24 67 0 0

Cit 60 2 Yes 4.0 — 6.0 Yes 16 33 26 54 6 13

Cit/Arg 63 2 No 0.29 — 0.42 No 0 0 8 89 1 11

Cit/Phe 60 2 Yes 0.070 — 0.11 No 1 7 11 79 2 14

Gln/Cit 5 1 No 1.4 — 3.9 No 0 0 1 100 0 0

Met 8 3 No 9.8 — 11 No 27 63 7 16 9 21

Met/Cit 9 4 Yes 0.80 — 1.1 Yes 2 50 2 50 0 0

Met/Phe 8 3 No 0.17 — 0.23 No 6 23 18 69 2 8

Met/Tyr 9 4 Yes 0.10 — 0.12 Yes 1 25 3 75 0 0

Met/Xle 9 4 Yes 0.10 — 0.12 Yes 2 33 4 67 0 0

C0 388 5 Yes 7.5 — 12 Yes 32 32 55 56 12 12

C0/(C16�C18) 39 2 Yes 2.0 — 3.1 No 8 19 23 53 12 28

ACs/Citc 166 2 Yes 2.0 — 3.0 Yes 3 21 10 71 1 7

C2 290 4 Yes 7 — 10 No 18 38 18 38 11 23

C3 244 2 Yes 0.55 — 1.0 Yes 12 55 10 45 0 0

C3/Met 374 4 Yes 0.040 — 0.050 Yes 1 17 4 67 1 17

C4/C3 560 6 Yes 0.040 — 0.060 Yes 2 40 3 60 0 0

C5/C3 478 5 Yes 0.020 — 0.040 Yes 0 0 4 100 0 0

C16 316 3 NA Less than 0.80 No 0 0 52 81 12 19

(C16�C18:1)/C2 45 1 Yes 0.080 — 0.10 Yes 4 27 10 67 1 7

C18:2 44 2 NA Less than 0.057 Yes 0 0 28 90 3 10

C18:1 259 5 NA Less than 0.49 Yes 0 0 32 70 14 30

C18 252 5 NA Less than 0.31 Yes 0 0 36 73 13 27
aThis column indicates an override (O/R) of the target range first element (99%ile of the cumulative disorder range) to increase specificity and reduce the occurrence of
false positive results.
bThis column indicates an override (O/R) of the target range second element (1%ile of the cumulative normal population) to increase sensitivity and reduce a significant
risk of false negative results.
cACs/Cit, (C0�C2�C3�C16�C18:1)/Cit ratio. For abbreviations of other analytes, see legends of Table 1.
NA, not available.
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expert opinion. This approach leads to a substantial expansion
of the number of markers, which are potentially informative for
a condition, both at the high and low end. In some cases, new
associations between a marker and a condition are documented.
For example, our database has confirmed a previously reported,
and somewhat unexpected, association between disorders of
propionate metabolism and an elevated concentration of hy-
droxy hexedecenoylcarnitine (C16:1-OH).33 Despite causing

some initial consternation among new users, broadening the
definition of clinical significance is critical to explain how
cutoff values should not be used, a boundary between normal
and abnormal, and place them instead in a role of review flags
calling attention to cases that require an assessment in terms
of pattern recognition and profile interpretation.34 Clearly,
there remain conditions with only a very small number of
cases (�5), and the disorder ranges are at this stage merely

Table 7 High cutoff target ranges of amino acids and amino acid ratios

Analyte
No. of
cases

No. of
conditions

O/R
99%ile

NPa

High cutoff
target range O/R

5%ile
DRb

Current cutoff
values (n � 1533)

Below Within Above

Low High N Percentage N Percentage N Percentage

Ala 49 2 No 507 — 700 Yes 12 27 22 49 11 24

Arg 22 1 No 32 — 40 Yes 21 26 14 17 47 57

Arg/Ala 14 1 No 0.11 — 0.15 No 1 20 2 40 2 40

Arg/Phe 17 1 No 0.59 — 0.75 No 1 17 4 67 1 17

Asa 51 1 No 0.66 — 0.90 Yes 8 28 8 28 13 45

Asa/Arg 44 1 No 0.18 — 0.25 Yes 6 46 4 31 3 23

Cit 385 5 No 28 — 40 Yes 11 11 26 26 62 63

Cit/Arg 255 5 No 4.9 — 6.0 Yes 12 23 21 40 19 37

Cit/Phe 308 5 No 0.54 — 0.61 Yes 3 18 7 41 7 41

Gln 28 2 No 117 — 150 Yes 0 0 5 83 1 17

Gln/Cit 28 2 No 14 — 20 Yes 0 0 3 100 0 0

Glu 31 2 Yes 300 — 400 Yes 2 8 6 24 17 68

Glu/Cit 31 2 No 50 — 54 Yes 2 33 2 33 2 33

Gly 44 1 Yes 500 — 700 Yes 4 7 13 23 40 70

Met 182 2 No 44 — 48 No 20 20 15 15 66 65

Met/Cit 208 4 Yes 4.0 — 4.5 Yes 2 40 1 20 2 40

Met/Phe 161 2 No 0.74 — 0.99 No 8 12 16 24 43 64

Met/Tyr 153 2 Yes 0.55 — 0.65 Yes 1 25 3 75 0 0

Met/Xle 146 2 Yes 0.33 — 0.37 Yes 5 63 2 25 1 13

Phe 3129 4 No 97 — 135 No 12 11 54 49 45 41

Phe/Tyr 2847 4 No 1.6 — 2.5 Yes 21 21 64 63 16 16

Suac 60 1 No 1.4 — 7.5 No 6 18 25 76 2 6

Tyr 204 4 No 207 — 226 No 24 24 15 15 62 61

Val 199 1 Yes 180 — 220 Yes 8 9 23 25 61 66

Val/Phe 172 1 Yes 3.0 — 3.5 Yes 5 10 20 41 24 49

Xle 236 1 No 235 — 260 No 17 16 16 15 71 68

Xle/Ala 145 1 No 1.0 — 1.5 Yes 6 12 30 61 13 27

Xle/Phe 193 1 Yes 3.5 — 3.8 No 4 6 11 16 55 79

For abbreviations of analytes, see legends of Table 1.
aThis column indicates an override (O/R) of the target range first element (99%ile of the cumulative normal population) to increase sensitivity and reduce a significant
risk of false negative results.
bThis column indicates an override (O/R) of the target range second element (5%ile of the cumulative disorder range) to increase specificity and reduce the occurrence
of false positive results.
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Table 8 High cutoff target ranges of acylcarnitines and acylcarnitine ratios

Analyte
No. of
cases

No. of
conditions

O/R
99%ile

NPa

High cutoff
target range O/R

5%ile
DRb

Current cutoff values compared
with target range

Below Within Above

Low High N Percentage N Percentage N Percentage

C0 67 2 No 59 — 65 No 17 20 18 21 51 59

ACs/Cit 47 2 Yes 10 — 15 Yes 1 20 2 40 2 40

C0/(C16 � C18) 65 2 No 27 — 30 Yes 13 21 13 21 36 58

C3 715 6 No 4.7 — 5.5 Yes 18 18 32 32 49 49

C3/C2 667 6 No 0.18 — 0.20 Yes 11 12 39 41 45 47

C3/C16 676 8 Yes 1.7 — 2.0 Yes 7 14 17 33 27 53

C3/Met 548 6 No 0.29 — 0.40 Yes 11 52 5 24 5 24

C4 787 5 No 0.75 — 1.1 No 10 11 32 36 46 52

C4/C2 620 5 No 0.03 — 0.04 Yes 3 6 22 42 27 52

C4/C3 692 5 No 0.44 — 0.50 Yes 5 10 16 31 30 59

C4/C8 604 4 No 13.9 — 15.0 Yes 4 13 9 29 18 58

C5:1 24 2 No 0.08 — 0.24 No 5 6 54 64 26 31

C5 532 4 No 0.39 — 0.47 No 3 3 17 17 83 81

C5/C0 452 4 No 0.017 — 0.031 No 4 10 28 70 8 20

C5/C2 438 4 No 0.021 — 0.032 No 8 13 24 40 28 47

C5/C3 445 4 No 0.33 — 0.48 No 13 23 17 30 27 47

C4-OH (D) 14 2 No 0.49 — 0.77 No 8 17 22 48 16 35

C4-OH&C3-DC (U) 36 2 No 0.33 — 0.69 No 1 8 6 50 5 42

C4-OH&C3-DC (U)/C10 19 1 No 3.56 — 5.72 No 0 0 2 50 2 50

C6 1922 3 No 0.18 — 0.24 No 13 14 33 34 50 52

C5-OH (D) 836 8 No 0.38 — 0.69 No 5 6 41 53 31 40

C5-OH&C4-DC (U) 835 7 No 0.45 — 0.69 No 1 5 5 25 14 70

C5-OH (D)/C0 669 7 No 0.016 — 0.026 No 0 0 15 68 7 32

C5-OH&C4-DC (U)/C0 668 6 No 0.020 — 0.026 No 0 0 2 33 4 67

C5-OH (D)/C8 687 7 No 8.2 — 10 Yes 7 19 12 32 18 49

C5-OH&C4-DC (U)/C8 686 6 No 8.3 — 10 Yes 1 17 1 17 4 67

C6-OH (D) 1 1 Yes 0.10 — 0.12 No 0 0 6 50 6 50

C8 2287 4 No 0.21 — 0.71 No 6 6 98 90 5 5

C8/C2 1711 4 No 0.011 — 0.030 No 15 25 28 46 18 30

C8/C10 1953 2 No 2.3 — 3.0 Yes 30 35 34 40 21 25

C3-DC&C8-OH (D) 930 2 No 0.15 — 0.44 No 9 23 30 75 1 3

C3-DC&C8-OH (D)/C10 19 1 No 2.7 — 5.7 No 5 28 10 56 3 17

C10:2 1 1 No 0.08 — 0.12 No 2 5 19 44 22 51

C10:1 1755 2 No 0.17 — 0.25 Yes 9 10 34 38 46 52

C10 2047 2 No 0.26 — 0.30 Yes 8 9 23 25 62 67

C4-DC (D) 175 2 Yes 0.40 — 0.50 Yes 2 9 2 9 18 82

C5-DC&C10-OH (D) 1870 5 Yes 0.10 — 0.21 No 0 0 36 57 27 43

(Continued)
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a preliminary indication of the magnitude of results a laboratory
may expect to encounter in an affected newborn. On the other
hand, the utility of disorder ranges is not limited to the definition of
a cutoff target range. For example, the median value of a disorder
range could be used as a more objective alternative to “panic
values,” which are used inconsistently by many programs on
the basis of mostly anecdotal and/or arbitrary information.
After verification by a repeat analysis of the same specimen,
a value that exceeds the median of the disorder range (e.g., a

C8 concentration of 7 �mol/L or a C14:1 concentration of
1.8 �mol/L in the presence of a characteristic profile for
MCAD and VLCAD deficiency, respectively) could become a
valid reason to question the wisdom of collecting a repeat sample
(dried blood spot) instead of proceeding directly to confirmatory
testing by biochemical, enzymatic, and molecular means. Several
days could be saved in the process, increasing the probability of
preventing a first symptomatic event in the undiagnosed newborn,
an episode that may have severe consequences.

Table 8 Continued

Analyte
No. of
cases

No. of
conditions

O/R
99%ile

NPa

High cutoff
target range

O/R 5%
ile DRb

Current cutoff values compared
with target range

Below Within Above

Low High N Percentage N Percentage N Percentage

C5-DC&C6-OH (U) 366 3 Yes 0.10 — 0.18 No 0 0 1 8 12 92

C5-DC&C10-OH (D)/C5-OH 299 3 No 1.4 — 1.5 Yes 9 41 2 9 11 50

C5-DC&C6-OH (U)/C5-OH 299 3 No 1.0 — 1.5 Yes 1 25 1 25 2 50

C5-DC&C10-OH (D)/C8 225 1 Yes 1.2 — 1.7 No 3 8 12 31 24 62

C5-DC&C6-OH (U)/C8 225 1 Yes 1.2 — 1.7 No 0 0 0 0 6 100

C5-DC&C10-OH (D)/C16 245 2 Yes 0.030 — 0.062 No 0 0 11 31 25 69

C5-DC&C6-OH (U)/C16 245 2 Yes 0.030 — 0.059 No 0 0 0 0 6 100

C12:1 354 3 No 0.27 — 0.50 Yes 5 9 43 80 6 11

C12 459 5 No 0.41 — 0.80 Yes 13 19 47 69 8 12

C6-DC 17 1 Yes 0.10 — 0.12 Yes 4 6 16 23 50 71

C14:2 492 5 No 0.09 — 0.15 Yes 5 8 35 55 24 38

C14:1 777 5 No 0.37 — 0.71 No 11 11 80 78 12 12

C14:1/C2 624 5 No 0.016 — 0.025 No 4 15 16 62 6 23

C14:1/C12:1 301 2 Yes 4.5 — 5.0 Yes 14 33 12 29 16 38

C14:1/C16 718 5 No 0.13 — 0.18 No 7 11 18 30 36 59

C14 772 7 No 0.50 — 0.80 Yes 9 10 66 72 17 18

C16 62 2 No 6.0 — 7.1 No 13 13 29 30 56 57

(C16 � C18:1)/C2 39 2 No 0.31 — 0.50 Yes 3 14 17 77 2 9

C18:2 28 2 No 0.60 — 0.65 No 10 18 19 33 28 49

C18:1 48 2 No 2.5 — 2.7 Yes 15 17 13 15 58 67

C18 44 2 No 1.7 — 1.9 Yes 12 15 17 21 51 64

C16:1-OH 239 5 Yes 0.10 — 0.15 Yes 2 3 31 53 26 44

C16-OH 169 2 No 0.08 — 0.19 No 9 9 77 75 17 17

C16-OH/C16 143 2 No 0.033 — 0.072 No 1 2 24 50 23 48

C18:1-OH 154 2 No 0.07 — 0.08 No 8 9 14 16 66 75

C18-OH 118 3 No 0.06 — 0.10 Yes 5 8 40 62 20 31

C18-OH/C18 97 2 Yes 0.09 — 0.12 Yes 1 25 3 75 0 0

The symbol “&” between two markers indicates isobaric compounds with the same molecular weight. (D), derivatized and (U) underivatized (see text for details). For
abbreviations of analytes, see legend of Table 1.
aThis column indicates an override (O/R) of the target range first element (99%ile of the cumulative normal population) to increase sensitivity and reduce a significant
risk of false negative results.
bThis column indicates an override (O/R) of the target range second element (5%ile of the cumulative disorder range) to increase specificity and reduce the occurrence
of false positive results.
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The process described in this study is not complete and will
continue until the goal of collecting 50 or more cases of each
possible condition has been met. Notably, the number of con-
ditions detectable by the analysis of amino acids and acylcar-
nitines will continue to grow, too.35,36 Furthermore, there are
several improvements planned for future implementation. The
highest priorities are to statistically validate the override process
in response to overlaps, and the exclusion of extreme outliers
from the calculation of ranges. This work is already in progress
(Ryu et al., unpublished results) and will greatly improve the
strength and clinical validity of the target ranges. On the other
hand, the outcome of this analysis is likely to result in much
tighter ranges, and consequently, a greater proportion of cutoff
values will fall outside the suggested interval. For example, a
preliminary analysis of the first 1300 cases with MCAD sug-
gests that the target range for octanoylcarnitine (C8) would
change from 0.21–0.70 �mol/L to just 0.33–0.38 �mol/L (95%
confidence interval). When applicable, this statistical revision
will take into consideration as a determining factor the growing
number of available second tier tests.37–42 These tests are per-
formed on the same specimen submitted for the primary screen-
ing, with no additional patient contact, targeting informative
analytes, which are not included in the primary screening.

Traditionally, conditions with essentially identical biochem-
ical phenotypes have been lumped together on the assumption
of almost indistinguishable profiles. Although that is a more
than likely reality, participants will be asked to assign their
cases, whenever possible, to either one condition of a pair, for
example, either long-chain L-3-hydroxy dehydrogenase defi-
ciency or trifunctional protein deficiency,43 or methylmalonic
acidemia due to either mutase deficiency or belonging to the
complementation groups Cbl A and Cbl B.44 Another improve-
ment will be the gradual introduction of condition subtypes
based on clinical or molecular criteria, similar to the arrange-
ment already in place where carnitine palmitoyltransferase Ia
deficiency patients with the common P479L mutations45,46 are
shown separately from the other patients with the same condi-
tion but different genotypes. MCAD, for example, will be split
in three categories: homozygosity for the common mutation
(A985G/A985G), compound heterozygosity with one A985G
allele (A985G/other), and homozygosity or compound heterozy-
gosity with no A985G allele (other/other).47 Similarly, sorting
of cases with isovaleric acidemia will be based on the presence
of the A282V allele, which is found frequently in patients
detected by newborn screening.48 Other conditions to be split in
multiple subtypes are SCAD deficiency (based on profiles of
pathogenic mutations and common polymorphisms)49,50 and
homocystinuria (based on pyridoxine responsiveness).51

The data in this publication are deliberately kept at a global
level, with no possibility to attribute any of them to a single
participant. This is far from the reality of the tools accessible to
the users on the R4S website, where up-to-date personalized
reports, called comparison tools, are available to analyze the
behavior of every percentile and cutoff value in the context of
the collective experience. Each participant can generate a report
where cutoff values are flagged as “clinically validated” when
they meet two conditions: (a) they are within the target range
and (b) they fall within the 25th–75th percentile range of all
cutoff values. At the same time, special emphasis is placed on
cutoff values standing at either the highest or lowest ranking
among all sites. The rationale of highlighting such outliers is
that corrective action could ensue, leading to an adjustment to a
more realistic level. As another laboratory is consequently
placed in the same outlier position, this process has been very

effective in reducing extreme anomalies and narrowing the
distribution curve.

On the basis of an encouraging trend of increased interest in
recent months, it is worthwhile noting that the R4S project is
hardly limited to laboratory personnel and could be beneficial to
the practice of all professionals involved at different stages of
the newborn screening system. It could be used to assess and
monitor performance, investigate challenging cases by means of
postanalytical interpretive tools, and access educational mate-
rial. For example, since 2007, 139 individuals have attended a
week-long training course, which is open to all active users
(offered with no registration fee) as an opportunity to improve
postanalytical skills, acquire familiarity with the tools of the
R4S website, and network with other users. Many US users
have received funding for travel and lodging from other Re-
gional Collaboratives. Moreover, MS/MS is just one of eight
live applications on the newborn screening domain (Fig. 5).
Two of them (lysosomal storage diseases and severe combined
immunodeficiency) are supported in part by a contract from the
Newborn Screening Translational Research Network (www.
nbstrn.org). The vision behind this expansion is to create an
infrastructure of identical applications for each of the current
and future metabolite-based newborn screening tests, i.e., not
based on molecular methods. Access to these applications is

Fig. 5. Live applications on the newborn screening domain
on the R4S website. Abbreviations are as follows (in alpha-
betical order): ALD, X-linked adrenoleukodystrophy (admin-
istrative oversight of this application is provided by Silvia
Tortorelli, MD, PhD, Mayo Clinic College of Medicine); BIOT,
biotinidase deficiency (Tina Cowan, PhD, Stanford Univer-
sity; Robert Grier, PhD, and Barry Wolf, MD, PhD, Wayne
State University Medical School); CAH, congenital adrenal
hyperplasia (Piero Rinaldo, MD, PhD, Mayo Clinic College of
Medicine; Kyriakie Sarafoglu, MD, University of Minnesota);
CH, congenital hypothyroidism (unassigned); LSD, lysosomal
storage diseases (Dietrich Matern, MD, Mayo Clinic College
of Medicine); MS/MS [2], routine second specimen of new-
born screening by tandem mass spectrometry (Marzia Pas-
quali, PhD, University of Utah); NBS, newborn screening;
SCID, severe combined immunodeficiency (Roshini Abra-
ham, PhD, Mayo Clinic College of Medicine; Mei Baker, MD,
Wisconsin State Laboratory of Hygeine; Amy Brower, PhD,
American College of Medical Genetics; Michele Caggana,
PhD, New York State Department of Health; Anne Comeau,
PhD, University of Massachussetts; and Fred Lorey, PhD,
California Department of Public Health).
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stratified from a curator role, with complete access to all data
and profiles, to the same read/write and read-only roles found in
the MS/MS application. Based on our experience to date, it is
critical to identify curators who are content experts, willing and
capable of monitoring the quality of the submissions coming in,
and to provide feedback to less experienced users.

In conclusion, the R4S collaborative project has paved the
way to a collegial and transparent process for clinical validation
of newborn screening by MS/MS and potentially of any other
laboratory tests for rare disorders if a comparable level of
cooperation could be reproduced. The critical factors behind the
unanticipated expansion of the collaborative project to become
a worldwide initiative have been the gain of mutual trust among
participants, the belief of equal standing of all sites regardless of
the magnitude of their contributions, and the vision to create tools
that motivate users to be actively involved. Indeed, users of the
collaborative project have contributed data as they believed that
there was tangible value being added to their professional practice.
As the project continues, even greater participation is needed, and
every effort will be made to welcome new sites and users.
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metabólicas, Buenos Aires, Argentina; 37INTA, Universidad de
Chile, Santiago, Chile; 38Università degli Studi di Foggia, Fog-
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