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The wheel–rail contact analysis plays a fundamental role in the multibody modelling of railway
vehicles. A good contact model must provide an accurate description of the global and local contact
phenomena (contact forces, position and shape of the contact patch, stresses and displacements) and
a general handling of the multiple contact. The model has also to assure high numerical efficiency
(in order to be implemented directly online within multibody models) and a good compatibility with
commercial multibody software (Simpack Rail,Adams Rail). In this work, an elastic wheel–rail contact
model that satisfies the previous specifics is presented. The model considers the wheel and the rail
as elastic deformable bodies and requires the numerical solution of Navier’s elasticity equation. The
contact between wheel and rail has been described by means of suitable analytical contact conditions.
Subsequently, the contact model has been inserted within the multibody model of a benchmark railway
vehicle (the Manchester Wagon) in order to obtain a complete model of the wagon. The model has
been implemented in the Matlab/Simulink environment. Finally, numerical simulations of the vehicle
dynamics have been carried out on many different railway tracks with the aim of evaluating the
performances of the model. The results obtained with the proposed method have been compared with
those obtained by means of a standard commercial software. The main purpose is to achieve a better
integration between the differential modelling and the multibody modelling. This kind of integration
is almost absent in the literature (especially in the railway field) due to the computational cost and
to the memory storage needs. However, it is very important because only the differential modelling
allows an accurate analysis of the contact problem (in terms of contact forces, position and shape of
the contact patch, stresses and displacements) while the multibody modelling is currently the standard
in the study of the railway dynamics.

Keywords: multibody modelling; wheel–rail contact; contact between elastic bodies

1. Introduction

The multibody simulation of the railway vehicle dynamics needs a reliable contact model that
satisfies the following requirements:

(1) accurate description of the global and local contact phenomena (contact forces, position
and shape of the contact patch, stresses and displacements);

(2) general and accurate handling of multiple contact points;
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970 E. Meli et al.

(3) high computational efficiency (in order to be implemented directly online within
multibody models);

(4) compatibility with commercial multibody softwares (Simpack Rail, Adams Rail).

The wheel–rail contact problem has been discussed by several authors and many models can
be found in the literature. Currently, the main multibody approaches to the problem are the so-
called rigid contact formulation and the semi-elastic contact description. The rigid approach
considers the wheel and the rail as rigid bodies. The contact is imposed by means of constraint
equations and the contact points are detected during the dynamic simulation by solving the
nonlinear algebraic differential equations associated with the constrained multibody system.
Indentation between the bodies is not permitted and the normal contact forces are calculated
through the Lagrange multipliers. Finally, Hertz’s and Kalker’s theories allow to evaluate the
shape of the contact patch and the tangential forces, respectively [1–6].

Also the semi-elastic approach considers the wheel and the rail as rigid bodies. However,
in this case, no kinematic constraints are imposed and the indentation between the bodies is
permitted. The contact points are detected by means of approximated procedures (based on
look-up tables and simplifying hypotheses on the problem geometry) or by means of semi-
analytical methods (based on the reduction of the problem dimension). The normal contact
forces are calculated as a function of the indentation, while, as in the rigid approach, Hertz’s
and Kalker’s theories allow us to evaluate the shape of the contact patch and the tangential
forces [4–10].

Both the described approaches are computationally very efficient but their generality and
accuracy turn out to be often insufficient because the physical hypotheses behind these theories
are too restrictive and, in many circumstances, unverified.

In order to obtain a complete description of the contact phenomena, differential contact
models are needed. In other words, wheel and rail have to be considered as elastic bodies
modelled by Navier’s equations and the contact has to be described by suitable analytical
contact conditions. The contact between elastic bodies has been widely studied in the liter-
ature both in the general case and in the rolling case. Many procedures based on variational
inequalities, FEM techniques and convex optimisation have been developed. This kind of
approach assures high generality and accuracy but still needs very large computational costs
and memory consumption [4,11–17].

Owing to the required high computational load, referring to the current state of the art,
the integration between multibody and differential modelling is not frequent in the literature,
especially in the railway field [18]. However, this integration is very important because only
the differential modelling allows an accurate analysis of the contact problem (in terms of
contact forces, position and shape of the contact patch, stresses and displacements) while the
multibody modelling is the standard in the study of the railway dynamics.

In this work, a differential contact model is presented, with the aim of achieving a better
integration between multibody and differential modelling. The new contact model is fully
3D and satisfies all the requirements described above. The developed procedure needs the
discretisation of the elastic contact problem (Navier’s equations and analytical contact con-
dition) and subsequently the solution of the nonlinear discrete problem. Both the steps have
been implemented in Matlab/Simulink environment [19].

Then the contact model has been integrated with a 3D multibody model of a rail-
way vehicle to obtain a complete model of the wagon. The railway vehicle chosen as
benchmark is the Manchester Benchmark Vehicle, the physical and geometrical charac-
teristics of which are easily available in the literature [20]. The multibody model has
been implemented in SimMechanics, a Matlab toolbox specifically designed for multibody
dynamics [19].
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Vehicle System Dynamics 971

The 3D multibody model of the same vehicle (this time equipped with a standard contact
model based on the semi-elastic approach) has been then implemented also in Simpack Rail,
a commercial multibody software for railway vehicles widely tested and validated [21].

Finally, numerical simulations of the vehicle dynamics have been carried out on many differ-
ent railway tracks with the aim of evaluating the performances of the whole model. The com-
parison between the results obtained by the Matlab/Simulink model and those obtained by the
Simpack Rail model has allowed an accurate and reliable validation of the new contact model.

The paper is organised as follows. Section 2 describes the general architecture and how the
contact model is integrated with the multibody model, Section 3 introduces the mathematical
notation and the reference systems used to explain, in Section 4, the proposed differential
contact model. Section 5 describes the features of the modelled vehicle that is used to perform
numerical tests whose results and the comparison with those obtained with a standard com-
mercial software are summarised in Section 6. Finally, Section 7 draws some conclusions on
the proposed method.

2. General architecture of the model

As said in Section 1, the whole model consists of two different parts: the 3D multibody model
of the railway vehicle (the Manchester Wagon [20]) and the 3D differential wheel–rail contact
model. The general architecture of the model is schematically shown in the block diagram in
Figure 1.

During the simulation, the multibody model interacts directly online with the differential
contact model. At each time integration step, the multibody model evaluates the kinematic
variables relative to the wheelset and consequently to each wheel–rail contact pair. Starting
from these quantities, the contact model, based on Navier’s equations and suitable analytical
contact conditions, calculates the global and local contact variables (forces, contact areas,
stresses and displacements). The contact variables are then passed to the multibody model in
order to to carry on the simulation of the vehicle dynamics.

The differential contact model has been implemented in the Matlab/Simulink environment
while the multibody model has been implemented in SimMechanics [19].

3. Reference systems and railway track

In this section, the mathematical notation concerning the reference systems and the railway
track will be introduced [22–24]. The adopted reference systems are the same as described

Figure 1. General architecture of the model.
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972 E. Meli et al.

in some preceding works [8–10]. However, in order to clarify the explanation, they are sum-
marised in this section. First of all a fixed reference system Ofxfyfzf (Figure 2) is defined: the
xf axis is tangent to the centreline in the point Of and the zf axis is normal to the plane of the
rails.

With respect to this base system, the railway track can be described by means of a three-
dimensional curve:

γ (s) : I ⊂ R → R3, (1)

where s is the curvilinear abscissa of γ (Figure 2). For convenience, we define γ̃ (s ′) as the
projection of γ (s) on the plane xfyf (here s ′ is the curvilinear abscissa of γ̃ ). Usually, in the
cartographic description of a railway track, only the curvature K(s ′) of γ̃ and the track slope
p(s ′) are known; anyway, these parameters are sufficient to reconstruct the three-dimensional
track. The curve γ̃ can be calculated directly from its curvature K(s ′). The Frenet equations
for γ̃ are:

dT
ds ′ = K(s ′)N,

dN
ds ′ = −K(s ′)T, (2)

where T(s ′) and N(s ′) are, respectively, the tangent and the normal unitary vectors of the
curve γ̃ . Starting from the initial conditions T(0) = (1, 0)T and N(0) = (0, 1)T, the Frenet
equations can be integrated, obtaining T(s ′) and N(s ′). Then, since T(s ′) = ((dγ̃ (s ′))/ds ′) ,
γ̃ (s ′) can be determined by integration:

γ̃ (s ′) =
∫ s ′

0
T(u) du. (3)

The track altitude h(s ′) can be instead calculated using the definition of the track slope
p(s ′):

h(s ′) =
∫ s ′

0
p(u) du. (4)

Figure 2. Fixed and auxiliary reference systems.
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Vehicle System Dynamics 973

The track curve, as a function of the abscissa s ′, has consequently the form

γ̄ (s ′) =
(

γ̃ (s ′)
h(s ′)

)
. (5)

In order to obtain the expression of γ (s), a relation between s and s ′ has to be established.
Since s is the curvilinear abscissa of γ , the following equation holds:

s(s ′) =
∫ s ′

0

∥∥∥∥dγ̄ (t)

dt

∥∥∥∥ dt =
∫ s ′

0

∥∥∥∥
(

T(t)

p(t)

)∥∥∥∥ dt =
∫ s ′

0

√
1 + p(t)2 dt. (6)

Obviously if p(s ′) = 0, s = s ′. The relation s(s ′) can be numerically inverted and inserted in
expression (5):

γ̄ (s ′) = γ̄ (s ′(s)) = γ (s). (7)

A second reference system, referred as auxiliary reference system ORxRyRzR (Figures 2 and 3)
is introduced. It is placed on the plane of the rails and follows the motion of the wheelset during
the simulation.

The xR axis is tangent to the centreline in the point OR and the zR axis normal to the plane
of the rails. The position of OR can be calculated starting from the position of the centre of
mass G (coincident with the wheelset reference system origin OW, which will be described
later) of the wheelset imposing the following condition:

(Of

W − Of

R) · iR = (Gf − γ (s)) · dγ (s)

ds
= 0 (8)

and solving it with respect to the variable s. This condition is equivalent to impose that the
plane yRzR contains the point G.

Figure 3. Fixed, auxiliary and local reference systems.
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974 E. Meli et al.

In order to define the axes yR and zR another reference system O′
Rx ′

Ry ′
Rz′

R is defined; its
origin O′

R coincides with OR while its unitary vectors can be evaluated as follows (Figure 2):

i′R = iR = dγ (s)

ds
, j′R = kf ∧ i′R, k′

R = i′R ∧ j′R. (9)

The unitary vectors of the auxiliary system, expressed in the fixed reference system, are:

[iR jR kR] = Rcant[i′R j′R k′
R], (10)

where the rotation matrix Rcant is defined as:

Rcant = Rx(βc) =
⎛
⎝1 0 0

0 cos βc − sin βc

0 sin βc cos βc

⎞
⎠ , (11)

where βc is the track cant angle.
Finally the local reference system OWxWyWzW is defined. The yW axis is coincident with

the rotation axis of the wheelset, the origin OW coincides with the centre of mass G and the
xW axis is contained in the plane xRyR. The local system is rigidly connected to the wheelset
except for the rotation around its axis.

In order to describe the differential contact model correctly, two further reference systems
have to be introduced for each wheel–rail pair: the wheel system and the rail system. For the
sake of simplicity, only the left pair is shown in Figure 4.

The first system Owxwywzw is parallel to the system OWxWyWzW and its origin Ow lies
on the symmetry axis yW of the wheel (Figure 5). Moreover, the origin Ow belongs to the
nominal rolling plane, i.e. the plane normal to the rotation axis containing the nominal rolling
radius [22]. The second system Orxryrzr is parallel to the system ORxRyRzR (Figure 5). Its
origin Or belongs to the axis yR while the distance between OR and Or has to assure the
correct gauge between the rails [22]. The global and local contact variables will be evaluated
by the contact model with respect to these reference systems. For the numerical simulations
presented in the following sections, two standard profiles have been considered: the UIC 60
for the rails (here αp is the laying angle) and the ORE S 1002 for the wheels (Figure 6) [22].

Figure 4. Wheel and rail reference systems.
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Vehicle System Dynamics 975

Figure 5. Location of the wheel and rail systems.

Figure 6. Wheel and rail profiles.

4. The differential weel–rail contact model

In this section, the 3D differential wheel–rail contact model will be described. For the sake of
simplicity, as regards the generic contact variable Z, the following convention will be adopted:
Zw and Zr

w will denote a variable relative to the wheel, respectively, expressed in the reference
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976 E. Meli et al.

systems Owxwywzw and Orxryrzr while Zw
r and Zr will denote a variable relative to the rail

expressed in the same systems.
With reference to Figure 1, the contact model can be thought of as a black box having the

following inputs and outputs.

• Inputs: the kinematic variables relative to the considered wheel–rail pair (in this case, the
left one), i.e. the position Or

w, the orientation Rr
w, the absolute velocity Ȯr

w and the absolute
angular velocity ωr

w of the wheel system and the analogous quantities of the rail system
Or = 0, Rr = I , Ȯr and ωr (Figures 4 and 5).

• Outputs: the global and local contact variables relative to the wheel and to the rail, like the
contact forces FwC and FrC, the contact patches AwC and ArC, the stresses σw and σr and
the displacements uw and ur.

4.1. The kinematics of the problem

The wheel and the rail have been considered as two linear elastic bodies �w and �r (as shown
in Figure 7). Both the domains are supposed to be large enough with respect to the dimensions
of the contact patch [13,14].

The boundaries ∂�w and ∂�r are split into two disjoint regions, respectively, 	wC, 	wD

and 	rC, 	rD. The contact boundaries 	wC and 	rC (dashed in Figure 7) are the regions where
the contact may verify while on the Dirichlet boundaries 	wD and 	rD the displacements are
known and equal to zero. The knowledge of the wheel–rail kinematics (see the inputs of the
contact model) and consequently of the location of the Dirichlet boundaries has been used,
during the simulation, to determine the position of the undeformed configurations.

In case of contact, the geometric intersection between the surfaces 	wC and 	rC (and thus
between the undeformed configurations) allows us to define the penetration areas ÃwC ⊂ 	wC

and ÃrC ⊂ 	rC (with ÃwC ≈ ÃrC) that can be considered as a first rough estimate of the real
contact areas AwC and ArC. The situation is schematically sketched in Figures 7 and 8.

The real contact areas AwC ⊂ ÃwC and ArC ⊂ ÃrC (with AwC ≈ ArC) are unknown and
have to be calculated by the model. For this purpose, a contact map � has to be introduced.
The contact map � : ÃwC → ÃrC (by convention the wheel is the master body) connects the
generic point xr

w ∈ ÃwC on the wheel surface with the point �(xr
w) ∈ ÃrC on the rail surface

Figure 7. Domains, boundaries and contact areas.
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Vehicle System Dynamics 977

Figure 8. Contact map and distance function.

that will get in contact with the point on the wheel surface in the deformed configuration.
In this case the map � is defined as the normal projection �(xr

w) of the point xr
w ∈ ÃwC on

the surface ÃrC. Starting from the contact map, the distance function between the deformed
configurations d : ÃwC → R can be evaluated:

d(xr
w) = ( ur

w − ur) · nr
w − (�(xr

w) − xr
w) · nr

w (12)

where nr
w is the outgoing normal versor to the surfaces 	wC. The function d is positive if there

is penetration between the deformed configurations and negative otherwise (Figure 8).
Formally, the contact area AwC is defined as the region of ÃwC, where the function d is

positive while the contact area ArC = �(AwC) is the normal projection of AwC on ÃrC. In
other words, from a kinematic point of view, the penetration between the deformed bodies is
allowed and will have to be penalised by the contact model (Figure 8) [13,14].

In this way, the estimated contact areas ÃwC and ÃrC depend only on the relative wheel -
rail kinematics (Or

w, Rr
w, Ȯr

w, ωr
w and Ȯr, ωr) while the real contact areas AwC and ArC depend

also on the displacements uw and ur. Finally, it is useful to remark that no hypothesis has been
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978 E. Meli et al.

made on the shape of the contact patch; in particular, the contact area can be made up of one
or more disjoint parts.

4.2. The contact model

According to the linear theory of elasticity [13,14], the wheel and the rail stresses σw and σr

are governed by Navier’s equations:

div σw(uw) = 0 on �w

div σr(ur) = 0 on �r

uw = 0 on 	wD

ur = 0 on 	rD

σw(uw)nw = pw on ÃwC

σw(uw)nw = 0 on 	wC\ÃwC

σr(ur)nr = pr on ÃrC

σr(ur)nr = 0 on 	rC\ÃrC,

(13)

where nw and nr are the outgoing normal vectors to the surfaces 	wC and 	rC while pw and pr
are the unknown contact pressures. The pressures pw and pr are defined on ÃwC and ÃrC but will
have to be zero on ÃwC\AwC and ÃrC\ArC. For both the contact bodies, the characteristics of
the steel (Young’s modulus Ew = Er = 2.1 ∗ 1011 Pa and Poisson’s coefficient νw = νr = 0.3)
have been considered.

In the presented case, volume forces (i.e. the gravity) and inertial terms have been neglected
because their influence on the contact phenomena is negligible, but of course they have to be
considered in the multibody model of the railway vehicle. Moreover, the problem is supposed
to be steady within the time integration step [4,13,14].

Equivalently, problem (13) can be formulated in a weak form as follows:∫
�w

σw(uw) : εw(vw) dV =
∫

ÃwC

pw · vwdA ∀vw ∈ Vw∫
�r

σr(ur) : εr(vr) dV =
∫

ÃrC

pr · vrdA ∀vr ∈ Vr, (14)

where εw and εr are the strains while Vw and Vr are suitable Sobolev’s spaces [13,14].
In order to complete the contact model, the contact pressures pw and pr have to be expressed

as a function of the displacements uw and ur. For the sake of simplicity, the normal and the
tangential contact pressures on the wheel are introduced:

pr
wN = pr

w · nr
w pr

wT = pr
w − pr

wNnr
w. (15)

The normal pressure pr
wN has been calculated by means of the distance function d and has to

penalise the penetration between the deformed configurations (as discussed in Section 4.1):

pr
wN(xr

w) = −K max(d(xr
w), 0) on ÃwC, (16)

where K is a fictitious stiffness constant. The value of K has to be chosen large enough to
assure the accuracy required by this kind of problems. The condition of ideal contact (total
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Vehicle System Dynamics 979

absence of penetration between the deformed configurations) is reached forK → +∞ (usually
K ≥ 1015 N/m3) [13,14].

To evaluate the tangential pressure pr
wT, the slip sr

w between the wheel and rail surfaces
has to be defined. Since the solution is supposed to be steady within the time integration step
(Figure 1), the following expression holds [4,13,14]:

sr
w(xr

w) = wr
w(xr

w) + u̇r
w(xr

w) − wr(�(xr
w)) − u̇r(�(xr

w)) =
= wr

w(xr
w) + J r

w(xr
w)wr

w(xr
w) − wr(�(xr

w)) − Jr(�(xr
w))wr(�(xr

w)), (17)

where wr
w and wr are the absolute rigid velocities of the points xr

w and xr (computable starting
from the knowledge of the wheel–rail kinematic variables Or

w, Rr
w, Ȯr

w, ωr
w and Ȯr, ωr) while

J r
w and Jr are the Jacobians of ur

w and ur with respect to the variables xr
w and xr. As usual, the

normal and the tangential slips are:

sr
wN = sr

w · nr
wsr

wT = sr
w − sr

wNnr
w. (18)

According to the standard pseudo-Coulombian friction models, the tangential pressure pr
wT

can be expressed as follows:

pr
wT(xr

w) = −μ(‖sr
wT(xr

w)‖, V )|pr
wN(xr

w)| sr
wT(xr

w)

‖sr
wT(xr

w)‖ on ÃwC, (19)

where V is the longitudinal velocity of the vehicle. Further details on the friction function
μ(‖sr

wT (xr
w)‖, V ) can be found in the literature [4,13,14,23].

Finally the action–reaction principle (Newton’s third law) allows us to calculate the
pressures pr:

pr(�(xr
w)) = −pr

w(xr
w) on ÃwC. (20)

In conclusion it is useful to remark that, according to the described model, the contact pressures
pr

w and pr are zero, respectively, on ÃwC\AwC and ÃrC\ArC. The displacements uw and ur will
be evaluated through the numerical solution of Equation (14). The knowledge of these unknown
quantities will allow us to calculate all the other required outputs such as the contact areas
AwC and ArC and the stresses σw and σr. The contact forces FwC and FrC will be estimated by
integration:

FwC =
∫

ÃwC

pwdA FrC =
∫

ÃrC

prdA. (21)

4.3. The discretisation of the model

Both the elastic bodies have been discretised by means of tetrahedral elements and linear
shape functions. The meshes have been built according to the standard Delaunay’s algorithms
(Figure 9) [15,17].

The resolution of the meshes on the surfaces 	wC and 	rC is constant because the position
and the dimensions of the contact area are a priori unknown. Moreover, the surface resolution
(usually in the range 0.1 − 1 mm) has to assure an accuracy enough to correctly describe
the contact phenomena. It is important to remark that the meshes have been created directly
in the reference systems Owxwywzw and Orxryrzr; therefore they do not change during the
simulation and can be easily built offline without increasing the computational load.
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980 E. Meli et al.

Figure 9. Discretisation of the Contact Model.

The following convention will be adopted.

(1) The sets of the elements of wheel and rail will be called Tw and Tr while the vectors
uwh, url ∈ R12 will contain the displacements of the four nodes belonging to the elements
h ∈ Tw and l ∈ Tr. Finally, the vectors Uw and Ur will comprise the displacements relative
to all the nodes of wheel and rail. Since the displacements on 	wD and 	rD are zero, the
dimensions of Uw, Uw are 3(Nw − NwD) and 3(Nr − NrD), where Nw and Nr are the
numbers of nodes of wheel and rail while NwD and NrD are the numbers of nodes on 	wD

and 	rD.
(2) similarly Cw ⊂ Tw and Cr ⊂ Tr will be the sets of the active contact elements on wheel

and on rail, i. e. the sets of the elements having respectively a face Ãi
wC and Ã

j

rC that lies
on ÃwC and ÃrC. The vectors uwi, urj ∈ R12 will contain the displacements of the four
nodes belonging to the elements i ∈ Cw and j ∈ Cr while the vectors UwC and UrC will
comprise the displacements relative to all the active elements. The dimension of UwC, UrC

are 3NwC and 3NrC, where NwC and NrC are the number of nodes belonging to the active
elements.

The knowledge of the wheel–rail kinematics (Or
w, Rr

w, Ȯ
r
w, ωr

w and Ȯr, ωr) and consequently
of the estimated contact areas ÃwC and ÃrC allows us to determine the sets Cw and Cr of the
active contact elements on the wheel and on the rail.
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Vehicle System Dynamics 981

For each active contact element on the wheel, the centre xr
wi of the face Ãi

wC is considered.
The normal projection xrj = �(xr

wi ) of xr
wi on ÃrC will belong to the external face Ã

j

rC of
the j th active contact element on the rail; in particular, the index j (i) will be a function of
the index i. In this way, the pairs of points (xr

wi , xrj (i)) with i ∈ Cw can be thought of as the
discretisation of the contact map �. The situation is schematically sketched in Figure 9.

The values of the displacements ur
w, ur and of their Jacobians Jr

w, Jr in the points xr
wi and

xrj are evaluated through the shape functions Nwi , Nrj :

ur
w(xr

wi) = Nwi(xr
wi)u

r
wi J r

w(xr
wi) =

12∑
k=1

J k
wi(x

r
wi)u

r
wik

ur(xrj ) = Nrj (xrj )urj J r
w(xrj ) =

12∑
k=1

J k
rj (xrj )urjk, (22)

where J k
wi , J

k
rj are the Jacobians of the kth column of Nwi and Nrj while uwik , urjk are the kth

components of ur
wi and urj [13–15,17].

At this point, the distance function di = d(xr
wi ) and the pressure pr

wi = pr
w(xr

wi) on the face
Ãi

wC of the active element of the wheel can be calculated by means of Equations (12), (16)
and (19). Finally, a discrete version of the action–reaction principle (the Newton’s third law)
is needed to evaluate the pressure prj (i) = pr(xrj (i)) on the face Ã

j (i)

rC of the active element of
the rail:

|Ãj (i)

rC |prj (i) = −|Ãi
wC|pr

wi (23)

where |Ãi
wC| and |Ãj (i)

rC | are the areas of the faces Ãi
wC and Ã

j (i)

rC . Both the pressures pr
wi and

prj (i) are supposed to be constant on Ãi
wC and Ã

j (i)

rC .
Standard FEM techniques allow us to discretise the weak form of the contact problem

(Equation (14)) [13–15,17]:

∫
�w

σw(uw) : εw(vw) dV =
∑
h∈Tw

uT
whKwhvwh = UT

wKwVw

∫
ÃwC

pw · vwdA =
∑
i∈Cw

pT
wiMwivwi = Fw(UwC, UrC)TVw

∫
�r

σr(ur) : εr(vr) dV =
∑
l∈Tr

uT
rlKrlvrl = UT

r KrVr

∫
ÃrC

pr · vrdA =
∑
i∈Cw

pT
rj (i)Mrj (i)vrj (i) = Fr(UwC, UrC)TVr

(24)

where Kwh and Krl are the stiffness matrices relative to the elements h ∈ Tw, l ∈ Tr and

Mwi =
∫

Ãi
wC

NwidA Mrj (i) =
∫

Ã
j (i)

rC

Nrj (i)dA. (25)

The global stiffness matrices Kw and Kr are symmetric, positive defined and sparse while the
vectors Fw and Fr, which contain the terms due to the contact pressures, are sparse. Moreover,
also the global stiffness matrices are evaluated directly in the reference systems Owxwywzw
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982 E. Meli et al.

and Orxryrzr; therefore, they do not change during the simulation and can be easily built offline
without increasing the computational load. Equations (14) and (24), combined together, give

UT
wKwVw = Fw(UwC, UrC)TVw ∀Vw ∈ R3(Nw−NwD)

UT
r KrVr = Fr(UwC, UrC)TVr ∀Vr ∈ R3(Nr−NrD). (26)

Finally, since the matrices Kw, Kr are symmetric and the vectors Vw, Vr are arbitrary, the
following nonlinear system of algebraic equations is obtained:

KwUw = Fw(UwC, UrC)

KrUr = Fr(UwC, UrC) (27)

in which, as said before, the contact displacements UwC, UrC are a subset of the displacements
Uw, Ur. Equation (27) will be called the sparse formulation of the discrete contact problem.
Equation (27) can be also written as

Uw = HwFw(UwC, UrC)

Ur = HwFr(UwC, UrC) (28)

where the matrices Hw = K−1
w and Hr = K−1

r are symmetric, positive defined and full. Like
Kw and Kr, they do not change during the simulation and can be calculated offline (how-
ever, their storage can require an high memory consumption). Splitting Uw, Ur into contact
displacements UwC, UrC and non-contact displacements UwNC, UrNC, Equation (28) becomes(

UwNC

UwC

)
=

[
H 11

w H 12
w

H 21
w H 22

w

] (
0

fw(UwC, UrC)

)

(
UrNC

UrC

)
=

[
H 11

r H 12
r

H 21
r H 22

r

] (
0

fr(UwC, UrC)

)
. (29)

In this way, the second and the fourth components of equation (29) are sufficient to calculate
the contact displacements UwC, UrC:

UwC = H 22
w fw(UwC, UrC)

UrC = H 22
r fr (UwC, UrC). (30)

Equation (30) will be called the reduced formulation of the discrete contact problem. The
matrices H 22

w and H 22
r have the same properties as Hw and Hr but this time their dimensions

are much smaller. However, H 22
w and H 22

r change during the simulation and therefore have to
be built directly online. The vectors fw and fr are full.

The remaining non-contact displacement UwNC, UrNC can be evaluated by means of the first
and the third components of Equation (29):

UwNC = H 12
w fw(UwC, UrC)

UrNC = H 12
r fr(UwC, UrC). (31)

The displacements Uw, Ur, evaluated by solving Equation (27) or Equation (30), allows us to
calculate the contact areas AwC and ArC and the stresses σw and σr . The contact forces FwC

and FrC are estimated by numerical integration:

FwC =
∑
i∈Cw

|Ãi
wC|pwi FrC =

∑
i∈Cw

|Ãj (i)

rC |prj (i). (32)
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Vehicle System Dynamics 983

4.4. The numerical solution of the discrete problem

In this section, the numerical methods used for solving the discrete contact problem are
presented. Both the sparse formulation (Equation (27)) and the reduced formulation (Equation
(30)) will be analysed in the following.

Equation (27) is a large and sparse nonlinear system; on the contrary, Equation (30) is a full
nonlinear system with much smaller dimensions than Equation (27). The typical dimensions
of Kw and Kr (depending on the mesh resolution) are in the range 104 − 105 while those of
H 22

w and H 22
r (depending on the number of active elements) are about 102 − 103.

Nonlinear solvers based on Newton–Krylov methods are usually very efficient for solving
large and sparse systems like Equation (27) [25]. Newton–Krylov methods are Newton-type
methods for the problem F(x) = 0, where F is a generic nonlinear function. In particular,
Krylov methods are employed to solve approximately the arising linear systems:

F ′(xk)sk = −F(xk), (33)

where F ′ is the Jacobian of F. The Krylov method computes, at each iteration, the so-called
inexact Newton step s̃k which satisfies the condition:

‖F ′(xk)s̃k + F(xk)‖ ≤ ηk‖F(xk)‖ ηk ∈ [0, 1), (34)

where the forcing terms ηk are used to control the level of accuracy [25]. In the studied case, a
constant forcing term ηk = η ≤ 0.5 ∀k has been chosen while the method stops if the following
stopping criterion is satisfied:

‖F(xk)‖ < Tol. (35)

As regards the considered problem, numerical experimentations showed that, among all the
Krylov methods, the best linear solver is the BiCGStab [26]. This particular kind of nonlinear
solver is known as the Newton–BiCGStab method.

Iterative methods such as the BiCGStab often need a good preconditioner. The employed
preconditioner P has been defined as follows:

P =
(

Kw 0
0 Kr

)
. (36)

Since Equation (27)is weakly nonlinear, the preconditioner P is a good approximation of the
Jacobian. In general, the BiCGStab does not require the whole matrix P but only a factori-
sation of it. In the considered case, the incomplete Cholesky factorisation [26] has been used
because the matrix P is not only symmetric and positive defined but also sparse. Moreover,
this factorisation performs a reordering of P and takes advantage of its sparsity in terms of
execution time and memory consumption.

An interesting feature of the Newton–BiCGStab method is that it requires only the action
of F ′ on a vector v but not the computation and the storage of the whole Jacobian. In this case,
the product F ′(x)v can be approximated by means of finite differences [27]:

F ′(x)v ≈ F(x + εv) − F(x)

ε
, (37)

where ε > 0 is a scalar small enough. Consequently, this method is called ‘matrix-free’.
The same nonlinear solver (Newton–BiCGStab), this time without preconditioner, has been

used in order to solve Equation (30). In this circumstance, due to the small dimensions of the
problem, the arising linear systems (33) can be also solved by means of direct methods (like the
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984 E. Meli et al.

LU method [28]). Therefore, a second nonlinear solver based on this kind of procedures (the
Newton–LU method) has been analysed and experimented on system (30). The employment
of this alternative approach needs the computation and the storage of the whole Jacobian F ′
at each nonlinear iteration.

Finally, it has to be remarked that, if the guarantee of convergence is only local, the non-
linear solvers (the Newton–BiCGStab and the Newton–LU) may fail in finding a solution,
even though an effective solution exists. Therefore, both the numerical procedures have been
embedded into a globalisation strategy. A monotone line search method with Armijo rule has
been employed, with a maximum of 10 backtracks for nonlinear iteration [27,28].

As regards the time integration of the whole model (multibody model and contact model;
Figure 1), explicit ODE solvers with a variable step and a variable order have been considered
[29]. Moreover, during the simulations, the initial conditions for the nonlinear solvers (the
Newton–BiCGStab and the Newton–LU) are continually updated in order to speed up the
convergence of the solvers and to reduce the computation time. In other words, the solution
of the problem at the current time step is used as the initial condition for the solver at the next
time step.

5. The multibody model

As benchmark vehicle, the Manchester Benchmark Vehicle has been chosen (Figure 10); the
physical and geometrical characteristics of the vehicle can be found in the literature [5,20].
The wheels’ back to back distance is 1360 mm.

The multibody model consists of seven rigid bodies: the car body, two bogies and four
wheelsets. The secondary suspensions connect the bogies to the car body (Figure 11) and
comprise the following elements:

(1) two springs
(2) four dampers (lateral and vertical dampers)
(3) the traction rod
(4) the roll bar (not visible in the figure)
(5) two bumpstops

while the primary suspensions connect the wheelsets to the bogies (Figure 12) and comprise
two springs and six dampers (longitudinal, lateral and vertical).

Both the stages of suspensions have been modelled by means of three-dimensional viscoelas-
tic force elements (linear and nonlinear). The multibody model of the Manchester Wagon has
been implemented in SimMechanics, a Matlab toolbox specifically designed for the multibody

Figure 10. Matlab/Simulink multibody model.
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Vehicle System Dynamics 985

Figure 11. Bogie and secondary suspensions.

Figure 12. Wheelset and primary suspensions.

dynamics [19]. With respect to the model described in [5,20], a damping coefficient has been
added to the anti-roll torsional spring, its value was 94000 N m s/rad, i.e. 10% of the stiffness.
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986 E. Meli et al.

6. The numerical simulations

In order to study the behaviour of the whole model (Figure 1), a large number of dynamic sim-
ulations has been performed on many different scenarios obtained by varying the geometrical
characteristics of the railway track (Table 1) [5,20,22].

The performance of the model have been evaluated both in terms of numerical efficiency
(performance of the numerical procedures and time consumption) and in terms of output
accuracy (kinematic variables, contact forces and contact areas).

6.1. Performance of the numerical procedures

In this section, the performance of the numerical procedures described in the previous section
will be analysed and compared with each other. By way of example, a typical simulation of the
dynamics of the Manchester Wagon will be considered. The simulation has been performed
on a curvilinear railway track, the data of which are reported in Table 2 [5,20,22].

The comparison between the numerical methods has been carried out on a machine equipped
with an Intel Xeon 2.66 GHz and 8 GB RAM.

In order to compare the sparse formulation (27) and the reduced formulation (30) of the
contact problem, several experimentations have been performed with different ODE solvers
such as the ODE23 and the ODE45 [29]. The values of the main numerical parameters relative
to the simulation are reported in Table 3 for both the formulations.

Table 1. Characteristics of the railway track: ranges of variation.

Curvature K (m−1) −0.1−0.1
Cant angle βc (rad) −0.15−0.15
Slope p (−) −0.05 − 0.05
Laying angle αp (rad) 1/40−1/20
Velocity V (km/h) 0−300
Friction μ (−) 0−0.5
Transition curve length (m) 50
Full curve length (m) 100

Table 2. Data of the curvilinear track.

Curvature K (m−1) −1/1200
Cant angle βc (rad) 0.0418
Slope p (−) 0
Laying angle αp (rad) 1/40
Velocity V (km/h) 162
Friction μ (−) 0.3

Table 3. Numerical parameter.

Formulation Equation (27) Equation (30)

RelTol/AbsTol 10−8/10−6 10−8/10−6

Nonlinear Solver Newton–BiCGStab Newton–BiCGStab
Tol/MaxitNonlin 10−7/20 10−7/20
η/MaxitLin 0.01/20 0.01/20

Notes: RelTol and AbsTol are the relative and absolute tolerances of the ODE solvers, MaxitNonlin
and MaxitLin are the maximum number of nonlinear and linear iterations, Tol is the stopping
tolerance (Equation (36)) and η is the forcing term. In particular, the values of the tolerances RelTol,
AbsTol and Tol have been chosen in order to assure a sufficient accuracy (in terms of displacements
and contact pressures) and, at the same time, to minimise the computational load.
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Vehicle System Dynamics 987

Table 4. Performance of formulation (27) using ODE23.

Differential contact model: formulation (27)

Wheel–rail pair CPS CT: 14h21m IterNonlin ErrorNonlin IterLin ErrorLin

1L 139,645 48.9 ms 184,266 15 1,123,071 2272
1R 139,645 43.5 ms 169,278 5 969,991 1252
2L 139,645 49.0 ms 182,673 3 1,204,867 2640
2R 139,645 43.4 ms 168,796 10 1,023,716 1122
3L 139,645 49.5 ms 185,937 5 1,201,980 2244
3R 139,645 42.9 ms 167,353 7 1,001,942 1477
4L 139,645 50.3 ms 184,237 5 1,261,439 2177
4R 139,645 42.2 ms 164,729 8 996,849 1060

Table 5. Performance of formulation (30) using ODE23.

Differential contact model: formulation (30)

Wheel–rail pair CPS CT: 3h46m IterNonlin ErrorNonlin IterLin ErrorLin

1L 150,156 12.0 ms 162,111 13 705,742 1428
1R 150,156 10.7 ms 148,925 4 609,546 787
2L 150,156 12.0 ms 160,709 3 757,143 1659
2R 150,156 10.6 ms 148,501 9 643,307 705
3L 150,156 12.1 ms 163,581 4 755,329 1410
3R 150,156 10.5 ms 147,231 5 629,624 928
4L 150,156 12.3 ms 162,085 4 792,693 1368
4R 150,156 10.3 ms 144,923 7 626,424 666

Tables 4 and 5 summarise the results obtained by using the ODE 23 and relative, respectively,
to the sparse formulation (27) and to the reduced formulation (30). For each wheel–rail contact
pair, the following data have been considered:

(1) the number CPS of contact problems solved during the dynamic simulation (equal for all
the eight contact pairs)

(2) the mean computation times CT relative to each contact model (the time needed to solve
one contact problem) and the total computation time required by the eight contact models

(3) the total number IterNonlin of nonlinear iterations and the convergence errors of the
nonlinear solver ErrorNonlin

(4) the total number IterLin of linear iterations and the convergence errors of the linear solver
ErrorLin.

Table 6. Performance of formulation (27) using ODE45.

Differential contact model: formulation (27)

Wheel–rail pair CPS CT: 22h16m IterNonlin ErrorNonlin IterLin ErrorLin

1L 181,689 58.4 ms 283,334 23 1,973,568 3993
1R 181,689 52.0 ms 260,288 7 1,704,562 2201
2L 181,689 58.5 ms 280,884 5 2,117,308 4639
2R 181,689 51.8 ms 259,547 16 1,798,972 1971
3L 181,689 59.1 ms 285,903 7 2,112,236 3943
3R 181,689 51.2 ms 257,327 9 1,760,709 2595
4L 181,689 60.0 ms 283,289 7 2,216,722 3826
4R 181,689 50.3 ms 253,293 12 1,751,760 1862
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988 E. Meli et al.

Table 7. Performance of formulation (30) using ODE45.

Differential contact model: formulation (30)

Wheel–rail pair CPS CT: 5h40m IterNonlin ErrorNonlin IterLin ErrorLin

1L 216,225 12.5 ms 259,378 21 1,129,187 2285
1R 216,225 11.1 ms 238,280 6 975,274 1259
2L 216,225 12.5 ms 257,134 5 1,211,429 2654
2R 216,225 11.1 ms 237,602 14 1,029,291 1128
3L 216,225 12.6 ms 261,730 6 1,208,526 2256
3R 216,225 10.9 ms 235,570 8 1,007,398 1485
4L 216,225 12.8 ms 259,336 6 1,268,309 2189
4R 216,225 10.8 ms 231,877 11 1,002,278 1066

Table 8. Numerical parameter.

Formulation Equation (30)

RelTol/AbsTol 10−8/10−6

Nonlinear solver Newton–LU
Tol/MaxitNonlin 10−7/20

Table 9. Performance of the nonlinear solver Newton–LU.

Wheel-rail pair CPS CT: 4h35m IterNonlin ErrorNonlin

1L 141,147 15.3 ms 137,146 11
1R 141,147 13.6 ms 125,991 3
2L 141,147 15.3 ms 135,960 3
2R 141,147 13.6 ms 125,632 8
3L 141,147 15.5 ms 138,390 3
3R 141,147 13.4 ms 124,557 4
4L 141,147 15.7 ms 137,124 3
4R 141,147 13.2 ms 122,605 6
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Figure 13. Computation time as a function of the constant forcing term η.
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Vehicle System Dynamics 989

The asymmetry of the data is due to the asymmetry of the railway track (in this case a curve
on the right; Table 2). Similarly, Tables 6 and 7 report the same quantities obtained by using
the ODE45.

The results show that the reduced formulation (30) is more efficient than the sparse formula-
tion 27 even though the reduced formulation (30) may require a bigger memory consumption
(see Section 4.3). In both cases, ODE solvers with low order like ODE23 turned out to be
faster than ODE solvers with higher order like ODE45.

Moreover, thanks to the continuous updating of the initial conditions of the nonlinear solver
(see Section 4.4), the number of nonlinear and linear iterations (IterNonlin and IterLin) is
quite small with respect to the number of contact problems solved CPS while the number of
convergence errors (ErrorNonlin and ErrorLin) is negligible (≤1.65%).

Figure 14. Simpack Rail multibody model.

Table 10. Numerical parameter: Matlab/Simulink model.

ODE Solver ODE23

RelTol/AbsTol 10−8/10−6

Contact model Reduced formulation (30)
Nonlinear solver Newton–BiCGStab
Tol/MaxitNonlin 10−7/20
η/MaxitLin 0.01/20

Table 11. Numerical parameter: Simpack rail model.

ODE solver ODE5

Fixed step 5 ∗ 10−4 (s)

Contact model Semi-elastic approach (see Section 1)
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990 E. Meli et al.

As said in the Section 4.4, reduced formulation (30) can be also solved by means of the
Newton–LU nonlinear solver. Table 9 contains the results obtained through this method. The
ODE solver used is ODE23 while the values of the main numerical parameters relative to the
simulation are reported in Table 8.

The comparison between the results (Tables 5 and 9) shows that the Newton–BiCGStab
method is more efficient than the Newton–LU method in spite of the small dimensions of
the discrete problem (30) (the reduced formulation). In particular, the computation and the
storage of the whole Jacobian at each nonlinear iteration turn out to be quite time-consuming.
Concerning the nonlinear iterations IterNonlin and the convergence errors ErrorNonlin the
same considerations of the previous case still hold.

Finally, as regards the reduced formulation (30), some experimentations have been per-
formed in order to justify the optimal choice of the constant forcing term η = 10−2 in
the nonlinear solver Newton–BiCGStab. The ODE solver employed is always ODE23
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Figure 15. Car body: lateral displacement of the centre of mass yR
CB.
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Figure 16. Car body: roll angle ϕR
CB.
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while the other numerical parameters are summarised in Table 3. The results, in terms of
computation time, have been reported in Figure 13 for the following values of the parameter
η: η = 0.5, 10−1, 10−2, 10−3, 10−4.

6.2. The multibody model implemented in Simpack Rail

The 3D multibody model of the same vehicle has been then implemented also in Simpack Rail,
a commercial multibody software for railway vehicles widely tested and validated (Figure 14)
[20,21].
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Figure 17. Car body: yaw angle ψR
CB.
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Figure 18. Bogie: lateral displacement of the centre of mass yR
B .
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This time the model is equipped with a standard contact model based on the semi-elastic
approach and able to consider the multiple contact (see Section 1) [4–10]. The comparison
between the results obtained by the Matlab/Simulink model and those obtained by the Simpack
ail model has allowed an accurate and reliable validation of the new contact model.

6.3. The dynamical simulations

In order to compare the performance of the Matlab/Simulink model and the Simpack Rail
model in terms of accuracy, a simulation performed on the same curvilinear railway track
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Figure 19. Bogie: roll angle ϕR
B .
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Figure 20. Bogie: yaw angle ψR
B .
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described in the Section 6.1 will be considered by way of example (for the data of the track,
see Table 2) [5,20,22].

The numerical parameters relative to the Matlab/Simulink model have been chosen starting
from the results obtained in the Section 6.1 (Table 10). In particular, it is equipped with the
contact model based on the reduced formulation (30). Similarly, the numerical parameters
relative to the Simpack Rail model are briefly summarised in Table 11. The comparison
between the models has been carried out on a machine provided with an Intel Xeon 2.66 GHz
and 8 GB RAM.
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Figure 21. Wheelset: lateral displacement of the centre of mass yR
W.
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Figure 22. Wheelset: roll angle ϕR
W.
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Among all the outputs evaluated by the models (kinematic variables, internal forces, contact
forces and contact areas), for the sake of simplicity only, the time histories of the following
quantities will be reported.

(1) The lateral displacement of the centre of mass, the roll angle and the yaw angle of the car
body (yR

CB, ϕR
CB, ψR

CB), of the front bogie (yR
B , ϕR

B , ψR
B ) and of the front wheelset of this

bogie (yR
W, ϕR

W, ψR
W) all expressed in the reference system ORxRyRzR.

(2) The longitudinal, lateral and vertical components of the resultant contact forces on the left
and right wheels of the considered wheelset (respectively, T xR

lw , Y R
lw, QR

lw and T xR
rw , Y R

rw,
QR

rw) always expressed in the system ORxRyRzR.

0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8
x 10

−4

time (s)

an
gl

e 
(r

ad
)

Figure 23. Wheelset: yaw angle ψR
W.
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Figure 24. Resultant contact force on the left wheel: longitudinal component T xR
lw .
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(3) The real contact areas on the left and right wheel surfaces (AwlC and AwrC) and on the left
and right rail surfaces (ArlC and ArrC) respectively expressed in the systems OWxWyWzw

and ORxRyRzR.

The kinematic variables relative to the car body are represented in Figures 15–17 while the
same variables relative to the bogie and to the wheelset are reported in Figures 18–23. The
Matlab/Simulink quantities are plotted in blue while the Simpack Rail quantities in red.

The analysis of the results shows, as regards the kinematic variables, a good agreement
between the Matlab/Simulink model and the Simpack Rail model. The components of the
resultant contact forces on the left and right wheels are reported in Figures 24–29 (in blue the
Matlab/Simulink quantities and in red the Simpack Rail quantities).
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Figure 25. Resultant contact force on the left wheel: lateral component Y R
lw.
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Figure 26. Resultant contact force on the left wheel: vertical component QR
lw.
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Figure 27. Resultant contact force on the right wheel: longitudinal component T xR
rw .
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Figure 28. Resultant contact force on the right wheel: lateral component Y R
rw.

The agreement between the models turns out to be good also in terms of resultant contact
forces. Finally, the real contact areas on the wheel and rail surfaces are represented. In order
to give a clear and effective description of the motion of the contact areas calculated by the
Matlab/Simulink model, a lateral section of the contact patches has been plotted on cylindrical
surfaces obtained from the wheel an rail profiles (generating profiles) and as long as the distance
travelled by the vehicle. Concerning the Simpack Rail model (equipped with a standard contact
model), the position of the contact points has been plotted. In Figures 30 and 31 are reported
the contact areas on the left and right wheel surfaces while in Figures 32 and 33 on the left
and right rail surfaces. The Matlab/Simulink quantities are in blue while the Simpack Rail
quantities in black.

As can be seen in the previous figures, during the curve the contact areas calculated by the
Matlab/Simulink model on the left wheel and rail surfaces are made up of two disjoint parts
(in other words, a multiple contact is present). On the other hand, also the Simpack Rail model
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Figure 29. Resultant contact force on the right wheel: vertical component QR
w.

Figure 30. Lateral section of contact area AwlC on the left wheel surface.

detects, during the curve, the presence of a second contact point on the left wheel and rail;
in particular the contact points are always contained within the different disjoint parts of the
contact areas estimated by the Matlab/Simulink model. From this point of view, there is a
good agreement between the models.

The proposed model depends on several parameters, for example, the factious stiff-
ness introduced in Equation (16), the shape and dimension of the FEM discretisation,
the form functions etc. The results presented in this section have been obtained with lin-
ear tetrahedral elements, that typically are rather stiff, and then lead to smaller contact
patches.
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Figure 31. Lateral section of contact area AwrC on the right wheel surface.

Figure 32. Lateral section of contact area ArlC on the left rail surface.

In conclusion it is useful to observe as the stability of the Matlab/Simulink model and the
quasi-total absence of numerical noise highlight the accuracy and the reliability of the new
contact model.

Finally, the total computation time Tg = 4h32m required from the whole model (multibody
model and the eight contact models) has been reported in Figure 34. The time Tg has been
compared with the total computation time Tc = 3h46m required from the eight contact models
(Table 5). The numerical results refer to the simulation considered in this paragraph (Tables 2
and 10).
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Figure 33. Lateral section of contact area ArrC on the right rail surface.

Figure 34. Total computation times required from the whole model T g and the contact models Tc.

In the analysed case, the time required from the eight contact models is approximately the
83% of the time required from the whole model.

7. Conclusions and further developments

In this work, the authors presented an innovative elastic wheel–rail contact model with the aim
of achieving a better integration between multibody and differential modelling. Owing to the
high computational load, this kind of integration is almost absent in the literature, especially in
the railway field; however, it is very important because only the differential modelling allows
an accurate analysis of the contact phenomena while the multibody modelling is the standard
in the study of the railway dynamics.
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The contact model has been inserted within the multibody model of a benchmark railway
vehicle (the Manchester BenchmarkVehicle) in order to obtain a complete model of the wagon.
The whole model has been implemented in the Matlab/Simulink environment.

The multibody model of the same vehicle (this time equipped with a standard contact
model based on the semi-elastic approach) has been then implemented also in Simpack Rail,
a commercial multibody software for railway vehicles widely tested and validated.

Finally, numerical simulations of the vehicle dynamics have been carried out on many
different railway tracks. The comparison between the results obtained by the Matlab/Simulink
and the Simpack Rail models has allowed an accurate and reliable validation of the new contact
model.

The performances of the Matlab model turned out to be good both in terms of output
accuracy (kinematic variables, contact forces and contact areas) and in terms of numerical
efficiency (performances of the numerical algorithms and time consumption) and satisfy all
the specifics reported in the introduction.

As regards the further developments, many optimisations of the differential contact model
are scheduled for the future. The improvements will regard especially the FEM techniques
used to discretise the contact problem. In particular, new mesh generation algorithms and new
nonlinear shape functions will be examined. These techniques assure a better accuracy in the
description of the local contact phenomena but increase the dimension of the discrete problem
and consequently the computational load and the memory consumption.

In order to reduce the computation time, the contact model will be implemented in program-
ming environments like C/C++ and FORTRAN by means of Matlab S function; moreover,
new Matlab toolboxes regarding the distributed computing will be employed.

The future developments will concern also the online implementation of the contact model
within commercial multibody softwares such as Simpack Rail. To this end, suitable user
routine will be used. A cooperation is currently in progress with INTEC GmbH, the company
that produces the software Simpack Rail, in order to develop innovative toolboxes specifically
designed for the wheel–rail contact.

Finally, the contact model described in this work will be employed inside new wear models
with the aim of predicting the evolution of the worn wheel and rail profiles.
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