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a b s t r a c t

The multibody simulation of railway dynamics needs a reliable and efficient method to properly describe
the contact between wheel and rail.

In this work innovative methods to evaluate the position of contact points are presented. The aim is
to develop a method which can be implemented on-line, assuring a calculation time consistent with
real-time calculations of multibody dynamics. At the same time it has to be very accurate, to properly
predict the local forces at contact in order to describe even the wear of contact surfaces.

In this work the authors present two different approaches to find stationary points during a multibody
simulation. In the former the conditions to define a local minima are wrote in an analytical way. This
makes possible to combine the conditions in order to reduce the analytic problem’s dimension and then
to solve numerically the problem with a low computational burden. The latter approach calculates the

location of local minima using a method based on neural networks.

The paper will cover the details of the proposed methods and the performances, in terms of computation
time and accuracy, will be compared with those of the conventional algorithms used by commercial
softwares, showing their reliability and low computational burden. Moreover, an implementation of the
proposed models in a multibody simulator will be presented, in order to show their suitability for this
application.
. Introduction

Numerical simulations of system dynamics are today a standard
n the design of railway vehicles. Their typical applications are the
uspension kinematics, handling performance and ride comfort as
ell as the generation of load data for lifetime prediction. One of the

ey points in this type of simulations is the model of the wheel–rail
nteraction, which means the definition of the forces exchanged
etween the wheels and the rail in the contact points. The direction
nd the magnitude of the contact forces depend on the number
nd the location of the contact points. The procedure that allows to
efine the geometry of the contact has then a significant effect on
he reliability of the simulation. The aim of the work is to develop
method for the evaluation of the positions of all contact points

etween wheel and rail, which can be implemented in a multibody
imulator of the railway vehicle dynamics. Different solutions of
his problem are present in the literature and are implemented in

ommercial multibody softwares (MSC Adams, Simpack, etc.)

In multibody analysis of railway dynamics there are two dif-
erent approaches in simulation of wheel–rail contact: the rigid
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contact formulation and the semi-elastic contact description. In the
rigid approach the contact between the bodies is guaranteed by the
constraint equations [1–4]. In the formulations based on the semi-
elastic approach, the wheel has six degrees of freedom with respect
to the rail, and the normal contact forces are defined as a function
of the indentation using Hertz’s contact theory or using assumed
stiffness and damping coefficients [5,6]. This formulation is known
as semi-elastic because it allows compenetration of contact bodies,
but it is not fully elastic because deformations in contact bodies are
not considered. In literature several methods are present for the
evaluation of contact points, based on the minimization of the dis-
tance or difference between wheel surface and rail surface. Often
substantial hypothesis are applied in order to simplify the geometry
of the problem [7,8].

The methods present in the literature and their performances
have some limits that reduce their suitability in a reliable and effi-
cient simulation of the dynamics of a railway vehicle, because they
are often based on arbitrary assumptions, such as not considering
all the degrees of freedom of the wheel, or assigning an arbitrary
bound to the number of contact points, or introducing geometric

hypotheses on the position of the contact points.

The problem of the individuation of contact points, in a semi-
elastic formulation, could be generally represented as the research
of the local minima of a real function. The methods available in lit-
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is defined; its unitary vectors are calculated as follows:

ib′ = ib = d�/ds∥∥d�/ds
∥∥ ; jb′ = kf × ib′ ; kb′ = ib′ × jb′ (1)
54 S. Falomi et al. / W

rature to solve this general problem can be classified in two main
roups: methods based on the value of the function and meth-
ds based on the derivatives of the function. In some preceding
orks the authors presented a method [9,10] in which the contact
oints are searched minimizing the difference between the wheel
nd rail surfaces by means of the Simplex method. These proce-
ures do not introduce additional geometric hypotheses and allow
n efficient management of the multiple contacts (up to two con-
act points for wheel). The challenge of this preceding study was
he realization of an efficient multibody model, running in real-
ime conditions; however the developed solutions did not allow a
irect implementation of the research procedure in the multibody
odel. In other words, the developed solutions were used to gen-

rate look-up tables to be used during the simulation of the vehicle
ynamics.

The other sort of methods are those based on derivatives,
hich apply the analytic definition of minimizer: for a real val-
ed function, a point is a minimum when all the first order partial
erivatives vanish, and the Hessian matrix, which contains the sec-
nd order partial derivatives, is positive definite. This approach
ill be the basis of the innovative methods presented in this
aper.

In this work the authors will propose two innovative approaches
o determine the wheel–rail contact points. In the former the
onditions to define a local minima are written in an analytical
ay. This makes possible to combine the conditions in order to

educe the analytic problem’s dimension and then to solve numer-
cally the problem with a low computational burden; that is why
his is referred to as semi-analytic approach. The semi-analytic
pproach can be considered significantly reliable because consid-
rs all degrees of freedom of the wheel with respect to the rail,
t does not impose any arbitrary bound to the number of contact
oints and it does not introduce additional geometric hypotheses
n the position of the contact points. Moreover the management of
ultiple contact points is easy and efficient.
Semi-analytic procedures are more reliable and faster than

umerical procedures, so they are more efficient in the creation of
ook-up tables; the weak spot of these procedures is that the com-
utation time is not yet as small as real time applications needs.
he on-line implementation is slower than the off-line implemen-
ation, because the calculation time is significantly higher than the
ime required for the reading of look-up tables.

An application of neural networks to the wheel–rail contact
roblem is then proposed in this paper in order to further reduce the
ime of evaluation of contact points. The objective is to approximate
he unknown function that relates the relative position between the
heel and the rail to the contact points. This can be done by set-

ing an appropriate value to several weight parameters, which are
ncluded in the neural network structure, using a process known
s training, which requires a set of informations obtained by mea-
urements or reliable methods. In the proposed implementation
he sets of data for the training were obtained by the aforemen-
ioned semi-analytic method. The advantages of neural network

ethod are mainly related to the computational performance: no
terative calculations are needed and the analytical form is very
imple. The main advantages of the semi-analytic methods are
aintained: there is no upper limit to the number of minima (train-

ng with semi-analytical methods), but the neural network based
mplementation requires lower computational time, comparable

ith the time required for the reading of look-up tables, and then
re suitable for an on-line real time implementation. The weak
pot of neural networks is that the process of training requires

long calculation time, and it must be done again if the profile

f wheel or rail has to be changed. Anyway this process can be
erformed once for each wheel/rail profile pair and can be easily
utomated.
Fig. 1. Definition of the rail track, base and auxiliary reference systems.

2. Track generation and definition of the reference systems

The relative position between wheel and rail is described by
means of parameters which relates the relative position of certain
coordinate systems defined in this section. First the fixed global
reference system Of xf yf zf (Fig. 1) is defined: the xf axis is tangent
to the centerline in the point Of and the zf axis is normal to the plane
of the rails.

With respect to this fixed global system the railway track can be
described by means of a three-dimensional curve �(s).

A second reference system (referred as auxiliary reference sys-
tem) Ob xb yb zb (Figs. 1 and 2) is necessary for the problem
formulation. It is defined on the rails but follows the wheelset
during the simulation.

The xb axis is tangent to the centerline in the point Ob and the
zb axis normal to the plane of the rails.

In order to define the axes yb and zb another reference system Ob′
xb′ yb′ zb′ (named secondary reference system and shown in Fig. 1)
Fig. 2. Track auxiliary reference system and wheelset local reference systems.
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the description of the wheel as a revolution surface. Solutions
of this equation’s set will be defined with a set of 4 coordinates
(xC

ri
, yC

ri
, xC

bi
, yC

bi
), while p

-
b,C
ri

= p
-

b
r
(xC

ri
, yC

ri
) and p

-
b,C
bi

= p
-

b
b
(xC

bi
, yC

bi
) will
Fig. 3. Generative function of wheelset.

The unitary vectors of the auxiliary system can then be defined
s follows:

ib jb kb ] = [ ib′ jb′ kb′ ]Rcant (2)

here the rotation matrix Rcant is defined as a function of the cant
ngle ˇc:

cant = Rx(ˇc) =

⎡
⎣

1 0 0

0 cos(ˇc) − sin(ˇc)

0 sin(ˇc) cos(ˇc)

⎤
⎦ (3)

Finally the local wheelset reference system Or xr yr zr is defined.
he yr axis is coincident with the rotation axis of the wheels and is
igidly connected to the axle (except for the rotation around this
xis). The xr axis is contained in the plane xb yb and the origin
oincides with the center of mass or of the wheelset.

The rotation matrix that links the local system with the auxiliary
ne is defined as:

R2] = [Rz(˛)] · [Rx(ˇ)] (4)

here ˛ and ˇ are respectively the yaw and roll angles of the axle
ith respect to the track.

In the local system the axle (and therefore the wheels) can be
escribed by means of a revolution surface, whose generative func-
ion r(yr) is known and is schematically sketched in Fig. 3.

The following notation will be used in the next sections of the
aper: the expression ay

x means that the variable a is located in the
urface x and expressed in the reference system y. In particular, r
ill denote the axle surface and the local reference system, while b
ill denote the rail surface and the auxiliary reference system.

The position of a generic point of the axle in the local reference
rame has consequently the following analytic expression:

-
r
r
(xr, yr) = ( xr yr −

√
r(yr)2 − x2

r
)
T

(5)

hile the position of the same in point in the auxiliary reference
ystem is:

-
b
r
(xr, yr) = o-

b
r + [R2] · p

-
r
r
(xr, yr) (6)

The position of the wheelset center of mass in the auxiliary
eference system and the rotation matrix R2 describe the relative

isplacement between the wheelset and the rail, that can be rep-
esented by means of the displacements Gy and Gz of the center of
ass or with respect to the yb and zb directions respectively and

he angles ˛ and ˇ previously defined.
Fig. 4. Generative function of rail.

Similarly the rails can be described in the auxiliary system by
means of an extrusion surface. The generative function, indicated
with b(yb) is known and is sketched in Fig. 4.

The position of a generic point of the rail surface in the auxiliary
system is:

p
-

b
b
(xb, yb) = ( xb yb b(yb) )T (7)

For both the surfaces the normal unitary vectors (outgoing for
convention) can be defined: n-

r
r(p

-
r
r
) is the normal vector to the wheel

surface, while: n-
b
b
(p
-

b
b
) is the normal vector to the rail surface.

3. Semi-analytic methods

3.1. DIST method

As mentioned in the introduction, in each contact point the dis-
tance between the wheel surface and the rail surface assumes a
local minimum; this can be defined imposing the following condi-
tions (Fig. 5):

• The unitary normal vectors of wheel and rail surface have to be
parallel:

n-
b
b(p

-
b
b
) ∧ n-

b
r (p

-
b
r
) = 0 (8)

• The normal vectors has to be parallel to the distance d-b = p
-

b
r

− p
-

b
b

between the points of wheel and rail surfaces in which they are
applied:

n-
b
b(p

-
b
b
) ∧ d-b = 0 (9)

Only four of the six equations above defined are independent,
due to the description of the rail as an extrusion surface and
Fig. 5. DIST method: definition of distance between the contact surfaces.
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e the contact points respectively on wheel and rail surfaces. There-
ore we need to solve a four dimensional problem. The numerical
olution of this problem would have a very high computational bur-
en, but, as hinted in the introduction, it is possible to reduce the
roblem’s dimension by combining the four equations defined.

In particular the second component of the vectorial Eq. (8) can
e written as:

13

√
r(yr)2 − x2

r = r11xr − r12r(yr)r′(yr) (10)

here rij is the (i,j) component of the rotation matrix R2 and r′(yr)
s the derivative of the function r(yr).

Squaring both members of Eq. (10) it is possible to obtain xr

s a function of yr. To make equations more readable, Eq. (10) is
ewritten in the form:√

B2 − x2
r = Cxr − D (11)

Because of the second power of xr in Eq. (10), two different
olutions xr1,2 will be obtained for each value of yr:

r1,2(yr) = CD ±
√

C2D2 − (C2 + A2)(D2 − A2B2)

C2 + A2
(12)

It is important to remember that squaring both members of
q. (10) to obtain xr1,2(yr) lead to the introduction of additional
olutions, which are to be excluded because they do not represent
ffective contact points. So checks on solutions will be performed
t the end of this section.

The first component of Eq. (8) can be manipulated obtaining the
quation:

′
1,2(yb) = r21xr1,2(yr) − r22r(yr)r

′
(yr) − r23

√
r(yr)2 − xr1,2(yr)2

r32r(yr)r ′ (yr) + r33

√
r(yr)2 − xr1,2(yr)2

(13)

As it is possible to see, two different values of b′(yb) can be
alculated for each value of yr.

In railway applications, due to the rail geometry, the function
′(yb) is invertible, then we can calculate yb1,2(yr).

Finally the second component of Eq. (9) can be written as:

b1,2(yr) = r-1 · p
-

r
r
(xr1,2(yr), yr) (14)

here r1 is the first column of matrix R2.
With this procedure, we obtained an expression of xr, yb and

b as a function of yr. By substituting these expressions in the first
omponent of Eq. (9), it is possible to obtain two scalar equations in
r (N.B. two equations are obtained because the expressions of xr, yb
nd xb as a function of yr are not unique, but we have 2 expressions
or each variable: xr1,2(yr), yb1,2(yr) and xb1,2(yr)). These equations
re in the form:

1,2(yr) = 0 (15)

hich can be easily solved numerically, because finding the zeros of
monodimensional function is a well-known problem in numerical
nalysis. The solutions of these equations are the coordinates which
efine the contact points.

As previously stated, checks on solutions are needed to avoid
dditional incorrect solutions due to the solving of Eqs. (8) and (9).
n particular, the following conditions need to be verified for the
th solution:
xC
ri

has to be a real number√
r(yC

ri
)
2 − xC2

ri
has to be a real number

(xC
ri

, rC
ri

) need to be an effective solution of Eq. (10)
1 (2011) 453–461

Moreover, a generic solution can be an effective contact point
only if the contact surfaces are penetrating there, so a check on
indentation is needed:

n-
b
b(p

-
b,C
b

) · d-
C
b ≤ 0 (16)

An additional check on curvatures of contact surfaces is needed:
the generic solution has to verify the following conditions:

kC
1bi

+ kC
1ri

> 0

kC
2bi

+ kC
2ri

> 0
(17)

where the subscript 1 refers to the longitudinal curvature while
the subscript 2 refers to the lateral curvature. Curvature is positive
when the surface is convex [11].

It is important to stress that the position of contact points
depends on 4 variables, which are physically expressed by the
parameters that define the relative position between wheel and
rail; these parameters are gathered in vector �̃

-
= [ ˛ ˇ Gy Gz ]T .

3.2. DIFF method

The DIFF method is based on the idea that the contact points
minimize the difference D(xri, yri):

∇D(xr, yr) = 0- (18)

which is the difference between the wheel surface and the rail sur-
face in the direction identified by the unitary vector kb, defined as
the third unitary vector of the auxiliary reference frame. This means
that the DIFF method finds the local minima of the vertical compo-
nent of the distance between wheel and rail, while the DIST method,
described in the previous chapter, searches the local minima of the
distance between wheel and rail, considering all the three com-
ponents of the distance vector. This means that the DIFF method
is an approximation of the DIST method, in which only the vertical
component is considered. In the next paragraphs the consequences
of this approximation will be described. The function D(xri, yri) is
defined as:

D(xr, yr) = (p
-

b
r
(xr, yr) − p

-
b
b
(xb

r , yb
r )) · k-b (19)

Minimization of the function D(xC
ri

, yC
ri

) requires that the gradient
of D vanishes and that the Hessian matrix HD(xC

ri
, yC

ri
) is positively

defined.
The function D, applying its definition, is expressed as:

D(xr, yr) = zb
r (xr, yr) − b(yb

r (xr, yr))

= Gz + r-3 · p
-

r
r
(xr, yr) − b(Gy + r-2 · p

-
r
r
(xr, yr)) (20)

By imposing the vanishing of the two partial derivatives of D,
two scalar equations are obtained. Combining them it is possible
to express xr as a function of yr. Substituting this expression on the
other equation lead to a simple scalar equation in the form:

F(yr) = 0 (21)

which can be easily solved numerically.
A generic solution of Eq. (21) is an effective contact point only if

the contact surfaces are penetrating there, so a check on indentation
is needed:

n-
b
b(p

-
b,C
b

) · d-
C
b ≤ 0 (22)

It is very important to notice that in Eq. (20), which gives the
complete expression of D(xri, yri), the parameter Gz is an additive

constant. So, by deriving this expression with respect to xr and yr,
this term will vanish. This means that the equations obtained by
the vanishing of partial derivatives depend on ˛, ˇ and Gy, but they
do not depend on Gz. So the position of local minima, which are
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Table 1
Configuration variables, variability range.

Variable Min value Max value Step

˛ [rad] 0 �/180 �/14,400
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ˇ [rad] −�/240 �/240 �/19,200
Gy [mm] −10 10 0.125

otential contact points, depends only on 3 variables, gathered in
ector �

-
= [ ˛ ˇ Gy ]T .

As it is stated before, the DIFF method represents an approxima-
ion of the DIST method. As we can see, this approximation leads
o the fact that the position of local minima depends only on 3
ariables, gathered in vector �

-
, instead of the 4 variables in vector

-
.

This means that DIFF method allows the calculation of local min-
ma with a lower computational burden, if compared with the DIST

ethod. However it is important to understand how this approxi-
ation affects the results in terms of the position of local minima. A

omparison was conducted considering 2099601 different relative
ositions between wheel and rail, described in Table 1.

The comparison highlighted that in some configurations, the
IFF method led to an unacceptable error in the evaluation of the
osition of a local minimum of the distance between contact sur-
aces. This problem can be easily explained considering that when
he contact point is close on the wheel flange, the angle between
he normal vectors to contact surfaces and the vertical direction
s quite large (up to 70◦). Due to this high contact angle, the dif-
erence between normal distance (analyzed in the DIST method)
nd vertical distance (analyzed in the DIFF method) becomes par-
icularly considerable, thus leading to an error in the output of the
IFF method. However the error in the position of a local minimum
as higher than 2 mm in less than 0.01% of the configurations. This
odest error is acceptable if we consider the lower computational

urden of this method. That is why the DIFF method is considered
reliable method, and it is often considered as a benchmark in our

nvestigations.

. Neural networks

.1. Theoretical aspects

In the preceding section we described two different determinis-
ic methods to solve the wheel/rail contact problem; these methods
ave excellent results in terms of precision, but the computa-
ion times, even if far lower than all the numerical procedures
ested by the authors, were significantly higher than the reading
f look-up tables. The implementation of a model based on neu-
al network was developed in order to find a faster algorithm, that
ould be implemented on-line, assuring low computational time
ithout the need to store in memory large look-up tables. The semi-

nalytical procedures, because of their superior performances with
espect to the numerical procedures, will be used to generate the
eference data needed to define the Neural Networks model.

The identification of a function using neural networks requires
hree steps. The first step is the collection of reference data; each
atum is a vector that contains an allowed input vector and the
orresponding desired output vector. Then the user has to choose
he network’s architecture (organization of neurons in the network
nd definition of the activation function for each neuron). Finally
he network has to be trained: reference data are submitted to the
etwork and the values of parameters are updated in an iterative

rocess in order to minimize the distance between the network’s
utput and the desired output. The distance can be defined in sev-
ral manners; we decided to use as a measure of the distance the
ean square error (mse).
1 (2011) 453–461 457

The chosen architecture is a multilayer perceptron, using in the
training process the Levenberg–Marquardt algorithm.

In the previous sections two different semi-analytic procedures
has been focused: the DIST method and the DIFF method. Con-
cerning their precision in the location of the contact points, these
methods can be considered equivalent (as will be shown in the
following section), then both of them could be used to train the
networks.

Anyway the DIFF method has been chosen because of its simpler
structure.

In the wheel–rail contact problem the input is the relative posi-
tion between wheel and rail, described by the displacement vector
and the rotation matrix R2, while the output is the position of all
contact points.

Because of the geometry of the problem, there are two parame-
ters that do not affect the position of the contact points: the rotation
of the axle about its axis and its translation in the track direction.
The other parameters, which values affect the position of contact
points, can be gathered in the vector �̃

-
.

The substantial difference between the previously described
analytic methods is that while in the DIST the value of Gz is needed
for the localization of the contact points, in the DIFF method this
parameter is used only to check the indentation, in order to deter-
mine if a local minimum is an effective contact point.

If the DIFF method is used as reference for the training of the
neural network, the function that has to be identified by the net-
work depends on the parameters contained in the vector �

-
. A neural

network based on the DIFF method will have three inputs, while if
it was based on the DIST method it would have four inputs. In order
to obtain a simpler structure of the network and a higher efficiency
the DIFF method have then be chosen as reference for the definition
and the training of the network.

4.2. Implementation

4.2.1. Classification of the configurations on the basis of the
number of outputs

The aim of the presented work is to create a neural network
that fits properly the unknown function that relates the position of
all local minima to the relative position between wheel and rail. A
standard neural network has a fixed number of outputs, defined by
the user. The function that the network has to fit in this particu-
lar application has a variable number of outputs, depending on the
configuration. The number of outputs is the product between the
number of local minima (which depends on the configuration) and
the number of coordinates used to define the position of each local
minimum (usually four: (xM

rk
, yM

rk
, xM

bk
, yM

bk
)). Firstly, the classification

is needed, that evaluates the number of local minima for the exam-
ined configuration; then L neural networks are created, where L is
the maximum number of local minima that can be obtained for all
the allowed configurations. Each network has 4 × k outputs, with
k = 1, . . ., L. The classification selects the neural network that has to
be applied: when the classification estimates that in a configura-
tion there are k local minima, the neural network with the proper
number of output is selected.

In the presented application the ranges in the space of con-
figurations with 1, 2, . . ., L local minima were directly detected.
Figs. 6 and 7 show the results obtained using the wheel profiles
ORE S1002 and rail profile UIC60 with laying angle ˛p 1/40; the
first one is obtained with ˛ = 0, while the second is obtained with
˛ = �/180 rad. The no filled area represents the range in which only
one local minimum is present, while the light gray identify the con-

figurations with 2 minima, and the dark gray area those with 3
minima. In Fig. 6 we can see that for ˛ = 0 only configurations with 1
or 2 local minima are found, while Fig. 7 shows that for ˛ = �/180 rad
there exists a very narrow region (enclosed in the ellipse on the
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Fig. 6. Number of local minima (˛p = 1/40, ˛ = 0).

eft) in which 3 local minima are found. Straight lines represent the
pproximation of regions with different number of local minima
ith planes. As it can be seen the approximation is good for ˛ = 0,
hile when ˛ = �/180 there is a small region in which the classifica-

ion fails, that is enclosed for clarity in a dashed rectangle in Fig. 7.
he same considerations are valid when the laying angle is 1/20.
or the sake of brevity, the corresponding figures are not included
n this paper.

It can be observed from Figs. 6 and 7 that the dependence on the
ngle ˛ is weak (if ˛ varies from 0 to �/180 rad = 1◦), so the partition
n domains can be performed in a 2D domain, with dependence on ˇ
nd Gy. It can be furthermore noted that the domains can be simply
eparated, with a small error, using straight lines.

It is important to clarify that we analyzed the dependence on ˛
onsidering a range from 0◦ to 1◦; in this range we found a weak
ependence on ˛; however, if ˛ is bigger (about 2◦ or 3◦), the depen-
ence on ˛ is no more negligible, as it is showed in [12]. In spite
f those results, we decided not to consider the dependence on ˛
ecause in our simulations ˛ is almost always less than 1◦.

In order to evaluate the accuracy of the classification, the
ercentage error on classification Ec was calculated on a set of
ore than 2 millions of different configurations (those reported

n Table 1), choosing the DIFF method as a reference; every time
hat the classification procedure gave in output a number of min-
ma which was different from that calculated by the DIFF method, a
umber of error equal to the difference of these two numbers were
efined.

For the analyzed configurations, the error Ec is 0.91% for
p = 1/40, and it is 0.85% when ˛p = 1/20. In both cases the total

rror is lower than 1%, then the approximated classification can be
onsidered sufficiently accurate.

Once the classification of the configurations on the basis of the
umber of outputs has been realized, a proper neural network for
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the localization of the contact points has to be defined for each case.
Authors found that for a laying angle ˛p = 1/40 there can be up to

3 contact points; however configurations with 3 contact points are
quite rare, so in the classification the configurations were divided
in 2 groups, with 1 and 2 contact points respectively. Accord-
ing to this classification, two neural networks were then defined.
For ˛p = 1/20, the configurations with 4 local contact points were
neglected, and the classification procedure divides the configura-
tions in three groups corresponding to 1, 2 and 3 contact points; in
this case three different neural networks were then defined.

4.2.2. Definition of neural networks
The performances of a neural network depends on its architec-

ture; for the examined problem double-layer networks have been
chosen, with hyperbolic tangent activation functions in the hidden
layer and linear activation functions in the output layer.

The performances of a network are evaluated analyzing the
errors on the test set. For the kth network which outputs are the
coordinates of k contact points, for each configuration, an error is
defined when the distance between the contact point locations cal-
culated by the DIFF method and the contact points calculated by
neural network is more than a specified tolerance, which in our
application was set to 1 mm. The percentage error for the kth net-
work on a test set which contains Q t

k
configurations is then given

by the ratio between the number of errors identified by the above
mentioned algorithm and the total number of contact points calcu-
lated for the analyzed configurations:

Ek =
∑Qk

t
j=1ej

k · Q k
t

(23)

where ej is the number of errors on the jth configuration.
From the informations on the number of contact points for each

configuration and the errors of NN the total error of the proposed
algorithm can be evaluated:

ENN =
∑L

k=1Ek · k · Ak∑L
k=1k · Ak

(24)

where L is the maximum number of contact points per configura-
tion (L = 3 if ˛p = 1/40, L = 4 if ˛p = 1/20), Ek the percentage error for
the kth network and Ak the available data for the kth net.

In order to simplify the training, the symmetry on ˛ has been
considered: if xM

bi
, yM

bi
, xM

ri
, yM

ri
is a local minimum for the configu-

ration [ ˛ ˇ Gy ]T , thus −xM
bi

, yM
bi

, −xM
ri

, yM
ri

is a local minimum for

the configuration [ ˛ ˇ Gy ]T .
Networks were trained using the informations on position

of minima for 2099601 different wheel–rail relative positions,
obtained varying ˛, ˇ and Gy in ranges summarized in Table 1, for
two different values of laying angle ˛p = 1/40 and ˛p = 1/20).

The output of the network is the position of the contact points
in the rail surface. Moreover, because the coordinate zb can be
obtained from the yb according to the relation zb = b(yb), the net-
work outputs are the coordinates xb, yb for each contact point.

The Levenberg–Marquardt algorithm has been chosen for the
training, using as Performance Function the mean square error on
training set data. A limit of 150 epochs for the training process
has been set, imposing that it would be stopped earlier if the mse
on validation set would increase for 5 consecutive epochs (early
stopping).

4.2.3. Training

As previously discussed, for a laying angle ˛p = 1/40 two net-

works are necessary; the first gives 2 outputs (coordinates of a
single point), while the second gives 4 outputs (coordinates of 2
points). For ˛p = 1/40 three networks are needed, the first gives 2
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Table 2
Global error (reference = GRID; tolerance = 2 mm).

Methods ˛p = 1/40 ˛p = 1/20

S–G 3.6% 7.1%
CS–G 3.2% 5.9%
d–G 0.7% 1.5%

model analyzes the dynamic of a railway vehicle, including a con-
tact model based on the Kalker linear theory with saturation [14]
(no Fastsim algorithm is considered). The vehicle is composed of

Table 3
Computation times.

Method Time [s]

GRID 9.3
CS 0.26
S 0.11
S. Falomi et al. / W

utputs (coordinates of a single point), the second gives 4 outputs
coordinates of 2 points), while the third gives 6 outputs (coordi-
ates of three points). As it is stated in the previous chapter, data
bout the position of local minima for 20099601 configurations
ere available. In order to reduce the computational load, only
subset of the reference configurations was used in the training
rocess.

The percentage error Ek for each network vary from 0.3% to 4%.
rom the informations on the number of contact points for each
onfiguration and the errors of each network, the total error of the
roposed algorithm can be evaluated.

For ˛p = 1/40, the calculated global percentage error is
NN = 2.12% while for ˛p = 1/20 the error is ENN = 2.41%.

. Numerical results

In order to analyze the performance of the developed methods
or the identification of the wheel/rail contact points, they were
mplemented within the simulation of the dynamics of a railway
ehicle. The objective of this analysis is to check the reliability of
he proposed models and to evaluate their numerical efficiency.
ecause of the little difference in results between semi-analytic
ethods and neural networks, we decided to show only the results

f one method. So, the results of the simulations performed with
he neural network method implemented on-line in the developed

odel were compared with those obtained with a model realized
ith a commercial multibody software (SIMPACK 8.902).

.1. The performances of the new methods

In this section the performances of the new procedures for the
etection of the contact points will be compared with those of other
ethods previously developed [9,10].
All methods except DIST are based on the minimization of the

urface D(xr, yr); in this problem, the position of contact points does
ot depend on the parameter Gz. Therefore, the configurations on
hich the methods have been compared are obtained varying only

he parameters Gy, ˛ and ˇ.
Nevertheless, in the comparison between DIST and DIFF method

he value of Gz is necessary; its value has been chosen, once
he value of the other parameters was set, in order to have, in
orrespondence of the contact points, normal indentations pn phys-
cally acceptable. In this case the bound pn ≤ pl = 0.33 mm has been
efined, the limit value pl has been calculated through the Hertz
heory assuming a maximum normal load of 105 N applied on a
ingle contact point.

In order to evaluate the performances of the different algo-
ithms, a procedure was defined in which every single algorithm
as tested against a reference procedure. We chosen as a refer-

nce the GRID (G) method [9,10] that requires the tabulation of the
unction and find eventual local minima by the comparison of the
abulated values. This method has a very low efficiency because it
equires the calculation of the value of the function in a great num-
er of points, but is very reliable. An error is computed every time
he tested procedure fails to find a contact point defined by the
eference procedure (this means that the tested method did not
nd this point, or calculated its coordinates with an error higher
han a predefined tolerance), and every time the tested method
alculates a contact point which was not found by the reference
rocedure (again within a predefined tolerance). The tested proce-
ures are the multidimensional numerical iterative ones, such as

implex (S) and Compass Search (CS), the semi-analytic methods
uch as DIST (d) and DIFF (D) and the Neural Network model (NN).
able 2 summarizes the results of the comparison. Tolerance was
et to 2 mm. The acronyms in the first column refer to those already
D–G 1.1% 2.1%
NN–G 1.4% 2.6%

defined: the acronym on the left refers to the tested method, while
the acronym on the right refers to the reference method, which is
always the GRID method.

First, it can be observed that the semi-analytic methods are
those with the lower error percentage. Also neural networks are
characterized by good performances, while the numerical proce-
dures are those with the worst precision, which is greatly affected
by laying angle. But precision is not the only parameter to mea-
sure the performances of these methods: the computation times
has to be compared in order to understand if these procedures
can be implemented in real time procedures. Table 3 summarizes
the mean time required to evaluate the contact points in a generic
relative wheel–rail configurations. All the times in question have
been obtained with a processor Intel Pentium 4 (3.0 GHz). Table 3
includes also the time required for the reading of look-up tables
(referred to as LUT), in order to better appreciate the time perfor-
mances achieved for the developed methods.

The described results allow to conclude that:

• the performances of the DIST (d) and the DIFF (D) methods are
similar in terms of precision and computation times;

• the semi-analytic procedures are reliable, and more accurate
than the procedures based on the numerical iterative algorithms,
which furthermore require an higher computational time;

• the Neural Network model has a proper accuracy, and implies a
calculation time that is much smaller than the time required by
all other procedures.

The computation time required by the Neural Network model is
almost equal to the time required to read look-up tables, so it can
be implemented on-line obtaining acceptable calculation times in
dynamic analysis. On the other hand it is necessary to train new
networks every time we need to modify the profile of one or both
the contact surfaces.

5.2. Dynamic simulations

The railway vehicle chosen for the dynamic simulations is the
Manchester Wagon whose physical and geometric characteristics
are available in literature [9,10,13].

The multibody 3D model of the Manchester Wagon, has been
implemented in the MATLAB® computation environment. The
d 0.0011
D 0.0006
NN 0.0003
LUT 0.0003
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Fig. 10. Forces acting on the first wheelset: left wheel: lateral force (Y).

Table 4
Average computation time for a single integration step.

Model Time [ms]
Fig. 8. Lateral displacement (y) of the center of mass of car body.

he car body, two bogies, four axles, primary and secondary sus-
ensions (modeled by three-dimensional nonlinear force elements

ike bushings, dampers and bumpstops). The wheel profile is the
RE S1002 while the rail profile is the UIC 60, with a laying angle
p = 1/40. The wheel–rail friction coefficient is supposed to be 0.4.

The simulation was performed on a S-shaped curve of radius
= 190 m with 4-m-long intermediate tangent track, without irreg-
larities nor superelevation at a velocity of 40 km/h: this scenery
eproduces the typical manoeuvre of the train on a railway switch.
ach bend is 30 m long (the first is on the right) and the S-shaped
urve is preceded by a straight track 50 m long and followed by a
traight track 100 m long.

In the following figures, we present a comparison between some
esults obtained with the SIMPACK 8.902model and the MATLAB®

odel: for the sake of brevity, we choose to report a selection of
urves relating only to some of the most interesting quantities for
he running behavior of a train. In every figure, the continuous
ray line refers to results obtained with SIMPACK, while the dashed
lack one refers to MATLAB® results.

It is possible to observe that there is a really good accor-
ance between the two models for the kinematic measurement
see Fig. 8), while Figs. 9 and 10 show some transient differences
etween the two models. These differences can be explained by
he different procedures used by the two models to calculate the
ontact forces.

The presented results confirm the satisfactory performances in
erms of precision of the developed procedures. The multibody

odel in which these procedures are included give an accurate pre-
iction of the vehicle dynamics. Moreover the comparison in terms
f the computational time between the SIMPACK model and the
ATLAB® model, shows that the model developed by the authors
s faster than the commercial one: Table 4 shows the average com-
utation time with a processor Intel Pentium 4 (3.0 GHz) for a
ingle integration step, using an Ode 5 (Dormand–Prince) integra-
ion algorithm (Explicit, Fixed Step, h = 0.5 ms).

Fig. 9. Forces acting on the first wheelset: left wheel: vertical force (Q).
SIMPACK 8.902 14.2
MATLAB® 6.2

The multibody model developed by authors has satisfactory per-
formances in terms of precision (Figs. 8–10), but requires less than
a half the computation time required by the SIMPACK model.

6. Conclusions

In this work two innovative approaches for the detection of the
wheel–rail contact points are presented.

The first is the semi-analytic approach, that considers the wheel
and the rail as two mathematical surfaces whose analytic expres-
sion is known. This approach has been applied to two different
definition of contact points, leading to the development of two
different procedures: the first is based on the idea that the con-
tact points minimize the distance between the surfaces and is
equivalent to solve an algebraic 4D-system; the second instead
is based on the idea that the contact points minimize the differ-
ence between the surfaces and is equivalent to solve an algebraic
2D-system. In both cases the original problem has been reduced
analytically to a simple mono dimensional problem that is then
solved numerically. Since the problem’s dimension is one, even
elementary non-iterative algorithms like the GRID algorithm (a
non-iterative method based on the evaluation of the function in the
points of a fixed grid and on the comparison between the obtained
results) have shown to be efficient and reliable.

The second approach consists in the application of a black box
model, based on neural networks. The aim of this approach is to
develop a model reliable as the semi-analytic methods, but requir-
ing a lower calculation time, consistent with real-time constraints
of multibody simulations.

The neural network algorithm is composed of a first part in
which, on the basis of the wheelset geometric configuration, the
number of contact points is defined. Then the location of the con-
tact points is calculated with feedforward neural networks. The
networks are trained using the results of semi-analytic procedures
based on the minimization of the surface defined as the difference
between the wheel surface and the rail surface.

Subsequently the performances of the new procedures have
been compared among them and with those of the methods present
in the literature. The GRID method and other procedures based on

numerical iterative algorithms (like the Compass Search algorithm
and the Simplex algorithm) have been considered. The comparison
has been carried out in terms of precision and computation times.
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The semi-analytic procedures (named DIST and DIFF methods)
ave similar performances in terms of precision and computation
imes; both of them are reliable and more accurate and faster than
he procedures based on the numerical iterative algorithms; thus
hey are more efficient in the creation of look-up tables. However
hese procedures are much slower than the reading of look up
ables, so the on-line implementation leads to higher calculation
imes than the off-line implementation.

The Neural Network model is a less accurate model (but the error
oes not noticeably affect the multibody simulation), but requires a
alculation time that is much smaller than the time required by all
ther procedures and comparable with the time necessary to read
ook-up tables, allowing on-line implementations also in real time.
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