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ABSTRACT 

 

The wheel – rail contact analysis plays a fundamental role in the multibody modeling of railway vehicles. A good 

contact model must provide an accurate description of the global and local contact phenomena (contact forces, position 

and shape of the contact patch, stress and strain) and a general handling of the multiple contact. The model has also to 

assure high numerical efficiency and a good compatibility with commercial multibody software (Simpack, Adams). 

In this work the authors intend to present an innovative elastic wheel – rail contact model that satisfies the previous 

specifics. The model considers the wheel and the rail as elastic deformable bodies and requires the numerical solution of 

the Navier’s elasticity equation. The contact between wheel and rail has been described by means of suitable analytical 

contact conditions. Subsequently the contact model has been inserted within the multibody model of a benchmark 

railway vehicle (the Manchester Wagon) in order to obtain a complete model of the wagon. The whole model has been 

implemented in the Matlab/Simulink environment. Finally numerical simulations of the vehicle dynamics have been 

carried out on many different railway tracks with the aim of evaluating the performance of the model.  

The multibody model of the same vehicle (this time equipped with a standard contact model) has been then 

implemented also in Simpack Rail. The comparison between the results obtained by the Matlab model and those 

obtained by the Simpack model has allowed an accurate and reliable validation of the new contact model. 

In conclusion the main purpose of the authors is to achieve a better integration between the differential modeling and 

the multibody modeling. This kind of integration is almost absent in literature (especially in the railway field) due to the 

computational cost and to the memory consumption. However it is very important because only the differential 

modeling allows an accurate analysis of the contact problem (in terms of contact forces, position and shape of the 

contact patch, stress and strain) while the multibody modeling is currently the standard in the study of the railway 

dynamics. 

 

1 INTRODUCTION 

 

The multibody simulation of the railway vehicle 

dynamics needs a reliable contact model that satisfies 

the following specifics: accurate description of the 

global and local contact phenomena (contact forces, 

position and shape of the contact patch, stress and 

strain), general and robust handling of the multiple 

contact, high numerical efficiency and compatibility 

with commercial multibody software (Simpack Rail, 

Adams Rail). 

The wheel – rail contact problem has been discussed by 

several authors and many models can be found in the 

literature. All the contact model specifically designed 

for the multibody modeling (as the so-called rigid 

contact formulation [1]-[6] and the semi-elastic contact 

description [4]-[8]) are computationally very efficient 

but their generality and accuracy turn out to be often 

insufficient. In particular, the physical theories behind 

this kind of models (Hertz's and Kalker's theory) 

require very restrictive hypotheses that, in many 

circumstances, are unverified. 

Differential contact models are needed if a detail 

description of the contact phenomena is required. In 

other words wheel and rail have to be considered 

elastic bodies governed by the Navier’s equations and 

the contact has to be described by suitable analytical 

contact conditions. This kind of approach assures high 

generality and accuracy but still needs very large 

computational costs and memory consumption [4] [9]-

[13]. For this reason, the integration between 

multibody and differential modeling is almost absent in 

literature especially in the railway field. However this 

integration is very important because only the 

differential modeling allows an accurate analysis of the 

contact problem while the multibody modeling is the 

standard in the study of the railway dynamics. 

In this work the authors intend to present an innovative 

differential contact model with the aim of achieving a 

better integration between multibody and differential 

modeling. The new contact model is fully 3D and 

satisfies all the specifics described above. The 

developed procedure requires the discretization of the 

elastic contact problem (Navier’s equations and 

analytical contact condition) and subsequently the 

solution of the nonlinear discrete problem. Both the 

steps have been implemented in Matlab/Simulink 

environment. 

At this point the contact model has been inserted within 

a 2D multibody model of a railway vehicle to obtain a 

complete model of the wagon. The railway vehicle 

chosen as benchmark is the Manchester Wagon [14]. 

The choice of a 2D multibody model allows to study 

the lateral vehicle dynamics and at the same time to 
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reduce the computational load. In the near future fully 

3D multibody models will be considered in order to 

have a complete description of the vehicle dynamics. 

The multibody model has been implemented in 

SimMechanics, a Matlab toolbox specifically designed 

for multibody dynamics. 

The 2D multibody model of the same vehicle (this time 

equipped with a standard contact model based on the 

semi – elastic approach) has been then implemented 

also in Simpack Rail, a commercial multibody software 

for railway vehicles widely tested and validated. 

Finally numerical simulations of the vehicle dynamics 

have been carried out on many different railway tracks 

with the aim of evaluating the performance of the 

whole model. The comparison between the results 

obtained by the Matlab model and those obtained by 

the Simpack Rail model has allowed an accurate and 

reliable validation of the new contact model. 

 

2 ARCHITECTURE OF THE MODEL 

 

As said in the introduction the whole model consists of 

two different part: the 2D multibody model of the 

railway vehicle and the fully 3D differential wheel – 

rail contact model. The 2D model has been obtained 

from a fully 3D multibody model of the benchmark 

vehicle (the Manchester Wagon, Fig. (1)).  

 

 

 

 

 

 

 

Figure 1: 3D and 2D multibody models of the Manchester Wagon. 

The 2D model consists of three bodies: a car – body, a 

bogie and a wheelset. The car - body and the bogie 

have 3 DOF (lateral and vertical displacement and roll) 

while the wheelset has 4 DOF (lateral and vertical 

displacement, roll and pitch, i.e. the rotation around its 

symmetry axis). In other words the wheelset has been 

considered as a 3D body. 

During the simulation the 2D multibody model 

interacts with the fully 3D differential contact model. 

The general architecture of the model is schematically 

shown in Fig. (2). 

 

 

 

 

 

 

 

 

Figure 2: General architecture of the model. 

At each integration step the multibody model evaluates 

the kinematic variables relative to the wheelset and 

consequently to each wheel – rail pair. Starting from 

these quantities, the contact model calculates the global 

and local contact variables (force, contact patch, stress 

and displacement). Finally the knowledge of the 

contact variables allows the multibody model to carry 

on the simulation of the vehicle dynamics. 

 

3 REFERENCE SYSTEMS  

 

The railway track can be considered as a 3D curve 

( )sγ  expressed in a fixed reference system 
f f f f

O x y z  

(where s  is the curvilinear abscissa of γ ). Usually in 

the cartographic description of the track only the 

curvature ( )K s  of ( )sγ  and the track slope ( )p s  are 

known; however the knowledge of these parameters is 

enough to rebuild the curve ( )sγ . [8] [15] 

 In this work the lateral vehicle dynamics will be 

described in a local reference system 
R R R R

O x y z  having 

the 
Rx  axis tangent to the track in the point ( )

R
O sγ=  

and the 
Rz  axis normal to the plane of the rails. In the 

considered case the time histories of the curvilinear 

abscissa ( )s t  and of the origin ( ( ))
R

O s tγ=  are 

supposed to be known (for instance they can be 

calculated by simulating independently the longitudinal 

vehicle dynamics). 

The local system follows the motion of the whole 

model along the track so that the centers of mass of the 

bodies lie always on the plane 
R R

y z . According to 

chapter 2, the car – body and the bogie can only 

translate along 
R

y  and 
R

z  and rotate around 
R

x  while 

the wheelset can also rotate around its symmetry axis. 

Subsequently a third reference system 
W W W W

O x y z  is 

defined. The origin 
W

O  coincides with the center of 

mass of the wheelset and the 
W

y  axis with its 

symmetry axis. This system is fixed to the wheelset 

except for the rotation around the 
W

y  axis. Finally two 

reference systems 
b b b b

O x y z  and 
B B B B

O x y z  are 

introduced, fixed respectively to the bogie and to the 

car - body. As usual the origins coincide with the 

centers of mass. The placement of the reference 

systems is illustrated in Fig. (3). 

 

 

 

 

 

 

 

 

 

 

Figure 3: Reference systems relative to the multibody model. 

In order to correctly describe the differential contact 

model, two further reference systems have to be 
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defined for each wheel – rail pair. For the sake of 

simplicity only the left pair has been reported in Fig. 

(4). The first system 
lw lw lw lw

O x y z  is parallel to the 

system 
W W W W

O x y z  and its origin 
lw

O  lies on the 

symmetry axis of the wheel. The system is fixed to the  

wheel except for the rotation around the 
lw

y  axis. 

Moreover the origin 
lw

O  belongs to the nominal rolling 

plane,  i.e. the plane normal to the rotation axis 

containing the nominal rolling radius. The second 

system 
lr lr lr lr

O x y z  is parallel to the system 

R R R R
O x y z . Its origin 

lr
O  belongs to the axis 

R
y  

while the distance between 
R

O  and 
lr

O  has to assure 

the correct gauge between the rails. Both the reference 

systems described above are very important because 

the global and local contact variables will be evaluated 

by the contact model just in these systems. 

 

 

 

 

 

  

  

 

 

Figure 4: Reference systems relative to the differential contact model. 

Finally, as regards the external forces acting on the 

bodies, some considerations are needed. As said 

before, the lateral vehicle dynamics is studied in the 

local reference system 
R R R R

O x y z  but this system is not 

inertial. Therefore the multibody model will have to 

consider the effect of the fictitious forces (centrifugal 

force and Coriolis force). These quantities can be 

calculated starting from the knowledge of the 

kinematics of the bodies as a function of the curvature 

( )K s  and of the track slope ( )p s . [15] 

 

4 THE 2D MULTIBODY MODEL 

 

The 2D multibody model has been obtained from a 

fully 3D multibody model of the Manchester Wagon, 

the physical and geometrical characteristics of which 

are easily available in the literature. [14] The original 

3D model consists of: 

- 1 car – body, 2 bogies and 4 wheelsets 

- rear and front primary suspensions 

- rear and front secondary suspensions (including roll 

bar, traction rod and bumpstop). 

Both the primary and the secondary suspensions are 

usually modeled by means of nonlinear force elements 

like three- dimensional springs and dampers. The 2D 

model can be thought of as a section of the 3D model 

and comprises (Fig. (5)): 

- one car – body, one bogie and one wheelset 

- one primary suspension 

- one  secondary suspension (including roll bar and 

bumpstop). 

 
Body Mass Inertia 

Car – body 0.25 0.25 

Bogie 0.5 0.5 

Wheelset 1 1 

 

 

 

Suspensions Springs Dampers 

Secondary 0.5 0.5 

Primary 1 1 

 

 
 

As regards the bodies, only some DOF are allowed by 

the 2D model: 

- the car – body and the bogie have 3 DOF; they can 

translate along the axes 
R

y  and 
R

z  (lateral and vertical 

displacements) and rotate around the 
R

x  axis (roll) 

- the wheelset, considered as a 3D body, has 4 DOF; 

besides the previous DOF it can also rotate around its 

symmetry axis 
W

y  (pitch). 

Moreover, in order to assure the dynamic equivalence 

between the 2D model and the original 3D model, the 

inertial characteristics of the bodies and the physical 

characteristics of the force elements have to be 

correctly scaled down.[5][14] The values of the scaling 

factors are schematically reported in Tab. (1) and Tab. 

(2). 

The choice of a 2D multibody model has been made 

with the aim of studying the lateral vehicle dynamics 

and, at the same time, of reducing the computational 

load. In the near future fully 3D multibody models of 

the Manchester Wagon will be considered in order to 

have a complete description of the vehicle dynamics. 

 

5 THE 3D DIFFERENTIAL CONTACT 

MODEL 

 

As regards the generic contact variable Z , the 

following convention will be adopted: 

- 
w

Z  and r

wZ  will denote a variable relative to the 

wheel respectively expressed in the reference systems 

lw lw lw lwO x y z  and 
lr lr lr lrO x y z  

- 
r

Z and w

rZ  will denote a variable relative to the rail 

respectively expressed in the reference systems 

lr lr lr lrO x y z  and 
lw lw lw lwO x y z . 

In the future, according to this convention, the various 

changes of reference system won’t be continually 

remarked but will be taken for granted. 

 

5.1 Inputs and Outputs 

 

With reference to Fig. (2), the contact model can be 

thought of as a black box having the following inputs 

and outputs: 
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Table 1: Scaling factors (mass 

and inertia). 

Table 2: Scaling factors (springs 

and dampers). 

 

Figure 5: Reference systems 

relative to the differential contact 

model. 
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- INPUTS: the kinematic variables relative to the 

considered wheel – rail pair (in this case the left one), 

i.e. the position 
r

wO , the velocity  r

wO
•

, the orientation 

r

wR  and the angular velocity 
r

wω  of the reference 

system 
lw lw lw lwO x y z  with respect to the system 

lr lr lr lrO x y z  (see Fig. (4)). 

- OUTPUTS: the global and local contact variables 

relative to the wheel and to the rail, like the contact 

forces 
wCF  and 

rCF , the stresses 
w

σ  and 
r

σ , the 

displacements 
wu  and 

ru  and the contact patches 
wC

A  

and 
rC

A . 

 

5.2 The kinematics of the problem 

 

The wheel and the rail have been considered as two 

linear elastic bodies 
w

Ω  and 
r

Ω  (as shown in Fig. 

(6)). [10][11] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The problem geometry. 

Both the domains are supposed to be sufficiently large 

compared to the dimensions of the contact patch. The 

boundaries 
w

∂Ω  and 
r

∂Ω  are split into two disjoint 

regions, respectively 
wD

Γ , 
wC

Γ  and 
rD

Γ , 
rC

Γ . Within 

the regions 
wD

Γ  and 
rD

Γ  the displacements are fixed 

(and equal to zero) while 
wC

Γ  and 
rC

Γ  (dashed in the 

figure) are the regions where the contact may occur. In 

case of contact the geometric intersection between the 

surfaces 
wC

Γ  and 
rC

Γ  (and thus between the non – 

deformed configurations) allows to define two regions 

�
wC wCA ⊂ Γ  and � rC rCA ⊂ Γ  (with � �

wC rCA A� ) that 

can be considered as a rough estimate of the contact 

areas. The situation is schematically sketched in Fig. 

(6) and Fig. (7). 

The real contact areas �
wCwCA A⊂  and �

rCrCA A⊂  

(with 
wC rCA A� ) are unknown and have to be 

calculated by the model. For this purpose a contact 

map Φ  has to be introduced. The contact map 

� �: wC rCA AΦ →  (by convention the wheel is the 

master body) locates the position of the point  

 

 

 

 

 

 

 

 

Figure 7: Contact map and distance function. 

�( )
r

rCwx AΦ ∈  that will come in contact with the 

generic point �r
wCwx A∈ . In this case the map Φ  is 

defined as the normal projection ( )
r

wxΦ  of the point 

�r
wCwx A∈  on the surface � rCA . 

Starting from the contact map, the distance function 

between the deformed configurations �: wCd A R→  

can be evaluated: 

( ) ( )( ) ( )
r r r r r r

w w r w w w wd x u u n x x n= − − Φ −i i  (1) 

where 
r

wn  is the outgoing normal versor to the surfaces 

wC
Γ . The function d  is positive if there is penetration 

between the deformed configurations and negative 

otherwise. 

Formally the contact area 
wCA  is defined as the region 

of � wCA  where the function d  is positive while the 

contact area ( )rC wCA A= Φ  is the normal projection of 

wCA  on � rCA . In other words, from a kinematic point 

of view, the penetration between the deformed bodies 

is allowed and will play a fundamental role in the 

contact model (see paragraph 5.3). [10][11] 

In this way the estimated contact areas � wCA  and � rCA  

depend only on the relative wheel – rail kinematics 

(
r

wO , 
 r

wO
•

, r

wR  and 
r

wω ) while the real contact areas 

wCA  and 
rCA  depend also on the displacements 

wu  

and 
ru . Finally it is useful to remark that no 

hypothesis has been made on the shape of the contact 

patch; in particular, the contact patch can be formed of 

one or more disjoint parts. 

As regards the wheel and rail profiles, the standard 

ORE S 1002 and UIC 60 have been used. [15] 
 

5.3 The contact model 

 

 According to the linear theory of elasticity [10] [11], 

both the wheel and the rail are governed by the 

Navier’s equations: 

w

r

( )rC wCA A= Φ

wC
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0d >

0d <0d <

w

r

( )rC wCA A= Φ
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where 
wn  and 

rn  are the outgoing normal vectors to 

the surfaces 
wC

Γ  and 
rC

Γ  while 
w

p  and 
r

p  are the 

unknown contact pressures. The pressures 
w

p  and 
r

p  

are defined on � wCA  and � rCA  but, according to 

paragraph 5.2, will have to be zero on � \wC wCA A  and 

� \rC rCA A . Both the bodies have the material 

characteristics of the steel (Young’s modulus 
112.1*10

w r
E E Pa= =  and Poisson’s coefficient 

0.3w rν ν= = ). In the studied case the volume forces 

(i. e. the gravity) have been neglected because the 

multibody model of the wheelset already considers 

their effect. Moreover, since the solution is supposed to 

be steady within the integration step (see Fig. (2)), also 

the inertial terms have been omitted. 

Equivalently the problem (2) can be formulated in 

weak form as follows: 

�

�

( ): ( )  

( ): ( )  

wCw

rCr

w w w ww w ww

A

r r r rr r rr

A

u v dV p v dA v V

u v dV p v dA v V

σ ε

σ ε

Ω

Ω

= ∀ ∈

= ∀ ∈

∫ ∫

∫ ∫

i

i

 

(3) 

where 
w

ε  and 
r

ε  are the strains while 
w

V  and 
r

V  are 

suitable Sobolev’s spaces. 

In order to complete the contact model, the contact 

pressures 
w

p  and 
r

p  have to be expressed as a 

function of the displacements 
wu  and 

ru .  

For the sake of simplicity the normal and the tangential 

contact pressures on the wheel are introduced: 
r rr

wwN w
p p n= i ,  r r rr

wwNwT w
p p p n= − . 

The normal pressure r

wNp  has been calculated by 

means of the distance function d : 

�( ) max( ( ),0) on 
r rr

wCw wwNp x K d x A= −
 

(4) 

where 0K >  is a fictitious stiffness constant. The 

value of K have to be chosen large enough to assure the 

accuracy required by this kind of problems. The 

condition of ideal contact (total absence of penetration 

between the deformed bodies) is reached for K → +∞  

(usually 310 ^15 N/mK ≥ ).[10][11] 

To evaluate the tangential pressure 
r

wT
p , the slip 

r

ws  

between the wheel and rail surfaces has to be defined. 

Since the solution is supposed to be steady within the 

integration step, the following expression holds: [4] 

        

 

         

 

( ) ( )  ( )  (  ( ))  (  ( ))

( )  ( ) ( )  (  ( ))  (  ( )) (  ( )) 

r r r r r r r r

w w w w w w r w r w

r r r r r r r rr

w w w w w r w w r ww r

s x w x u x w x u x

w x J x w x w x J x w x

• •

= + − Φ − Φ =

= + − Φ − Φ Φ

 

(5) 

where 
r

ww  and 
rw  are the rigid velocity of the points 

r

wx  and ( )
r

wxΦ  while r

wJ  and 
r

J  are the Jacobians of 

r

wu  and 
ru . As usual the normal and the tangential 

slips are: 
r rr

w wwNs s n= i , 
r r rr

wT w wwN
s s s n= − . 

According to the standard friction models, the 

tangential pressures 
 

( )
r r r

wwT wT
p p x=  can be expressed 

as follows: 

�

0 if 0

on 
( , ) if 0

r

wT

r r
wC

r r rwT wT
wT wN wTr

wT

s

p As
s V p s

s
µ

 =


= 
− >


 
(6) 

where r

wTs  is the norm of ( )
r r r

wT wT ws s x=  and V  is the 

longitudinal velocity of the vehicle. Further details on 

the friction function ( , )r

wTs Vµ  can be found in the 

literature. [17] 

Finally the action – reaction principle (the Newton’s 

Third Law) allows to calculate the pressures 
r

p : 

�( ( )) ( ) on 
r r r

wCw wr w
p x p x AΦ = − . (7) 

It is useful to remark that, according to the described 

model, the pressures 
r

w
p  and 

r
p  are zero respectively 

on � \wC wCA A  and � \rC rCA A . 

The displacements 
wu  and 

ru  will be evaluated in the 

following through the numerical solution of Eq. (3). 

The knowledge of these unknown quantities will allow 

to calculate all the other required outputs like the 

contact areas 
wC

A  and 
rC

A  and the stresses 
w

σ  and 

r
σ . The contact forces 

wCF  and 
rCF  will be 

estimated by integration: 

� �
wC rC

wC rCw r

A A

F p dA F p dA= =∫ ∫ . 
(8) 

 

5.4 The discretization of the model 

 

Both the elastic bodies have been discretized by means 

of tetrahedral elements and linear shape functions. The 

meshes have been built according to the standard 

Delaunay’s algorithms (see Fig. (8)). [16] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Discretization of the contact model. 
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r

w in

�
wCA

�
rCA

rC
undefw

wC

�
( )j i

rCA

�
i

wCA

undefr  

r

w ix

 ( )  ( )
r r

r j i w ix x= Φ

 

r

w in

�
wCA

�
rCA

rCrC
undefw

wCwC

�
( )j i

rCA

�
i

wCA

rΩ

rCΓ

wΩ

wCΓ

rΩrΩ

rCΓrCΓ

wΩwΩ

wCΓwCΓ
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The resolution of the meshes on the surfaces 
wC

Γ  and 

rC
Γ  is constant (usually in the range 1mm  2mm÷ ) 

because the position and the dimensions of the contact 

patch are a priori unknown. 

The surface resolution has also to assure an accuracy 

enough to correctly describe the contact phenomena. 

Moreover it is important to remark that the meshes 

have been created directly in the reference systems 

lw lw lw lwO x y z  and 
lr lr lr lrO x y z ; therefore they don’t 

change during the simulation and can be easily built off 

– line. 

In the future the following convention will be adopted: 

- the sets of all the elements of wheel and rail will be 

called 
w

T  and 
r

T  while the vectors 
12

  ,w h r lu u R∈  

will contain the displacements of the four nodes 

belonging to the elements 
w

h T∈  and 
r

l T∈ . Finally 

the vectors 
wU  and 

rU  will comprise the 

displacements relative to all the nodes of wheel and 

rail. Since the displacements on 
wD

Γ  and 
rD

Γ  are 

zero, the dimension of 
wU , 

rU  are 3( )
w wD

N N−  

and 3( )
r rD

N N− , where 
w

N  and 
r

N  are the 

numbers of nodes of wheel and rail while 
wD

N  and 

rD
N  are the numbers of nodes on 

wD
Γ  and 

rD
Γ . 

- similarly 
w

C  and 
r

C  will be the sets of the active 

contact elements on wheel and on rail, i. e. the sets of 

the elements having respectively a face �
i

wCA  and �
j

rCA  

that lies on �
wCA  and �

rCA . The vectors 
12

  ,w i r ju u R∈  will contain the displacements of the 

four nodes belonging to the elements 
w

i C∈  and 

r
j C∈  while the vectors 

wCU  and 
rCU  will comprise 

the displacements relative to all the active elements. 

The dimension of 
wCU , 

rCU  are 3
wC

N  and 3
rC

N  

where 
wC

N  and 
rC

N  are the number of nodes 

belonging to the active elements. 

The knowledge of the relative kinematics ( r

wO ,  r

wO
•

, 

r

wR  and 
r

wω ) and consequently of the estimated contact 

areas � wCA  and � rCA  allows to determine the sets 
w

C  

and 
r

C  of the active contact elements on the wheel and 

on the rail. 

For each active contact element on the wheel, the 

center 
 

r

w ix  of the face �
i

wCA  is considered. The normal 

projection 
  ( )

r

r j w ix x= Φ  of 
 

r

w ix  on � rCA  will belong 

to the external face �
j

rCA  of the  - thj  active contact 

element on the rail. In particular the index ( )j i  will be 

a function of the index i . In other words the pairs of 

points 
  ( )(  ,   )

r

w i r j ix x  with 
w

i C∈  can be thought of 

as the discretization of the contact map Φ . The 

situation is schematically sketched in Fig. (8). 

The values of the displacements 
r

wu , 
ru  and of their 

Jacobians r

wJ , 
r

J  in the points 
 

r

w ix  and 
 r jx  are 

evaluated through the shape functions. [10] [11] [16] 

At this point the distance function 
 ( )

r

w iid d x=  and 

the pressure 
  

( )
r r r

w iw i w
p p x=  on the face �

i

wCA  of the 

active element of the wheel can be calculated by means 

of Eq. (1), (4) and (6). Finally a discrete version of the 

action – reaction principle (the Newton’s Third Law) is 

needed to evaluate the pressure 
  

( )r jr j r
p p x=  on the 

face �
j

rCA  of the active element of the rail: 

� �
  

| | | |
j i r
rC wC

r j w i
A p A p=  (9) 

where �| |
i

wCA  and �| |
j

rCA  are the areas of the faces 

�
i

wCA  and �
j

rCA . Both the pressures 
 

r

w i
p  and 

 r j
p  are 

supposed to be constant on �
i

wCA  and �
j

rCA . 

The standard FEM techniques allow to discretize the 

weak form of the contact problem (see Eq. (3)) : [10] 

[11] [16] 

�

�

 

   

 

   

   

 ( ) ( ) ( )

( ): ( )  

( ): ( )  

   ( , )

   ( , )

ww

rr

wwC

wrC

T T

w w w h w h w ww w w h w

h T

T T

r r r l r l r rr r r l r

l T

T T

ww w i wC rC ww iw w i
i CA

T T

rr r j i wC rCr j ir r j i
i CA

u v dV u K v U K V

u v dV u K v U K V

p v dA p M v F U U V

p v dA p M v F U U V

σ ε

σ ε

∈Ω

∈Ω

∈

∈

= =

= =

= =

= =

∑∫

∑∫

∑∫

∑∫

i

i r

 

(10) 

where 
 w h

K , 
 r l

K  are the stiffness matrices relative to 

the elements 
w

h T∈ , 
r

l T∈  and 
 w i

M , 
 r j

M  depend 

on the shape functions. The global stiffness matrices 

w
K  and 

r
K  are symmetric, positive defined and 

sparse while the vectors 
wF  and 

rF , that contain the 

terms due to the contact pressures, are sparse. 

Moreover the global stiffness matrices are evaluated 

directly in the reference systems 
lw lw lw lwO x y z  and 

lr lr lr lrO x y z ; therefore they don’t change during the 

simulation and can be easily built off – line. Eq. (3) and 

Eq. (10), combined together, give 

3( )

3( )

( , )     

( , )     

w wD

r rD

T N NT

ww w wC rC w ww

T N NT

rr r wC rC r rr

U K V F U U V V R

U K V F U U V V R

−

−

= ∀ ∈

= ∀ ∈
 (11) 

Finally, since the matrices 
w

K , 
r

K  are symmetric and 

the vectors 
wV , 

rV  are arbitrary, the following 

nonlinear system of algebraic equations is obtained: 

( , ) ( , )w rw wC rC r wC rCw r
K U F U U K U F U U= =  (12) 
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where, as said before,  the contact displacements 
wCU , 

rCU  are a subset of the displacements 
wU , 

rU . Eq. 

(12) can be also written as 

( , ) ( , )w rw wC rC r wC rCw wU H F U U U H F U U= =  (13) 

where the matrices 
1

w wH K
−=  and 

1

r rH K
−=  are 

symmetric, positive defined and full (consequently 

their storage can require an high memory 

consumption). Like 
w

K  and 
r

K  they don’t change 

during the simulation and can be calculated off – line. 

Splitting 
wU , 

rU  into contact displacement 
wCU , 

rCU  and non – contact displacement wNCU , wNCU , 

Eq. (13) becomes  

11 12

21 22

11 12

21 22

0

( , )

0

( , )

wNC w w

wC rCwC w w w

rNC r r

wC rCrC r r r

U H H

f U UU H H

U H H

f U UU H H

   
=      

    

   
=    

    

 
(14) 

In this way the second and the fourth components of 

Eq. (14) are sufficient to calculate contact displacement 

wCU , 
rCU :  

22 22( , ) ( , )wC wC rC rC wC rCw rw r
U H f U U U H f U U= = . (15) 

The matrices 22

wH  and 22

rH  have the same properties 

as 
w

H  and 
r

H  but this time their dimensions are 

much smaller. However 22

wH  and 22

rH  change during 

the simulation and therefore have to be built directly on 

– line. The vectors 
w

f  and 
r

f  are full. The remaining  

non – contact displacements wNCU , wNCU  can be 

evaluated by means of the first and the third 

components of Eq. (14). 

The knowledge of the displacements 
wU , 

rU , 

evaluated by solving Eq. (12) or Eq. (15), allows to 

calculate all the other required outputs like the contact 

areas 
wC

A  and 
rC

A  and the stresses 
w

σ  and 
r

σ . The 

contact forces 
wCF  and 

rCF  are estimated by 

numerical integration: 

� �
  

| | | | .
w r

i j

wC rCwC rCw i r j
i C j C

F A p F A p
∈ ∈

= =∑ ∑  
(16) 

5.5 The numerical solution of the discrete problem 

 

In this paragraph the numerical methods used for 

solving the discrete contact problem (15) are presented. 

Eq. (15) is a full non linear system with small 

dimensions. In particular, the typical dimensions of 
22

wH  and 22

rH  (depending on the number of active 

elements) are about 100  1000÷ . 

Due to the small dimension of the problem, a Newton-

LU method has been implemented in order to solve 

system (15).[21] Newton-LU is a Newton-type method 

for the problem ( ) 0F x =  where F  is a generic 

nonlinear function. In particular, in this procedure, the 

Gauss method is employed to solve the arising linear 

systems: 

'( ) ( )k k kF x s F x= −  (17) 

where '( )F x  is the Jacobian matrix of ( )F x  and 
ks  is 

the Newton step. It has to be remarked that this 

approach needs the computation and the storage of the 

whole Jacobian at each iteration. Therefore, this 

procedure may be very expensive in terms of time 

consuming even though the small dimension. 

In order to reduce the computational load, also a 

strategy based on a Newton-Krylov method 

(implemented in "matrix free" way) has been 

considered. [18] [23] Newton-Krylov methods are 

Newton-type methods where a Krylov method is 

employed to solve approximately the arising linear 

systems (17). 

The Krylov method computes, at each iteration, the so-

called inexact Newton step 
ks�  which satisfies the 

condition: 

'( ) ( ) ( )k k k kk
F x s F x F xη+ ≤�  (18) 

where the forcing terms [ )0,1kη ∈ are used to control 

the level of accuracy. [18] As regards the considered 

problem, numerical experimentations showed that, 

among all the Krylov methods, the best iterative linear 

solver is the BiCGStab. [19] This kind of numerical 

procedures are known as Newton –BiCGStab methods. 

An interesting feature of Newton – BiCGStab methods 

is that they require only the action of '( )F x  on a vector 

v  but not the computation and the storage of the whole 

Jacobian. In this case, the product '( )F x v  can be 

approximated by finite differences [20]: 

( ) ( )
'( )

F x v F x
F x v

ε

ε

+ −
�  (19) 

where 0ε >  is a scalar small enough. Consequently 

these methods are called "matrix free". 

It has been observed that a small number of nonlinear 

iterations is needed for solving the nonlinear system 

(15) and that the convergence is achieved in almost all 

cases. Consequently the choice of a less accurate 

solution of the Newton equations (17) turned out to be 

very efficient and effective in reducing the norm of F . 

A constant forcing term 0.5 
k

kη η= ≤ ∀  has been 

chosen.  

Moreover, it has to be remarked that, if the guarantee 

of convergence is only local, both the numerical 

procedures presented may fail in finding a solution, 

even though an effective solution exists. Therefore 

Newton – LU and Newton – BiCGStab methods have 

been embedded into a globalization strategy. A 

monotone line search method with Armijo rule has 

been employed, with a maximum of 10  backtracks for 

nonlinear iteration. [20] [21] 
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Both the methods stop if the following stopping 

criterion is satisfied: 

( )F x Tol< . (20) 

The comparison between the performances of the 

different strategies will be reported in following 

chapter. 

As regards the time integration of the whole model 

(multibody model and contact model; see Fig. (2)), 

explicit ODE solvers with variable step and variable 

order have been considered. [22] Moreover, during the 

simulations, the initial conditions for the nonlinear 

solvers (i.e. the Newton – BiCGStab and Newton – LU 

methods) are continually updated in order to speed up 

the convergence of the solvers and to reduce the 

computation time. In other words the solution of the 

problem at the current time step is used as initial 

condition for the solver at the next time step. 

 

6 NUMERICAL SIMULATION 

 

In order to study the behavior of the whole model, a 

large number of simulations has been carried out on 

many different railway tracks. The performances of the 

model have been evaluated both in terms of output 

accuracy (kinematic variables, contact forces and 

contact patch) and in terms of numerical efficiency 

(performances of the numerical algorithms and time 

consumption). 

 

6.1 Performances of the numerical methods 

 

In this section the performances of the numerical 

procedures described in paragraph 5.5 will be analyzed 

and compared to each other. To this purpose a typical 

simulation of the lateral dynamics of the Manchester 

Wagon has been considered. [5] [15] The simulations 

have been performed on a curvilinear railway track, the 

data of which are reported in Tab. (3).  

The comparison between the numerical methods has 

been carried out on a machine equipped with an Intel 

Xeon 2.66GHz, 8GB RAM using Matlab R2007b 

(machine precision 162*10mε −= ). 

In order to establish the best ODE solver, several 

experimentations have been performed with the 

ODE23 and the ODE45. [22] The value of the main 

numerical parameters are reported in Tab. (4). 

RelTol  and AbsTol  are the relative and absolute 

tolerances of the ODE solvers, MaxitNonlin , 

MaxitLin  are the maximum number of nonlinear and 

linear iterations, Tol  is the stopping tolerance and η  

is the forcing term. In particular the value of the 

stopping tolerance Tol  has been chosen to assure a 

sufficient accuracy (in terms of displacements and 

contact pressures) and, at the same time, to minimize 

the computation time. 

Tab. (5) summarizes the results obtained by using the 

ODE 23 and the ODE 45. For each wheel – rail contact 

pair (Right and Left) the following data have been 

considered: 

Curvature K  
11/1200 m−  

Slope p  0  

Cant β  60 mm  

Laying 

angle pα  1/40 rad  

Velocity V  45 m/s 

Friction 

coefficient 
µ  0.3  

 

Table 3: Data of the railway track               Table 4: Numerical parameters. 

the number #cps  of contact problem solved (equal for 

both the contact pairs), the total number #New  of 

nonlinear iterations, the average number #BiCGS  of 

linear iterations for each nonlinear iteration and the 

total computation time.  

ODE23 - Newton-BiCGStab 

 #cps  #New  #BiCGS  time  

R 27409 2.9 

L 
31814 

29495 3.5 

8396 sec 

(~2h 20min) 

ODE45 - Newton-BiCGStab 

 #cps  #New  #BiCGS  time  

R 44625 3.1 

L 
45710 

46170 3.5 

12870 sec 

(~3h 34min) 

Table 5: Comparison between ODE23 and ODE45. 

The results show that low order solvers like the ODE23 

turn out to be better than high order solvers like 

ODE45.   

As said in the paragraph 5.5, Eq. (15) can be also 

solved by means of a Newton – LU strategy. Tab (6) 

contains the results obtained by solving (15) with this 

approach. The used ODE solver is the ODE23, while 

the other numerical parameters are the same reported in 

Tab. (4). 

ODE23 - Newton-LU 

 #cps  #New  time  

R 23936 

L 
30401 

24306 

39096 sec 

(~10h 51min) 

Table 6: Newton – LU for solving Eq.(15). 

Looking at Tab. (6), the Newton – BiCGStab methods 

(matrix free) are more efficient than the Newton – LU 

methods. In particular the computation and the storage 

of the Jacobian matrix at each nonlinear iteration 

turned out to be too time-consuming. 

Finally, in order to justify the choice of the constant 

forcing term 210η −= , some experimentations have 

been performed by using the following values of the 

parameter: 1 2 3 40.5,  10 ,  10 ,  10 ,  10η − − − −= . As usual 

the employed ODE solver is always the ODE23. The 

results have been reported in terms of computation 

time (see Fig.(9)). 

 

 

 

 

 

 

 

Differential 

Contact Model 
Eq. (15) 

RelTol / 

AbsTol 
8 610 / 10− −

 

Nonlinear 

Solver 

Newton - 

BiCGStab 

Tol / 

MaxitNonlin 
810 / 20−

 

η  / MaxitLin 0.01 / 20  

Figure 9: Computation 

time as a function of the 

forcing term η  
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6.2 The SIMPACK RAIL 2D multibody model 

 

The same multibody model of the benchmark vehicle 

(the Manchester Wagon [14]) has been implemented 

also in Simpack Rail, a widely tested and validated 

multibody software for the analysis of the railway 

vehicle dynamics. This time the multibody model is 

equipped with a standard contact model based on the 

semi – elastic approach. [4] [5] [6] As in the previous 

case the 2D multibody model (designed for the study of 

the lateral dynamics) has been obtained from the fully 

3D multibody model of the vehicle while the contact 

model is completely 3D (see Fig. (10)). The 

comparison between the results obtained by the 

Matlab/Simulink model and those obtained by the 

Simpack Rail model has allowed an accurate and 

reliable validation of the new contact model. 

 

 

 

 

 

 

 

 
Figure 10: 3D and 2D multibody models of the 

Manchester Wagon (Simpack Rail). 

 

6.3 Simulation of the lateral vehicle dynamics 

 

The comparison between the Matlab/Simulink model 

(implemented on Matlab R2007b) and the Simpack 

Rail model (implemented on Simpack 8.900) has been 

carried out on the same curvilinear railway track 

introduced above (see Tab. (3)). [5] [15]  The 

numerical data relative to the Matlab model have been 

chosen starting from the results obtained in the 

paragraph 6.1 (See Tab. (4)). The used ODE solver is 

ODE23. Similarly the numerical data relative to the 

Simpack model are briefly summarized in Tab. (7). 

ODE Solver ODE 5 (Dormand - Prince) 

Fixed Step 45*10−
 

Contact Model Semi – Elastic Approach 

Table 7: Numerical Data (Simpack model). 

Among all the kinematic and dynamic variables 

evaluated by the models, the time histories of the 

following quantities are reported (for the sake of 

simplicity all the outputs are expressed in the reference 

system 
R R R RO x y z ): 

- the lateral displacement R

Wy  of the centre of mass of 

the wheelset R

WO  (Fig. (11)) 

- the lateral displacement R

By  of the centre of mass of 

the body – car 
R

BO  (Fig. (12)) 

- the contact forces on the left wheel R

lwF  and on the 

right wheel 
R

rwF ; in particular 
R

lw
Y  and 

R

rw
Y  are the lateral 

forces (Fig. (13) and Fig. (15)) while R

lw
Q  and R

rw
Q  are 

the vertical forces (Fig. (14) and Fig. (16)). 

The Matlab variables are plotted in blue while the 

equivalent Simpack quantities in red. 

 

 

 

 

 

 

 

 

 
       Figure 11: Lateral displacement R

Wy          Figure 12: Lateral displacement R

B
y  

 

 

 

 

 

 

 

 

 

       Figure 13: Lateral force 
R

lwY                     Figure 14: Vertical force 
R

lwQ  

 

 

 

 

 

 

 

 

 

 

        Figure 15: Lateral force 
R

rw
Y                   Figure 16: Vertical force 

R

rw
Q  

The simulation results show a good agreement between 

the Matlab model and the Simpack model both in terms 

of kinematic variables and in terms of contact forces. 

As regards the positions of contact patches 
wC

A , 
rC

A  

on the wheel and on the rail, in order to give an 

effective description of the shifting of the contact areas 

during the simulation, a lateral section along the plane 

R R
y z  of the areas 

wC
A , 

rC
A  has been considered. 

Moreover the sections of the contact patches have been 

plotted on cylindrical surfaces generated by the wheel 

and rail profiles and as long as the distance traveled by 

the vehicle. By convention 
lwC

A , 
rwC

A  are the contact 

areas on the left and on the right wheel (Fig. (17) and 

Fig. (18)) while 
lrC

A , 
rrC

A  are the contact areas on the 

left and on the right rail (Fig. (19) and Fig. (20)). 

The sections of the contact areas evaluated by the 

Matlab model are plotted in blue while the contact 

points detected by the Simpack model are plotted in 

black. It is interesting to remark that, during the curve, 

a second contact point appears on the left wheel and 

rail (the track turns to left). Consequently, while the 

Simpack model detects two distinct contact points, the 

contact areas evaluated by the Matlab model consist of 

two disjoint parts. Also in this case the agreement 
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between the results obtained by the Matlab model and 

the Simpack model is good. 

In conclusion the accuracy of the Matlab model turns 

out to be comparable with that of the Simpack model; 

moreover the quasi – total absence of numerical noise 

highlights the robustness and the stability of the new 

differential contact model.  

 

 

 

 

 

 

 

 

 

Figure 17: Section of contact area 
lwC

A    Figure 18: Section of contact area 
rwC

A  

 

 

 

 

 

 

 

 

 

Figure 19: Section of contact area 
lrC

A   Figure 20: Section of contact area 
rrC

A  

 

7 CONCLUSION AND PERSPECTIVE 
 

The performances of the Matlab model turned out to be 

good both in terms of output accuracy (kinematic 

variables, contact forces and contact patch) and in 

terms of numerical efficiency (performances of the 

numerical algorithms and time consumption) and 

satisfy all the specifics reported in the introduction (see 

chapter 1). 

As regards the further developments, in the near future 

fully 3D multibody models of the Manchester Wagon 

will be considered. This kind of model allows a 

complete description of the vehicle dynamics but 

obviously involves an increase of the model DOFs and 

of the number of wheel – rail contact pairs. Moreover 

many optimizations of the differential contact model 

are planned for the future. The improvements will 

regard especially the FEM techniques used to discretize 

the contact problem. In particular new mesh generation 

algorithms and suitable nonlinear shape functions will 

be examined. These techniques assure a better accuracy 

in the description of the local contact phenomena but 

increases the dimension of the discrete problem and 

consequently the computational load and the memory 

consumption. Finally the implementation of the contact 

model in programming environments like C/C++ and 

FORTRAN will be considered in order to obtain a 

further reduction of the computation time. 
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