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SOCIO-ECONOMIC EVALUATION WITH ORDINAL VARIABLES:

INTEGRATING COUNTING AND POSET APPROACHES

Marco Fattore*

Filomena Maggino**

Francesca Greselin***

SUMMARY

The evaluation of material deprivation, quality of life and well-being very often requires to deal with

multidimensional systems of ordinal variables, rather than with classical numerical datasets. This

poses new statistical and methodological challenges, since classical evaluation tools are not de-

signed to deal with this kind of data. The mainstream evaluation methodologies generally follow a

counting approach, as in a recent proposal by Alkire and Foster pertaining to the evaluation of

multidimensional poverty. Counting procedures are inspired by the composite indicator approach

and share similar drawbacks with it, computing aggregated indicators that may be poorly reliable.

A recent and alternative proposal is to address the ordinal evaluation problem through partial or-

der theory which provides tools that prove more consistent with the discrete nature of the data. The

goal of the present paper is thus to introduce the two proposals, showing how the evaluation metho-

dology based on partial order theory can be integrated in the counting approach of Alkire and Fos-

ter.

Keywords: Partial Order theory, Counting Approach, Evaluation, Material Deprivation, Quality of

Life.

1. INTRODUCTION

Evaluation studies pertaining to material deprivation, quality of life and well-being

more and more frequently involve the analysis of multidimensional systems of ordi-

nal variables. This poses new methodological challenges, since the statistical tools

usually employed in evaluation procedures are designed to deal primarily with quan-

titative data, as in classical multivariate analysis. In many cases, ordinal data are tur-

ned into cardinal numbers, through more or less sophisticated scaling algorithms, so

that classical tools can be formally applied. However, one is realizing that this ap-

proach is not satisfactory, both from an epistemological and a statistical point of
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view. Phenomena pertaining to quality of life are often ordinal in nature and one

may legitimately ask what kind of knowledge is gained about them when they are

conceptualized and addressed in cardinal terms.

When dealing with ordinal multidimensional phenomena, the relevant issue is

not giving numerically ‘‘precise’’ figures, but providing faithful representations of

them, reproducing, as far as possible, their complexity. However, socio-economic

indicators serve primarily for policy making purposes and must necessarily be easy

and clear to understand and to communicate. The statistical challenge is thus to

produce simple, albeit not trivial, measures conveying as much information as pos-

sible to decision-makers, preserving at the same time the key features of socio-eco-

nomic complexity. Many studies have appeared in the last twenty years pertaining

to evaluation in an ordinal setting. Most of them are based on a counting approach

as in the seminal paper of Cerioli and Zani (1990) and in a recent proposal of Al-

kire and Foster (2007). The counting approach is basically inspired by the composi-

te indicator philosophy and shares with it some of its limitations. In particular, it

implicitly defines compensation criteria among evaluation dimensions and produces

aggregated indicators that may prove poorly reliable and not so easy to interpret

(Freudenberg, 2003). Recently, a completely different approach has been proposed,

based on partial order theory. It overcomes many of the limitations of the counting

procedures and may provide a general framework for ordinal evaluation. Partial or-

der theory is the natural setting for dealing with multidimensional ordinal data; in

fact, as a branch of discrete mathematics, it provides the conceptual and formal

tools needed for addressing the analysis of ordinal datasets in a consistent and ef-

fective way.

In this paper, we review Alkire and Foster’s proposal and show how it can be

combined with partial order theory, to obtain a more effective evaluation methodo-

logy. In particular, we focus on extending the binary evaluation function of Alkire

and Foster, that classifies individuals just in ‘‘deprived’’ or ‘‘non-deprived’’, so as

to assign to individuals deprivation degrees between 0 and 1. This is possible since

partial order theory allows for taking into account and reproducing complexity,

nuances and ambiguities of ordinal datasets in a natural way. The paper is organized

as follows. Section 2 provides a very brief introduction to partial order theory, gi-

ving the essential definitions needed for the subsequent discussion. Section 3 shows

how partial order theory helps in representing ordinal data, in view of the definition

of evaluation procedures. Section 4 describes the counting approach of Alkire and

Foster and casts it in poset theoretical terms. Section 5 presents the poset methodo-

logy and shows how it can be integrated with Alkire and Foster’s procedure. Sec-

tion 6 concludes. For sake of clarity, the discussion will be held referring to a sim-

ple example and not to real data. The principal aim of the paper is, in fact, metho-

dological and this choice allows for graphical representations of the data, simpli-

fying the presentation a lot. The methodologies discussed in the paper can indeed

be applied to much more complex datasets.
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2. BASIC ELEMENTS OF PARTIAL ORDER THEORY

A partially ordered set (or a poset) P ¼ ðX ;�Þ is a set X equipped with a partial or-

der relation �, that is a binary relation satisfying the properties of reflexivity,

antisymmetry and transitivity (Davey and Priestley, 2002; Neggers and Kim, 1988;

Schroeder, 2003):

1. x � x for all x 2 X (reflexivity);

2. if x � y and y � x then x ¼ y, x; y 2 X (antisymmetry);

3. if x � y and y � z, then x � z, x; y; z 2 X (transitivity).

If x � y or y � x, then x and y are called comparable, otherwise they are said to be

incomparable (written x jj y). A partial order P where any two elements are compa-

rable is called a chain or a linear order. On the contrary, if any two elements of P

are incomparable, then P is called an antichain. A finite poset P (i.e. a poset over a

finite set) can be easily depicted by means of a Hasse diagram (Davey and Priestley,

2002; Patil and Taillie, 2004), which is a particular kind of directed graph, drawn

according to the following two rules: (i) if s � t, then node t is placed above node

s; (ii) if s � t and there is no other element w such that s � w � t (i.e. if t covers

s), then an edge is inserted linking node s to node t. By transitivity, s � t (or t � s)

in P, if and only if there is a path in the Hasse diagram linking the corresponding

nodes; otherwise, s and t are incomparable. Examples of Hasse diagrams are repor-

ted in Figure 1. An upset U of a poset P is a subset of P such that if x 2 U and

x � z, then z 2 U . In a finite poset P, it can be shown that given an upset U there

is always a finite antichain u � P such that z 2 U if and only if u � z for at least

one element u 2 u. The upset is said to be generated by u, written U ¼ u". The

subset fx; t; u; vg of poset (1) in Figure 1 is an upset, generated by the antichain

fu; vg. Similarly, a downset of P is a subset I such that if x 2 I and y � x, then

y 2 I . An extension of a poset P is a partial order defined on the same set X as P,

whose set of comparabilities comprises that of P. A linear extension of a poset P is

an extension of P that is also a linear order. Poset (2) of Figure 1 is a linear exten-

sion of poset (1) and, trivially, of the antichain (3). A fundamental theorem of par-

tial order theory states that the set of linear extensions of a finite poset P uniquely

identifies P (Neggers and Kim, 1988).
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FIGURE 1. - Hasse diagrams of a poset (1), a chain (2) and an antichain (3)



3. REPRESENTING DEPRIVATION DATA THROUGH POSETS

Partial order theory allows for a very natural and effective way to represent multiva-

riate systems of ordinal data and provides a general framework to treat and analyse

them. In fact, since statistical units are differently ordered according to the different

variables in the study, a partial order relation is naturally associated to the popula-

tion of interest. Tools from partial order theory can then be employed to explore the

relational structure of the data and extract information out of it (Fattore, Brügge-

mann and Owsı́nski, 2011).

In formal terms, let v1; . . . ; vk be k ordinal variables. Each possible sequence of

ordinal scores on v1; . . . ; vk defines a different profile. Profiles can be (partially) or-

dered in a natural way, by the following dominance criterion:

DEFINITION 1

Let s and t be two profiles over v1; . . . ; vk; we say that t dominates s if and only if

viðsÞ � viðtÞ 8i ¼ 1; . . . ; k, where viðsÞ and viðtÞ are the ordinal scores of s and t on vi.

Not all the profiles can be linearly ordered based on the previous definition, so that

the set of profiles gives rise to a poset (in the following called the profile poset). It

is easily checked that the profile poset is a lattice whose order relation is the pro-

duct order of the linear orders defined by the each of the variables v1; . . . ; vk (Davey

and Priestley, 2002).

EXAMPLE 1

Let us consider three ordinal variables v1, v2 and v3. Suppose that v1 and v2 are recor-

ded on a four-grade scale while v3 is a two-grade variable. For example, in a material

deprivation study, v1 and v2 could refer to receiving food or money donations (see

variables DIFCIB and DIFDEN in the Italian version of the EU-SILC survey) and

the four grades could correspond to ‘‘1 - Never’’, ‘‘2 - Seldom’’, ‘‘3 - Sometimes’’,
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FIGURE 2. - Hasse diagram for the deprivation poset built

on variables v1, v2 and v3 of Example 1



‘‘4 - Often’’. Variables v3 could instead pertain to the ownership of a good (e.g. ‘‘1 -

owning a car’’, ‘‘2 - not owning a car’’). The 32 profiles resulting from considering

all the sequences of scores over v1, v2 and v3 can be partially ordered according to

Definition 1. The Hasse diagram of the resulting poset is shown in Figure 2.

The poset has eight different levels1, a top element (442) and a bottom element

(111). The longest chain comprised in P has 8 elements. The length of P is defined

as the number of edges connecting the elements of this chain, which is 7. The lar-

gest antichain comprised in P has 7 elements; this is, by definition, the width of P.

EXAMPLE 2

For future reference, we introduce another simple poset. Let us consider three binary

variables recorded on a 0-1 scale. The poset P̂P obtained by Definition 1 comprises 8

profiles and is depicted in Figure 3 (this poset is usually referred to as the ‘diamond’).

FIGURE 3. - Hasse diagram of P̂P

4. THE ALKIRE AND FOSTER APPROACH TO ORDINAL EVALUATION

The primary problem addressed by Alkire and Foster is that of defining a criterion

to identify deprived individuals, when several material deprivation dimensions are

jointly considered on a population. The task is conceptually non-trivial, since eva-

luation dimensions are often ordinal and quite independent of each other (Alkire

and Foster, 2007). This last feature is essential to grasp the complexity of the pro-

blem. Evaluation studies often deal with phenomena that are unidimensional, al-

though measured through multivariate systems of correlated variables. This leads to

using dimension reduction tools, which exploit the covariances among evaluation di-

mensions, to compute overall evaluation scores. The problem faced by Alkire and

Foster is, instead, truly multidimensional and cannot, neither conceptually nor opera-

tionally, be tackled just relying on associations among dimensions. As it will be

clear later, in fact, it is basically a problem of comparison and (partial) ordering.

To illustrate Alkire and Foster’s methodology, casting it in poset terms, we refer
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1 The deprivation poset P is in fact a ‘lattice’ (Davey and Priestley, 2002) satisfying the Jordan-

Dedekind chain condition (Schröder, 2003). This ensures that the distance between two compara-

ble nodes is well-defined as the number of edges in any chain connecting the two nodes. The le-

vel of a node is then defined as the distance between that node and element 111. In practice, no-

des sharing the same level share the same number of 1s in the correspondent profiles.



to Example 1 of the previous section. Suppose to consider a population and to as-

sess variables v1, v2 (both recorded on a 1 � 4 scale) and v3 (recorded on a 1 � 2

scale) on each individual. According to the scores on the deprivation dimensions,

individuals are assigned to one of the 32 profiles of the deprivation poset P. Alkire

and Foster’s procedure identifies deprived people directly assessing the correspon-

ding profiles, through a simple two-step procedure, that, in the language of social

choice theory, can be explained as follows:

1. A set of judges is selected; each judge determines on his own whether a profile

(and thus each individual sharing it) is to be classified as deprived or not.

2. The number of judges classifying a profile as deprived is computed; if it is equal

or higher than a predetermined threshold, the profile is definitely classified as re-

presenting a deprived situation.

As usual in the counting approach (Cerioli and Zani, 1990), also in Alkire and Fo-

ster’s procedure judges coincide with the evaluation dimensions that is, with refe-

rence to Example 1, with variables v1, v2 and v3. As an illustration, let us suppose

that:

� Profile p is considered deprived on v1 if v1ðpÞ ¼ 3, deprived on v2 if, similarly,

v2ðpÞ ¼ 3 and deprived on v3 if (obviously) v3ðpÞ ¼ 2.

� Profile p is considered as definitely deprived if it is deprived on two dimensions

out of three.

Consequently, any profile ordered above �1 ¼ 311 will be regarded as deprived on

v1, any profile ordered above �2 ¼ 131 will be considered deprived on v2 and any

profile ordered above �3 ¼ 112 will be retained deprived on v3. Indicating by �i "
the upset of profiles classified as deprived on vi (i ¼ 1; 2; 3), the set D of definitely

deprived profiles is then given by

D ¼ ð�1 " \�2 "Þ [ ð�1 " \�3 "Þ [ ð�2 " \�3 "Þ

or, explicitly, by

D ¼f331; 332; 341; 342; 431; 432; 441; 442;

312; 322; 412; 422; 132; 232; 142; 242g:

Elements of the set D are depicted in Figure 4 as grey nodes. The set D is easily

seen to be an upset of the deprivation poset. This has a very nice consequence, lea-

ding to a different and more interesting definition of the set of deprived profiles. As

any upset, D is generated by an antichain and, in fact, it is easily verified that D is

generated by d ¼ f331; 312; 132g. That is, a profile p belongs to D if and only if it

is above (or coincides with) an element of d. Otherwise stated, an individual is defi-

nitely deprived if and only if it is as deprived as or more deprived than an indivi-

dual having one of the profiles listed in D. The antichain d can then be seen as a

deprivation threshold and its elements are drawn in Figure 4 as larger grey circles

with a dot inside.
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It is interesting to notice that the existence of a deprivation threshold is a general

result, whenever the set D of definitely deprived profiles is an upset. Since any rea-

sonable way of identifying deprived profiles must satisfy the trivial requirement that

if p is a deprived profile then any profile above it in the deprivation poset is also

deprived, the set D is always an upset and the existence of a deprivation threshold

may be assumed as generally valid.

Elements of the deprivation poset are thus partitioned into two disjoint groups;

the group D of definitely deprived profiles and its complement N , corresponding to

the white nodes of Figure 4. Profiles in D are given a deprivation score equal to 1,

while profiles in N receive a deprivation score equal to 0. Alkire and Foster’s pro-

cedure thus leads primarily to a binary evaluation of deprivation2. Alternatively, the

evaluation procedure can also be seen as defining an order-preserving map3 ’ð�Þ
between the deprivation poset P and the diamond P̂P. Each element p ¼ p1p2p3 of P

is in fact turned first into a binary sequence b1b2b3, where bi ¼ 0 or bi ¼ 1 accor-

ding to whether pi is below �i ði ¼ 1; 2; 3Þ or not. Binary profiles with at least two

1s are then classified as deprived. Let us partition the elements of P in the following

subsets (here, Ac
1 stands for the complement of the set A1)

A1 ¼ ðf3 � �g [ f4 � �gÞ \ f�3�; �4�g \ f� � 2; � � 2g
A2 ¼ ðf3 � �g [ f4 � �gÞ \ f�3�; �4�g \ Ac

1

A3 ¼ ðf3 � �g [ f4 � �gÞ \ f� � 2; � � 2g \ Ac
1

A4 ¼ ðf� � 2g [ f�3�; �4�gÞ \ Ac
1

A5 ¼ f222g [ f212g [ f122g [ f122g
A6 ¼ f321g [ f421g [ f311g [ f411g
A7 ¼ f241g [ f231g [ f131g [ f141g
A8 ¼ f221g [ f121g [ f211g [ f111g
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FIGURE 4. - Deprivation threshold and deprived profiles according

to Alkire and Foster’s procedure

2 In the original paper of Alkire and Foster (2007), a further distinction is made among deprived

profiles, based on the number of deprivations they share.
3 An order-preserving map ’ð�Þ between two posets P1 ¼ ðX ;�1Þ and P2 ¼ ðY ;�2Þ is a map

between X and Y such that if a �1 b in P1, then ’ðaÞ �2 ’ðbÞ in P2.



where � stands for any value of the corresponding variable4. The map ’ð�Þ between

P and P̂P is then given by:

A1 �! 111

A2 �! 110

A3 �! 101

A4 �! 001

A5 �! 001

A6 �! 010

A7 �! 100

A8 �! 000

The set of deprived binary profiles in P̂P is depicted in grey in Figure 5. The depri-

vation threshold is simply f110; 101; 011g, that is the set of profiles with at least

two (binary) deprivations.

FIGURE 5. - Image of P under the map ’. In grey, deprived binary profiles

An inspection into the structure of the deprivation poset reveals that the binary par-

tition of P into deprived and non-deprived profiles is not as satisfactory as it may

seem at first. In fact, while it is clear that a profile which is more deprived than an

element of the deprivation threshold must be classified as deprived, it is not that

clear why elements of N should be classified as non-deprived. Apart from profile

111, which is less deprived than any element of d, all of the other elements of N

are incomparable with at least one element of the deprivation threshold. Profile 241

is even incomparable with all of the elements of d. This means that it cannot be as-

serted that elements of N are less deprived that any element of the deprivation thres-

hold. This is quite paradoxical: definitely non-deprived elements should be unambi-

guously less deprived than any element of d. In a sense, profiles in N should not

get deprivation scores equal to 0, neither should they get scores equal to 1. They

should in fact be given a score in �0; 1½. To find out a formal and consistent way to

extend in this direction Alkire and Foster’s binary evaluation function, partial order

theory is needed, as discussed in the next Section.
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4 For instance, f3 � �g stands for f311; 321; 331; 341; 312; 322; 332; 342g.



5. EXTENDING THE COUNTING APPROACH THROUGH POSET THEORY

The methodology proposed by Alkire and Foster (2007) can be seen as a way to ac-

complish two different tasks: i) identifying definitely deprived profiles and ii) assi-

gning a deprivation degree to any profile, defining an evaluation function on the de-

privation poset P. In practice, the two tasks coincide, since the evaluation function

chosen by Alkire and Foster is binary. The identification of the set D of definitely

deprived profiles is attained through the two-step procedure described in Section 4,

which results in determining a deprivation threshold d and considering the upset

D ¼ d ". This is typical of socio-economic evaluation studies and the identification

procedure of Alkire and Foster is just one possibility out of many. The definition of

the evaluation function is instead more problematic. As discussed in the previous

Section, while it is reasonable to assign a deprivation score equal to 1 to profiles be-

longing to D, it is not consistent to assign deprivation degree equal to 0 to any pro-

file in N . To overcome this issue, it is useful to link the binary evaluation function

of Alkire and Foster to the structure of the Hasse diagram of the deprivation poset.

The binary evaluation function assigns deprivation degree 1 to profiles in d ".

Consistently, it assigns degree 0 to the intersection of all the downsets of the elements

of d that, in our example, reduces to profile 111. Thus, we may say that the evalua-

tion function assigns deprivation degrees to profiles based on their position with re-

spect to the threshold: 1 if the profile is above d, 0 if the profile is (unambiguously)

below d. The problem of defining the evaluation function on the remaining set

M ¼ N � f111g can then be turned into the problem of quantifying to what extent

an element of M can be considered as above (or, complimentary, below) the depriva-

tion threshold. This question can be answered formally through partial order theory

and this is the key to extend the evaluation function proposed by Alkire and Foster.

Let us consider the set of all the linear extensions of the deprivation poset,

EðPÞ, that, as previously mentioned, uniquely identifies P. By virtue of the defini-

tion of linear extension, it is clear that the profiles in D� d are the only elements

of P that are ranked above an element of the threshold in any linear extension of P.

Similarly, element 111 is the only profile being ranked below any element of the

threshold in any linear extension of P. Instead, elements of M are ranked above ele-

ments of the threshold in some linear extensions and below them in others. Adop-

ting a social choice terminology, linear extensions can be viewed as judges ranking

elements of P in terms of deprivation. Since elements of d are deprived, any profile

ranked by a judge above an element of the threshold will be considered, by that jud-

ge, as deprived. It is thus natural to define the evaluation function �ð�Þ on a profile

p as the fraction of linear extensions ranking p above at least one element of the de-

privation threshold, in formulas

�ðpÞ ¼ jf‘ 2 EðPÞ : 9d 2 d : d � p 2 ‘gj
jEðPÞj ð1Þ

By construction, �ð�Þ coincides with the evaluation function of Alkire and Foster on

D and 111, but differs on M , assuming values in �0; 1½.
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The exact computation of the evaluation function is very hard, although some ef-

ficient algorithms are available to compute mutual ranking frequencies without li-

sting all of the linear extensions of P (de Loof, de Beats and de Meyer, 2006). So

the evaluation function must be estimated, based on a sample of linear extensions.

The most effective algorithm for sampling (quasi) uniformly from EðPÞ is the Bu-

bley-Dyer algorithm (Bubley and Dyer, 1999), which we have indeed employed in

the paper. Following the original paper of Bubley and Dyer, we have extracted a

preliminary set of linear extensions, until the algorithm reached the uniform sam-

pling regime, within a ‘‘distance from uniformity’’ that we have chosen equal to

10�7. Then we have sampled 109 linear extensions, computing the evaluation func-

tion for any element of P. The results are listed in Table 1 and depicted in Figure 6

(we have reported up to 3 decimal digits to show how the procedure is capable, in

principle, to extract information from the partial order structure; anyway, it is clear

that in practice such a precision is not needed).

TABLE 1. - Deprivation scores of the profiles in the deprivation poset P

prog. 1 2 3 4 5 6 7 8

p 442 441 432 342 431 422 341 332

�ðpÞ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

prog. 9 10 11 12 13 14 15 16

p 242 312 412 331 322 142 232 132

�ðpÞ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

prog. 17 18 19 20 21 22 23 24

p 241 421 222 141 231 321 411 122

�ðpÞ 0.787 0.772 0.650 0.450 0.448 0.435 0.417 0.119

prog. 25 26 27 28 29 30 31 32

p 212 221 131 311 221 121 112 111

(p) 0.105 0.086 0.050 0.043 0.002 0.002 0.001 0.000

As can be noticed, the evaluation function smoothly decreases from 1 to 0, based

on the ‘‘relational’’ position of profiles with respect to the deprivation threshold.

Profiles near the bottom of the poset receive deprivation degrees smaller than profi-

les which occupy higher levels. Anyway, there is no correspondence between the le-

vels of the Hasse diagram of P and the value of the evaluation function. In fact, ele-

ments sharing the same level need not share the same relational position in the po-

set, given d. These differences are captured by the poset procedure and are turned

into the different deprivation degrees assigned to the profiles. This shows how the

poset procedure is capable to extract information out of the poset structure, reprodu-

cing the nuances and the complexity of the data in a much more effective way than

simple counting approaches.
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6. CONCLUSIONS

In this paper, we have addressed the problem of improving the counting approach

to socio-economic evaluation in a multidimensional ordinal setting, The proposal of

Alkire and Foster has been reviewed and integrated with partial order theory, impro-

ving the informative power of the classical evaluation procedures based on simple

countings. In particular, tools from partial order theory prove capable to exploit the

partial order structure of multidimensional ordinal datasets and to extract informa-

tion directly, so that final evaluation scores reproduce more faithfully the nuances

and the complexity of the original data. The use of poset techniques in socio-econo-

mic evaluation is at an inital stage (Fattore, 2008; Fattore et al., 2011; Annoni and

Brüggemann, 2009). Some proposals have been made, but a lot of research is still

needed to build sound evaluation methodologies for ordinal data. However, results

are quite promising. Poset theory is in fact the right formal framework in which

multidimensional systems of ordinal variables can be treated and analysed. Through

partial order theory, many limitations of the classical statistical procedures can be

overcome and ordinal data can be addressed in full consistency with their discrete

nature, without forcing them in inadequate conceptual frameworks. A great part of

socio-economic indicators built on ordinal data and used by decision-makers in their

daily practice are based on methodologies and assumptions that can be argued in

many respects (Maggino, 2009). Still, they have a big impact at public level, direc-

tly entering policy-making. Using partial order theory in socio-economic evaluation

studies is thus of primary interest, both for researchers and policy-makers; partial or-

der theory can in fact help getting new and more meaningful insights into the com-

plexity of socio-economic facts and can provide a sound basis for developing more
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FIGURE 6. - Evaluation function for the profiles in the deprivation poset P.

Profiles are listed on the x axis according to decreasing deprivation degrees



consistent social indicators. For this reasons, we hope that the topic may attract mo-

re and more research both at theoretical and applied level.
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Schröder B. (2003). Ordered sets. Birkhäuser, Boston.
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