Sphingosine 1-phosphate induces Ca2+ transients and cytoskeletal rearrangement in C2C12 myoblastic cells

Original Citation:
Sphingosine 1-phosphate induces Ca2+ transients and cytoskeletal rearrangement in C2C12 myoblastic cells / L. Formigli; F. Francini; E. Meacci; M. Vassalli; D. Nosi; F. Quercioli; B. Tiribilli; C. Bencini; C. Piperio; P. Bruni; S.Z. Orlandini. - In: AMERICAN JOURNAL OF PHYSIOLOGY. CELL PHYSIOLOGY. - ISSN 0363-6143. - ELETTRONICO. - 282:(2002), pp. 1361-1373. [10.1152/ajpcell.00378.2001]

Availability:
This version is available at: 2158/771749 since: 2016-11-22T12:21:16Z

Published version:
DOI: 10.1152/ajpcell.00378.2001

Terms of use:
Open Access
La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:
Sphingosine 1-phosphate induces Ca\(^{2+}\) transients and cytoskeletal rearrangement in C\(_{12}\) myoblastic cells

Lucia Formigli, Fabio Francini, Elisabetta Meacci, Massimo Vassalli, Daniele Nosi, Franco Quercioli, Bruno Tiribilli, Chiara Bencini, Claudia Piperio, Paola Bruni and Sandra Zecchi Orlandini

You might find this additional info useful...

This article has been cited by 9 other HighWire-hosted articles:
http://ajpcell.physiology.org/content/282/6/C1361#cited-by

Updated information and services including high resolution figures, can be found at:
http://ajpcell.physiology.org/content/282/6/C1361.full

Additional material and information about *American Journal of Physiology - Cell Physiology* can be found at:
http://www.the-aps.org/publications/ajpcell

This information is current as of October 23, 2012.
Sphingosine 1-phosphate induces Ca$^{2+}$ transients and cytoskeletal rearrangement in C$_2$C$_{12}$ myoblastic cells

LUCIA FORMIGLI,1 FABIO FRANCINI,2 ELISABETTA MEACCI,3 MASSIMO VASSALLI,4 DANIELE NOSI,1 FRANCO QUERCIOLI,4 BRUNO TIRIBILLI,4 CHIARA BENCINI,2 CLAUDIA PIPERIO,2 PAOLA BRUNI,3 AND SANDRA ZECCHI ORLANDINI1

Departments of 1Anatomy, Histology, and Forensic Medicine, 2Physiological Sciences, and 3Biochemical Sciences, University of Florence, 50134 Florence; and 4Biophotonics Lab, National Institute of Applied Optics, 50125 Florence, Italy

Received 6 August 2001; accepted in final form 25 January 2002

Sphingosine 1-phosphate induces Ca$^{2+}$ transients and cytoskeletal rearrangement in C$_2$C$_{12}$ myoblastic cells. Am J Physiol Cell Physiol 282: C1361–C1373, 2002. First published January 30, 2002; 10.1152/ajpcell.00378.2001.—In many cell systems, sphingosine 1-phosphate (SPP) increases cytosolic Ca$^{2+}$ concentration ([Ca$^{2+}]_i$) by acting as intracellular mediator and extracellular ligand. We recently demonstrated (Meacci E, Formigli L, Squecco R, Donati C, Tiribilli B, Quercioli F, Zecchi-Orlandini S, Francini F, and Bruni P. Biochem J 362: 349–357, 2002) involvement of endothelial differentiation gene (Edg) receptors (Rs) specific for SPP in agonist-mediated Ca$^{2+}$ response of a mouse skeletal myoblastic (C$_2$C$_{12}$) cell line. Here, we investigated the Ca$^{2+}$ sources of SPP-mediated Ca$^{2+}$ transients in C$_2$C$_{12}$ cells and the possible correlation of ion response to cytoskeletal rearrangement. Confocal fluorescence imaging of C$_2$C$_{12}$ cells preloaded with Ca$^{2+}$-dye fluo 3 revealed that SPP elicited a transient Ca$^{2+}$ increase propagating as a wave throughout the cell. This response required extracellular and intracellular Ca$^{2+}$ pool mobilization. Indeed, it was significantly reduced by removal of external Ca$^{2+}$, pretreatment with nifedipine (blocker of L-type plasma membrane Ca$^{2+}$ channels), and inositol 1,4,5-trisphosphate (Ins(1,4,5)P$_3$)-mediated Ca$^{2+}$ pathway inhibitors. Involvement of EdgRs was tested with suramin (specific inhibitor of Edg-3). Fluorescence associated with Ins(1,4,5)P$_3$Rs and L-type Ca$^{2+}$ channels was evident in C$_2$C$_{12}$ cells. SPP also induced C$_2$C$_{12}$ cell contraction. This event, however, was unrelated to [Ca$^{2+}]_i$, because the two phenomena were temporally shifted. We propose that SPP may promote C$_2$C$_{12}$ cell contraction through Ca$^{2+}$-independent mechanisms.

calcium ion transients; cytoskeleton; cell contraction; confocal microscopy

Sphingosine 1-phosphate (SPP) is a bioactive lysophospholipid mediator that is recognized as a highly versatile molecule capable of affecting many cellular processes, including cell proliferation and differentiation, apoptotic cell death, cell motility, and cytoskeletal organization (19). Some of these biological effects of SPP have long been attributed to its action as second messenger. Indeed, the mitogenic responses to several growth factors, such as platelet-derived growth factor, epidermal growth factor, nerve growth factor, and insulin, as well as the inhibition of apoptosis induced by antimitogenic drugs have been related to the activation of sphingosine kinase and to the subsequent enhanced production of intracellular SPP (35, 36, 38). More recently, the identification of a subset of receptors belonging to the endothelial differentiation gene (Edg) receptor (R) family has suggested that SPP may also act as an extracellular lipid mediator. In agreement with this suggestion, SPP is released on platelet activation and is an important constituent of serum (18). Moreover, extracellular SPP stimulation is required for inhibition of cell motility in vascular smooth muscle and melanoma cells, neurite retraction, and stimulation of DNA synthesis in 3T3 fibroblasts (8, 39, 50, 52). Only very recently has a role for exogenous SPP in the pathogenesis of inflammatory diseases such as asthma also been proposed (2).

It is becoming apparent that both modes of action of SPP may involve Ca$^{2+}$ mobilization from intracellular stores and/or from the external pool. However, at present, the mechanisms by which SPP affects cytosolic Ca$^{2+}$ concentration ([Ca$^{2+}]_i$) are far from being fully delineated. Several studies have suggested that SPP, when acting as a second messenger, can directly promote Ca$^{2+}$ release from the endoplasmic reticulum (ER) through mechanisms independent of the activation of the ryanodine (Ry)R or inositol 1,4,5-trisphosphate (Ins(1,4,5)P$_3$)R pathways (5, 54). Consistent with this, a novel sphingolipid-gated Ca$^{2+}$-permeable channel has been discovered on isolated ER vesicles of Xenopus oocytes (26). In contrast, dissipation of the Ca$^{2+}$ signaling pathways triggered by the interaction of SPP with its G protein-coupled receptors is of great difficulty and complexity considering that multiple ef-
fector systems, including phospholipase C (PLC) and protein kinase C (PKC), may be involved (3, 37, 40). In particular, although activation of phospholipases has been reported in several cell types after SPP stimulation, only limited data have provided conclusive evidence for a role of Ins(1,4,5)P3 in the SPP-induced Ca2+ signaling pathway. Moreover, we recently found (28) in a myoblastic C2C12 cell line that SPP elicits a Ca2+ response in the form of Ca2+ waves that are dependent on extracellular Ca2+, thus suggesting a role for the lipid metabolite in mediating the influx of the ion through plasma membrane Ca2+ channels. Furthermore, in the same study we also showed that inhibition of Edg-3R and Edg-5R by specific antisense oligodeoxyribonucleotides totally abolished SPP-induced Ca2+ response (28). Voltage-dependent dihydropyridine receptors (L-type Ca2+ channels), located on the plasma membrane, represent the major Ca2+ entry pathway in excitable cells. In particular, Ca2+ influx through these channels is critical for the activation of Ca2+-induced Ca2+ release via RyRs channels of the sarcoplasmic reticulum (SR) and for contractility stimulation in cardiac muscle cells (5). In contrast, L-type Ca2+ channels were shown to couple conformationally with RyRs on depolarization to release Ca2+ during contraction in mature skeletal muscle cells (33, 41, 49). Nevertheless, even though numerous studies exist on the physiological significance of L-type Ca2+ channels in striated muscle cells, their possible role in SPP-induced Ca2+ response remains to be studied.

Because a better understanding of the molecular basis of SPP action may be of crucial importance in understanding the physiological significance and possible pathological implications of this metabolite, it seemed worthwhile, in the present study, to further characterize the Ca2+ response elicited by exogenous SPP in skeletal muscle cells, particularly in view of the crucial role exerted by Ca2+-effector molecules in skeletal muscle development and differentiation. Confocal laser scanning microscopy equipped with Time Course software was then used to determine the spatiotemporal distribution of SPP-mediated Ca2+ transients in a myoblastic C2C12 cell line and the extracellular and intracellular sources of Ca2+ mobilization and to characterize the pattern of expression of voltage- and ligand-gated plasma membrane and intracellular Ca2+ channels in these cells. The effects of SPP-induced Ca2+ transients on the cytoskeletal reorganization were also considered in view of the well-known role that this ion plays in the regulation of cell contractility.

MATERIALS AND METHODS

Cell Cultures

Mouse skeletal C2C12 myoblasts (51) were obtained from American Type Culture Collection (Manassas, VA) and maintained in Dulbecco’s modified minimal essential medium (DMEM) with 10% fetal calf serum, penicillin (100 U/ml), and streptomycin (100 μg/ml) (Sigma, Milan, Italy) at 37°C and exposed to a humidified atmosphere of 5% CO2.

Confocal Analysis of Calcium Transients

To reveal variations in intracellular concentrations of calcium in C2C12 cells incubated with SPP (Calbiochem, San Diego, CA), ∼2 × 104 cells were plated on glass coverslips and incubated at room temperature for 10 min in serum-free DMEM with 0.1% bovine serum albumin (BSA) containing fluo 3-acetoxymethyl ester as fluorescent calcium indicator at a final concentration of 10 μM and 0.1% anhydrous dimethyl sulfoxide and Fluoronic F-127 (0.01% wt/vol) as dispersing agent (Molecular Probes, Eugene, OR). The cells were then washed and maintained in fresh medium for 10 min to allow complete deesterification of fluo 3. After that, the cells were placed in open slide flow-loading chambers that were mounted on the stage of a confocal Bio-Rad MRC 1024 ES scanning microscope (Bio-Rad, Hercules, CA) equipped with a krypton/argon laser source (15 mW) for fluorescence measurements. The microscope was also equipped with differential interference contrast (DIC) optics. The fluorescence of fluo 3-loaded cells was monitored by using a 488-nm wavelength and collecting the emitted fluorescence with a Nikon Plan Apo 100×oil-immersion objective through a 510-nm long-wave pass filter. The time course analysis of Ca2+ waves after SPP stimulation was performed with Time Course Kinetic software (Bio-Rad).

Some experiments were performed in Ca2+-free, 2 mM Mg2+-containing medium and/or after pretreatment of C2C12 cells with various modulators of known voltage- and ligand-gated calcium channels. In particular, caffeine (100 μM; Sigma), 2-aminoethyldiphenylborate (2-APB, 100 μM; Alexis, San Diego, CA), heparin (50 mM), and 1-(6-(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl-1H-pyrrole-2,5-dione (U-73122, 10 μM; Alexis) were used to inhibit any potential Ins(1,4,5)P3-R-activated release, Ry (100 μM; Sigma) to inhibit RyR-Ca2+ release channels, and nifedipine (100 nM; Sigma) to inhibit Ca2+ influx through L-type Ca2+ channels. To test the involvement of EdgRs in the Ca2+ response, the cells were treated with suramin (100 μM) before stimulation. SPP was dissolved in the medium by fast perfusion; the small size of the chamber used (0.2 ml) and the perfusion flux of ~0.2 ml/s allowed a complete replacement of the bathing medium in ~1 s.

Usually, cells did not reach confluence on coverslips; a single coverslip with adherent cells was used for only one experiment. For each cell preparation a variable number of cells ranging from 10 to 22 were analyzed. Multiple regions of interest (ROIs) of 25 μm2 were selected in single cells to monitor the spatiotemporal distribution of Ca2+ transients. Fluorescence signals are expressed as fractional changes above the resting baseline, ΔF/F, where F is the averaged baseline fluorescence before the application of SPP and ΔF represents the fluorescence changes from the baseline. The latency (T0) of the Ca2+ wave was measured as the lag between the addition of the agonist and the beginning of the fluorescence increase over the basal noise. The time to peak (Tp) was measured as the time interval between T0 and the peak level. The time to half-decay (T0.5) of fluorescence was measured as the time for the fluorescence to decay from the peak to half its peak value. The temporal delay to peak amplitude between adjacent ROIs was used to calculate the extent of synchronization vs. propagation of Ca2+ transients. Usually, two ROIs were placed within the nucleus, whereas a variable number ranging from 3 to 10 ROIs were placed inside the cytoplasm. Confocal fluorescence images were also used to evaluate intracellular Ca2+ spatial distribution with a purpose-developed software running under Interactive Data Language (Research Systems, Boulder, CO).
Determination of Inositol Phosphate Production

Serum-starved C2C12 myoblasts were incubated for 24 h in inositol-free DME in the presence of 5 μCi/ml myo-[2-3H(N)]inositol (25 Ci/mmol; NEN, Dreieich, Germany). Two hours before the beginning of the experiment the medium was changed, and 30 min before the addition of the agonist (1 μM SPP) the cells were incubated with 20 mM LiCl. Incubation was stopped by aspirating the medium and washing the monolayer twice with PBS. Inositol phosphate (InsP) accumulated in the cells was extracted with 5% ice-cold perchloric acid for 30 min. Cell extracts were neutralized with K₂CO₃, and InsP was separated onto Dowex (Bio-Rad) formiate form (1 ml) and quantified essentially as described previously (45).

Determination of Diacylglycerol Production

C2C12 cells were labeled with 5 μCi/ml [2-3H]glycerol (14.2 Ci/mmol; NEN) for 24 h and then incubated for 30 s with 1 μM SPP. Lipid extraction and [3H]diacylglycerol (DAG) sep-
aration by thin-layer chromatography was performed as described previously (31).

Confocal Immunofluorescence

C2C12 cells grown on coverslips were fixed in 4% buffered paraformaldehyde for 10 min at room temperature. The cells were then washed, permeabilized with 0.2% Triton X-100 in PBS for 5 min, and blocked with a solution containing 0.5% BSA and 5% glycerol in PBS.

Calcium channel immunodetection. Cells were incubated with the following primary antibodies diluted in BSA-PBS: rabbit anti-α1c L-type channels (recognizing α1c-subunit of voltage-gated Ca2+ channel) and rabbit anti-α1D L-type channels (reacting with all forms of α1D-subunit of voltage-gated Ca2+ channel; 1:100; Chemicon). Mouse anti-Ins(1,4,5)P3R [recognizing COOH-terminal cytoplasmic domain of Ins(1,4,5)P3R types 1, 2, and 3; 1:200; Chemicon], and mouse anti-α1c L-type channels (reacting with COOH-terminal domain of RyR; 500 kDa, 1:50; Chemicon) for 1 h at room temperature. After incubation with the primary antibodies, the cells were washed to remove unbound antibodies (Abs) and incubated with Alexa 488-conjugated anti-mouse or anti-rabbit secondary Abs (1:200 dilution; Chemicon). Counterstained with 4′,6-diamidino-2-phenylindole (DAPI; 1:1000 dilution; Eurobio). Confocal immunofluorescence microscopy was performed by using a Bio-Rad MRC-1024 laser scanning confocal microscope. The samples were excited with a 488-nm argon laser and detected through a 500- to 560-nm bandpass filter. Images were acquired with a cooled charge-coupled device camera (Photometrics) and were processed with MCID image analysis software (Imaging Research). The images were exported in TIFF format and imported into Adobe Photoshop (Adobe Systems) for further analysis.

Cytoskeletal protein immunodetection. C2C12 cells were incubated with a monoclonal anti-myosin Ab (1:50 dilution; Sigma) and a monoclonal anti-vinculin Ab (1:100 dilution; Sigma) for 1 h at room temperature. The cells were subsequently incubated with Alexa 488-conjugated anti-mouse IgG (Molecular Probes). Actin filaments were stained with tetramethylrhodamine-isothiocyanate-labeled phalloidin. After a series of washes the coverslips containing the immunostained cells were mounted on an antifade mounting medium (Biomeda; Electron Microscopic Sciences). Negative controls were performed by substituting blocking solution for the primary Abs. The fluorescence signals were revealed by a confocal laser scanning microscope (Bio-Rad). To this purpose, a series of optical sections (512 × 512 pixels) was taken through the depth of the cells with a thickness of 1 μm at intervals of 0.8 μm. Twenty optical sections for each examined sample were then projected as a single composite image by superimposition.

Imaging of Dynamic Changes of Actin Cytoskeleton

Alexa 488-labeled G-actin monomers were used as probes for live cell cytoskeleton. The monomers were introduced into C2C12 cells by the scrape-loading technique. Briefly, C2C12 cells grown to confluence on 100-mm petri dishes were washed twice with PBS and 2 ml of scraping buffer (in mM: 114 KCl, 1 NaCl, 5.5 MgCO3, and 10 Tris·HCl). Flourescent G-actin monomers (250 μg/ml; Molecular Probes) were added in 0.5 ml of scraping buffer, and the cells were gently scraped, suspended in DMEM-10% FCS, and split among six-well dishes. After 1 h of incubation, we estimated that ~70% of the treated cells were viable. Labeled cells were then observed by confocal microscope and used to test the effect of SPP on dynamic changes of actin cytoskeleton.

Statistics

All data are expressed as means ± SD. Data were analyzed by one-way ANOVA with Bonferroni’s correction for multiple comparisons. The α-value was at P < 0.05 for all tests.

Fig. 2. SPP-mediated Ca2+ waves in C2C12 myoblastic cells. Time course of Ca2+ response from representative cells in Ca2+-containing medium (A), Ca2+-free medium (B), and Ca2+-containing medium after pretreatment with nifedipine (100 nM; C) or ryanodine (100 μM; D). The data are from representative cells. Inset, number of regions of interest (ROIs; cy and n indicate ROIs taken in cytoplasm and nucleus, respectively). Arrows indicate the addition of SPP (time 0). In A and D, the left vertical lines indicate latency (T0) values in the cytoplasmic ROIs (2), the dashed vertical lines indicate T0 in the nuclear ROIs (9 or 7), and the right vertical lines indicate T0 in cytoplasmic ROIs (13 or 12) located at the opposite edge of the cells examined. In B and C, T0 values are doubled and are the same in all ROIs. ∆F/F, fractional fluorescence changes above resting baseline.
RESULTS

SPP-Induced Ca\(^{2+}\) Transients in C\(_2\)C\(_12\) Myoblasts

C\(_2\)C\(_12\) cells cultured on coverslips and observed under light microscopy showed variable morphology, being rounded or spindle-shaped with several cytoplasmic projections emanating from the cell surfaces and anchoring to the substrate. We first verified the responsiveness of the C\(_2\)C\(_12\) myoblasts. To this aim, the cells were loaded with fluorescent Ca\(^{2+}\) dye fluo 3 and ATP (1 mM) was added to Ca\(^{2+}\)-containing medium. In accordance with previous reports (24), ATP induced a significant intracellular Ca\(^{2+}\) elevation in all cells (data not shown). The application of exogenous SPP (1 \(\mu\)M) to C\(_2\)C\(_12\) cells also promoted a substantial increase in intracellular Ca\(^{2+}\) that was evident in both the cytoplasmic and nuclear compartments. This increase was concentration dependent, with an EC\(_{50}\) of \(-50\) nM. The SPP-induced Ca\(^{2+}\) increase was transient and was followed by a return to near resting levels within 1 min (Fig. 1). In particular, a synchronous Ca\(^{2+}\) increase was observed in some cells, whereas the Ca\(^{2+}\) response propagated as a wave in others (Figs. 1 and 2A). As shown in Fig. 3A, almost 60% of the examined cells were responsive to SPP, exhibiting relative fluorescence changes significantly (\(P < 0.001\)) higher in the nucleus than in the cytoplasmic region (Fig. 3B). Moreover, differences in the time course of the fluorescence signal were found between the cytoplasmic and nuclear regions; in fact, \(T_0\) and \(T_{0.5}\) of the nucleus were significantly higher (\(P < 0.001\)) and lower (\(P < 0.05\)), respectively, compared with those of the cytoplasm (Fig. 3, C–E). The Ca\(^{2+}\) response elicited by exogenous SPP could consist of at least two components: Ca\(^{2+}\) influx across the plasma membrane and Ca\(^{2+}\) release from the endogenous stores. To better investigate this issue, we stimulated C\(_2\)C\(_12\) cells in Ca\(^{2+}\)-free, Mg\(^{2+}\)-containing medium (Fig. 2B). Under these particular conditions, the number of cells responsive to SPP was reduced to \(-40\%\) (Fig. 3A), and the cytosolic and nuclear \(\Delta F/F\) increase in response to 1 \(\mu\)M SPP was significantly reduced by \(-35\%\) (\(P < 0.001\)) (Fig. 3B). Moreover, the Ca\(^{2+}\) increase was evident as a synchronous rather than propagated Ca\(^{2+}\) wave with a \(T_0\) significantly increased with respect to controls (Figs. 2B and 3C). In myoblasts cultured in the absence of external Ca\(^{2+}\), a slight increase in \(T_0\) and a remarkable increase in \(T_{0.5}\) (\(P < 0.001\)) in both the cytoplasmic and nuclear ROIs (Fig. 3, D and E) were found. All these data together suggested that SPP-induced Ca\(^{2+}\) response was attributable to both extracellular and intracellular Ca\(^{2+}\) pool mobilization.

A role for extracellular Ca\(^{2+}\) influx was further confirmed in two-step experimental protocols consisting of addition of SPP to cells cultured in Ca\(^{2+}\)-free medium and subsequent readministration of Ca\(^{2+}\) to the medium once the ion transients had occurred (Fig. 4, A and B). Indeed, Ca\(^{2+}\) readministration caused a faster elevation of intracellular Ca\(^{2+}\) in all cells in both the cytoplasmic and nuclear ROIs (Fig. 4, A, B, F, and G).

The Ca\(^{2+}\) increase was transient but, in contrast to that elicited by SPP, it rapidly decayed (Fig. 4H) to steady-state intracellular Ca\(^{2+}\) levels that remained elevated above the baseline. This latter response was absent when the two-step procedure was applied to cells not previously stimulated by SPP (data not shown), thus suggesting the existence of a SPP-dependent Ca\(^{2+}\) influx pathway mediated by the activation of putative plasma membrane Ca\(^{2+}\) channels.

To verify this latter hypothesis, C\(_2\)C\(_12\) myoblasts were treated with nifedipine (100 nM), a prototypical blocker of plasma membrane L-type Ca\(^{2+}\) channels, 20 min before stimulation with SPP (Fig. 2C). The presence of nifedipine in Ca\(^{2+}\)-containing medium significantly reduced the Ca\(^{2+}\) transients, which became similar to those observed in Ca\(^{2+}\)-free medium (Figs. 2B and 3), supporting a role for nifedipine-sensitive receptors in SPP-mediated Ca\(^{2+}\) influx.
We next tested C2C12 myoblasts for the presence of voltage-dependent ionic channels in C2C12 cells by adding KCl (100 mM) to the medium. High extracellular K\(^+\) was not able to elicit any Ca\(^{2+}\) response in undifferentiated C2C12 cells. This finding indicated the absence of voltage-dependent Ca\(^{2+}\) channels and demonstrated that the observed nifedipine-sensitive Ca\(^{2+}\) influx in response to SPP was independent from the existence of functional voltage-dependent L-type Ca\(^{2+}\) channels.

Subsequently, we explored the involvement of intracellular receptors in the Ca\(^{2+}\) mobilization elicited by SPP by adding caffeine (100 mM), a known agonist of RyRs, to the medium. Caffeine was without effect on induction of Ca\(^{2+}\) mobilization in all C2C12 cells examined. Moreover, pretreatment with Ry (100 \(\mu\)M) did not affect SPP-mediated intracellular Ca\(^{2+}\) transients (Figs. 2D and 3), suggesting that RyR-mediated Ca\(^{2+}\) mobilization was absent in C2C12 myoblasts.
Interestingly, pretreatment with caffeine 1 min before SPP stimulation (Fig. 5A) significantly reduced the number of responsive cells ($P < 0.05$) and the peak of Ca^{2+} transients in both the cytoplasmic and nuclear ROIs by $\sim 35\%$ ($P < 0.001$; Fig. 6, A and B). Moreover, T_0 and $T_{0.5}$ of the Ca^{2+} response were significantly increased with respect to controls in both the cytoplasmic and nuclear ROIs ($P < 0.001$; Fig. 6). Because it has been reported that caffeine, besides activating RyR3s, inhibits Ins(1,4,5)P$_3$Rs (53), these latter data are suggestive for an involvement of the Ins(1,4,5)P$_3$ signaling pathway in the cytosolic Ca^{2+} response. As it occurred in the cells cultured in Ca^{2+}-free medium, the pretreatment with caffeine before stimulation with SPP elicited a Ca^{2+} response in the form of a synchronous wave (Fig. 5A). Quite similar results were obtained by pretreating C$_2$C$_{12}$ cells with other inhibitors of the Ins(1,4,5)P$_3$ signaling Ca^{2+} pathway such as heparin and 2-APB, both known blockers of Ins(1,4,5)P$_3$Rs (Figs. 5, B and C, and 6). In contrast, pretreatment with U-73122, a specific inhibitor of PLC activation, completely blocked the occurrence of Ca^{2+} transients elicited by SPP (Figs. 5D and 6). These data are in favor of a role of PLC activation not only in the Ins(1,4,5)P$_3$ signaling pathway but also in mediating plasma membrane Ca^{2+} influx.

The involvement of EdgRs in the Ca^{2+} signaling pathway induced by SPP was tested by pretreating C$_2$C$_{12}$ cells with suramin, an inhibitor of Edg-3R (Ref. 4; Fig. 5E). Pretreatment with suramin, although significantly ($P < 0.001$) reducing the number of responsive cells (by $\sim 40\%$), only slightly affected the time course of the intracellular Ca^{2+} transients evoked by SPP in C$_2$C$_{12}$ myoblasts (Figs. 5E and 6).

The dual origin, extracellular and intracellular, of Ca^{2+} transients elicited by SPP was further supported by the finding of a complete inhibition of SPP-mediated Ca^{2+} response after pretreatment with caffeine in...
Fig. 6. Effects of pretreatment with inhibitors of Ins(1,4,5)P_3-mediated Ca^{2+} pathway on SPP-mediated intracellular Ca^{2+} elevation in C_2C_{12} myoblasts: statistical analysis. The values obtained in cells in control conditions, indicated as Ca, are as in Fig. 3. In A–E, Ca + caf, Ca + hep, Ca + 2A, Ca + U7, and Ca + sur refer to experiments like those reported in Fig. 5, A–E, respectively. Other symbols, labeling, and scales as in Fig. 3. Data are means ± SD from cells cultured on 10 (A), 9 (B), 9 (C), 9 (D), and 10 (E) different coverslips; the total number of cells analyzed was 99 (A), 80 (B), 86 (C), 102 (D), and 108 (E). Significant differences were evaluated by 1-way ANOVA test. Data statistically different with respect to controls (Ca): *P < 0.05, †P < 0.001. In all experimental conditions, ∆F/F values were significantly (P < 0.001) larger in nucleus than in corresponding cytoplasmic ROIs. No statistical differences for ∆F/F, T_0, and T_p, were found among Ca + caf, Ca + hep, and Ca + 2-APB. caf, Caffeine; hep, heparin; 2A, 2-APB; U7, U-73122; sur, suramin.

Ca^{2+}-free medium (Fig. 4C). The subsequent readministration of Ca^{2+} caused fast elevation of intracellular Ca^{2+} in all cells examined (Fig. 4D). The Ca^{2+} increase was transient and decreased to steady-state intracellular Ca^{2+} levels that remained elevated over baseline. A complete inhibition of the SPP-mediated Ca^{2+} response in C_2C_{12} cells was also observed after pretreatment with caffeine and nifedipine in Ca^{2+}-containing medium (data not shown), strongly suggesting that the plasma membrane Ca^{2+} channels implicated in the Ca^{2+} influx were sensitive to nifedipine.

InsP and DAG Production
To further study the characteristics and mechanisms of the Ca^{2+} response elicited by SPP, we measured the production of radio-labeled total InsP as well as [3H]DAG after SPP stimulation. Treatment of C_2C_{12} cells with 1 μM SPP increased the cellular levels of both InsP and DAG after 30 s by ~25% ± 3 [10,141 ± 697 (control)] vs. 13,747 ± 1,107 disintegrations/min (dpm) InsP/10^6 dpm labeled phospholipid (SPP); n = 4, P = 0.05] and 41% ± 7 [18,756 ± 2,014 (control)] vs. 27,530 ± 2,950 dpm DAG/10^6 dpm labeled phospholipid (SPP); n = 3, P < 0.01, respectively.

Confocal Immunocytochemistry
To further probe the Ca^{2+} sources implicated in SPP-induced Ca^{2+} mobilization, we evaluated, by confocal immunofluorescence, the expression of several known plasma membrane as well as intracellular Ca^{2+} channels in C_2C_{12} myoblastic cells. We found that some cells abundantly expressed L-type Ca^{2+} channels in the form of small, granular fluorescence bodies, whereas others displayed virtually no reactivity (Fig. 7, A and B). When present, both the α_{1C} and α_{1D}-subunits were distributed in a diffuse pattern within the cytoplasm and also in close association with the plasma membrane. Ins(1,4,5)P_3Rs were also marked expressed and were distributed throughout the cytoplasm with a denser staining in the perinuclear regions, whereas the cell surfaces remained virtually unstained (Fig. 7C). However, not all the cells were stained with the same intensity, and cells negative for Ins(1,4,5)P_3Rs were also present. In agreement with the lack of effects of ryanodine on the Ca^{2+} transients stimulated by SPP, RyRs showed a low and often barely detectable intracellular labeling (data not shown). The latter data strongly suggest that these receptors, which are specific markers for SR Ca^{2+} release channels of striped muscle fibers, may develop in later phases of myogenic differentiation.

Cytoskeletal Modifications Induced by SPP
We finally examined whether the SPP-dependent effects on intracellular Ca^{2+} mobilization were associated with variations in cytoskeletal organization. We first analyzed the organization of the cytoskeletal apparatus in fixed C_2C_{12} cells and found that actin myofilaments represented the main cytoskeletal components in myoblastic cells at this stage of differentiation;
isothiocyanate-labeled phalloidin is shown.

only 64% displayed Ca²⁺ of the cells underwent cytoskeletal contraction whereas (arrowheads). cytoplasm, tending to concentrate in the perinuclear regions staining also shows a spotlike pattern that is diffuse throughout the correlate with the onset of Ca²⁺ transients in myoblasts. Confocal immunofluorescence microscopy of C₂C₁₂ myoblasts. Fig. 7. Localization of L-type channels and Ins(1,4,5)P₃Rs in C₂C₁₂ cells, but, unexpectedly, this phenomenon did not coexist in the same cell, a clear temporal shift existed between SPP-stimulated cell contractility and SPP-stimulated intracellular Ca²⁺ increase (Fig. 9). In fact, cell contraction was a very rapid event, occurring within 3–5 s, whereas the rise in intracellular Ca²⁺ became evident within ~14–35 s (mean value 24 ± 1.5 s; Figs. 1, 2A, and 3C) from SPP stimulation. These data were further confirmed by statistical analyses of the time behaviors of the intracellular spatial Ca²⁺ distribution (Fig. 10). By plotting together the time course of the area occupied by fluo 3 fluorescence with the temporal behavior of the total fluo 3 fluorescence, it was found that significant modifications in the fluorescence area (i.e., an initial decrease followed by a return to basal levels, indicating cell contraction and cell relaxation, respectively) occurred before the beginning of Ca²⁺ transients. The small increase in the fluorescence signal (ΔF/F = 0.05–0.1) corresponding to the time of cell contraction was probably due to a reduction in the cell volume caused by contraction rather than to a small intracellular calcium elevation.

To confirm that SPP was able to affect the cytoskeletal reorganization, C₂C₁₂ cells were preloaded with fluorescent probes for actin. With a time interval quite similar to that observed with DIC video imaging (~5 s), a remarkable reorganization of the actin cytoskeleton could be visualized (Fig. 11). Indeed, small fluorescent dots, representing G-actin short polymers, tended to move coordinately and concentrate toward the nucleus in response to SPP.

DISCUSSION

In the present study we have shown that SPP is capable of producing intracellular Ca²⁺ transients in myoblastic C₂C₁₂ cells. In light of our previous findings (28), this response was mediated by the interaction of actin filaments were arranged in a weblike structure that invaded all the cytoplasm, anchoring to the plasma membrane, and terminated in typical focal adhesion sites containing vinculin immunostaining (Fig. 8). A less defined reaction was, however, observed for myosin filaments, which appeared as scattered fluorescent small cytoplasmic aggregates (data not shown). These results indicated that the cytoskeletal organization of these cells was quite different from the orderly arrays of myofilaments forming the sarcomeric units of mature skeletal muscle cells. Interestingly, in Ca²⁺-containing medium, SPP stimulated contraction and shortening of living C₂C₁₂ cells, but, unexpectedly, this phenomenon did not correlate with the onset of Ca²⁺ rise in these cells. In fact, by comparing time-lapse video imaging obtained by DIC with the fluorescence Ca²⁺ images, we found that 88.4% of the cells underwent cytoskeletal contraction whereas only 64% displayed Ca²⁺ transients in response to SPP stimulation. Moreover, whenever the two phenomena coexisted in the same cell, a clear temporal shift existed between SPP-stimulated cell contractility and SPP-stimulated intracellular Ca²⁺ increase (Fig. 9). In fact, cell contraction was a very rapid event, occurring within 3–5 s, whereas the rise in intracellular Ca²⁺ became evident

![Fig. 7. Localization of L-type channels and Ins(1,4,5)P₃Rs in C₂C₁₂ myoblasts.](image1)

![Fig. 8. Localization of vinculin and actin in C₂C₁₂ myoblasts.](image2)
the bioactive lipid with specific EdgRs. Evidence is reported here that the Ca²⁺ response elicited by SPP involved both the cytoplasmic and nuclear compartments as propagated or synchronous waves and required contributions from intracellular and extracellular Ca²⁺ sources. In trying to dissect the Ca²⁺ signaling pathway we also found that intracellular Ins(1,4,5)P₃-sensitive Ca²⁺ release channels [Ins(1,4,5)P₃Rs] and nifedipine-sensitive Ca²⁺ channels (undifferentiated/non-voltage-dependent L-type channels) of the plasma membrane were likely involved in the SPP action on myoblasts. Our experimental evidence to support this hypothesis includes the 40% reduction of the SPP-mediated Ca²⁺ response in cells in the absence of external Ca²⁺; the requirement of functional PLC cascade and Ins(1,4,5)P₃Rs for this response, as evidenced by its reduction up to 60% on pretreatment with inhibitors of Ins(1,4,5)P₃Rs, such as heparin, caffeine and 2-APB, or with U-73122, an inhibitor of PLC; the ability of nifedipine, a prototypical blocker of L-type Ca²⁺ channels, to affect significantly the Ca²⁺ transients elicited by SPP; and, finally, the complete inhibition of the Ca²⁺ response in cells pretreated with caffeine and nifedipine in Ca²⁺-containing medium or with caffeine in Ca²⁺-free medium.

Both the cytosolic and nuclear Ca²⁺ signals elicited by SPP action were dependent on intracellular Ca²⁺

Fig. 9. Differential interference contrast and Ca²⁺ fluorescence time-lapse images of C₂C₁₂ myoblasts. Images were acquired sequentially according to the indicated times. Two consecutive applications of PBS were made before SPP stimulation to avoid misinterpretation of the data. SPP was added at 65 s from the beginning of the experiment. The images were acquired before SPP addition (A) and 10 (B), 56 (C), and 85 (D) s from the agonist addition. Basal distribution of fluorescence is seen in A; note that the Ca²⁺ dye is particularly concentrated in some regions corresponding to the nucleus and perinuclear areas and is absent in the cytoplasmic projections anchoring the cell to the substrate. B: after stimulation with SPP remarkable changes in the cell size (arrowheads), strongly indicative of cell contraction, become visible, whereas Ca²⁺ signals are absent, apart from the apparent brighter fluorescence staining, probably due to the redistribution of the fluorescence signal during contraction. C: after contraction the cells return to the original size of A. D: Ca²⁺ transient is now clearly visible both in the cytoplasmic and nuclear regions of 1 C₂C₁₂ cell. Arrowheads point to identical spots of the same cell in parallel images.

Fig. 10. Statistical evaluation of intracellular Ca²⁺ distribution. The SPP-responsive cell shown in Fig. 9 is considered. The solid line represents the normalized area occupied by fluo 3 fluorescence, and the lower dot-dashed line indicates the total increase in intracellular Ca²⁺. Addition of PBS within the first 50 s does not modify the characteristics of the fluorescence distribution. In contrast, after the addition of SPP, a substantial decrease in the fluorescence area (solid line), suggestive of cell contraction, is clearly evident. During the relaxation phase, the fluorescence area returns to the basal levels whereas the Ca²⁺ transients become visible.
increase, regardless of whether it originated from external or endogenous stores. Indeed, removal of external Ca\(^{2+}\) and pretreatment with nifedipine or caffeine significantly affected the latency time of the SPP-mediated Ca\(^{2+}\) response. In these particular circumstances, in fact, \(T_0\) was about twofold that of control myoblasts. A possible explanation of these results may be that Ca\(^{2+}\) influx, namely through nifedipine-sensitive channels, and Ca\(^{2+}\) release from the endogenous stores in the cytoplasm, perinuclear, and nuclear regions may be a Ca\(^{2+}\)-sensitive, autocatalytic processes. Moreover, under these particular experimental conditions the decrease in the number of cells responsive to SPP with respect to that of control conditions may be linked to the expression of different levels of Ca\(^{2+}\) channels in these cells.

The involvement of Ins(1,4,5)P\(_3\)R and L-type Ca\(^{2+}\) channels in the SPP-mediated Ca\(^{2+}\) response in both the cytoplasmic and nuclear compartments was further confirmed by confocal immunofluorescence studies. Ins(1,4,5)P\(_3\)Rs were, in fact, found throughout the cytoplasm and in association with the nuclear envelope, whereas L-type channels were localized both at the plasma membrane and inside the cytoplasm. However, not all the cells revealed the same degree of fluorescence labeling. SPP did not affect Ca\(^{2+}\) release through RyR channels in the myoblastic cells, in agreement with the absence of any detectable immunostaining associated with anti-RyR antibody in C\(_2\)C\(_{12}\) cells and with previous findings on the absence of RyRs in proliferating undifferentiated skeletal muscle cells (1, 23, 25, 27).

The role for Ins(1,4,5)P\(_3\)R in the generation of Ca\(^{2+}\) signals has been well established in several cell types, including immature and developing skeletal muscle cells (12, 20). In particular, C\(_2\)C\(_{12}\) myoblasts have been shown to express several isoforms of G protein-coupled SPP receptors (Edg-1, Edg-3, and Edg-5; Ref. 30), and numerous studies on signal transduction have demonstrated that these receptors, activated by SPP, stimulate PLC and, in turn, promote Ins(1,4,5)P\(_3\) generation (34, 37, 40). In contrast, Ca\(^{2+}\) influx through L-type Ca\(^{2+}\) channels in myoblastic cells has not been investigated in depth. Voltage-dependent, dihydropyridine-sensitive L-type Ca\(^{2+}\) channels are multisubunit transmembrane proteins that allow Ca\(^{2+}\) influx necessary for the excitation-contraction coupling of cardiac fibers and for modulation of RyR Ca\(^{2+}\)-release channels of skeletal muscle cells (14). Their expression is developmentally regulated in embryos and in muscle cell lines, because their plasma membrane density sharply increases on muscle differentiation (23, 44). In such a view, the presence of the \(\alpha_1\)-subunit of nifedipine-sensitive L-type Ca\(^{2+}\) channels in the cytoplasm of C\(_2\)C\(_{12}\) cells probably denotes that they are on course to be transferred to the cell surface during this stage of myogenic differentiation. Moreover, the presence of these receptors at the cell surface, where no voltage-gated Ca\(^{2+}\) currents were ever seen, further indicates the existence of “immature” L-type channels in undifferentiated C\(_2\)C\(_{12}\) myoblasts. Nevertheless, a possible effect of SPP on these channels during muscle cell differentiation should be taken into account in view of the findings that L-type Ca\(^{2+}\) channels of cardiac muscle cells (21) and developing skeletal muscle cells (10, 46) are modulated by PKC activation, which is a critical step in the signal transduction of exogenous SPP in C\(_2\)C\(_{12}\) cells (30). Moreover, activation of L-type Ca\(^{2+}\) channels, which involves phosphorylation of both \(\alpha\) and \(\beta\)-subunits, may occur whether or not the auxiliary subunits are coexpressed (42). Therefore, it is likely that SPP interacting with Edg cell surface receptors expressed on myoblastic cells triggers a signaling pathway that, through DAG production and PKC activation, targets regulation of immature plasma membrane L-type Ca\(^{2+}\) channels, thus promoting extracellular Ca\(^{2+}\) influx in C\(_2\)C\(_{12}\) cells.

In searching for a possible morphological-functional correlation of the SPP-mediated Ca\(^{2+}\) transients, we examined whether the Ca\(^{2+}\) response was associated with corresponding changes in the cytoskeletal organization in the myoblastic cells, particularly in view of...
the well-known effects that the sphingolipid has on cytoskeletal remodeling in several cell types (2, 6, 39, 48). Interestingly, we found that SPP promoted cell contractility in the myoblastic cells, but this event did not require intracellular Ca^{2+} mobilization. Indeed, cell contraction was a rapid event that occurred early after stimulation, whereas the intracellular Ca^{2+} changes become evident only after longer times, thus suggesting that binding of SPP to Edg receptors was able to activate multiple signaling pathways. Indeed, differential coupling to G proteins and effector systems have been shown for Edg-3 and Edg-5 receptors, which are involved in Ca^{2+} mobilization and cytoskeletal remodeling, respectively (17, 32, 37, 40). In particular, Edg-5 receptors ligated by SPP stimulate Rho proteins and Rho-dependent kinases have been shown to play an important role in the regulation of smooth muscle and nonmuscle cell contractility by modulating the levels of phosphorylation of myosin light chain (16, 22, 43). Interestingly, in a previous study we demonstrated (29) that RhoA activation also occurs in C_{2}C_{12} myoblasts after SPP stimulation. In view of that finding and in consideration of the findings reported here that C_{2}C_{12} cytoskeleton has structural similarities to that of nonmuscle cells, being formed by an extensive network of actin filaments rather than a highly ordered array of myofilaments forming the contractile units of striated fibers, it may be speculated that Ca^{2+}-independent/Rho-dependent contraction of the actin cytoskeleton may also occur in undifferentiated skeletal muscle cells. Although not directly addressed here, it seems likely, on the basis of these data, that Ca^{2+} transients elicited by exogenous SPP in C_{2}C_{12} cells may play a role in the myogenic differentiation program rather than in the regulation of cell contractility. This hypothesis would be consistent with an involvement of calcineurin in skeletal muscle differentiation (15) and with recent data showing that C_{2}C_{12} myoblasts subjected to genetic and metabolic mitochondrial stress release high Ca^{2+} transients that are capable of enhancing the expression of RyR-1 and of modifying the activity of several Ca^{2+}-dependent transcription factor pathways (7). In keeping with all these findings, it is becoming apparent that Ca^{2+} released from the muscle Ins(1,4,5)P_{3}Rs may not be significantly involved in muscle cell contraction (20, 47).

In conclusion, the present study, taking advantage of updated techniques and instrumentation, substantially contributes to the understanding of the molecular and functional properties of the Ca^{2+} signaling pathway triggered by exogenous SPP in myoblastic cells. It appears that SPP exerts profound biological effects on myoblasts that could have physiological and pathophysiological implications. Indeed, very recently, it was shown that cystic fibrosis transmembrane regulator (CFTR), also expressed in skeletal muscle (13), mediates cellular uptake of SPP, thus attenuating SPP signaling (9). In view of this finding, it is tempting to speculate that alterations of the SPP signaling and skeletal muscle cell response may occur in cystic fibrosis, accounting for the peripheral muscle weakness observed in this pathology (11).

The technical assistance of Dr. Alessia Tani and Dr. Ferdinando Paternostro is gratefully acknowledged. This work was supported by Telethon Grants no. 945 to F. Francini and no. 1086 to P. Bruni and by Ministero dell’ Università e della Ricerca Scientifica e Tecnologica grants (Cofin-1999) to S. Zecchi Orlandini, F. Francini, and P. Bruni.

REFERENCES

