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Abstract

The Toba eruption that occurred some 74 kyr ago in Sumatra, Indonesia, is among the

largest volcanic events on Earth over the last 2 million years. Tephra from this eruption

has been spread over vast areas in Asia where it constitutes a major time marker

close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with5

Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate

dating of Toba tephra from Malaysia and on accurately dated European stalagmites the

Toba event is known to occur between the onsets of Greenland Interstadials (GI) 19

and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas

records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart10

is situated between Antarctic Isotope Maxima (AIM) 19 and 20.

In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarc-

tic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar

volcanic spikes. Annual layer counting between volcanic spikes in both cores allows

for a unique match. We first demonstrate this bipolar matching technique at the al-15

ready synchronized Laschamp geomagnetic excursion (41 kyr BP) before we apply it

to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr

in GI-20 and AIM 19/20 and includes nine acidity peaks that are recognized in both ice

cores.

The suggested bipolar Toba synchronization has decadal precision. It thus allows20

a determination of the exact phasing of inter-hemispheric climate in a time interval of

poorly constrained ice core records, and it allows for a discussion of the climatic impact

of the Toba eruption in a global perspective. Furthermore, our bipolar match provides

a way to place paleo-environmental records other than ice cores into a precise climatic

context.25
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1 Introduction

1.1 Linking of Greenland and Antarctic ice core records

Synchronization of paleo-environmental records in ice cores from Greenland and

Antarctica has long been a topic of great interest. In Greenland, glacial climate is asso-

ciated with a number of abrupt climate shifts, Dansgaard-Oeschger (DO) events (Dans-5

gaard et al., 1993), whereas Antarctica experienced a number of more gradual climate

variations, Antarctic Isotope Maxima (AIM)(EPICA community members, 2006). A pre-

cise linking of ice cores from the two hemispheres is essential to determine the exact

sequence of events and to reveal the dynamics related to these climate changes. Fur-

thermore, because many paleoenvironmental archives can be linked to polar ice cores10

(Blockley et al., 2012) a North-South synchronization of polar ice cores provides a way

to place those archives into a global climatic context.

A number of different approaches have been taken to synchronize ice cores from

the two hemispheres. Bender et al. (1994) used the global signal of oxygen isotopes of

air trapped in the Greenland GISP2 and the Antarctic Vostok ice cores to link the two15

climatic records during the last glacial period. Blunier et al. (1998) and later Blunier and

Brook (2001) applied the atmospheric methane concentration records extracted from

the Greenland GISP2 and GRIP cores and the Antarctic Vostok and Byrd cores to con-

struct a relative bipolar ice core chronology for the last 90 kyr. Methane records were

also applied to link the Greenland NGRIP (North Greenland Ice Core Project members,20

2004) and the Antarctic EDML (EPICA community members, 2006) ice cores for the

last 50 kyr and to show that indeed all Greenland DO-events have Antarctic AIM coun-

terparts. More recently, Capron et al. (2010b) applied both methane concentration and

oxygen isotopes of air to link NGRIP and EDML for the time period 80–123 kyr. Be-

cause air bubbles are incorporated in ice cores at the depth where firn is compacted25

to ice, the age of the ice and the age of the gas record in an ice core are offset by

the so-called “delta-age” (Schwander et al., 1993; Buizert et al., 2012). This age off-

set depends primarily on accumulation, firn thickness, temperature, and possibly the
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impurity content of the ice (Goujon et al., 2003; Hörhold et al., 2012). Therefore, uncer-

tainties of the order of 100–1000 yr remain in synchronizing ice-core climatic signals

using gas-based matching (Blunier et al., 2007).

A different approach of interhemispheric ice core linking was taken by Raisbeck

et al. (2007) who applied the global signal of cosmogenic
10

Be in ice cores to match5

the Greenland GRIP and the Antarctic EDC ice cores at the Laschamp geomag-

netic excursion that occurred about 41 kyr ago. The
10

Be approach does not involve

a delta-age as it directly links horizons in the ice phase of the cores in question. At

the Laschamp excursion that is characterized by a characteristic double spike in
10

Be

records, the Greenland and Antarctic ice cores could be linked with decadal preci-10

sion The Laschamp excursion also provides a constraint for the deltaage estimation

(Loulergue et al., 2007).

Both gas and
10

Be linking was applied to tie the Antarctic EDML (Ruth et al., 2007)

and EDC (Parrenin et al., 2007) ice cores to the Greenland NGRIP ice core whereby the

unified Greenland Ice Core Chronology 2005 (GICC05) (Rasmussen et al., 2006; An-15

dersen et al., 2006) could be transferred to Antarctica back to 41 kyr BP. This approach

was recently refined and extended by Lemieux-Dudon et al. (2010) who applied an in-

verse model to combine the ice core time scales for NGRIP, EDC, EDML, and Vostok

and the stratigraphic constraints among those cores to obtain a unified and consistent

set of age scales for both ice and gas records.20

The linking of Greenland and Antarctic ice cores paved the road for the bipolar see-

saw hypothesis that suggests a mechanism to link the millennium scale climate vari-

ability of the last glacial period between the hemispheres (Broecker, 1998; Stocker

and Johnsen, 2003) The bipolar seesaw hypothesis suggests that the Greenland DO-

events and the Antarctic AIM-events are linked through the Atlantic Meridional Over-25

turning Circulation (AMOC) implying that a warming in Greenland causes a cooling

in Antarctica and vice versa. Blunier et al. (1998) and consecutive publications show

that the picture is more complex: A rapid warming in Greenland ends a slow warming in

Antarctica which conceptually can be explained by adding a heat buffer in the Southern
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Ocean (Stocker and Johnsen, 2003). The EDML ice core is thought to have a strong

expression of the bipolar seesaw due to its location in the Atlantic sector of Antarctica.

Within the last 50 kyr the Greenland-Antarctic ice-core linking is well established and

the bipolar seesaw hypothesis appears to be confirmed by the relative timing of climate

events (EPICA community members, 2006; Lemieux-Dudon et al., 2010; Stenni et al.,5

2010; Pedro et al., 2011). Beyond this time window, the relative timing of N-S records is

somewhat uncertain, but the bipolar seesaw hypothesis appears to be active through-

out the last glacial period (Blunier and Brook, 2001; Jouzel et al., 2007). During the

earliest part of the last glacial the bipolar seesaw may have had somewhat different

characteristics (Capron et al., 2010a), but in this period the ice core chronologies are10

still being adjusted (Svensson et al., 2011; Vallelonga et al., 2012).

Recently, the Greenland NGRIP and Antarctic EDML ice cores have been linked

over the last 17 kyr through layer counting and matching of bipolar volcanic markers

identified in both ice cores (Vinther et al., 2012): the two ice cores were dated indepen-

dently by annual layer counting, NGRIP using the existing GICC05 chronology (Vinther15

et al., 2006; Rasmussen et al., 2006) and EDML by application of a multi-parameter

high resolution Continuous Flow analysis (CFA) dataset. The ice cores were then syn-

chronized using major volcanic events that are unambiguously identified in both cores

and thereby allowing for a highly precise transfer of the Greenland GICC05 timescale

to EDML ice core (Vinther et al., 2012).20

1.2 The Toba eruption occurring around 74 kyr BP

The Toba caldera is located close to the equator in Northern Sumatra, Indonesia. Over

the last 1.3 million years the volcano has had several very large eruptions of which

the most recent that occurred some 74 kyr ago is considered one of the largest vol-

canic eruptions of the Quaternary (Chesner, 2012). Tephra from this eruption known25

as Younger Toba Tuff (YTT) is spread over a vast geographical region in Southeastern

Asia on both sides of the equator and has been identified at many locations in the sur-

rounding oceans and continents (e.g. Williams, 2012). The YTT geochemistry is well
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characterized (Westaway et al., 2011) and age estimates of the YTT are provided in

several studies by application of various techniques (eg. Chesner et al., 1991). Most

recently, well-characterized Toba tephra sampled in Malaysia has been precisely dated

by Ar-Ar to 73.88±0.32 kyr BP (1-sigma) by Storey et al. (2012).

So far tephra originating from Toba has not been identified in Greenland (Abbott5

et al., 2011) or in Antarctic ice cores. Already in 1996, however, Zielinski et al. (1996)

suggested that the Toba eruption could be associated with a major sulfuric spike iden-

tified in the Greenland GISP2 ice core at the transition from Greenland Interstadial 20

(GI-20) to Greenland Stadial 20 (GS-20) occurring close to the Marine Isotope Stage

4/5 (MIS 4/5) boundary. A few years later, Toba tephra was identified in marine sedi-10

ment cores from the Arabian sea, which show a glacial climate variability comparable

to that of the Greenland ice cores (Schulz et al., 1998). The position of the tephra in

those and several other marine records seems to confirm the timing of the Toba erup-

tion at the GI-20 to GS-20 transition (Schulz et al., 2002; Kudrass et al., 2001; Huang

et al., 2001).15

Being a much larger eruption than any historical eruption and probably being among

the largest volcanic eruptions of the Quaternary the environmental and climatic effects

of the 74 kyr Toba eruption are topics of great interest and debate. The suggested cli-

matic impact of the Toba eruption ranges from very little impact (Haslam and Petraglia,

2010; Oppenheimer, 2002; Chesner and Luhr, 2010) to severe impact of “Volcanic win-20

ter and accelerated glaciation” (Rampino and Self, 1992). The effect of the eruption

on regional vegetation, humans, and mammals is discussed in a number of papers

(e.g. Petraglia et al., 2007; Louys, 2012) and the topic is still controversial (Williams,

2012). For archaeology, the Toba eruption is of particular interest because it may have

occurred close to the time when Homo sapiens migrated out of Africa and into Eurasia25

(Rasmussen et al., 2011) and it is speculated that the eruption may have caused a “hu-

man population bottleneck” (Ambrose, 1998). Beyond the climate impacts of the Toba

eruption, the event provides an important distinct and widespread time marker beyond

the
14

C dating range (e.g. Lane et al., 2011).
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1.3 Outline of the present study

Inter-hemispheric volcanic linking of ice cores is quite different from volcanic ice core

synchronization within Greenland or within Antarctica. In Greenland the volcanic record

is dominated by northern hemispheric eruptions and major eruptions are generally

present in all deep ice cores despite a large spatial variability of volcanic deposition5

on the ice sheet (Clausen et al., 1997; Robock, 2000). Greenland ice cores have been

synchronized in the last glacial period at annualto-decadal precision by major volcanic

reference horizons (Rasmussen et al., 2008). Due to its large geographical extent the

spatial variability of volcanic deposition is even more pronounced in Antarctica, but still

ice cores can be linked accurately by volcanic tie points (Severi et al., 2007; Parrenin10

et al., 2012). For globally dispersed volcanic events the magnitude of Greenland and

Antarctic acidic signatures will generally not be comparable as they depend strongly on

several factors, such as latitude of the eruption, atmospheric circulation and the amount

of sulfur injected into the stratosphere (Zielinski, 2000; Gao et al., 2008). Therefore, it

is not straightforward to establish a Greenland-Antarctic volcanic ice-core synchroniza-15

tion from acidity spikes alone and in general additional evidence is needed in order to

establish a bipolar volcanic link (Bay et al., 2006).

In this study, we take a similar approach to that applied for the last 17 kyr by Vinther

et al. (2012) of matching Greenland and Antarctic ice cores by annual layer counting

and linking of bipolar volcanic reference horizons. The independent dating of Green-20

land and Antarctic ice cores by annual layer counting permits to match sequences of

globally dispersed volcanic markers. To demonstrate the feasibility of this technique

in the last glacial period we first establish a volcanic link of the Greenland NGRIP

and Antarctic EDML ice cores at the Laschamp geomagnetic excursion (41 kyr BP)

where the N-S linking is already well constrained. In this period we apply the existing25

layer counted GICC05 chronology for NGRIP and count annual layers in EDML using

a high resolution impurity dataset. We then extend this approach to a 2000 yr period

at around 74 kyr BP where prominent acidity spikes that are most likely related to the
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Toba eruption can be identified in both NGRIP and EDML. Annual layer counting is per-

formed independently in NGRIP and EDML and based on the relative chronologies an

interhemispheric match is obtained by identifying a sequence of volcanic markers that

are recognized in both cores. Based on published and new tie points we then expand

the N-S Toba link to other major Greenland and Antarctic ice cores.5

2 Datasets and methods

For annual layer counting in NGRIP we apply the high resolution CFA impurity dataset

(Bigler, 2004) that provides continuous records of among others sulfate, sodium, cal-

cium, electrolytic conductivity of melt water (“conductivity”), and the amount of insoluble

dust particles (“dust”) (Ruth et al., 2003) together with the visual stratigraphy (VS) grey10

scale profile (Svensson et al., 2005). Those records were previously applied to con-

struct the glacial part of the GICC05 time scale (Rasmussen et al., 2006; Svensson

et al., 2008). For the EDML layer counting we apply a CFA high resolution dataset that

provides continuous records of sodium, ammonium, calcium, dust, and conductivity

(Kaufmann et al., 2010) as well as the VS grey scale profile (Faria et al., 2010). This15

CFA dataset was applied to establish the layer counted EDML time scale for last 17 kyr

(Vinther et al., 2012). All of the records are available in 1 mm depth resolution, but due

to varying degrees of profile smoothing in the firn and ice and during ice core analy-

sis, the minimum resolvable features differ from record to record. The CFA records can

typically resolve annual layers down to a few cm thickness whereas the VS grayscale20

profiles can easily resolve annual layers of 1 cm thickness.

To identify volcanic markers in NGRIP we apply the CFA sulfate and conductivity

records, the Electrical Conductivity Measurement (ECM) (Dahl-Jensen et al., 2002),

and the Dielectric Profile (DEP) (Wilhelms et al., 1998). NGRIP ECM and DEP do

not usually resolve annual layers in the glacial period, but they are good indicators of25

volcanic events in particular during interstadials For EDML volcanic markers were iden-

tified in the CFA conductivity, in DEP and ECM, and in sulfate, all of which are robust
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indicators of volcanic events that have previously been applied to match Antarctic ice

core records (Udisti et al., 2004; Parrenin et al., 2012; Severi et al., 2007).

3 Bipolar synchronization at the Laschamp geomagnetic excursion

At the Laschamp geomagnetic excursion that occurred close to 41 kyr b2k (Singer

et al., 2009), a bipolar synchronization is already established based on two
10

Be spikes5

identified in both Greenland and Antarctic ice cores (Raisbeck et al., 2007; Yiou et al.,

1997). The two
10

Be peaks essentially bracket the Greenland GI-10 event that is as-

sociated with the Antarctic AIM 9 and 10 events. In NGRIP the youngest of the
10

Be

peaks occurs very close the onset of GS-10 and the oldest peak is located towards the

end of GS-11 In NGRIP the two peaks are separated by some 17.5 m corresponding to10

an interval of about 850 yr duration The precision of the
10

Be NGRIP-EDML synchro-

nization is decadal to centennial (Raisbeck et al., 2007; Loulergue et al., 2007).

The Laschamp section of the NGRIP ice core has been dated by annual layer count-

ing for the GICC05 chronology which we adapt here (Andersen et al., 2006). We date

the Laschamp section of the EDML ice core by layer counting in the CFA and VS15

datasets following the same principles as applied for NGRIP. We identify “certain”

and “uncertain” annual layers that are counted as 1.0±0.0 and 0.5±0.5 yr, respec-

tively. The accumulated uncertainty of the uncertain annual layers provides the maxi-

mum counting error estimate of the dating following the approach outlined in Andersen

et al. (2006). The EDML mean annual layer thickness for the Laschamp section of20

around two cm is well resolved in the VS record, fairly well resolved in dust, calcium,

and ammonium but only partially resolved in conductivity (Fig. 1) and not resolved in

sodium (not shown). The resulting relative time scale is presented in Table 1.

Figure 2 shows the
10

Be matched section of the two ice cores around the Laschamp

event with indication of the two
10

Be peaks. In NGRIP the impurity load is strongly25

climate dependent (as determined by δ
18

O) with generally higher impurity loading dur-

ing the cold phases/stadials as the well-known Greenland pattern (Mayewski et al.,
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1997). During interstadials volcanic spikes are usually quite distinct and easy to iden-

tify whereas in the coldest periods the volcanic spikes are often difficult to separate

from the generally higher and noisier background level (Fig. 2). We note that because

prominent sulfate peaks normally dominate the conductivity of the ice, the sulfate and

the conductivity records are both robust indicators of major volcanic events.5

Between the two Laschamp
10

Be peaks the NGRIP records show evidence of 3–5

larger and several smaller volcanic events whereas EDML has expression of 3–4 signif-

icant volcanic markers and some smaller events. Based on the
10

Be matching and on

the annual layer counting of the two ice core sections we suggest that three of those

events (referred to as L1–L3) are bipolar and can be applied to synchronize the ice10

cores (Fig. 2 and Table 1). Because we have no tephra evidence there is no way to

prove that the suggested match points are truly global markers and potentially one or

more of them are regional events that are just lining up by coincidence. Considering

however the few volcanic events over the 850 yr period of interest and the tight corre-

spondence in the timing of events a coincidental overlap of all of the events appears15

unlikely.

4 Bipolar volcanic linking at the 74 kyr Toba eruption

Because no Toba tephra has been identified in polar ice cores we do not have any

proven knowledge of the location of the Toba volcanic signature neither in Greenland

nor in Antarctic ice cores. The approach taken here to establish the bipolar Toba link20

takes two steps: first, we provide an estimate for the position of the Toba eruption in

the NGRIP and EDML ice cores based on recent independent dating of the event and

on the bipolar seesaw hypothesis. Second, we perform layer counting in a 2000 yr long

section of the two cores around the proposed Toba location and show that a bipolar vol-

canic synchronization can be established. Having done this, we still have not proven to25

have identified Toba in the ice cores but we have increased the likelihood substantially

and we have provided a bipolar volcanic link.
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Zielinski et al. (1996) were the first to suggest the position of the Toba volcanic

marker in Greenland at the GI-20 to GS-20 transition, and further evidence for this

location was provided by the finding of the Toba tephra in the Arabian Sea (Schulz

et al., 1998). A new well-constrained age for the Toba eruption of 73.88±0.32 kyr BP

is provided by Ar-Ar dating of tephra from Malaysia (Storey et al., 2012). Recently,5

a record of several stalagmites from caves in the Alps (NALPS), showing a climatic

pattern very similar to that of the Greenland ice cores, has been precisely dated by

U-Th (Boch et al., 2011). Although the NALPS stalagmite record does not contain the

onset of GS-20 it unambiguously brackets the Malaysian tephra age between the on-

sets of GI-19 and GI-2. The new tephra age and the stalagmites thus provide additional10

and independent evidence for the location of the Toba event close to the onset of GS-20

in Greenland. The new tephra age also falls close to the Greenland GICC05modelext

ice core time scale age of 74.1 kyr b2k for the onset of GS-20 (Wolff et al., 2010), but

the ice core age is much less wellconstrained than that of the NALPS record due to the

cumulative error of ice-core annual layer counting.15

According to the linking of Greenland and Antarctic ice cores (Blunier and Brook,

2001; Jouzel et al., 2007; Capron et al., 2010b) and consistent with the bipolar seesaw

hypothesis (Stocker and Johnsen, 2003), the onset of Greenland GS-20 is associ-

ated with the isotopic minimum between Antarctic AIM-19 and AIM-20 (Parrenin et al.,

2012). We therefore, examine this region of the NGRIP and EDML ice cores for signif-20

icant volcanic markers (Fig. 3). In NGRIP the well-known pattern of elevated impurity

content in the stadial periods is apparent. The major acidity spikes in the GI-20 and GS-

20 intervals appear however within GI-20 close to the isotopic transition into GS-20 and

the most significant spike in sulfate and conductivity appears at the depth of 2548.01 m

right on the transition. In the interstadial acidity spikes are also visible in ECM and DEP,25

whereas those records vanish in stadials where the ice is slightly alkaline (Wolff et al.,

1997). In EDML, the most prominent conductivity, DEP, and ECM spikes in the AIM-19

and AIM-20 intervals appear around the isotopic minimum between the two and the

most significant spike occurs at a depth of 1867.56 m (Fig. 3).
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For layer counting in the potential Toba region we apply the same NGRIP and EDML

datasets that were utilized for the Laschamp matching. Compared to Laschamp, we are

now some 500 m deeper in both cores and annual layers are correspondingly thinner.

At NGRIP annual layers in GI-20 have a thickness of 1.0–1.5 cm that is well resolved in

the VS record but only marginally resolved in the CFA data (Fig. 4). The approximately5

2 kyr long section in GI-20 is dated in a similar manner as it was done at shallower

depths for sections of GICC05 (Svensson et al., 2008). In the subsequent stadial GS-

20, however, annual layer thicknesses are below 1 cm and this period cannot be reliably

dated using existing datasets. The obtained NGRIP layer thickness profile is in very

good agreement with that of the modeled “ss09sea” time scale (not shown). In EDML10

annual layers have comparable layer thicknesses of 1.0–1.5 cm which are again well

resolved in VS and marginally resolved in CFA (Fig. 5). The EDML layer thickness

profile obtained from layer counting is in very good agreement with the time scale of

Lemieux-Dudon et al. (2010) and deviates somewhat from the EDML1 time scale of

Ruth et al. (2007) (Fig. 6).15

We now synchronize the two ice cores by identifying a sequential pattern of acidity

tie points (Fig. 7 and Table 1). The proposed match has nine match points (referred to

as T1–T9) of which the major NGRIP and EDML acidity spike (T2) is one.

5 Discussion

5.1 Are there several Toba eruptions?20

The 74 kyr Toba eruption is generally regarded as a single event (Westgate et al., 1998;

Zielinski, 2000; Chesner, 2012). In the ice core records investigated in the present

study there are, however, four bipolar acidity spikes (T1–T4) occurring within centuries

of the GS-20 onset that are all potential Toba eruption candidates (Fig. 7). Based on

the ice core data alone we have no means of determining how many of those events25

may be related to Toba. In the recent study of Storey et al. (2012) the precise dating
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of the Toba event is based on several individual samples that cluster around the age

of 73.88±0.32 kyr BP. The data set does however not exclude that samples could

originate from several eruptions separated by centuries If there have been several Toba

eruptions around 74 kyr BP it may make the pinpointing of tephra in other (non-ice-core)

locations more challenging.5

In the bipolar match presented here the T2 match point corresponds to the major

acidity spikes in both the NGRIP and EDML ice cores (Fig. 7), but, interestingly, this is

generally not the case for other ice cores (Fig. 8) In the GISP2 core the major sulfate

spike identified by Zielinski et al. (1996) at 2591.1 m depth thus corresponds to the

match point T1 of the present study (Table 1). Smaller spikes are also present in this10

depth interval of the GISP2 sulfate record but the peak corresponding to T1 is definitely

dominating. In high depth resolution the GISP2 sulfate concentrations at T1 are reach-

ing almost 2000 ppb (Yang et al., 1996) in comparison to 1200 ppb for NGRIP at T2. In

the nearby GRIP ice core the overall behavior of the ECM record is very similar to that

of the GISP2 ECM record, but the T1 peak is strongly attenuated in GRIP as compared15

to GISP2. In the Antarctic EDC ice core the major acidity spike in the Toba interval is

associated with match point T3 of the present study, although the acidity spikes cor-

responding to T1 and T2 are also prominent. In the Dome Fuji (DF) ECM records the

spike associated with T4 is the strongest T2 is significant and T3 is very weak. In the

Vostok ice core ECM profile the T1 peak is the strongest followed by slightly weaker20

T2 and T3 peaks (Parrenin et al., 2012). Based on ice core data there are thus several

possible candidates for Toba eruption(s) and it cannot be excluded that several of them

are related to Toba.

5.2 Age and timing of the Toba event

Assuming that the major Toba eruption can be associated with one or several of the25

T1–T4 acidity spikes, the best Greenland ice core age estimate of the events are those

of the GICC05modelext time scale (Wolff et al., 2010). Those ages fall in the inter-

val of 74.1–74.5 kyr b2k (Table 1). Based on a 2.5 % extrapolation of the GICC05
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counting error up to 60 kyr (Svensson et al., 2008) the absolute uncertainty associ-

ated with the T1–T4 ages is 1.7 kyr. Within error estimates the ice core ages are fully

in agreement with both the precise Ar-Ar dating of the volcanic ash of 73.88±0.32 kyr

BP (Storey et al., 2012) as well as with the bracketing of the Toba event(s) by the

European NALPS stalagmites (Boch et al., 2011). Concerning Antarctic ice core time5

scales, the EDML1/EDC3 time scale age for the Toba events T1–T4 is about 72.6 kyr

b2k (Ruth et al., 2007; Parrenin et al., 2007) whereas the more recent Lemieux-Dudon

et al. (2010) time scale give ages of 734–73.8 kyr b2k with an absolute uncertainty

of 2.3 kyr. In East Antarctica, the acidity spikes associated with the Toba event(s) are

likely to be the origin of a very strong radar sounding isochrone (Fujita et al., 2012;10

Cavitte et al., 2012).

As for the exact timing of the Toba candidates with respect to the GI-20 to GS-

20 transition we compare the position of the T1–T4 spikes to the NGRIP δ
18

O and

deuterium-excess (d-excess) profiles (Fig. 8). From a δ
18

O perspective T3 and T4

both occur within GI-20 whereas T1 and T2 both lie on the transition itself. Following15

the approach of Steffensen et al. (2008) we can identify an abrupt shift in the d-excess

close to the T2 event that we associate with a rapid warming of the precipitation source

area for NGRIP. Within GI-20 d-excess is in “cold source area” mode. Close to 74 200 yr

b2k the d-excess makes a first jump to higher values and it is “flickering” until the oc-

currence of T2. From around 74 100 yr b2k onwards the d-excess remains in “warm20

source area” mode. As the d-excess mode jump is asynchronous with the Toba candi-

dates we consider the timing of the NGRIP source area temperature change and the

Toba events to be unrelated.

5.3 Implication for the bipolar seesaw hypothesis

After the bipolar
10

Be synchronization around GI-10 and the recent bipolar synchro-25

nization of the deglacial period (Vinther et al., 2012), the present study provides

the third and oldest bipolar ice core synchronization at decadal precision. Because

the Toba events are located right at a major climatic transition in Greenland, the
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synchronization allows for a very precise comparison of interhemispheric climate cou-

pling. A detailed comparison of the oxygen isotope curves demonstrates an extremely

close coupling between Greenland (NGRIP) and Antarctic (DF and EDC) climates

(Fig. 9). At the GS-20 onset, Antarctic warming starts within a century of Greenland

reaching the cold stadial and, likewise, at the onset of GI-19 and GI-20 DF and EDC5

cooling starts immediately after Greenland has reached its isotopic maximum. Our re-

sults thus provide very strong support for an active bipolar seesaw close to the MIS4/5

boundary similar to what is observed in other parts of the last glacial (EPICA commu-

nity members, 2006; Capron et al., 2010b; Pedro et al., 2011).

The phasing between the Greenland NGRIP and the Antarctic DF and EDC records10

reflects the classical imprint expected from an extended Bipolar Seesaw Mechanism

as described by Stocker and Johnsen (2003) very well, where an Atlantic temperature

seesaw is connected to a large Southern Ocean heat reservoir (warming in Antarctica

when Greenland is in a cold state connected to a lowered Atlantic Meridional Over-

turning Circulation (AMOC) and cooling in Antarctica when Greenland is warm and15

the AMOC is increased). The EDML ice core shows a somewhat different behavior. In

the EDML record we find a much faster warming at the onset of GS21 and 20 which

then tends to level out for the rest of these stadials. This pattern is also recognized for

younger AIM during MIS3 (EPICA community members, 2006; Stenni et al., 2010). Tak-

ing the bipolar seesaw mechanism at face value this would imply that the ocean heat20

pool relevant for the Atlantic sector of East Antarctica (EDML), which is warmed by the

northward heat flux deficit across the Atlantic during the stadials, was much smaller

than that relevant for the temperature response in the Indian Ocean sector (EDC).

Since the Antarctic Circumpolar Current, however, is mixed rapidly within decades, this

is highly unlikely and it appears difficult to maintain the required strong longitudinal25

temperature gradient in the Southern Ocean between the Atlantic and Indian Ocean

sector. Accordingly, the Southern Ocean heat pool should be the same for both cases.

In contrast the lower latitude South Atlantic should respond much faster to changes

in the northward heat transport by the AMOC and should be essentially in antiphase
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according to the bipolar seesaw concept. While this may have an effect on the source

temperature of the water vapor deposited at EDML, thus on the deuterium excess, it

should not have a strong effect on δ
18

O and the site temperature at EDML. In fact

the temperature record for the EDML site derived from δ
18

O after correction of source

temperature effects using the deuterium excess (Stenni et al., 2010), shows essen-5

tially the same temporal behavior during AIM as without correction, i.e. a relatively fast

temperature increase at the onset of the AIM.

Accordingly, we need some other factor that can amplify the atmospheric warming

signal in the δ
18

O record at the beginning of the AIM at EDML. This could potentially

come about by a threshold in sea ice coverage and here especially in the extended10

summer sea ice coverage in the Atlantic sector during cold conditions. We speculate

that a warming induced by the bipolar seesaw mechanism in the Atlantic sector of the

Southern Ocean crosses such a threshold early during the AIM. A significantly reduced

sea ice coverage then leads to a stronger atmospheric warming signal in this region. In

fact the EDML sodium record, which has been used as sea ice indicator, shows minima15

during the early stage of the AIM in MIS3 (Fischer et al., 2007) pointing to quickly

declining sea ice coverage at that time. In contrast no such minima are observed in the

EDC record (Fischer et al., 2007). In this region of the Southern Ocean summer sea ice

was not significantly expanded even for peak glacial conditions (Gersonde et al., 2005)

and thus no such threshold for the existence of summer sea ice exists. Accordingly,20

a somewhat different temporal evolution in the atmospheric temperature record of the

EDML and EDC ice cores can be accommodated in the Bipolar Seesaw concept, if we

take a sea ice amplification effect in the Atlantic sector into account.

5.4 On the climatic impact of the Toba eruption

As pointed out in several studies (e.g. Zielinski, 2000), it is intriguing that the Toba25

event(s) occur(s) right at the time when the Greenland isotopes enter the lowest values

of the entire glacial period (North Greenland Ice Core Project members, 2004). Also in

Chinese stalagmites the event corresponding to GS-20 is the isotopically most extreme
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event in this part of the last glacial period (Wang et al., 2008). It seems highly unlikely

that a volcanic eruption should have initiated GS-20 when the initiation of all of the other

DO-events was independent of major volcanic events. Still, there is the possibility that

the eruption somehow contributed to make the GS-20 event a more extreme stadial

period in the Northern Hemisphere, although it is difficult to imagine a mechanism that5

can sustain the extremely cold temperatures over more than a millennium.

In a global perspective, however, the Toba eruption did not initiate a long term cold

period (Fig. 9). In contrast, except for a dip in the isotopes right after the T2 peak,

Antarctica experiences a major warming shortly after the Toba event(s). Thus our re-

sults do not support the idea of a major global climatic cooling impact of the Toba event.10

The isotopic dip occurring right after T2 in EDML and DF lasts for about a century and

is possibly a cooling event related to Toba that has no significant influence on the long

term climate. The rather short duration of this cold spell appears in good agreement

with recent model simulations of the climatic impact of the Toba event (Robock et al.,

2009; Jones et al., 2005; Timmreck et al., 2010).15

6 Conclusions

By application of high resolution impurity records from the Greenland NGRIP and the

Antarctic EDML ice cores and by applying existing bipolar ice core synchronizations,

it has been possible to obtain bipolar volcanic matches at the Laschamp geomagnetic

excursion (ca. 41 kyr b2k) and at the Toba mega-eruption (ca. 74 kyr b2k).20

Using constraints from precise Ar-Ar dating of Malaysian Toba ash and from precise

U-Th dating of European stalagmites we are certain that the Toba event occurs close

to the onset of GS-20 in Greenland and between AIM-19 and AIM-20 in Antarctica.

The ice core records suggest that the Toba event may consist of up to four individual

eruptions occurring within four centuries, but we have no means to decide how many25

of those events originate from Toba.
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Our direct bipolar Toba synchronization gives very strong support for the bipolar

seesaw hypothesis acting with no or little time lag in the MIS4/5 boundary region. At

the EDML site in Dronning Maud Land the climatic pattern differs somewhat from that

of the East Antarctic Plateau suggesting that local effects such as sea ice cover may

play an important role in that region.5

Greenland and Antarctic temperature proxies suggest that there may be a century

long cooling episode associated with the Toba eruption(s) but they do exclude the pos-

sibility of a longer term global cooling impact of the eruption(s). In contrast, Antarctica

warms up rapidly after the eruption(s).

The approach taken here to synchronize Greenland and Antarctic ice cores by vol-10

canic sequence matching has the potential to be expanded to other periods of the last

glacial period.
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Table 1. Depth, absolute and relative age of Laschamp and Toba match points in the NGRIP

and EDML ice cores based on the GICC05modelext time scale (Wolff et al., 2010) and on layer

counting (this work).

NGRIP – EDML match points and ages

Ice core depth (m) GICC05modelext age (yr b2k) Layer counting (yr)

Match point NGRIP EDML Absolute Relative NGRIP EDML

Laschamp event

10Be-1 2110.10 1368.40 40 823 0 0±0

L1 2111.58 1369.54 40 912 89 68±4

L2 2115.41 1372.73 41 109 285 262±13

L3 2118.62 1375.15 41 249 425 404±24

10Be-2 2127.50 1383.30 41 690 867 854±54

Toba event

T1 2547.22 1866.62 74 057 0 0±0 0±0

T2 2547.97 1867.56 74 156 99 87±6 84±7

T3 2550.06 1869.51 74 358 301 276±18 264±21

T4 2551.45 1870.93 74 484 427 395±24 388±27

T5 2558.43 1877.57 75 039 982 947±53 953±66

T6 2558.76 1877.85 75 064 1007 972±56 978±68

T7 2564.35 1882.96 75 479 1422 1386±80 1384±93

T8 2564.70 1883.31 75 505 1448 1413±82 1411±93

T9 2572.61 1890.58 76 037 1980 1951±114 1959±128
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Table 2. Depths of Laschamp and Toba match points in Greenland (NGRIP, GISP2, and GRIP)

and Antarctic (EDML, EDC, DF-1, DF-2, Vostok) ice cores. The EDML – EDC matching is

from Severi et al. (2007) and Ruth et al. (2007), the EDC – Vostok matching is from Parrenin

et al. (2012), and the Laschamp
10

Be match is from Raisbeck et al. (2007) and Loulergue

et al. (2007).

Laschamp and Toba match points, all cores

NGRIP GRIP GISP2 EDML EDC DF-1 DF-2 Vostok 5G

Units are depth in meters

Laschamp event

10Be-1 2110.10 2231.90 1368.40

L1 2111.58 2233.02 2265.61 1369.54

L2 2115.41 2236.21 2268.96 1372.73 738.19

L3 2118.62 2238.90 2271.77 1375.15 739.80

10Be-2 2127.50 2246.20 1383.30

Toba event

T1 2547.22 2564.68 2591.10 1866.62 1078.96 1165.83 1035.00

T2 2547.97 2565.18 2591.64 1867.56 1079.72 1167.29 1166.59 1036.00

T3 2550.06 2566.58 2593.03 1869.51 1081.27 1168.29 1038.45

T4 2551.44 2567.46 2593.87 1870.93 1082.29 1170.11 1169.42

T5 2558.43 2572.20 2598.54 1877.57

T6 2558.76 1877.85 1087.94 1175.74 1175.04 1048.35

T7 2564.35 1882.96

T8 2564.70 1883.31

T9 2572.61 2581.30 2607.91 1890.58 1097.96 1185.55 1184.89 1063.00
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Fig. 1. Example of layer counting in the EDML ice core at the Laschamp event. Annual lay-

ers are indicated by grey vertical bars. Solid and dashed vertical bars indicate “certain” and

“uncertain” layers, respectively.
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Fig. 2. Matching of NGRIP and EDML ice cores around the two
10

Be peaks associated with

the Laschamp geomagnetic excursion (41.25 kyr). Grey vertical bars indicate NGRIP – EDML

match points. The outermost match points (
10

Be-1 and
10

Be-2) indicate the
10

Be synchroniza-

tion provided by Raisbeck et al. (2007) and Loulergue et al. (2007). The three match points

(L1–L3) indicate the proposed volcanic matching. The number of years counted between match

points is indicated.
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Fig. 3. Overview of NGRIP records around GS-20 / GI-20 and of EDML records around AIM-

19/20.
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Fig. 4. Example of layer counting in the NGRIP ice core in GI-20. Notation as in Fig. 1.
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Fig. 5. Example of layer counting in the EDML ice core between AIM 19 and AIM 20. Notation

as in Fig. 1.
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Fig. 6. Annual layer thicknesses around the Toba candidates according to layer counting (this

work), the EDML1 time scale of Ruth et al. (2007) and the time scale by Lemieux-Dudon

et al. (2010).
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Fig. 7. Matching of NGRIP and EDML ice cores at around GI-20 showing the suggested 74 kyr

Toba synchronization. The grey vertical bars indicate NGRIP – EDML volcanic match points

(T1–T9). The number of years counted between match points is indicated.
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Fig. 8. Comparing volcanic ice core markers in Greenland (GISP2, GRIP, and NGRIP) and

Antarctica (EDML, DF-1, DF-2, EDC) around the suggested Toba match covering the match

points T1–T4. The upper curves show NGRIP δ
18

O and deuterium-excess (d-excess) including

a piecewise linear fit (straight lines) DF-1 and DF-2 refers to Dome Fuji cores 1 and 2, respec-

tively. GISP2 sulfate is from Zielinski et al. (1996) and GISP2 ECM is from Taylor et al. (1997)

GRIP ECM is from Wolff et al. (1997) and DF-1 ECM is from Fujita et al. (2002).
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Fig. 9. Synchronization of the NGRIP (North Greenland Ice Core Project members, 2004),

GISP2 (Grootes and Stuiver, 1997), EDML (EPICA community members, 2006), EDC (EPICA

community members, 2004), and Dome Fuji 1 (Watanabe et al., 2003; Kawamura et al., 2007)

isotopic profiles around GI-20 based on the Toba volcanic match. All records show δ
18

O ex-

cept EDC that is δD. The EDML and EDC age models are modified from the Lemieux-Dudon

et al. (2010) time scales that are shifted in time and linearly stretched by a few percent to fit

the GICC05modelext ages of match points T2 and T9. The Dome Fuji age scale is treated in

a similar way but based on the time scale of Kawamura et al. (2007) For EDML and Dome Fuji

the thin step curve shows measured high resolution isotopes and the thick curves are running

averages.
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