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The testis is the engine of evolution (Short, 1997; Hales 
et al., 1999). The genetic variation that underpins the
evolutionary process appears to be created predominantly
in the male germ line as a consequence of a mutagenic
machinery that is driven by a variety of replication-
dependent and -independent factors (Agulnik et al., 1997).
Reproduction in human males in particular is characterized
by the production of large numbers of spermatozoa by a
spermatogenic process that has scant regard for the
phenotypic normality of the gametes or their genomic
integrity. Human sperm chromatin is often poorly com-
pacted (Sakkas et al., 1999a) and frequently contains DNA
strand breaks (Irvine et al., 2000). In addition, the likelihood
of damage to the mitochondrial genome during the
differentiation and functional lifespan of a spermatozoon is
so great that these structures are ubiquitinated and
destroyed in the oocyte after fertilization, to overcome the
risk of them contributing to the embryonic mitochondrial
pool (Kao et al., 1998; Reynier et al., 1998; Cummins,
2000). Although uniparental inheritance of mitochondria is
common to nearly all eukaryotes (Birky, 1995), populations
of human spermatozoa exhibiting evidence of mitochon-

drial dysfunction also show high rates of nuclear DNA
fragmentation (Donnelly et al., 2000).

In contrast to the mass production and genetic instability
that characterize the male gamete (Box 1), the female germ
line is a model of constancy. Female gametes do not
replicate in the adult and spend most of their life in a state of
relative dormancy as primordial follicles. This quiescent
state is only broken for a brief period when the oocytes enter
the growing follicle pool just before ovulation. As a result of
this lack of cell division and intense metabolic activity, the
ratio (αm) of male to female mutations in primates is thought
to be about 3–6 for humans and higher primates. For
example, Shimmin et al. (1993) analysed the intron
sequences associated with X- and Y-linked zinc finger genes
(ZFX/ZFY) and recorded a relatively high αm value of 6. This
value may have been influenced by the fact that the pattern
of ZFX/ZFY expression is known to vary among species. As
a consequence, it is possible that the functional significance
of this zinc finger protein has changed with time and
distortions in mutation rate have been introduced as a
consequence of differential selection pressure. Agulnik et
al. (1997) addressed this criticism by selecting the SMCY/
SMCX gene pair. The SMC gene encodes a minor trans-
plantation antigen that is expressed in all tissues studied and
is present in mice, men and marsupials. Significantly, this
gene escapes X inactivation, indicating that the X and Y
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copies of SMC must be functionally interchangeable, to
maintain equal gene dosage in males and females. This
functional consistency makes the SMCY/SMCX gene pair an
excellent candidate for calculating αm. Analysis of these
genes in mice, humans and horses revealed that the SMCY
copy of the gene is evolving 1.8 times more quickly than
SMCX. An αm value of approximately 3 for this gene
supports the concept of male-driven evolution. This value is
sufficiently small for the mutations to be induced by
mechanisms other than replication error, indicating a role
for additional factors in the induction of DNA mutation in
the male germ line, including methylation and free radical
generation (Agulnik et al., 1997).

These observations raise questions about the origins and
nature of DNA damage in the male germ line and the
impact such damage has on fertility, embryonic viability
and the subsequent health and fertility of offspring. These
proposed associations form the basis of this review. 

Nature of DNA damage in the germ line

Two types of DNA damage appear to characterize the male
germ line: replication errors and DNA fragmentation.

Replication errors

Since spermatogonial stem cells replicate throughout
life, the spermatozoa of older men will have a history
involving many more cell divisions than the gametes of

younger men. As a consequence, the gametes of older men
can be expected to exhibit a proportionately higher
incidence of mutations as a result of replication errors. It is
for this reason that the occurrence of dominant genetic
disease (for example, Apert’s syndrome, achondroplasia) in
a child with genetically normal parents invariably involves
a mutation in the germ line of the father and is strongly
correlated with paternal age (Crow, 1997). 

DNA fragmentation

This kind of damage is characterized by single and
double DNA strand breaks and is particularly frequent in
the ejaculates of subfertile men (Irvine et al., 2000). Of
course, DNA fragmentation does not constitute a mutation
in its own right but it is a promutagenic change that has the
potential to generate mutations in offspring as a conse-
quence of inadequate or defective repair. Such damage
comes from three potential sources: oxidative stress,
abortive Fas-mediated apoptosis or deficiencies in natural
processes such as recombination and chromatin packaging
that involve the induction of DNA strand breaks.

Oxidative stress in the male germ line

The susceptibility of male germ cells to oxidative stress has
been appreciated since MacLeod (1943) observed that
human spermatozoa incubated under high oxygen tensions
in vitro lost motility via mechanisms that could be reversed
by the presence of catalase in the incubation medium.
MacLeod (1943) concluded from these experiments that
human spermatozoa must be able to generate hydrogen
peroxide from ground state oxygen and that the former must
be damaging to sperm viability. Jones et al. (1979) demon-
strated subsequently that the mechanism by which oxida-
tive stress induced motility loss in mammalian spermatozoa
involved the induction of peroxidative damage to the sperm
plasma membrane. Human spermatozoa are particularly
vulnerable to such stress because their plasma membranes
are so enriched with unsaturated fatty acids, particularly
decosohexaenoic acid with six double bonds per molecule
(Jones et al., 1979). These unsaturated fatty acids are
essential to give the plasma membrane the fluidity it needs
to participate in the membrane fusion events associated
with fertilization. However, when reactive oxygen species
attack the double bonds associated with unsaturated fatty
acids, a lipid peroxidation chain reaction is initiated that if
not arrested leads to a loss of membrane fluidity and a
consequent loss of sperm function (Fig. 1). 

There are two important features of this peroxidative
damage that are relevant to the aetiology of male infertility.
Firstly, the lipid peroxidation cascade is catalysed by
transition metals such as iron and copper (Jones et al., 1979;
Aitken et al., 1993). Addition of ferrous iron to suspensions
of human spermatozoa results in a dose-dependent accel-
eration of lipid peroxidation and a concomitant decrease in
the motility and fertilizing potential of these cells (Aitken 
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Box 1. Evolution of the Y chromosome
The human Y chromosome derives largely from a single
autosomal region that was added to the sex chromosomes
80–130 million years ago (Waters et al., 2001). The
original X and Y chromosomes were homologous
(Delbridge and Graves, 1999). However, most of the genes
from the original sex chromosome have decayed on the Y
chromosome such that the latter now contains just a small
number of genes (largely performing housekeeping
functions) with homologues on the X chromosome. The
tendency for genes to degenerate on the Y chromosome is
not unique to humans; indeed, there has been a general
evolutionary tendency for non-paired sex chromosomes to
degenerate and even (in some species of Drosophila) to
disappear entirely (Lahn and Page, 1997). Many of the
remaining functional genes on the human Y chromosome
appear to have evolved from autosomal homologues, or in
one case (CRY) retroposition of the corresponding mRNA
(Saxena et al., 1996; Chai et al., 1997; Lahn and Page
1997, 1999). Once located on the Y chromosome, there
has been a strong tendency for these genes to undergo
amplification, presumably because the presence of
multiple gene copies creates a buffer against attrition
(Burgoyne, 1998). These Y chromosome-specific genes
encode molecules that are essential for sex determination
(SRY) or male fertility (RBM, DAZ) (Delbridge and Graves,
1999; Marshall Graves, 2000).



et al., 1989). Moreover, human seminal plasma appears to
contain sufficient free iron and copper to catalyse this
process (Kwenang et al., 1987). 

A second major feature of oxidative stress in the germ
line is that its occurrence is profoundly influenced by the
presence of antioxidants in the secretions of the male
reproductive tract. These antioxidants include highly
specialized protective enzymes that are secreted into the
extracellular space. Examples include glutathione peroxi-
dase (GPx5) and extracellular superoxide dismutase (SOD),
produced in the caput and cauda epididymides, respec-
tively (Perry et al., 1993; Vernet et al., 1996, 1997). Seminal
plasma also contains small molecular mass free radical
scavengers such as vitamin C, alpha tocopherol, tyrosine,

hypotaurine and uric acid that contribute significantly to the
antioxidant protection of spermatozoa (van Overveld et al.,
2000). In addition, the albumin present in human seminal
plasma is a sacrificial antioxidant that protects spermatozoa
from peroxidative damage by absorbing lipid peroxides
from the sperm plasma membrane (Twigg et al., 1998a). In
view of the importance of oxidative stress in the aetiology of
sperm dysfunction, it is not surprising that seminal antiox-
idant activity has been shown to be depressed in the
ejaculates of infertile men and to exhibit an inverse correla-
tion with fertility (Smith et al., 1996; Barbieri et al., 1999;
Hendin et al., 1999). In addition, underexpression of
mitochondrial phospholipid hydroperoxide glutathione
peroxidase in spermatozoa has been linked to the motility
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Fig. 1. Relationships between the intensity of the signal generated by phorbol ester (PMA)-
positive leucocyte-free samples and semen quality. (a) Percentage of spermatozoa with
progressive motility in semen. (b) Percentage of spermatozoa rapid in semen. (c) Percentage of
spermatozoa motile in semen. (d) Concentration of spermatozoa in semen (Gomez et al., 1998).



loss exhibited in cases of asthenozoospermia (Imai et al.,
2001).

The susceptibility of human spermatozoa to oxidative
stress is exacerbated by the capacity of these cells to
generate reactive oxygen species (ROS). When all traces of
leucocyte contamination have been removed from the
ejaculate, the amount of ROS generation correlates inversely
with semen quality and sperm function (Aitken et al., 1992;
Gomez et al., 1998). This association between ROS
generation and poor semen quality is particularly evident
when the spermatozoa are stimulated with phorbol esters
(PMA). Normal, functional, mature human spermatozoa do
not generate ROS in the presence of this reagent. However,
in the infertile population, responses to PMA are obtained
that correlate extremely well with the quality of the original
ejaculate (Gomez et al., 1998; Fig 2). A powerful
discriminator of infertility in patients not exhibiting
leucocytospermia is a combined measure of ROS
generation and antioxidant activity in the seminal plasma
(Sharma et al., 1999). Analysis of the key antioxidant
enzymes (SOD and catalase) in seminal plasma has not
revealed any significant differences between the ejaculates
of fertile and infertile men (Zini et al., 2000a). Thus, if there
is an association between the overall antioxidant activity in
seminal plasma and oxidative damage to the spermatozoa,
it is presumably due to deficiencies in the presence of small
molecular mass free radical scavengers such as vitamin C.

Origins of oxidative stress

The factors responsible for the excessive generation of ROS
by the spermatozoa of infertile men have not yet been
elucidated. In some cases, it may be the presence of
xenobiotics that are induced to redox cycle by the
spermatozoa and generate toxic free radicals. In other
cases, there may be defects in the cellular mechanisms that
normally regulate free radical generation by these cells. The
most significant lead to date in resolving the aetiology of
excess free radical generation by spermatozoa has been the
observed association with defective cytoplasmic extrusion.
Defective sperm function is associated with excessively
high cellular concentrations of enzymes such as lactic acid
dehydrogenase (Casano et al., 1991), creatine kinase
(Huszar et al., 1988), SOD (Aitken et al., 1996) and glucose-
6-phosphate dehydrogenase (Aitken et al., 1994; Gomez 
et al., 1996). The feature that all these enzymes hold in
common is that they are cytosolic. In keeping with this
observation, the cellular content of these enzymes is
correlated with the retention of excess residual cytoplasm
by human spermatozoa (Gomez et al., 1996). The loss of
sperm motility and fertilizing potential associated with
varicocoeles and idiopathic male infertility is associated
with the retention of excess residual cytoplasm by the
spermatozoa (Zini et al., 1998, 1999, 2000b), as is the loss
of fertility associated with heavy smoking (Mak et al., 2000).
Recent studies of patients undergoing IVF therapy have
demonstrated a strong negative correlation between

fertilization rate and the presence of residual cytoplasm in
the sperm midpiece (Keating et al., 1997). 

In light of these observations, it is possible that the
generation of excess free radicals by the spermatozoa of
infertile patients reflects an underlying defect in Sertoli cell
function, the latter failing to remove sufficient residual
cytoplasm before spermatozoa are discharged from the
germinal epithelium. The presence of excess residual
cytoplasm then enhances the free radical generating system
of the spermatozoa via mechanisms that are still poorly
understood. One possibility is that the presence of excess
glucose-6-phosphate dehydrogenase enhances the cellular
generation of NADPH that, in turn, fuels the production of
free radicals by a proposed sperm NADPH oxidase (Aitken
et al., 1994). Further studies will be needed to determine
whether this or other, equally plausible, mechanisms are
involved.

DNA damage 

Oxidative stress does not simply disrupt the fertilizing
capacity of human spermatozoa, it also attacks the integrity
of the DNA carried in the sperm nucleus and mitochondria.
A variety of techniques has been used to demonstrate the
presence of DNA fragmentation in human spermatozoa,
including comet, nick translation and sperm chromatin
structure assays (Hughes et al., 1996; Evenson et al., 1999;
Irvine et al., 2000). DNA fragmentation appears to be
inversely correlated with semen quality, particularly sperm
count, morphology and motility (Shen et al., 1999; Irvine et
al., 2000; Muratori et al., 2000; Shen and Ong, 2000).
Moreover, negative correlations have been observed
between the stability of DNA in the sperm nucleus and the
fertilizing capacity of spermatozoa in vivo and in vitro (Sun
et al., 1997; Aitken et al., 1998; Evenson et al., 1999; Host
et al., 2000). The ability of the embryo to survive to term
also appears to be negatively correlated with the level of
DNA fragmentation in the germ line (Host et al., 2000). 

That oxidative stress is correlated with DNA fragmenta-
tion has been demonstrated in many independent studies.
Firstly, the DNA in the ejaculates of infertile men is
commonly associated with oxidative damage as reflected
by measurements of 8-hydroxydeoxyguanosine (8-OHdG)
(Kodama et al., 1997; Irvine et al., 2000; Shen and Ong,
2000). Secondly, correlations have been observed between
oxygen radical generation and DNA damage in ejaculated
spermatozoa (Barroso et al., 2000; Irvine et al., 2000).
Oxidative stress in the male germ line can also be promoted
by the presence of transition metals such as iron, copper
and nickel that stimulate free radical generation and DNA
damage (Liang et al., 1999; Wellejus et al., 2000). Some
protection against metal-catalysed DNA damage may be
afforded by protamination of sperm chromatin. The N
terminus of human protamine P2 contains a heavy metal
trap with particular affinity for Ni(II) and Cu(II) (Liang et al.,
1999). Therefore, protamines may serve a protective
function by sequestering metals capable of promoting the
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fragmentation of sperm DNA. This function may account in
part for the extensive DNA damage observed in poorly
packaged spermatozoa in which the protamine–histone
transition has been incomplete (Bianchi et al., 1993).

An alternative aetiology for the DNA nicks seen in the
spermatozoa of infertile patients involves an abortive
apoptotic pathway mediated by Fas. The induction of
apoptosis via the Fas pathway is clearly an important
mechanism by which Sertoli cells regulate the number of
germ cells, particularly in times of stress (Boekelheide et al.,
2000). Accordingly, men exhibiting deficiencies in the
semen profile, particularly oligozoospermia, possess a large
number of spermatozoa bearing Fas, prompting the

suggestion that these dysfunctional cells are the product of
an incomplete apoptotic cascade (Sakkas et al., 1999b).
Whether defective apoptosis accounts for a significant
proportion of the DNA damage seen in the spermatozoa of
infertile men is still an open question. A recent analysis of
DNA damage in the germ line did not find ultrastructural
evidence for apoptosis in association with DNA damage
(Barroso et al., 2000), whereas another study found no
correlation between DNA damage and Fas expression
(Muratori et al., 2000). Of course, Fas binding and ROS
generation are not mutually exclusive phenomena; ROS
can induce Fas-mediated signal transduction in some types
of cell (Huang et al., 2000), whereas Fas-induced apoptosis
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appears to be mediated by ROS in other types of cell (Sayers
et al., 2000). 

Double-stranded DNA breaks also occur naturally in the
male germ line both in preparation for recombination and
during the process of chromatin packaging (Sakkas et al.,
1999a). These physiological strand breaks are normally
resolved by the spermatid stage of spermatogenesis.
Therefore, it is possible that aberrant recombination–
chromatin packaging accounts for unresolved double-
strand breaks in mature human spermatozoa; however,
evidence to support this contention is currently lacking.

Consequences of DNA damage

The studies cited above indicate that a variety of
mechanisms, particularly oxidative stress, conspires to
induce DNA strand breaks in the male germ line, particularly
in cases of male subfertility associated with poor semen
quality. Such samples frequently show depressed fertilization
rates in vitro in association with the DNA damage (Sun 
et al., 1997), presumably as a consequence of collateral
peroxidative damage to the sperm plasma membrane. Such
membrane damage is physiologically important since it
constitutes a protective mechanism designed to ensure that
spermatozoa with severely damaged genomes cannot
participate in the normal process of fertilization. However,
this biological safeguard is of limited effectiveness because
the genome of the human spermatozoon appears to be
more susceptible than the plasma membrane to oxidative
damage. As a consequence, it is possible to arrive at levels
of oxidative stress at which cells exhibiting significant
oxidative damage to their DNA retain the capacity for
fertilization (Aitken et al., 1998).

Clinical significance – childhood cancer 

The clinical significance of this situation is demonstrated by
recent analyses of men who are heavy smokers. The
ejaculates of such men are under oxidative stress as
indicated by the fact that their semen is characterized by
increased levels of oxidative DNA base damage, high
chromatin fragmentation and low concentrations of
antioxidant vitamins (Fraga et al., 1996). Although fertility is
suppressed in such subjects, they are not infertile. As a
consequence, DNA-damaged spermatozoa from heavy
smokers are able to engage in the process of fertilization,
with consequences for the ultimate health and well-being of
the embryo. Thus, the offspring of heavy smokers are four 
to five times more likely to develop childhood cancer 
than the children of non-smoking fathers (Ji et al., 1997).
Furthermore, the possible mutagenic–promutagenic effects
of smoking on DNA integrity in the male germ line has been
reinforced by another study indicating that 15% of all
childhood cancers are directly attributable to paternal
smoking (Sorahan et al., 1997). Evidence for this linkage
between DNA damage in the male germ line and
abnormalities in the developing embryo or child is not

confined to smokers. It can also be found in the wealth of
data indicating that powerful associations exist between
childhood disease and paternal occupation (Sawyer and
Aitken, 2000).

The use of ICSI as a therapeutic technique can only
exacerbate this problem. The most highly damaged sperm
DNA is generally found in men with the poorest semen
quality, whose spermatozoa are incapable of fertilization
(Irvine et al., 2000). This could be viewed as a protective
mechanism ensuring that the most severely abnormal
spermatozoa do not contribute their damaged DNA to the
embryo. However, this safeguard is circumvented when
ICSI is used to achieve human conceptions. Even if
extremely high oxidative DNA damage is induced experi-
mentally in populations of human spermatozoa by co-
incubation with activated leucocytes, exposure to hydrogen
peroxide or the excessive stimulation of the free-radical-
generating system of the spermatozoon itself with NADPH,
successful fertilization can still be achieved with ICSI
(Twigg et al., 1998b,c). Since DNA damage in the male
germ line is associated with an increased incidence of
childhood cancer, it is possible that the children of ICSI
conceptions will be vulnerable to this disease. Much will
depend on the DNA integrity of the spermatozoon selected
for injection. 

Childhood cancer may not be the only consequence of
conceptions involving DNA-damaged spermatozoa. It is
also possible that double-stranded DNA breakage induced
by oxidative stress, defective apoptosis or aberrant
recombination results in infertility in the male offspring as a
consequence of irreparable deletions on the long arm of the
Y chromosome.

Y chromosome and male infertility

The first association between spermatogenic failure and an
underlying genetic cause was demonstrated by Tiepolo and
Zuffardi (1976) in a report of six azoospermic patients
carrying microscopically detectable deletions of the distal
portion of Yq. In four cases, the deletion was de novo since
the fathers of the patients were tested and found to carry an
intact Y chromosome. On the basis of this finding, the
existence of a spermatogenesis factor, the ‘azoospermia
factor’ (AZF) encoded by a gene on distal Yq, was proposed.
However, it was not until the mid-1980s, when Y chromo-
some-specific probes were developed, that the regions asso-
ciated with spermatogenic failure were defined. Vollrath et
al. (1992) developed more than 200 sequence-tagged sites
(STS: short tracts of DNA that act as a landmark to define
position on a physical map) along the length of the Y
chromosome and ordered the STS markers using a large
panel of individuals with Y chromosome deletions. These
markers have permitted simple deletion analysis in infertile
males by the polymerase chain reaction (PCR). Sub-
sequently, many STS-based screening programmes have
been undertaken in patients affected by azoospermia and
severe oligozoospermia to define the AZF locus and isolate
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candidate genes for AZF. Vogt et al. (1996) observed that Y
chromosome microdeletions follow a certain deletion
pattern, with three recurrently deleted nonoverlapping
subregions in proximal, middle and distal Yq11, designated
AZFa, AZFb and AZFc, respectively. In each AZF region, it
has been suggested that the deletion is associated with a
distinct histopathological profile. Thus, deletions removing
the entire AZFa region result in type I Sertoli cell only
syndrome (SCOS) (no germ cells present), deletions of the
whole AZFb region result in spermatogenic arrest (SGA)
usually at spermatocyte stage, and deletions in AZFc are
associated with type II SCOS (some spermatogonia present
with limited spermatogenesis) or hypospermatogenesis
(oligozoospermia).

In each region, a number of candidate genes have been
proposed (McElreavey and Krausz, 1999). No single gene-
specific deletion has been found in more than 200
oligospermic–azoospermic men screened for six AZF genes
by PCR (Krausz et al., 1999a, 2001). This finding indicates
that gene-specific deletions are probably rare events and
only large Y deletions, removing several genes, are
associated with the infertile phenotype. A large study on
576 infertile men describes a de novo point mutation of the
gene USP9Y associated with non-obstructive azoospermia
(Sun et al., 1999). This is the first formal demonstration for
the aetiopathogenetic role of an AZF gene in spermatogenic
failure.

Little is known about the biological functions of the
proteins encoded by Y chromosome genes, although most
seem to encode for proteins involved in RNA metabolism
(DAZ, RBM, eIF-1AY, DBY). During the later stages of
spermiogenesis, when RNA synthesis is markedly reduced,
post-transcriptional regulation plays a primary role. It is
possible that factors encoded by Y-linked genes have an
important function in this process.

Clinical significance of Y microdeletions

The incidence of Y chromosome microdeletions among
infertile men varies among studies from 1 to 55% (Krausz
and McElreavey, 1999). The major factor influencing this
parameter is the composition of the study population. Since
patients affected by idiopathic azoospermia are at higher
risk for this genetic defect (approximately 15% of azoosper-
mic men have Yq microdeletions) than are patients affected
by oligozoospermia (5–10% oligozoospermic men have
have Yq microdeletions), a higher proportion of azoosper-
mic men in a given study population will be associated with
a higher overall deletion frequency (Krausz et al., 1999b).
Yq microdeletions are specific for spermatogenic failure
since no microdeletions have been found in normospermic
men (Krausz et al., 2001).

Y chromosome deletions are not completely incompati-
ble with fertility because a few cases involving natural
transmission of AZFc deletions from father to son have been
described (Krausz and McElreavey, 2001; Saut et al., 2000).
Since couple fertility is not a synonym of normozoospermia

and sperm analysis of the fathers was not available, it is
possible that these ‘fertile fathers’ may themselves have
been oligozoospermic. However, it is also possible that
environmental effects or different genetic backgrounds may
account for a variable phenotype between a father and his
son. For the same reason, the phenotype of an ICSI male
offspring from a father with Yq deletions cannot be entirely
predicted. Yq microdeletion has been found in two male
children conceived through ICSI even though the deletion
was not detected in the lymphocytes of their infertile father
(Kent-First et al., 1996). Plausible explanations for this
situation involve mosaicism in the father’s germ line or high
rates of DNA fragmentation in the spermatozoa followed by
the creation of a post-fertilization Yq deletion. However, in
a study of 99 ICSI-conceived sons, no de novo Yq deletion
was found in the babies (Cram et al., 2000). 

In contrast, patients carrying Yq deletions are associated
with an increased incidence of 45,XO cells in their
lymphocytes and of sperm cells nullisomic for gonosomes,
especially for the Y chromosome (Siffroi et al., 2000).
Therefore, Yq microdeletions may be associated with Y
chromosomal instability leading to the formation of 45,XO
cell lines. These findings indicate a possible increased risk
for Turner’s syndrome in the offspring of men with Yq
microdeletion. 

A systematic Yq screening of ICSI male babies with long-
term follow-up are warranted to understand more about the
safety of this technique and the clinical consequence of the
transmission of Y deletions. Since certain Y deletions (AZFc)
are associated with a progressive change from oligo-
zoospermia to azoospermia (Girardi et al., 1997; Simoni et
al., 1997), preventive therapy (cryopreservation of sperma-
tozoa for successive assisted reproductive techniques)
could be proposed for affected sons.

Origin and mechanism of Y chromosome
microdeletions

Apart from the few inherited cases cited above, most
deletions occur as de novo events. The cellular origin of Y
chromosome deletions is not clear. Presumably, the dele-
tions are preceded by double-strand breaks that, if they
occurred premeiotically, could lead to the presence of Y
chromosome deletions in the ejaculated spermatozoa.
Alternatively, the spermatozoa may harbour a high fre-
quency of double-strand breaks that lead to the creation of
deletions after fertilization. 

The relatively high frequency of Y deletions indicates
that the Y chromosome is particularly susceptible to the
spontaneous loss of genetic material. The nature of this
susceptibility remains speculative. One possibility is aber-
rant recombination events between areas of homologous or
similar sequence repeats (for example, Alu repeats or gene
families) between the X and Y chromosomes or within the 
Y chromosome itself by unbalanced sister chromatid 
exchange (McElreavey and Krausz, 1999). The instability 
of the Y chromosome may also be related to the high 

DNA damage in spermatozoa 503



frequency of repetitive elements clustered along the length
of the Y chromosome. Deletion interval 6 for example is
rich in both inverted and direct repeats, many of which are
several hundred kilobases in length (Yen, 1998). A subclass
of AZFa deletions appears to have resulted from intrachro-
mosomal crossovers between repeated human endogenous
retroviral (HERV) sequences (Blanco et al., 2000; Kamp et
al., 2000).

Finally, the particular vulnerability of the Y chromosome
to DNA deletions may be the result of its inability to
participate in recombination repair. The DNA fragmen-
tation that appears to be commonplace in spermatozoa
(Aitken, 1999) has the potential to generate deletions as the
chromatin unravels at fertilization. Any double-stranded
DNA breaks would normally be repaired by homologous
recombination in the few hours that elapse between
fertilization and the initiation of the first cleavage division.
However, this repair mechanism cannot apply to the non-
recombining region of the Y chromosome, where the key
spermatogenesis genes are housed and where recomb-
ination repair is impossible.

Notwithstanding the evident vulnerability of the Y
chromosome, the question remains as to why some men
have AZF deletions and others do not. It has been proposed
that a particular Y chromosome sequence organization can
facilitate deletion formation. However, analysis of Y
chromosome haplotypes in men with Y deletions compared
with controls with no deletion failed to identify any specific
predisposing or protecting haplotype for or against Y
deletion formation (Quintana-Murci et al., 2001). In some
pathologies characterized by single base-pair substitutions,
a paternal age effect has been described. However, paternal
age effects do not seem to contribute to the loss of Y
sequences in most patients since the father’s age at the time
of conception of an infertile son with or without Yq
deletions is not different from that of control men with
normal Y chromosomes.

Conclusions

In conclusion, the male germ line appears to be particularly
susceptible to mutagenic and promutagenic change. This
variability is biological useful in that it creates the genetic
diversity that fuels the evolutionary process, but the genetic
instability characteristic of the male germ line is harmful in
that it helps create the mutations responsible for genetic
disease including cancer and infertility. The mutagenic
mechanisms involve replication errors that are heavily
correlated with paternal age and responsible for the spon-
taneous appearance of dominant genetic diseases such as
Apert’s syndrome and achondroplasia. In addition, the male
germ line is highly susceptible to DNA fragmentation via
mechanisms that are independent of paternal age. The
aetiology of these strand breaks may involve aberrant
recombination, defective chromatin packaging, abortive
apoptosis and oxidative stress. Oxidative stress appears to
be particularly important and may be induced by a variety

of mechanisms including antioxidant depletion, redox
cycling xenobiotics and defective cytoplasmic extrusion
during spermiogenesis. Such oxidatively induced DNA
fragmentation constitutes a promutagenic change that, in its
most severe form, does not have an impact on the quality of
the germ line because collateral oxidative damage to the
sperm plasma membrane prevents fertilization. When there
is less oxidative stress, fertilization can occur, but the
oocyte must repair the DNA strand breaks before the
initiation of the first cleavage division. It is at this juncture
that deletions or sequence errors may be introduced (Fig. 2).
The Y chromosome is particularly vulnerable to DNA
damage, partly because of its genetic structure and partly
because it cannot correct double-stranded DNA deletions
by homologous recombination. The fact that such damage
to the Y chromosome frequently results in infertility might
be regarded as another safety mechanism that serves to limit
the extent to which mutations are propagated in the germ
line. If the DNA damage does not induce infertility through
an effect on the Y chromosome but involves an oncogene,
the result will be an increased risk of cancer in the offspring.
Such associations are illustrated by the increased risk of
childhood cancer seen in the children of men who possess
high DNA fragmentation in their spermatozoa as a
consequence of heavy smoking. Moreover, because the
mutation is fixed in the germ line, it has the potential to
impact upon the health and well-being of all the future
descendants of a given individual.
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