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ABSTRACT

Introduction: High platelet reactivity (HPR) on dual antiplatelet therapy is a risk factor for adverse
vascular events in acute coronary syndrome (ACS) patients. Several studies have shown that reactive
oxygen species (ROS) may be involved in modulating platelet function.
Methods: In Non-ST elevation myocardial infarction (NSTEMI) patients (n = 132) undergoing percuta-
neous coronary intervention (PCI) on dual antiplatelet therapy blood samples were collected within 24 h
from 600 mg clopidogrel loading dose.
Platelet reactivity was assessed by light transmission aggregometry using 10 uM ADP, 1 mM arachidonic
acid (AA) and 2 pg/ml collagen. ROS production and lipoperoxidation of circulating cells were deter-
mined. by FACSCanto flow cytometry. In these patients, we investigated: 1) the relationship between the
amount of cellular ROS production/lipoperoxidation and platelet reactivity; 2) the association of cellular
ROS production with the presence of high platelet reactivity to ADP and arachidonic acid (AA).
Results: Significantly higher levels of platelet and leukocyte-derived ROS were detected in 49 dual HPR
(with platelet aggregation by AA > 20% and by ADP > 70%) compared to non-HPR patients (n = 49)
[Platelet-derived ROS: +142%; Leukocyte-derived ROS: +14%, p < 0.0001]. Similarly, dual HPR patients
had significantly higher platelet and leukocyte lipoperoxidation than non-HPR patients [Platelet
lipoperoxidation: +131%; Leukocyte lipoperoxidation: +14%, p < 0.001].
After adjustment for several potential confounders, platelet-, leukocyte-derived ROS and platelet and
leukocyte lipoperoxidation remained significantly associated to dual HPR.
The significant predictors of ADP, AA, and collagen platelet aggregation at multiple linear regression
analysis, after adjusting for age, cardiovascular risk factors, procedural parameter, medications, leukocyte
number and MPV, were platelet-, leukocyte-derived ROS and platelet and leukocyte lipoperoxidation
(p < 001).
Conclusions: Our results demonstrate that in NSTEMI patients on dual antiplatelet therapy, ROS pro-
duction by and lipoperoxidation of platelets are strictly correlated to the different pathways of platelet
aggregation and that ROS production and lipoperoxidation of platelets and leukocytes are predictors of
non responsiveness to dual antiplatelet treatment.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

High platelet reactivity (HPR) on dual antiplatelet therapy is an
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vascular events in the setting of acute coronary syndrome (ACS)
patients undergoing percutaneous coronary intervention (PCI) and
stenting [1—4].

0021-9150/$ — see front matter © 2013 Elsevier Ireland Ltd. All rights reserved.
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The presence of the pro-thrombotic phenotype HPR may be
explained by different clinical, and pharmacogenetic mechanisms
mediated by biohumoral and cellular factors. Platelets are involved
in inflammation, thrombosis and atherogenesis [5—9]. Monocytes,
which are recruited to vessel walls, also play an important role in
the acute phase of atherothrombosis. The interplay by platelets and
other cells is evident in the trans-cellular metabolism of arach-
idonic acid, which promotes production of pro-inflammatory and
vasoconstrictive compounds [e.g. leukotrienes and thromboxane
(Tx)Az], and generates lipoxins, which are involved in the resolu-
tion of inflammation [10].

Although platelets display a prominent role in leukocyte acti-
vation, the reverse is also true. Superoxide anion, PAF, neutrophil
elastase (NE) and cathepsin G (CG), all released from leukocytes,
can induce platelet aggregation and secretion. Conversely, NO and
ADPase released from unstimulated or weakly activated leukocytes
attenuate platelet aggregation [11].

Experimental studies have shown that platelet aggregation is
associated with considerable reactive oxygen species (ROS) pro-
duction manifested as a burst of oxygen consumption [12], iso-
prostane formation [13—16] and an increase in GSSG [17]. This
increase in GSSG arises, in part, from ROS such as 03¢ [18,19] and
H,0; [20] that are produced during the aggregation. Implicated
sources for these ROS produced during aggregation include cyclo-
oxygenase, lipoxygenase [21], and even NADPH oxidase [22,23].

In addition, different cell types, such as vascular smooth muscle
cells, endothelial cells and fibroblasts, express a number of ROS-
generating enzymes [24]. Besides their exposure to vascular wall-
derived ROS, platelets are also exposed to high levels of ROS dur-
ing the phagocytic burst reaction, which occurs during inflamma-
tion [25—27].

ACS is typically associated with increased ROS production,
which may be responsible for a vicious circle (a positive feedback):
proinflammatory cytokines trigger ROS production and ROS induce
expression of pro-inflammatory cytokines [24]. However, the
interplay between such burst of ROS and the entity of platelet
activation is essentially speculative.

The aims of the present study were to investigate, in NSTEMI
patients: 1) the relationship between the amount of ROS produc-
tion by and lipoperoxidation of cellular elements involved in ACS
and platelet activation through different pathways; 2) the associ-
ation of cellular ROS production with the presence of high platelet
reactivity to ADP and arachidonic acid (AA) stimulation in patients
receiving both clopidogrel and acetyl salicylic acid (ASA) therapy.

Additional studies were performed to assess whether ROS pro-
duction correlates with platelet function in the presence of isolated
non responsiveness to clopidogrel or to ASA.

2. Materials and methods
2.1. Study population

In the framework of an ongoing project aimed to investigate the
prevalence and the clinical implications of HPR in patients with ACS
undergoing PCI on dual antiplatelet therapy, we consecutively
investigated 49 NSTEMI patients with HPR by AA and ADP (dual
HPR) and 49 without HPR (non-HPR). We also studied 17 NSTEMI
patients with isolated HPR by AA and 17 with isolated HPR by ADP.

2.2. High on-treatment platelet reactivity (HPR)

For selecting study population we defined patients with dual
HPR those patients with platelet aggregation induced by AA > 20%
and by ADP > 70% according to the literature [28] and to studies
from our group [1,29]. Isolated HPR by AA was defined in the

presence of platelet aggregation induced by AA > 20% and by
ADP < 70%. Isolated HPR by ADP was defined in the presence of
platelet aggregation induced by ADP > 70% and by AA < 20%.

All patients undergoing primary PCI received a clopidogrel
loading dose (600 mg) followed by a daily dose of 75 mg. All pa-
tients received unfractionated heparin 70 IU/kg during the proce-
dure and acetyl salicylic acid i.v. 500 mg followed by a daily dose of
100 mg by oral route.

Venous blood samples anticoagulated with 0.109 M sodium
citrate (ratio 9:1) were taken from each patient within 24 h from
600 mg clopidogrel loading.

Patients were considered to have hypertension if they had been
diagnosed as hypertensives according to the guidelines of European
Society of Hypertension/European Society of Cardiology [30] or
were taking antihypertensive drugs. Dyslipidemia was defined ac-
cording to the third report of the National Cholesterol Education
Program (NCEP III) [31] and diabetes in agreement with the
American Diabetes Association [32].

The exclusion criteria included history of bleeding diathesis,
platelet count <100,000/mm> hematocrit <30%, creatinine
>4.0 mg/dL, and glycoprotein (Gp) IIb/Illa inhibitors use.

Informed written consent was obtained from all patients and
the study was approved by the local Ethical Review Board. The
investigation conforms with the principles outlined in the Decla-
ration of Helsinki [33].

2.3. Platelet reactivity assessment

Turbidimetric platelet aggregation was used to measure agonist
induced platelet aggregation. Whole blood samples were centri-
fuged for 10 min (min) at 250 g to obtain platelet-rich plasma (PRP).
Platelet-poor plasma (PPP) was obtained on the remaining spec-
imen by further centrifugation at 3000 g for 3 min. A platelet count
was measured on the PRP and was adjusted to between 180 x 103/
ul and 300 x 103/ul with PPP. PRP was stimulated with 10 uM ADP
(Mascia Brunelli, Milan, Italy), with 1 mmol arachidonic acid (AA)
(Sigma—Aldrich, Milan, Italy) and with 2 pug/ml collagen (Mascia
Brunelli, Milan Italy) using a APACT 4 aggregometer (Helena Lab-
oratories Italia S.P.A, Milan, Italy). Platelet aggregation (PA) ac-
cording to Born’s method was evaluated considering the maximal
percentage of platelet aggregation in response to different stimuli
(ADP-PA and AA-PA) after 10 min.

2.4. Assessment of ROS generation and lipoperoxidation by flow
cytometry

2.4.1. Sample preparation

After collection, 100 ul EDTA-anticoagulated blood samples
was stained for platelet surface antigens using 10 pl Peridinin-
chlorophyll-protein complex (PerCP)—conjugated human anti-
CD61 monoclonal antibody and for leukocytes using 10 pl PE-
Cy7 Mouse Anti-Human CD45 (BD Pharmingen™, San Jose, CA,
USA). The tubes were gently mixed and incubated at RT in the
dark for 15 min. Surface-stained cells were resuspended in 2 ml
of BD FACS Lysing Solution (BD Pharmingen™, San Jose, CA, USA),
gently mixed, and incubated at RT in the dark for 10 min,
following manufacturer’s protocol. Subsequently, cells were
centrifuged, the supernatant discarded and cells washed twice
in PBS.

The level of intracellular ROS generation was determined after
incubation with HoDCFDA (2.5 pM) (Invitrogen, CA, USA) in RPMI
without serum and phenol red for 15 min at 37 °C [34—36].

As for lipoperoxidation, cells were incubated with BODIPY 581/
591C11 (5 uM) (Invitrogen, CA, USA) in RPMI without serum and
phenol red for 15 min at 37 °C [37,38].
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2.4.2. FACS analysis

After labeling, cells were washed and resuspended in PBS and
analyzed immediately using a FACSCanto flow cytometer (Becton—
Dickinson, San Jose, CA). The sample flow rate was adjusted to about
1000 cells/s. For a single analysis, the fluorescence properties of
200,000 leukocytes were collected. The respective gates were
defined using the distinctive forward-scatter and side-scatter
properties of the individual cell populations. To avoid the inclusion
of debris only CD61" platelets were analyzed. Moreover, cell
viability was controlled by flow cytometry with propidium iodide
staining and was found to exceed 95%. Platelet-leukocyte complexes
(%) were determined based on the percentage of CD61-positive cells
in the granulocyte, monocyte and lymphocyte population.

Data was analyzed using BD FACSDiva software (Becton—Dick-
inson, San Jose, CA, USA).

FACS gating strategies and representative FACS plots are shown
in Fig. 1.

2.5. Statistical analysis

Statistical analysis was performed using the SPSS (Statistical
Package for Social Sciences, Chicago, IL, USA) software for Windows
(Version 19.0). Values are presented as median and interquartile
range.

The Mann—Whitney test for unpaired data was used for com-
parison between HPR and no-HPR patients groups. A correlation
analysis for non-parametric data was performed to establish re-
lationships between ROS generation, lipoperoxidation markers and
agonist-induced platelet aggregation.

To examine the extent of cardiovascular risk factors (sex,
familiar history of CAD, smoking habit, hypertension, diabetes,
dyslipidemia, overweight), procedural characteristics (number of
vessel disease, number of stents, ejection fraction (EF) < 40%) and

pharmacological treatment (ACE-inhibitors, Statins and proton
pump inhibitors and Beta Blockers) in influencing HPR we used
Chi-square test.

To evaluate the independent predictors of dual HPR we used a
multivariable logistic regression analysis adjusted for the variables
that at univariate analysis had a p value <0.10 (age, leukocyte count,
mean platelet volume-MPV and ejection fraction-EF < 40%), plus
cell-derived ROS and cell lipoperoxidation. Cell-derived ROS pro-
duction and lipoperoxidation variables were transformed into
square root values, due to the skewed distribution of the variables.

We used linear regression models to test the independent as-
sociations of AA- or ADP-induced platelet aggregation with platelet
and leukocytes-derived ROS and platelet and leukocytes lip-
operoxidation. We also evaluated the independent association of
AA- or ADP-induced platelet aggregation with cardiovascular risk
factors (age, sex, familiar history of CAD, smoking habit, hyper-
tension, diabetes, dyslipidemia, overweight), leukocyte count,
mean platelet volume (MPV), procedural characteristics (number of
vessel disease, number of stents and EF < 40%) and pharmacolog-
ical treatment (ACE-inhibitors, Statins and proton pump inhibitors
and Beta Blockers) as potential predictors. In the final model of
multivariate linear regression analysis we added each oxidative
stress parameters (separately due to the collinearity of these fac-
tors) to the variables that at univariate analysis had a p value < 0.10
(age, leukocyte count, mean platelet volume-MPV and ejection
fraction-EF < 40%). Results are expressed as f & SE P < 0.05 was
considered to be statistically significant.

3. Results
Clinical, demographic, and laboratory characteristics of patients

according to the presence of dual HPR are shown in Table 1 and
Fig. 2.
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Fig. 1. FACS gating strategies and representative FACS plots.
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Table 1
Clinical characteristics of acute coronary syndrome patients with and without dual
high platelet reactivity (dual HPR).

Non-HPR Dual HPR P dual HPR
(n=49) (n = 49) vs non-HPR

Males/Females 40/9 32/17 0.067
Age (median, range) 67 (42-90) 78 (55-91) 0.001
Hypertension (n,%) 7 (55.1) 31(63.2) 0411
Smoking habit (n,%) 4 (48.9) 16 (32.6) 0.100
Dyslipidemia (n,%) 2 (44.9) 21 (42.9) 0.839
Diabetes (n,%) 0(20.4) 11 (22.4) 0.806
Family history of CAD (12 2) 5(10.2) 0.749

(n,%)
Overweight (n,%) 5(10.2) 6(12.2) 0.749
1-vessel disease 30 (61.2) 33 (67.4) 0.673
2-vessel disease 11 (22.5) 10 (204) 0.999
3-vessel disease 8(16.3) 6(12.2) 0.774
Number of stents ] 45+ 1.1 147 +1.3 0.505
ACE-inhibitors 0(61.2) 31(63.3) 0.999
Statins 1(63.3) 30(61.2) 0.999
Proton Pump Inhibitors’ 44 (89.8) 45 (91.8) 0.999
Beta Blockers 1(42.9) 20 (40.8) 0.999
AA-platelet aggregation 5(8—19) 31 (20—-100) <0.0001

(%)
ADP-platelet aggregation 46 (8—69) 77 (70—100) <0.0001

(%)
Collagen-platelet 23 (4-66) 60 (30—100) <0.0001

aggregation

(%)
Leukocytes (x10%/L)
Platelets (x10°/L)
MPV (fL)

6.74 (3.73—14.41) 7.87 (3.98—15.8)  0.044
207 (142-463) 197 (144-413)  0.704
109 (8.9-125)  112(92-13.0)  0.073

CAD = coronary artery disease; Overweight was defined in the presence of BMI >25,
mean platelet volume (MPV).

3.1. ROS generation and lipoperoxidation

In Fig. 2 we reported median values (interquartile range) ac-
cording to the presence of dual HPR: significantly higher levels of
platelet and leukocyte-derived ROS were detected in dual HPR with
respect to non-HPR patients. Similarly, platelet and leukocyte lip-
operoxidation values were significantly higher in dual HPR with
respect to non-HPR patients (Fig. 2). Platelet- and leukocyte-
derived ROS and lipoperoxidation significantly correlated with
AA-, ADP-, and collagen-induced platelet aggregation (Fig. 3).

We evaluated 17 patients with isolated HPR by AA and 17 pa-
tients with isolated HPR by ADP. The clinical and laboratory char-
acteristics of the patients with isolated HPR by AA or by ADP were
similar to those observed in patients with dual HPR (data not
shown).

In patients with isolated HPR by AA and in those with isolated
HPR by ADP platelet-derived ROS and platelet lipoperoxidation
levels were significantly (p < 0.0001) higher than in patients
without HPR and lower than in patients with dual HPR (Fig. 4).

No significant difference in platelet ROS production and platelet
lipoperoxidation levels between isolated HPR by AA and isolated
HPR by ADP was found.

In dual HPR patients platelet—leukocyte complexes (%) in the
granulocyte, monocyte and lymphocyte population were signifi-
cantly increased (p < 0.01) compared to non-HPR patients
(19.5 &+ 5.7 vs 11.8 + 4.3; 26.0 & 4.8 vs 18.7 + 3.9; 174 + 3.6 vs
10.6 + 1.8 respectively).

3.2. Correlation between parameters investigated

Platelet-derived ROS significantly correlated with leukocyte-
derived ROS (r = 0.50, p < 0.0001), as well as with platelet, and
leukocyte lipoperoxidation (r = 0.82 and r = 0.51, p < 0.0001).

Among clinical characteristics, age was significantly correlated
with platelet-derived ROS (r = 0.32, p < 0.001) and with platelet
and leukocyte lipoperoxidation (r = 0.35, p < 0.001; r = 0.25,
p = 0.007). No correlation between platelet function, ROS produc-
tion or lipoperoxidation and platelet volume was found.

3.3. Regression analyses

The significant predictors of dual HPR were shown in Table 2.

After adjustment for several potential confounders, age,
EF < 40%, platelet-, leukocyte-derived ROS and platelet and
leukocyte lipoperoxidation remained significantly associated to
dual HPR (Fig. 5).

The significant predictors of ADP, AA, and collagen platelet ag-
gregation at multiple linear regression analysis, after adjusting for
age, leukocyte number, MPV and EF < 40% are reported in Table 3.

4. Discussion

This study provides the novel findings that in patients with ACS
on dual antiplatelet therapy: 1) ROS production and lip-
operoxidation by platelets and leukocytes are predictors of non-
responsiveness to dual antiplatelet treatment; 2) ROS and lip-
operoxidation by platelets and leukocytes are correlated to the
different pathways of platelet aggregation 3) isolated clopidogrel as
well as aspirin non-responsiveness are associated with an up-
regulation of platelet and leukocytes ROS production and
lipoperoxidation.

ROS are produced by blood cells including platelets and leuko-
cytes and play a role in favoring platelet activation by several
mechanisms. ROS may, in fact, inactivate or inhibit the biosynthesis
of NO, a powerful antiaggregating and vasodilator molecule, or
elicit formation of isoprostanes, which contribute to propagate
aggregation via Gpllb/Illa activation [14]. Previous studies demon-
strated in vitro that, upon anoxia, platelets exhibit a burst of ROS
which contributes to up-regulate COX1, so enhancing platelet TxA,
formation [39]. This datum was corroborated in vivo by showing
that after PCI, a typical model of ischemia-reperfusion, platelet
TxA, formation was over-expressed consequently to enhanced ROS
formation [40]. This finding prompted to hypothesize that a burst of
ROS occurring after PCI may be responsible for platelet activation,
but in vivo evidence supporting such interplay had not yet been
investigated. To explore this issue we analyzed if platelet produc-
tion of ROS could be implicated in the platelet non-responsiveness
to antiplatelet drugs, observed after PCI [3,4] in ACS patients. In
particular, the present study was designed to investigate the rela-
tionship between platelet oxidative stress and platelet function in
patients with high residual platelet reactivity to both arachidonic
acid and ADP, the so called dual non-responders. The potential
clinical relevance of the study is outlined by previous studies [1,2]
in which we found out that dual non-responsiveness in the acute
phase of ACS is the most accurate predictor of patients at high risk
of stent thrombosis and death.

The novelty of our study is in the detection of a higher pro-
duction of ROS in patients who did not respond to dual antiplatelet
treatment compared with those who did respond, suggesting a
cause-effect relationship between the burst of ROS and impaired
platelet inhibition. Consistent with this hypothesis was the direct
correlation between oxidative stress, as measured by platelet ROS
and lipoperoxidation, and responsiveness to several agonists, such
as ADP, AA, and collagen, in patients on dual antiplatelet treatment
undergoing PCI. The plausibility of this interpretation is based on
previous data indicating that ROS serve to amplify platelet response
to common agonist via release of ADP, inactivation of NO and/or
production of isoprostanes [ 14]. In accordance with this suggestion,
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a direct correlation between platelet ROS and platelet function was
detected also in patients with isolated non-responsiveness to clo-
pidogrel or aspirin; in fact either P2Y12 and AA pathways are
associated with ROS formation and ultimately with activation of
platelet function [37,14,40]. The correlation between leukocyte
oxidative stress and platelet non-responsiveness to dual anti-
platelet drugs is another novelty of the present study. This suggests
that the burst of ROS after PCI in ACS patients occurs in platelets
and to a lesser extent in leukocytes which, in turn, contribute to
activate platelets with a ROS-mediated mechanism. This finding
provides further insight into our previous results [40] claiming a
link between inflammation and platelet hyper-function.

As suggested by several authors, the cross-talk between plate-
lets and leukocytes plays a significant role in thrombosis and
inflammation [1—4]. Increased formation of platelet—leukocyte
complexes is clinically observed in acute coronary syndromes [6],
myocardial infarction [7], and vascular diseases including arterio-
sclerosis [8] and inflammatory disorders [9].

The results of our study clearly show that in dual HPR patients
platelet—leukocyte complexes (%) in the granulocyte, monocyte
and lymphocyte population were significantly increased compared
to non-HPR patients. This finding agrees with the enhanced platelet
ROS production in dual HPR patients.

Table 2
Univariate logistic analysis for dual high platelet reactivity (dual HPR) HPR in ACS
patients on dual antiplatelet treatment.

OR (95% CI) univariate analysis P value
Age (yrs) 1.07 (1.03-1.12) 0.002
Gender (Females vs Males) 2.07 (0.83-5.15) 0.117
Smoking habits 0.55 (0.24—1.24) 0.150
Hypertension 1.40 (0.63—-3.15) 0.412
Diabetes 0.86 (0.35—-2.11) 0.855
Dyslipidemia 0.78 (0.35—1.73) 0.543
History of CAD 0.81 (0.23-2.87) 0.749
Overweight (BMI > 25) 1.57 (0.41-5.95) 0.507
Multivessel PCI 1.07 (0.61—1.88) 0.823
Number of stent 0.96 (0.53-1.74) 0.893
Ejection fraction <40% 3.38 (0.85—13.34) 0.083
Leukocytes (x10°/L) 1.21 (0.99—1.46) 0.060
Mean Platelet Volume (fL) 1.57 (0.98—2.53) 0.061
Platelet number (x10°/L) 0.998 (0.99—-1.04) 0.563
Platelet-induced ROS 1.86 (1.38—2.49) <0.0001
Leukocyte-derived ROS 1.09 (1.04—1.12) <0.0001
Platelet lipoperoxidation 1.62 (1.33—1.98) <0.0001
Leukocyte lipoperoxidation 1.47 (1.28—-1.69) <0.0001

Odds ratio (OR) and 95% confidence interval (CI).

In the clinical setting of the present results, non-responsiveness
to dual antiplatelet therapy cannot be ascribed to the reduced
compliance as blood withdrawal for platelet function studies were
obtained when patients were still in intensive coronary units.
Nevertheless the study has limitations and implication which
should be acknowledged. We cannot exclude that other mecha-
nisms, related to pharmacogenetic, metabolic, drug interferences
participated in determining non responsiveness; however, the
clear-cut difference in platelet ROS production between responders
and non-responders indicates that, whatever is the mechanism of
platelet hyperactivity, ROS formation by platelets and leukocytes
may represent a plausible mechanism accounting for platelet
hyper-reactivity after PCI in ACS.

Our hypothesis on the role of ROS in impaired platelet respon-
siveness is based essentially on correlation analysis. Also, the
mechanism accounting for platelet burst of ROS was not explored.
Even if it was not specifically investigated in the present study,
activation of NOX2 is likely to be implicated in ROS formation as
NOX2 is a key enzyme of ROS production in both platelets and
leukocytes [14,41—44]. Also, previous study from our group
demonstrated that after PCI serum levels of NOX2, which maxi-
mally reflect NOX2 activation by platelets and leukocytes, was up-
regulated and contributed to enhance serum TxB; [40].

Based on these findings, a cause—effect relationship between
the burst of ROS by platelets and leukocytes and platelet hyper-
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Fig. 5. Multivariable logistic regression analysis for dual HPR adjusted for age, sex,
smoking habit, leukocyte count, mean platelet volume, plus cell-derived ROS and cell
lipoperoxidation.
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The significant predictors of ADP-, AA-, and collagen-platelet aggregation at multiple linear regression analysis, after adjusting for age, leukocyte number, mean platelet volume

and ejection fraction (EF) < 40%.

ADP-platelet aggregation

AA-platelet aggregation

Collagen-platelet aggregation

Beta + SE p Beta + SE p Beta + SE p

Age 0.19 + 0.08 0.036 0.21 +£0.10 0.042 0.29 + 0.08 0.01
Leukocyte number 0.09 + 0.06 0.354 0.11 + 0.08 0.230 0.09 + 0.05 0.288
MPV 0.10 + 0.08 0.096 0.09 + 0.07 0.10 0.16 + 0.09 0.066
EF < 40% 0.22 + 0.09 0.01 0.15 + 0.08 0.088 0.21 + 0.08 0.01
Platelet-derived ROS 0.74 4+ 0.03 0.0001 0.57 = 0.03 0.0001 0.69 + 0.03 0.0001
Leukocyte-derived ROS 0.32 + 0.04 0.0001 0.39 + 0.10 0.035 0.32 + 0.02 0.002
Platelet lipoperoxidation 0.77 + 0.03 0.0001 0.56 + 0.68 0.0001 0.68 + 0.03 0.0001
Leukocyte lipoperoxidation 0.52 + 0.02 0.001 0.44 + 0.03 0.0001 0.52 + 0.02 0.0001

Beta + standard error (SE).

activation observed after PCI in the acute phase of ACS cannot be
drawn by the present study. Interventional trials with antioxi-
dants which inhibit lipid peroxidation such as vitamin E or
quench ROS such as vitamin C should be necessary to support
our hypothesis. Of note, a previous study from our group
demonstrated that 1 g vitamin C infusion during PCI has been
able to down-regulate NOX2 activity and to reduce platelet TxA,
formation [40].

In conclusion, this study provides the first evidence that in the
acute phase of ACS after PCI platelets and leukocytes produce a
burst of ROS, which may be implicated in platelet non-
responsiveness to dual antiplatelet treatment. This finding pro-
vides a rationale to investigate if the use of antioxidants such as
vitamin C may be a therapeutic tool to modulate platelet hyper-
responsiveness detected after PCI in ACS.
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