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STRONG LOCAL CONVERGENCE PROPERTIES OF ADAPTIVE
REGULARIZED METHODS FOR NONLINEAR LEAST-SQUARES ∗

S. BELLAVIA†AND B. MORINI†

Abstract. This paper studies adaptive regularized methods for nonlinear least-squares problems
where the model of the objective function used at each iteration is either the Euclidean residual
regularized by a quadratic term or the Gauss-Newton model regularized by a cubic term. For
suitable choices of the regularization parameter the role of the regularization term is to provide
global convergence. In this paper we investigate the impact of the regularization term on the local
convergence rate of the methods and establish that, under the well-known error bound condition,
quadratic convergence to zero-residual solutions is enforced. This result extends the existing analysis
on the local convergence properties of adaptive regularized methods. In fact, the known results were
derived under the standard full rank condition on the Jacobian at a zero-residual solution while the
error bound condition is weaker than the full rank condition and allows the solution set to be locally
nonunique.

Keywords: Nonlinear least-squares problems, regularized models, error bound condi-

tion, local convergence.

1. Introduction. In this paper we discuss the local convergence behaviour of
adaptive regularized methods for solving the nonlinear least-squares problem

min
x∈IRn

f(x) =
1
2
‖F (x)‖22,(1.1)

where F : IRn → IRm is a given vector-valued continuously-differentiable function.
Adaptive regularization approaches for unconstrained optimization base each it-

eration upon a quadratic or a cubic regularization of standard models for f . Their
construction follows from observing that, for suitable choices of the regularization
parameter, the regularized model overestimates the objective function. The role of
the adaptive regularization is to control the distance between successive iterates and
to provide global convergence of the procedures. Interesting connections among these
approaches, trust-region and linesearch methods are established in [23].

First ideas on adaptive cubic regularization of the Newton’s quadratic model for
f can be found in [15] in the context of affine invariant Newton methods; further
results were successively obtained in [25]. In [21] it was shown that the use of a local
cubic overestimator for f yields an algorithm with global and fast local convergence
properties and a good global iteration complexity. Elaborating on these ideas, an
adaptive cubic regularization method for unconstrained minimization problems was
proposed in [4]; it employs a cubic regularization of the Newton’s model and allows
approximate minimization of the model and/or a symmetric approximation to the
Hessian matrix of f . This new approach enjoys good global and local convergence
properties as well as the same (in order) worst-case iteration complexity bound as in
[21].

Adaptive regularized methods have been also studied for the specific case of non-
linear least-square problems. Complexity bounds for the method proposed in [4]
applied to potentially rank-deficient nonlinear least-squares problems were given in
[8]. Moreover, such an approach was specialized to the solution of (1.1) along with
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the updating rules for the regularization parameter [14]. Regarding quadratic regular-
ization, a model consisting of the Euclidean residual regularized by a quadratic term
was proposed in [20] for nonlinear systems and then extended to general nonlinear
least-squares problems allowing the use of approximate minimizers of the model [2].

Further recent works on adaptive cubic regularization concern its extension to
constrained nonlinear programming problems [7, 8] and its application in a barrier
method for solving a nonlinear programming problem [3].

In this paper we focus on two adaptive regularized methods for nonlinear least-
square problems introduced in [2, 14] and investigate their local convergence proper-
ties. The model used in [2] is a Euclidean residual regularized by a quadratic term,
whereas the model used in [14] is the Gauss-Newton model regularized by a cubic
term. These methods are especially suited for computing zero-residual solutions of
(1.1) which is a case of interest for example when F is the map of a square non-
linear system of equations or it models the detection of feasible points in nonlinear
programming [11, 18]

The two procedures considered are known to be quadratically convergent to zero-
residual solutions where the Jacobian of F is full rank, see [2, 4]. Here we go a step
further and show that the presence of the regularization term provides fast local con-
vergence under weaker assumptions. Thus we can conclude that the regularization
has a double role in enhancing the properties of the underlying unregularized meth-
ods: besides guaranteeing global convergence, it enforces strong local convergence
properties.

Our local convergence analysis concerns zero-residual solutions of (1.1) satisfying
an error bound condition and covers square problems (m = n), overdetermined prob-
lems (m > n) and underdetermined problems (m < n). Error bounds were introduced
in mathematical programming in order to bound, in terms of a computable residual
function, the distance of a point from the typically unknown solution set [22]. These
conditions have been widely used for studying the local convergence of various opti-
mization methods: proximal methods for minimization problems [16], Newton-type
methods for complementarity problems [24], derivative-free methods for nonlinear
least-squares [27], Levenberg-Marquardt methods for constrained and unconstrained
nonlinear least-squares [1, 10, 12, 13, 17, 18, 26, 28]. Our study is motivated by these
latter results and the connection established here between the Levenberg-Marquadt
methods and the adaptive regularized methods. A similar insight on such a connection
between the two classes of procedures is given in [3].

Following [26] we consider the case where the norm of F provides a local error
bound for (1.1) and prove Q-quadratic convergence of ARQ and ARC methods. The
error bound condition considered can be valid at locally nonunique zero-residual so-
lutions of (1.1). In fact, it may hold, irrespective of the dimensions m and n of F ,
at solutions where the Jacobian J of F is not full rank. Thus our study establishes
novel local convergence properties of ARQ and ARC under milder conditions than
the standard full rank condition on J assumed in [2, 4]. In the context of Levenberg-
Marquardt methods, such fast local convergence properties were defined as strong
properties, see [17].

The paper is organized as follows: in §2 we describe the two methods under study,
discuss their connection with the Levenberg-Marquardt methods and the error bound
condition used. In §3 we provide a convergence result that paves the way for the
local convergence analysis carried out in §4. In this latter section we also show how
to compute an approximate minimizer of the model and retain fast local convergence
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properties of the studied approaches. In §5 we discuss the case where the approximate
step is computed by minimizing the model in a subspace and its implication on the
local convergence properties. In §6 we make some concluding remarks.

Notations. For the differentiable mapping F : Rn → Rm, the Jacobian matrix
of F at x is denoted by J(x). The gradient and the Hessian matrix of the smooth
function f(x) = ‖F (x)‖2/2 are denoted by g(x) = J(x)TF (x) and H(x) respectively.
When clear from the context, the argument of a mapping is omitted and, for any
function h, the notation hk is used to denote h(xk). The 2-norm is denoted by ‖x‖.
For any vector y ∈ Rn, the ball with center y and radius ρ is indicated by Bρ(y), i.e.
Bρ(y) = {x : ‖x− y‖ ≤ ρ}. The identity matrix n× n is indicated by I.

2. Adaptive regularized quadratic and cubic algorithms. In this section
we discuss the adaptive quadratic and cubic regularized methods proposed in [2, 4, 14]
and summarize some of their properties.

We first introduce the models proposed for problem (1.1). Given some iterate
xk, in [2] a model consisting of the euclidean residual ‖Fk + Jkp‖ regularized by a
quadratic term is introduced. Letting σk be a dynamic strictly positive parameter,
the model takes the form

mQ
k (p) = ‖Fk + Jkp‖+ σk‖p‖2.(2.1)

If the Jacobian J of F is globally Lipschitz continuous (with constant 2L) and σk = L,
then mQ

k reduces to the modified Gauss-Newton model proposed in [20]. Whenever
σk ≥ L, ‖F‖ is overestimated around xk by means of mQ

k , i.e.

‖F (xk + p)‖ ≤ mQ
k (p).

Alternatively, in [14] the cubic regularization of the Gauss-Newton model

mC
k (p) =

1
2
‖Fk + Jkp‖2 +

1
3
σk‖p‖3,(2.2)

is used with a dynamic strictly positive parameter σk. This model is motivated by
the cubic overestimation of f devised in [4, 15, 21]. In fact, if the Hessian H of f is
Lipschitz continuous (with constant 2L), then

f(xk + p) ≤ fk + pT gk +
1
2
pTHkp+

1
3
L||p||3.

Thus, (2.2) is obtained replacing L by σk and considering the first order approxima-
tion JTk Jk to Hk; it is well-known that the latter approximation is reasonable in a
neighborhood of a zero-residual solution of problem (1.1) [11].

Before addressing the use of the models mQ
k and mC

k in the solution of (1.1), we
review their properties and the form of the minimizer.

Lemma 2.1. Suppose that σk > 0. Then the models mQ
k and mC

k are strictly
convex.

Proof. The strict convexity of mQ
k is proved in [2, Lemma 2.1]. Regarding mC

k ,
the function ‖Fk + Jkp‖2 is convex and the function ‖p‖3 is strictly convex.

Lemma 2.2. Let F : Rn 7→ Rm be continuously differentiable and suppose ‖gk‖ 6=
0. Then,
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i) If p∗k is the minimizer of mQ
k , then there is a nonnegative λ∗k such that (p∗k, λ

∗
k)

solves

(JTk Jk + λI)p = −gk,(2.3)
λ = 2σk‖Jkp+ Fk‖.(2.4)

Moreover, λ∗k is such that

λ∗k ∈ [0, 2σk‖Fk‖ ].(2.5)

ii) If there exists a solution (p∗k, λ
∗
k) of (2.3) and (2.4) with λ∗k > 0, then p∗k is the

minimizer of mQ
k . Otherwise, the minimizer of mQ

k is given by the minimum
norm solution of the linear system JTk Jkp = −gk.

iii) The vector p∗k is the unique minimizer of mC
k if and only if there exists a positive

λ∗k such that (p∗k, λ
∗
k) solves (2.3) and

λ∗k = σk‖p∗k‖.(2.6)

Proof. The results formQ
k are given in [2, Lemma 4.1, Lemma 4.3]. The hypothesis

for mC
k follows from the application of [4, Theorem 3.1] to such a model.

The above lemma shows that the minimizer of the quadratic and cubic regularized
models solves the shifted linear system (2.3) for a specific value λ = λ∗k which depends
on the model and is given in (2.4) and (2.6) respectively.

In the rest of the paper, the notation mk will be used to indicate the model,
irrespective of its specific form, in all the expressions that are valid for both mQ

k and
mC
k . Further, for a given λ ≥ 0, we let p(λ) be the minimum-norm solution of (2.3),

and p∗k = p(λ∗k) be the minimizer in Lemma 2.2 without distinguishing between the
models; it will be inferred from the context whether p∗k minimizes either mQ

k or mC
k .

The vector p(λ) can be characterized in terms of the singular values of Jk as follows.
Lemma 2.3. [2, Lemma 4.2] Assume ‖gk‖ 6= 0 and let p(λ) be the minimum

norm solution of (2.3) with λ ≥ 0. Assume furthermore that Jk is of rank ` and its
singular-value decomposition is given by UkΣkV Tk where Σk = diag(ςk1 , . . . , ς

k
ν ), with

ν = min(m,n). Then, denoting rk = ((rk)1, (rk)2, . . . , (rk)ν)T = UTk Fk, we have that

‖p(λ)‖2 =
∑̀
i=1

(ςki (rk)i)2

((ςki )2 + λ)2
.(2.7)

In the literature, adaptive regularized methods for (1.1) compute the step from
one iterate to the next as an approximate minimizer of either mQ

k or mC
k and test its

progress toward a solution. In [2] a procedure based on the use of the model mQ
k for

all k ≥ 0 is proposed; here it is named Adaptive Quadratic Regularization (ARQ).
On the other hand, in [14] a procedure based on the use of the model mC

k for all k ≥ 0
is given and denoted Adaptive Cubic Regularization (ARC).

The description of kth iteration of ARQ and ARC is summarized in Algorithm 2.1
where the string Method denotes the name of the method, i.e. it is either ‘ARQ’ or
‘ARC’. The trial step selection consists in finding an approximate minimizer pk of the
model which produces a value of mk smaller than that achieved by the Cauchy point
(2.8). This step is accepted and the new iterate xk+1 is set to xk + pk if a sufficient
decrease in the objective is achieved; otherwise, the step is rejected and xk+1 is set to
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xk. We note that the denominator in (2.10) and (2.11) is strictly positive whenever
the current iterate is not a first-order critical point. As a consequence, the algorithm
is well defined and the sequence {fk} is non-increasing. The rules for updating the
parameter σk parallel those for updating the trust-region size in trust-region methods
[2, 4].

Algorithm 2.1 and standard trust-region methods [9] belong to the same unifying
framework, see [23]. In a trust-region method with Gauss-Newton model the step is
an approximate minimizer of the model subject to the explicit constraint ‖pk‖ ≤ ∆k

for some adaptive trust-region radius ∆k. In the adaptive regularized methods, pk is
an approximate minimizer of a regularized Gauss-Newton model and the stepsize is
implicitly controlled.

Algorithm 2.1: kth iteration of ARQ and ARC

Given xk and the constants σk > 0, 1 > η2 > η1 > 0, γ2 ≥ γ1 > 1, γ3 > 0.
If Method=‘ARQ’ let mk be mQ

k , else let mk be mC
k .

Step 1: Set

pck = −αkgk, αk = argmin
α≥0

mk(−αgk).(2.8)

Compute an approximate minimizer pk of mk(p) such that

mk(pk) ≤ mk(pck).(2.9)

Step 2: If Method=‘ARQ’ compute

ρk =
‖F (xk)‖ − ‖F (xk + pk)‖
‖F (xk)‖ −mQ

k (pk)
,(2.10)

else compute

ρk =
1
2‖F (xk)‖2 − 1

2‖F (xk + pk)‖2
1
2‖F (xk)‖2 −mC

k (pk)
.(2.11)

Step 3: Set

xk+1 =
{
xk + pk if ρk ≥ η1,
xk otherwise.

Step 4: Set

σk+1 ∈

 (0, σk] if ρk ≥ η2 (very successful),
[σk, γ1σk ) if η1 ≤ ρk < η2 (successful),
[γ1σk, γ2σk ) otherwise (unsuccessful).

(2.12)

The convergence properties of ARQ and ARC methods have been studied in [2]
and [4] under standard assumptions for unconstrained nonlinear least-squares prob-
lems and optimization problems respectively. Both ARQ and ARC show global con-
vergence to first-order critical points of (1.1), see [2, Theorem 3.8], [4, Corollary 2.6].
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Moreover, imposing a certain level of accuracy in the computation of the approxi-
mate minimizer pk, quadratic asymptotic convergence to a zero-residual solution is
achieved. Specifically, the sequence generated {xk} is Q-quadratically convergent to
a zero-residual solution x∗ if J(x∗) is full rank; this result is valid for ARQ under any
relation between the dimensions m and n of F ([2, Theorems 4.9, 4.10, 4.11]) while
it is proved for ARC method whenever m ≥ n [4, Corollary 4.10].

The purpose of this paper is to show that, even if J is not of full-rank at the
solution, ARQ and ARC are Q-quadratically convergent to a zero-residual solution
provided that the so-called error bound condition holds. This property is suggested
by two issues discussed in the next section: the connection between adaptive regu-
larization methods and the Levenberg-Marquardt method and the local convergence
properties of the latter under the error bound condition.

2.1. Connection of the steps in ARQ, ARC and Levenberg-Marquardt
methods. In a Levenberg-Marquardt method [19], given xk and a positive scalar µk,
the quadratic model for f around xk takes the form

mLM
k (s) =

1
2
‖Fk + Jks‖22 +

1
2
µk‖s‖2.(2.13)

Letting sk be the minimizer, the new iterate xk+1 is set to xk + sk if it provides a
sufficient decrease of f ; otherwise xk+1 is set to xk.

Clearly, the minimizer sk of mLM
k is the solution of the shifted linear system

(2.3) where λ = µk. The difference between sk and the step p(λ) in ARQ and ARC
methods lies in the shift parameter used. In the Levenberg-Marquardt approach the
regularization parameter can be chosen as proposed by Moré in the renowned paper
[19]. In the adaptive regularized methods, the optimal value of λ∗k for the minimizer
p∗k = p(λ∗k) depends on the regularization parameter σk and satisfies (2.4) in ARQ
and (2.6) in ARC. Moreover, for an approximate minimizer pk = p(λk) the value of
λk will be close to λ∗k on the base of specified accuracy requirements.

In [26], Yamashita and Fukushima showed that Levenberg-Marquardt methods
may converge locally quadratically to a zero-residual solutions of (1.1) satisfying a
certain error bound condition. Letting S denote the nonempty set of zero-residual
solutions of (1.1) and d(x,S) denote the distance between the point x and the set S,
such a condition is defined as follows.

Assumption 2.1. A point x∗ ∈ S satisfies the error bound condition if there
exist positive constants χ and α such that

1
α
d(x,S) ≤ ‖F (x)‖, for all x ∈ Bχ(x∗).(2.14)

By extending the theory in [26], Fan and Yuan [13] and Behling and Fischer [1] showed
that, under the same condition, Levenberg-Marquardt methods converge locally Q-
quadratically provided that

µk = O(‖Fk‖δ), for some δ ∈ [1, 2].(2.15)

In [17] this property was defined as a strong local convergence property since it
is weaker than the standard full rank condition on the Jacobian J of F . Inequality
(2.14) bounds the distance of vectors in a neighbourhood of x∗ to the set S in terms of
the computable residual ‖F‖ and depends on the solution x∗. Remarkably, it allows
the solution set S to be locally nonunique [17]. Specifically, in case of overdetermined
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or square residual functions F , i.e. m ≥ n, the condition J(x∗) is full rank implies
that (2.14) holds, see e.g. [18, Lemma 4.2]. On the other hand, the converse is not
true and (2.14) may hold even in the case where J(x∗) is not full rank, irrespective
to the relationship between m and n. To see this, consider the example given in [10,
p. 608] where F : R2 → R2 has the form

F (x1, x2) =
(
ex1−x2 − 1, (x1 − x2)(x1 − x2 − 2)

)T
,

We have that S = {x ∈ R2 : x1 = x2}, J is singular at any point in S. As
d(x,S) = (

√
2/2)|x1 − x2|, the error bound condition is satisfied with α = 1 in a

proper neighbourhood of any point x∗ ∈ S.
Slight modifications of the previous example show that (2.14) is weaker than the

full rank condition in the overdetermined and underdetermined cases too. In the first
case, an example is given by F : R2 → R3 such that

F (x1, x2) =
(
ex1−x2 − 1, (x1 − x2)(x1 − x2 − 2), sin(x1 − x2)

)T
,

The error bound condition can be showed proceeding as before, by noting that S =
{x ∈ R2 : x1 = x2}, J is not full rank at any point in S, d(x,S) = (

√
2/2)|x1 − x2|

and the error bound condition is satisfied with α = 1 in a proper neighbourhood of
any point x∗ ∈ S.

For the underdetermined case, let us consider the problem where F : R3 → R2 is
given by

F (x1, x2, x3) =
(
ex1−x2−x3 − 1, (x1 − x2 − x3)(x1 − x2 − x3 − 2)

)T
.

Then S = {x ∈ R3 : x1 − x2 − x3 = 0} and J is rank deficient everywhere in S. As
d(x,S) = (

√
3/3)|x1−x2−x3|, again the error bound condition is satisfied with α = 1

in a proper neighbourhood of any point x∗ ∈ S.
In this paper we show that, under Assumption 2.1, ARQ and ARC exhibit the

same strong convergence properties as the Levenberg-Marquardt methods. Since the
existing local results in literature are valid as long as J(x∗) is of full-rank, our new
results offer a further insight into the effects of the regularizations employed in ARQ
and ARC.

3. Local convergence of a sequence. In this section we analyze the local
behaviour of a sequence {xk} admitting a limit point x∗ in the set S of the zero-
residual solution of (1.1). For xk sufficiently close to x∗ and under suitable conditions
on the step taken and the behaviour of d(xk,S), we show that the sequence {xk}
converges to x∗ Q-quadratically.

The theorem proved below uses technicalities from [13] but it does not involve
the error bound condition. It will be used in §4 because we will show that, under
Assumption 2.1, the sequences generated by the two Adaptive Regularized methods
satisfy its assumptions.

Theorem 3.1. Suppose that x∗ ∈ S and that {xk} is a sequence with limit point
x∗. Let qk ∈ Rn be such that,

‖qk‖ ≤ Ψd(xk,S), if xk ∈ Bε(x∗),(3.1)

for some positive Ψ and ε, and

xk+1 = xk + qk, if xk ∈ Bψ(x∗),(3.2)
7



for some ψ ∈ (0, ε). Then, {xk} converges to x∗ Q-quadratically whenever

d(xk + qk,S) ≤ Γd(xk,S)2, if xk ∈ Bψ(x∗),(3.3)

for some positive Γ.
Proof. In order to prove that the sequence {xk} is convergent, we show that it is

a Cauchy sequence. Consider a fixed positive scalar ζ such that

ζ ≤ min
{

ψ

1 + 4Ψ
,

1
2Γ

}
.(3.4)

We first prove that if xk ∈ Bζ(x∗), then

xk+` ∈ Bψ(x∗),(3.5)

for all ` ≥ 1. Consider the case ` = 1 first. Since xk ∈ Bζ(x∗) and ζ < ψ, it follows
from (3.2) that xk+1 = xk+qk and by (3.1) we get ‖xk+qk−x∗‖ ≤ ‖xk−x∗‖+‖qk‖ ≤
ζ(1 + Ψ). Then, (3.4) gives xk + qk ∈ Bψ(x∗) and (3.5) holds for ` = 1. Assume now
that (3.5) holds for iterations k + j, j = 0, . . . , `− 1. By (3.1) and (3.2)

‖xk+` − x∗‖ ≤ ‖xk+` − xk+`−1‖+ . . .+ ‖xk − x∗‖

≤ ζ +
`−1∑
j=0

‖qk+j‖

≤ ζ + Ψ
`−1∑
j=0

d(xk+j ,S).(3.6)

To provide an upper bound for (3.6), we use (3.3) and obtain

d(xk+j ,S) ≤ Γd(xk+j−1,S)2 ≤ . . . ≤ Γ(2j−1)d(xk,S)2
j

≤ Γ(2j−1)ζ2j

,(3.7)

for j = 0, . . . , `− 1. Moreover, since (3.4) implies Γζ ≤ 1
2 , it follows

d(xk+j ,S) ≤ 2ζ
(

1
2

)2j

,(3.8)

and

`−1∑
j=0

d(xk+j ,S) ≤ 2ζ
`−1∑
j=0

(
1
2

)2j

.

Thus, since 2j > j for j ≥ 0, we get

`−1∑
j=0

d(xk+j ,S) ≤ 2ζ
`−1∑
j=0

(
1
2

)j
≤ 4ζ,

and by (3.6)

‖xk+` − x∗‖ ≤ ζ(1 + 4Ψ) ≤ ψ,

8



where in the last inequality we have used the definition of ζ in (3.4). Then, we have
proved (3.5) and by (3.2) we can conclude that xk+j+1 = xk+j + qk+j , for j ≥ 0.
Using (3.8) and proceeding as above we have

‖xk+r − xk+t‖ ≤
t−1∑
j=r

‖qk+j‖ ≤ Ψ
t−1∑
j=r

d(xk+j ,S) ≤ 4Ψζ.

Then {xk} is a Cauchy sequence and it is convergent. Since x∗ is a limit point of the
sequence we deduce that xk → x∗.

We finally show the convergence rate of the sequence. Let k sufficiently large so
that xk+j ∈ Bζ(x∗) for j ≥ 0. Then, conditions (3.1)–(3.4) and (3.7) give

‖xk+1 − x∗‖ ≤
∞∑
j=0

‖qk+j+1‖

≤ ΨΓ

d(xk,S)2 +
∞∑
j=1

(Γd(xk,S))2
j+1−2

d(xk,S)2


≤ ΨΓ

1 +
∞∑
j=1

(Γζ)j−1

 d(xk,S)2

≤ 3ΨΓ d(xk,S)2

≤ 3ΨΓ ‖xk − x∗‖2.

This shows the local Q-quadratic convergence of the sequence {xk}.

4. Strong local convergence of ARQ and ARC. In this section we provide
new results on the local convergence rate of ARQ and ARC methods to zero-residual
solutions of (1.1). Under appropriate assumptions including the error bound condition
on a limit point x∗ in the set S, we show that the sequence {xk} generated satisfies
the conditions stated in Theorem 3.1. The results obtained are valid irrespective of
the relation between the dimensions m and n of F .

In the following we make the following assumptions:
Assumption 4.1. F : Rn 7→ Rm is continuously differentiable and for some

solution x∗ ∈ S there exists a constant ε > 0 such that J is Lipschitz continuous with
constant 2k∗ in a neighbourhood B2ε(x∗) of x∗.

By Assumption 4.1 some technical results follow. The continuity of J implies that

‖J(x)‖ ≤ κJ, for all x ∈ B2ε(x∗) and some κJ > 0.(4.1)

Moreover, for any point x, let [x]S ∈ S be a vector such that ||x − [x]s|| = d(x,S).
Then, with x∗ ∈ S, we have that [xk]S ∈ B2ε(x∗) whenever xk ∈ Bε(x∗), as ‖[xk]S −
x∗‖ ≤ ‖[xk]S −xk‖+ ‖xk−x∗‖ ≤ 2‖xk−x∗‖ ≤ 2ε. As a consequence, by [11, Lemma
4.1.9]

‖Fk‖ ≤ κJ‖ [xk]S − xk ‖, if xk ∈ Bε(x∗),(4.2)

and

‖Fk‖ ≤ κJ‖x∗ − xk ‖, if xk ∈ B2ε(x∗).(4.3)
9



Further,

‖F (x+ p)− F (x)− J(x)p‖ ≤ k∗‖p‖2, for any x and x+ p in B2ε(x∗),(4.4)

see [11, Lemma 4.1.12], and consequently

‖Fk + Jk([xk]S − xk)‖ ≤ k∗d(xk,S)2, if xk ∈ Bε(x∗).(4.5)

4.1. Analysis of the step. We prove that the step pk generated by Algorithm
2.1 satisfies condition (3.1), i.e.

‖pk‖ ≤ Ψd(xk,S), if xk ∈ Bε(x∗),(4.6)

for some strictly positive Ψ and ε.
We start showing that the minimizer p∗k of the models satisfies

‖p∗k‖ ≤ Θd(xk,S),(4.7)

for some positive scalar Θ, if xk is sufficiently close to x∗.
Lemma 4.1. Let Assumption 4.1 hold and x∗ ∈ S be a limit point of the sequence

{xk} generated by Algorithm 2.1. Suppose that σk > σmin > 0 for all k ≥ 0. Then, if
xk ∈ Bε(x∗), then p∗k satisfies (4.7).

Proof. Let xk ∈ Bε(x∗). Consider the ARQ method. Since p∗k minimizes the
model mQ

k we have

mQ
k (p∗k) ≤ mQ

k ([xk]S − xk),(4.8)

and by (4.5)

mQ
k (p∗k) ≤ ‖Fk + Jk([xk]S − xk)‖+ σk‖ [xk]S − xk ‖2

≤ (k∗ + σk)d(xk,S)2.(4.9)

Using (2.1) we get ‖p∗k‖2 ≤ mQ
k (p∗k)/σk, and the desired result follows from (4.9) and

the assumption σk > σmin > 0.
For ARC method we proceed as above and get

mC
k (p∗k) ≤

1
2
‖Fk + Jk([xk]S − xk)‖2 +

1
3
σk‖[xk]S − xk‖3

≤
(

1
2
k2
∗ε+

1
3
σk

)
d(xk,S)3.

Since (2.2) implies ‖p∗k‖3 ≤ 3mC
k (p∗k)/σk, the proof is completed.

We now consider the case of practical interest where the minimizer of the model
is approximately computed and characterize such an approximation. We proceed
supposing that the couple (pk, λk) satisfies the following two assumptions

Assumption 4.2. The step pk has the form pk = p(λk), i.e. it solves (2.3) with
λ = λk.

Assumption 4.3. The scalar λk is such that

λ∗k
1 + τk

≤ λk ≤ λ∗k(1 + τk),
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for a given τk ∈ [0, τmax].

Trivially, these assumptions are satisfied when pk = p∗k. The upper bound τmax on
τk ensures that λk goes to zero as fast as λ∗k does. In Section 4.3 we will show that,
letting τk be a threshold chosen by the user, practical implementations of ARQ and
ARC provide a step pk satisfying both the above conditions.

The bound on the norm of pk is now derived.
Lemma 4.2. Suppose that Assumption 4.1 holds and that x∗ ∈ S is a limit

point of the sequence {xk} generated by Algorithm 2.1. Let σk ≥ σmin > 0 for all
k ≥ 0. Then there exists a positive Ψ such that if xk ∈ Bε(x∗) and (pk, λk) satisfies
Assumptions 4.2 and 4.3, then (4.6) holds.

Proof. From Lemma 2.3 the function ‖p(λ)‖2 is monotonic decreasing for λ ≥ 0.
Then, when λk ≥ λ∗k we have ‖p(λk)‖ ≤ ‖p(λ∗k)‖ and by (4.7) the hypothesis follows.
More generally, Assumption 4.3 yields

‖p(λk)‖2 ≤
∥∥∥∥p(

λ∗k
1 + τk

)∥∥∥∥2

.(4.10)

Moreover, from (2.7)

∥∥∥∥p(
λ∗k

1 + τk

)∥∥∥∥2

=
∑̀
i=1

(ςki (rk)i)2(
(ςki )2 +

λ∗k
1 + τk

)2

= (1 + τk)2
∑̀
i=1

(ςki (rk)i)2(
(ςki )2(1 + τk) + λ∗k

)2

≤ (1 + τk)2
∑̀
i=1

(ςki (rk)i)2(
(ςki )2 + λ∗k

)2

= (1 + τk)2‖p(λ∗k)‖2.

Therefore, from (4.7) and τk ≤ τmax we get the required result.

4.2. Successful iterations and convergence of the sequence {xk}. In order
to apply Theorem 3.1, the second step is to prove that iteration k of ARQ and ARC
is successful, i.e.

xk+1 = xk + pk, if xk ∈ Bψ(x∗),(4.11)

for some ψ ∈ (0, ε).
In the rest of the section the error bound Assumption 2.1 is supposed on the limit

point x∗ and the scalar ε in Assumption 4.1 is possibly reduced to be such that

ε ≤ χ,

where χ is as in (2.14). Moreover we require that

σk ≤ σmax for all k ≥ 0,(4.12)

for some positive σmax.
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In the results below we will make use of the interpretation of pk as the minimizer
of the model mLM

k given in (2.13) with µk = λk. Thus, by (4.5)

mLM
k (pk) ≤ mLM

k ([xk]S − xk)

=
1
2
‖Fk + Jk([xk]S − xk)‖2 +

1
2
λk‖[xk]S − xk‖2

≤ 1
2
k2
∗‖[xk]S − xk‖4 +

1
2
λk‖[xk]S − xk‖2,(4.13)

whenever xk ∈ Bε(x∗).
Lemma 4.3. Let Assumptions 4.1, 4.2 and 4.3 hold and x∗ ∈ S be a limit point of

the sequence {xk} generated by the ARQ method satisfying Assumption 2.1. Suppose
that σmax ≥ σk ≥ σmin > 0 for all k ≥ 0. Then there exist positive scalars ψ and Λ
such that, if xk ∈ Bψ(x∗),

mQ
k (pk) ≤ Λd(xk, S)3/2,(4.14)

and iteration k is very successful.
Proof. Let ψ = ε/(1 + Ψ) where ε and Ψ are the scalars in Lemma 4.2. Assume

that xk ∈ Bψ(x∗). Using (4.13), Assumption 4.3, (2.5) and (4.2)

mLM
k (pk) ≤

(
1
2
k2
∗ψ + σkκJ(1 + τmax)

)
d(xk,S)3.

Then, using (2.13)

‖Jkpk + Fk‖ ≤
√

2mLM
k (pk) ≤

√
k2
∗ψ + 2σkκJ(1 + τmax) d(xk,S)3/2,

and by (2.1) and (4.6)

mQ
k (pk) ≤

√
k2
∗ψ + 2σkκJ(1 + τmax) d(xk,S)3/2 + σkΨ2d(xk,S)2.

This latter inequality and (4.12) yield (4.14).
Finally, we show that iteration k is very successful. Since (4.6) gives

‖xk + pk − x∗‖ ≤ ‖xk − x∗‖+ ‖pk‖ ≤ ψ + Ψd(xk,S) ≤ ψ(1 + Ψ),(4.15)

from the definition of ψ, it follows that xk + pk ∈ Bε(x∗). Using (4.4) the quantity
‖F (xk + pk)‖ can be bounded as

‖F (xk + pk)‖ ≤ ‖F (xk + pk)− Fk − Jkpk‖+ ‖Fk + Jkpk‖(4.16)

≤ k∗‖pk‖2 +mQ
k (pk)(4.17)

Thus, condition (2.10) can be bounded below as

ρk = 1−
‖F (xk + pk)‖ −mQ

k (pk)

‖Fk‖ −mQ
k (pk)

≥ 1− κ*‖pk‖2

‖Fk‖ −mQ
k (pk)

.

Moreover, (4.14) and (2.14) yield

‖Fk‖ −mQ
k (pk) ≥ ‖Fk‖ − Λd(xk,S)3/2 ≥ (1− α3/2Λ‖Fk‖1/2)‖Fk‖,
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and the last expression is positive if ‖Fk‖ is small enough, i.e. if xk is sufficiently close
to x∗. Thus, by (4.6) and (2.14) we obtain

ρk ≥ 1− k∗α
2Ψ2‖Fk‖

1− α3/2Λ‖Fk‖1/2
,

and reducing ψ, if necessary, we get ρk ≥ η2 for the fixed value 1 > η2 > 0.

Regarding the ARC algorithm, we have an analogous result shown in the next
lemma.

Lemma 4.4. Let Assumptions 4.1, 4.2 and 4.3 hold and x∗ ∈ S is a limit point of
the sequence {xk} generated by the ARC method satisfying Assumption 2.1. Suppose
that σmax ≥ σk ≥ σmin > 0 for all k ≥ 0. Then there exist positive scalars ψ and Λ
such that, if xk ∈ Bψ(x∗),

mC
k (pk) ≤ Λd(xk,S)3,(4.18)

and iteration k is very successful.
Proof. Let ψ = ε/(1 + Ψ) where ε and Ψ are the scalars in Lemma 4.2. Assume

that xk ∈ Bψ(x∗). By (4.13), (2.6), (4.7) and Assumption 4.3

mLM
k (pk) ≤

1
2

(
k2
∗ψ + σkΘ(1 + τmax)

)
d(xk,S)3.

Consequently, by the definition of mC
k , inequality 1

2‖Jkpk + Fk‖2 ≤ mLM
k (pk) and

(4.6) we get

mC
k (pk) ≤

1
2

(
k2
∗ψ + σkΘ(1 + τmax)

)
d(xk,S)3 +

1
3
σkΨ3d(xk,S)3

and (4.18) follows from (4.12).
Let now focus on very successful iterations. Proceeding as in Lemma 4.3 we can

derive (4.15), i.e. xk + pk ∈ Bε(x∗). Thus, by using (4.6), (4.4) and (4.18) we have

‖F (xk + pk)‖2 ≤ ‖F (xk + pk)− Fk − Jkpk‖2 + ‖Fk + Jkpk‖2 + 2(Fk + Jkpk)T (F (xk + pk)− Fk − Jkpk)
≤ k2

∗‖pk‖4 + 2mC
k (pk) + 2‖F (xk + pk)− Fk − Jkpk‖‖Fk + Jkpk‖

≤ k2
∗Ψ

4d(xk,S)4 + 2mC
k (pk) + 2k∗Ψ2

√
2Λd(xk,S)7/2,

i.e., there exists a constant Φ such that

1
2
‖F (xk + pk)‖2 −mC

k (pk) ≤ Φd(xk,S)7/2.

Consequently, ρk in (2.11) can be bounded below as

ρk = 1−
1
2‖F (xk + pk)‖2 −mC

k (pk)
1
2‖Fk‖2 −mC

k (pk)
≥ 1− Φd(xk,S)7/2

1
2‖Fk‖2 −mC

k (pk)
,

and (4.18) and (2.14) give

1
2
‖Fk‖2 −mC

k (pk) ≥
1
2
‖Fk‖2 − Λd(xk,S)3 ≥ ‖Fk‖2

(
1
2
− α3Λ‖Fk‖

)
,
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where the last expression is positive if xk is close enough to x∗. Thus, by (2.14)

ρk ≥ 1− α7/2Φ‖Fk‖3/2
1
2 − α3Λ‖Fk‖

,

and reducing ψ, if necessary, we get ρk ≥ η2 for the fixed value 1 > η2 > 0.

The next lemma establishes the dependence of d(xk + pk,S) upon d(xk,S) when-
ever xk is sufficiently close to x∗.

Lemma 4.5. Let Assumptions 2.1, 4.1 and 4.2 hold. Suppose that pk satisfies
(4.6) and

λk ≤ d(xk,S)ξ,

with ξ ∈ (0, 2]. Then, if xk is close enough to x∗

d(xk + pk,S) ≤ Γd(xk,S)min{ξ+1, 2},(4.19)

for some positive Γ.
Proof. The proof is given in [1, Lemma 4].

With the previous results at hand, exploiting Theorem 3.1, we are ready to show
the local convergence behaviour of both adaptive regularized approaches.

Corollary 4.6. Let Assumptions 4.1, 4.2 and 4.3 hold and x∗ ∈ S be a limit
point of the sequence {xk} generated by the ARQ method satisfying Assumption 2.1.
Suppose that σmax ≥ σk ≥ σmin > 0 for all k ≥ 0. Then, {xk} converges to x∗

Q-quadratically.
Proof. Lemmas 4.2 and 4.3 guarantee conditions (3.1) and (3.2). Moreover, by

Assumption 4.3, (2.5) and (4.2)

λk ≤ λ∗k(1 + τmax) ≤ 2(1 + τmax)σk‖Fk‖ ≤ 2(1 + τmax)σmaxκJ d(xk,S).

Therefore, by Lemma 4.5 we have that (4.19) holds with ξ = 1 and such an inequality
coincides with (3.3). Then, the proof is completed by using Theorem 3.1.

Corollary 4.7. Let Assumptions 4.1, 4.2 and 4.3 hold and x∗ ∈ S be a limit
point of the sequence {xk} generated by the ARC method satisfying Assumption 2.1.
Suppose that σmax ≥ σk ≥ σmin > 0 for all k ≥ 0. Then, {xk} converges to x∗

Q-quadratically.
Proof. Lemmas 4.2 and 4.4 guarantee conditions (3.1) and (3.2). Further, by

Assumption 4.3, (2.6) and (4.7)

λk ≤ λ∗k(1 + τmax) ≤ (1 + τmax)σk ‖p∗k‖ ≤ (1 + τmax)σmaxΘ d(xk,S).

Therefore, by Lemma 4.5 the inequality (4.19) holds with ξ = 1, i.e. (3.3) is met.
Then, the proof is completed by using Theorem 3.1.

The previous results have been obtained supposing that σk ∈ [σmin, σmax]. The
lower bound σk ≥ σmin can be straightforwardly enforced in the algorithm for some
small specified threshold σmin. Concerning condition σk ≤ σmax, we now discuss when
it is satisfied. Focusing on the ARQ method, in [2, Lemma 4.7] it has been proved
that (4.12) holds under the following two assumptions on J(x): i) ‖J(x)‖ is uniformly
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bounded above for all k ≥ 0 and all x ∈ [xk, xk+pk]; ii) there exist positive constants
κL, κS such that, if ‖x−xk‖ ≤ κS and x ∈ [xk, xk+pk], then ‖J(x)−Jk‖ ≤ κL‖x−xk‖
for all k ≥ 0.

For the ARC method, suppose that F is twice continuously differentiable and the
Hessian matrix H of f is globally Lipschitz continuous in IRn, with Lipschitz constant
κH. We now show two occurrences where (4.12) holds. By [4, Lemma 5.2], (4.12) is
guaranteed if

‖(Hk − JTk Jk)pk‖ ≤ C‖pk‖2,(4.20)

for all k ≥ 0 and some constant C > 0. Since Hk − JTk Jk =
∑m
i=1 Fi(xk)∇2Fi(xk),

where Fi is the i-th component of F , 1 ≤ i ≤ m, then (4.20) is satisfied provided that
‖Fk‖ ≤ κF‖pk‖ for some κF > 0 and all k ≥ 0. Alternatively, (4.12) holds if xk → x∗.
In fact,

f(xk + pk)−mk(pk) =
1
2
pTk

(
H(ζk)− JTk Jk

)
pk −

σk
3
‖pk‖3,

for some ζk on the line segment (xk, xk + pk), see [4, Equation (4.2)]. Then,

f(xk + pk)−mk(pk) ≤
1
2
‖H(ζk)−H(xk)‖ ‖pk‖2 +

1
2
‖(H(xk)− JTk Jk)pk‖ ‖pk‖ −

σk
3
‖pk‖3

≤ 1
2
κH‖pk‖3 + κ̃H‖Fk‖ ‖pk‖2 −

σk
3
‖pk‖3,

for some positive κ̃H. Thus, for all k sufficiently large (4.6) and (2.14) yield

f(xk + pk)−mk(pk) ≤
(
αΨκH + κ̃H − αΨ

σk
3

)
α2Ψ2‖Fk‖3,

and for σk > 3(αΨκH + κ̃H)/(αΨ) the iteration is very successful. Consequently, the
updating rule (2.12) gives σk+1 ≤ σk and (4.12) follows.

Summarizing, we have shown convergence results for ARQ and ARC that are
analogous to results known in literature for the Levenberg-Marquardt methods when
the parameter µk has the form (2.15). Concerning the choice of σk and µk, we
underline that the rule for fixing σk is simpler to implement than the rule for choosing
µk. In fact, σk is fixed on the base of the adaptive choice in Algorithm 2.1 while (2.15)
leaves the choice of both δ and the constant multiplying ‖Fk‖ open and this may have
an impact on the practical behaviour of the Levenberg-Marquardt methods [17, 18].

Finally, in [5] the model mC
k (p) has been generalized to

m2,β
k (p) =

1
2
‖Fk + Jkp‖2 +

1
β
σk‖p‖β ,(4.21)

with β ∈ [2, 3]. Trivially, m2,β
k (p) reduces to mC

k (p) when β = 3. The adaptive
regularized procedure based on the use of m2,β

k (p) can be analyzed using the same
arguments as above. Assume the same assumptions as in Corollary 4.7. Then the
adaptive procedure converges to x∗ ∈ S superlinearly when β ∈ (2, 3). In fact, (4.6)
holds and a slight modification of Lemma 4.4 shows that eventually all iterations are
very successful. By [5], λ∗k = σk ‖p∗k‖β−2 and proceeding as in Corollary 4.7

λk ≤ (1 + τmax)σmax Θβ−2d(xk,S)β−2.

Thus, Lemma 4.5 implies d(xk + pk,S) ≤ Γd(xk,S)β−1, and a straightforward adap-
tation of Theorem 3.1 yields Q-superlinear convergence with rate β − 1.
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4.3. Computing the trial step. In this section we consider a viable way de-
vised in [2, 4] for computing an approximate minimizer of mk and enforcing Assump-
tions 4.2 and 4.3. In such an approach a couple (pk, λk) satisfying

pk = p(λk), (JTk Jk + λkI)pk = −gk,(4.22)

with λk being an approximation to λ∗k, is sought. The scalar λk can be obtained
applying a root-finding solver to the so-called secular equation. In fact, from Lemma
2.2, the optimal scalar λ∗k for ARQ solves the scalar nonlinear equation

ρ(λ) = λ− 2σk‖Jkp(λ) + Fk‖ = 0.(4.23)

The function ρ′(λ) may change sign in (0,+∞), while the reformulation

ψQ(λ) = −ρ(λ)
λ

= 0,(4.24)

is such that ψQ(λ) is convex and strictly decreasing in (0,+∞) [2]. Analogously, in
ARC the scalar λ∗ solves the scalar nonlinear equation

ρ(λ) = λ− σk‖p(λ)‖ = 0,(4.25)

which can be reformulated as

ψC(λ) = − ρ(λ)
λ‖p(λ)‖

= 0.(4.26)

The function ψC(λ) is convex and strictly decreasing in (0,+∞) [4]. In what follows
we will use the notation ψ(λ) in all the expressions that holds for both functions.

Due to the monotonicity and convexity properties of ψ(λ), either the Newton or
the secant method applied to (4.24) and (4.26) converges globally and monotonically
to the positive root λ∗k for any initial guess in (0, λ∗k). We refer to [2] and [4] for details
on the evaluation of ψ(λ) and its first derivatives.

Clearly pk satisfies Assumption 4.2, while Assumption 4.3 is met if a suitable
stopping criterion is imposed to the root-finding solver. Let the initial guess be
λ0
k ∈ (0, λ∗k). Then, the sequence {λ`k} generated is such that λ`k > λ0

k for any
` > 0 and by Taylor expansion there exists λ̄ ∈ (λ`k, λ

∗
k) such that

ψ(λ`k) = ψ′(λ̄)(λ`k − λ∗k), i.e. λ∗k − λ`k = −ψ(λ`k)
ψ′(λ̄)

.

In principle, if the iterative process is stopped when

ψ(λ`k) < −τkλ`kψ′(λ̄),(4.27)

then the couple (p(λ`k), λ
`
k) satisfies Assumptions 4.2, 4.3. A practical implementation

of this stopping criterion can be carried out by using an upper bound λ̄U on λ̄. Since
ψ(λ) is convex it follows that ψ′(λ) is strictly increasing, ψ′(λ̄) ≤ ψ′(λ̄U ) and (4.27)
is guaranteed by enforcing

ψ(λ`k) < −τkλ`kψ′(λ̄U ).

Possible choices for λ̄U follows from using the condition λ̄ ≤ λ∗k. In particular, in ARQ
method Lemma 2.2 suggests λ̄U = 2σk‖Fk‖. In ARC method, Lemma 2.2 and the
monotonic decrease of ‖p(λ)‖ in (0,∞), shown in Lemma 2.3, yield λ̄U = σk‖p(λ`k)‖.
Finally we note that if the bisection process is used to get an initial guess for the
Newton process, then λ̄U can be taken as the right extreme of the last bracketing
interval computed.

16



5. Computing the trial step in a subspace. The strategy for computing the
trial step devised in the previous section requires the solution of a sequence of linear
systems of the form (4.22). Namely, for each value of λ`k generated by the root-finding
solver applied to the secular equation, the computation of ψ(λ`k) is needed and this
calls for the solution of (4.22).

A different approach can be used when large scale problems are solved and the
factorization of coefficient matrix of (4.22) is unavailable due to cost or memory
limitations. In such an approach the model mk is minimized over a sequence of nested
subspaces. The Golub and Kahan bi-diagonalization process [5] is used to generate
such subspaces and minimizing the model in the subspaces is quite inexpensive. The
minimization process is carried out until a step psk satisfying

‖∇pmk(psk)‖ ≤ ωk,(5.1)

is computed for some positive tolerance ωk. We now study the effect of using the step
pk = psk in Algorithm 2.1.

At termination of the iterative process the couple (λk, psk) satisfies:

(JTk Jk + λkI)psk + gk = rk(5.2)
λk − φ(psk) = 0(5.3)

where

φ(psk) =
{

2σk‖Fk + Jkp
s
k‖ when mk = mQ

k

σk‖psk‖ when mk = mC
k

.

¿From condition (5.1) and the form of ∇pmk it follows that

‖rk‖ ≤ ω̄k,(5.4)

where

ω̄k =
{
ωk‖Fk + Jkp

s
k‖ when mk = mQ

k

ωk when mk = mC
k

.(5.5)

Since psk does not satisfy Assumption 4.2 some properties of the approximate min-
imizer pk discussed in Section 4.3 are not shared by psk and we cannot rely on the
convergence theory developed in the previous section.

The relation between psk and p(λk) follows from noting that (5.2) yields

(JTk Jk + λkI)psk = (JTk Jk + λkI)p(λk) + rk,

i.e.,

psk − p(λk) = (JTk Jk + λkI)−1rk.(5.6)

On the other hand, Assumption 4.3 can be satisfied choosing the tolerance ωk in (5.1)
small enough.

In this section we show when the strong local convergence behaviour of the ARQ
and ARC procedures is retained if psk is used. We start studying the quadratic model
and the step generated by the ARQ method.
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Lemma 5.1. Let {xk} be the sequence generated by the ARQ method with steps
pk = psk satisfying (5.1)–(5.3). Suppose that Assumptions 4.1 and 4.3 hold and x∗ ∈ S
is a limit point of {xk}. If σk ≥ σmin > 0 for all k ≥ 0, and

ωk ≤ θ‖Fk‖3/2,(5.7)

for a positive θ, then there exists a positive Ψ̄ such that,

‖psk‖ ≤ Ψ̄d(xk,S),(5.8)

whenever xk is sufficiently close to x∗. Moreover, if (4.12) holds then there exists a
positive Λ̄ > 0 such that

mQ
k (psk) ≤ Λ̄d(xk,S)3/2,(5.9)

whenever xk is sufficiently close to x∗.
Proof. Let xk ∈ Bε(x∗). By (5.4), (5.5) and (5.3) we get

‖(JTk Jk + λkI)−1rk‖ ≤
1
λk
ω̄k ≤

1
2σmin

ωk,

and using (5.7) and (4.2)

‖(JTk Jk + λkI)−1rk‖ ≤
θκ

3/2
J

2σmin
d(xk,S)3/2.(5.10)

Since ‖p(λk)‖ satisfies (4.6) by Lemma 4.2, and (5.6) gives ‖psk‖ ≤ ‖p(λk)‖+‖(JTk Jk+
λkI)−1rk‖, inequality (5.8) holds.

Let us now focus on inequality (5.9). Assuming xk ∈ Bψ(x∗) where ψ is the scalar
in Lemma 4.3, and using (4.1), (4.14) and (4.12) we obtain

mQ
k (psk) ≤ ‖Fk + Jkp(λk)‖+ ‖Jk(psk − p(λk))‖+ σk‖psk‖2

≤ Λd(xk,S)3/2 + κJ‖psk − p(λk)‖+ σmaxΨ̄2d(xk,S)2,

and by (5.6) and (5.10)

mQ
k (psk) ≤ Λd(xk,S)3/2 +

θκ
5/2
J

2σmin
d(xk,S)3/2 + σmaxΨ̄2d(xk,S)2,

which completes the proof.
The following Lemma shows the corresponding result for the ARC method.
Lemma 5.2. Let {xk} be the sequence generated by the ARC method with steps

pk = psk satisfying (5.1)–(5.3). Suppose that Assumptions 4.1 and 4.3 hold and x∗ ∈ S
is a limit point of the sequence {xk}. If σk ≥ σmin > 0 for all k ≥ 0, and

ωk ≤ θk‖Fk‖3/2, θk = κθ min(1, ‖psk‖),(5.11)

for a positive scalar κθ, then there exists a positive Ψ̄ such that (5.8) holds for xk
sufficiently close to x∗. Moreover, if (4.12) holds then there exists Λ̄ > 0 such that

mC
k (psk) ≤ Λ̄d(xk,S)3,(5.12)

whenever xk is sufficiently close to x∗.
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Proof. Let xk ∈ Bε(x∗). First, note that by (4.2), (5.3), (5.4), (5.5) and (5.11)

‖(JTk Jk + λkI)−1rk‖ ≤
ω̄k
λk

≤ 1
σk‖psk‖

ω̄k,

≤ κθκ
3/2
J

σmin
d(xk,S)3/2.(5.13)

Since ‖p(λk)‖ satisfies (4.6) by Lemma 4.2, and (5.6) gives ‖psk‖ ≤ ‖p(λk)‖+‖(JTk Jk+
λkI)−1rk‖, (5.8) holds.

Moreover, letting xk ∈ Sψ(x∗), and using (4.1), (4.18), (5.6) and (5.13) we get

mC
k (psk) ≤

1
2
‖Fk + Jkp(λk)‖2 +

1
2
‖Jk(psk − p(λk))‖2

+(Fk + Jkp(λk))TJk(psk − p(λk)) +
1
3
σk‖psk‖3

≤ Λd(xk,S)3 +
κ2
θκ

5
J

2σ2
min

d(xk,S)3 +
κθκ

5/2
J

√
2Λ

σmin
d(xk,S)3 +

1
3
σmaxΨ̄3d(xk,S)3,

and this yields (5.12)
We are now able to state the local convergence results for ARQ and ARC methods

in the case where the step is computed in a subspace.

Corollary 5.3. Let {xk} be the sequence generated by the ARQ method with
steps pk = psk satisfying (5.1)–(5.3). Suppose Assumptions 4.1 and 4.3 hold and that
x∗ ∈ S is a limit point of {xk} satisfying Assumption 2.1. If 0 < σmin ≤ σk ≤ σmax

for all k ≥ 0 and (5.7) holds, then {xk} converges to x∗ Q-quadratically.
Proof. Using (5.8) and (5.9) and proceeding as in the proof of Lemma 4.3, we

can prove that iteration k is very successful whenever xk is sufficiently close to x∗.
Moreover, as (5.1) and (5.7) are satisfied, Lemma 4 in [1] guarantees that inequality
(3.3) holds and Theorem 3.1 yields the hypothesis.

Corollary 5.4. Let {xk} be the sequence generated by the ARC method with
steps pk = psk satisfying (5.1)–(5.3). Assume that Assumptions 4.1 and 4.3 hold and
x∗ ∈ S is a limit point of {xk} satisfying Assumption 2.1. If 0 < σmin ≤ σk ≤ σmax

for all k ≥ 0 and (5.11) holds, then {xk} converges to x∗ Q-quadratically.
Proof. Using (5.8) and (5.12) and proceeding as in the proof of Lemma 4.4, we

can prove that iteration k is very successful whenever xk is sufficiently close to x∗.
Moreover, as (5.1) and (5.11) are satisfied, Lemma 4 in [1] guarantees that inequality
(3.3) holds and Theorem 3.1 yields the hypothesis.

6. Conclusion. In this paper, we have studied the local convergence behaviour
of two adaptive regularized methods for solving nonlinear least-squares problems and
we have established local quadratic convergence to zero-residual solutions under an
error bound assumption. Interestingly, this condition is considerably weaker than the
standard assumptions used in literature and the results obtained are valid for under
and over-determined problems as well as for square problems.

The theoretical analysis carried out shows that the regularizations enhance the
properties of the underlying unregularized methods. The focus on zero-residual so-
lutions is a straightforward consequence of models considered which are regularized
Gauss-Newton models. Further results on potentially rank-deficient nonliner least-
squares have been given in [8] for adaptive cubic regularized models employing suitable
approximations of the Hessian of the objective function.
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