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Abstract 

This study focuses on the master surgical scheduling problem and adds two main contributions. First, 

it presents a novel mixed integer programming model to support the master surgical schedule 

production. Second, it uses the model to investigate the impact, in terms of scheduled surgeries, of 

the flexible management of three critical resources, namely surgical teams, operating rooms and 

surgical units. Our analysis revealed that to maximise the number of surgeries scheduled, it is 

sufficient to introduce flexibility with respect to surgical teams and ORs. In fact, if both these 

resources are managed flexibly, then introducing flexibility with respect to surgical units carries no 

additional advantages. However, if surgical teams or ORs (or both) are not managed flexibly, then 

managing surgical units flexibly produces significant benefits. In addition, our study shows that if 

surgical teams cannot be managed flexibly, then introducing flexibility with respect to ORs yields 

significant benefits. Similarly, it reveals that if ORs cannot be managed flexibly, then in troducing 

flexibility with respect to surgical teams yields significant benefits as well. The work is based on real 

data from the Meyer University Children’s Hospital in Florence. 

1 Introduction 

The Operating Theatre (OT) is widely acknowledged as the functional area driving most hospitals’ 

costs and revenues (Denton et al., 2007). The surgical scheduling process, i.e. the process by which 

OT activities are planned, dramatically influences OT performance and, as such, it is the object of 

growing attention from hospital managers worldwide. Such a process, however, is extremely complex 

to manage. In fact, it requires the consideration of many resources (operating rooms (ORs), surgical 

teams, and nursing staff as well as downstream resources, such as surgical units and intensive care 

units (ICUs)) operating in a context affected by a high variability (Litvak and Long, 2000) and 

characterised by people - surgeons, patients, hospital managers - with conflicting priorities 

(Glouberman and Mintzberg, 2001). The complexity of the surgical scheduling process coupled with 
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its significant economic and social impact has thus stimulated, in recent years, intensive research 

activities as well (Cardoen et al., 2010, Guerriero and Guido, 2011, May et al., 2011). The literature, 

indeed, abounds with models supporting the scheduling of surgical activities. In particular, the 

mainstream literature presents the consensus that solving a surgical scheduling problem requires 

addressing three intertwined sub-problems (Beliën and Demeulemeester, 2007): (i) the case-mix 

planning, i.e. the determination (usually on a yearly basis) of the total amount of OR time to assign 

to each surgical specialty, (ii) the master surgical scheduling, i.e. the determination of the specialty 

(or specialties) to assign to each OR on each day of the planning horizon (e.g. two weeks or one 

month) and, in certain cases, the specification of the number and typology of surgeries to be 

performed each day, and finally (iii) the selection and sequencing of patients who have to undergo 

surgery. Typically, these three sub-problems are solved in cascade; the case-mix determined at the 

first stage is used in the definition of the master surgical schedule (MSS). The MSS, in turn, is used 

as input for patient selection and sequencing. 

This study focuses on the master surgical scheduling sub-problem. In the literature, the models 

supporting such a sub-problem consider slightly different sets of resources (ORs, surgical units, 

surgical teams, and the ICU) and make different assumptions about how flexibly these critical 

resources are managed. Some studies propose scenario analysis to assess the effects associated with 

the flexible management of certain resources, such as surgical teams or surgical units (Banditori et 

al., 2013, Agnetis et al., 2012). However, despite the fact that flexibility is by no means a new topic 

(Balasubramanian et al., 2012, Buzacott and Mandelbaum, 2008, Chou et al., 2008, Gupta and 

Shanthikumar, 2008), to date the literature lacks of contributions that have systematically studied the 

impact of flexibility on OT performance.  

This study addresses this gap by adding two main contributions. First, it presents a novel mixed 

integer programming model to support MSS production. Second, it uses the model to investigate the 
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main and interaction effects associated with the flexible management of three critical resources: 

surgical teams, ORs and surgical units.  

The model assumes that surgical cases can be organised into homogeneous surgery groups 

(Santibáñez et al., 2007, Banditori et al., 2013) based on their specialty, their expected surgical time 

(ST) and their expected length of stay (LoS), that is, based on the extent to which these cases are 

expected to “consume” the previously mentioned critical resources.  The model creates a solution 

indicating for each OR session (i.e. for each day, for each OR and for each session) in the planning 

horizon the number of surgeries to perform and the surgery group these cases must belong to. The 

model’s objective function is the maximisation of the number of scheduled surgeries.  

In addition to presenting the model, we show how such a model can be modified by acting on its 

variables, parameters and constraints to incorporate a more or less flexible management of surgical 

teams, ORs and surgical units. The different versions of the model are then  used to carry out an 

experimental campaign based on a 23 experimental design (Montgomery and Runger, 2003). In detail, 

we consider the way the three critical resources are managed as factors and we assume two possible 

levels for each factor: “high” when the resource is managed in a flexible way and “low” otherwise. 

More specifically: 

1) With respect to surgical teams (“Teams” factor), we analyse the case where the assignment of 

surgical teams to sessions is fixed (fixed surgical teams assignment, low level) and the case 

where such an assignment can change every time the MSS is produced (variable surgical 

teams assignment, high level). 

2) With respect to ORs (“ORs” factor), we distinguish the case where ORs are used to perform, 

within the same session, either long-stay (LoS>1 day) surgeries or short-stay (LoS=1 day) 

surgeries (dedicated sessions, low level) and the case where both types of surgeries can be 

performed within the same session (mixed sessions, high level).  
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3) With respect to surgical units (“Units” factor), we distinguish the case where units 

characterised by the same care setting (in terms of nursing staff, equipment, etc.) are used to 

host cases of specific specialties only (dedicated units, low level) and the case where these 

units are pooled to host patients of all specialties (pooled units, high level). 

In the remainder of the paper, when a resource is managed flexibly, we will say that the hospital 

implements a flexible practice with respect to such a resource. Combining factors and factor levels, 

we obtained eight (=23) configurations. For each of them we ran the optimisation model in 

correspondence with 30 randomly generated instances. These instances were obtained starting from 

real data coming from the Meyer University Children’s Hospital (hereinafter Meyer Hospital) a 

leading Italian hospital. The remainder of the paper is organised as follows: in Section 2, we provide 

a brief review of the literature. In Section 3, we describe the optimisation models. In Section 4, we 

illustrate the experimental campaign. In Section 5, we present the empirical results and in Section 6 

we discuss them. Subsequently, in Section 7, we draw the conclusions and outline the direction of 

our future research efforts. 

2 Literature review 

The master surgical scheduling problem has been the object of several studies (see the reviews of 

Cardoen et al. (2010), Guerriero and Guido (2011), May et al. (2011)). In Table 1, we review the 

most important mathematical models supporting the production of MSS that appeared in the 

literature. Each column of the table (except the last one) represents a resource, while each row 

represents a model. In each cell, we specify if and how the resource is modelled. When a resource is 

not explicitly considered in the model, the cell contains “NEC.” In the last column of the table, 

instead, we report the methodology adopted in the relevant study. 
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Table 1 – MSS literature review: resources modelled and operational assumptions  

Paper Surgical teams OR Surgical units’ beds Other resources Type of analysis and 
solution technique 

Our study 
 

Number of sessions per surgical specialty bounded on a daily and on 
a weekly basis 
Session assignment performed: 
- Once and then considered as fixed (low flex) 
- Every time the MSS is produced, but only limited changes are 

allowed with respect to a predefined assignment (high flex) 

Fully interchangeable ORs 
Two sessions per day/OR 
Sessions: 
- Dedicated (low flex) 
- Mixed (high flex) 

Three types of surgical units (one day 
surgery unit and two regular units). 
- All units are dedicated to specific patient 

types, no mismatch allowed (low flex) 
- Regular units are pooled (high flex) 

NEC Single criterion exact 
optimisation, scenario analysis 
Mixed integer programming 

Blake et al. (2002) Number of sessions per surgical specialty bounded on a daily and on 
a weekly basis 
Session assignment performed once and then kept constant in the 
following period 

Partially interchangeable ORs 
One session per day/OR 
Mixed sessions 

NEC Medical 
equipment 

Single criterion heuristic 
optimisation, scenario analysis 
Mixed integer programming, 
constructive heuristic 
 

Vissers et al. (2005) NEC Fully interchangeable ORs 
One session per day/OR 

Mixed sessions 

Two types of surgical units (ICU and regular 
unit) 

Dedicated units, no mismatch allowed 

ICU nursing staff Single criterion exact 
optimisation 

Mixed integer programming 
Santibáñez et al. 
(2007) 

Number of sessions per surgical specialty bounded on a daily and on 
a monthly basis 
Session assignment performed once and then considered as fixed 

Partially interchangeable ORs 
One or two sessions per day/OR 
Mixed sessions 

Two types of surgical units (SCU and 
regular unit) 
Dedicated units, no mismatch allowed 

NEC Single criterion exact 
optimisation 
Mixed integer programming 

van Oostrum et al. 
(2008) 

NEC Fully interchangeable ORs 
One session per day/OR 
Mixed sessions 

Two types of surgical units (ICU and regular 
unit) 
Dedicated units, no mismatch allowed 

NEC Multi-criteria exact 
optimisation, multi-criteria 
heuristic optimisation 
Mixed integer programming, 
column generation, 
decomposition approach 
 

Beliën et al. (2009) Number of sessions per surgical specialty bounded on a weekly 
basis 
Session assignment performed once and then considered as fixed 

Fully interchangeable ORs 
One or more sessions per day/OR 
Mixed sessions 

Several types of surgical units 
Dedicated units, no mismatch allowed 

NEC Multi-criteria heuristic 
optimisation, goal 
programming 
Simulated annealing 

Tànfani and Testi 

(2010) 

Number of sessions per surgical specialty bounded on a weekly 

basis 
Session assignment performed every time MSS is produced 

Fully interchangeable ORs 

One or two sessions per day/OR 
Mixed sessions 

Two types of surgical units (ICU and regular 

unit) 
Dedicated units, no mismatch allowed 

NEC Single criterion heuristic 

optimisation 
Constructive heuristic 
 

Banditori et al. (2013) Number of sessions per surgical specialty bounded on a daily basis 
Session assignments performed every time MSS is produced 

Partially interchangeable ORs 
Two sessions per day/OR 
Mixed sessions 

Three types of surgical units 
Dedicated units, no mismatch allowed 

NEC Multi-criteria hierarchical 
exact optimisation, scenario 
analysis 
Mixed integer programming, 
discrete event simulation 

Agnetis et al. (2012) Number of sessions per surgical specialty bounded on a daily and on 
a weekly basis 
Session assignment performed: 
- Once and then considered as fixed (low flex) 
- Every time the MSS is produced, but only limited changes are 

allowed with respect to a predefined assignment (medium flex) 
- Every time the MSS is produced without limiting the changes 

allowed with respect to a predefined assignment (high flex) 

Partially interchangeable ORs 
One or two sessions per day/OR 
Dedicated sessions 

NEC NEC Single criterion exact 
optimisation, scenario analysis 
Mixed integer programming 
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In order to emphasise similarities and differences between our study and the related literature, we 

have added a row representing our model. When a study proposes both flexible and rigid approaches 

to manage a resource, we report all the alternatives in the table. Table 1 reveals that most of the 

authors considered three main critical resources in their models: surgical teams, ORs and surgical 

units’ beds. Therefore, the remainder of this review will focus on these resources. 

Surgical teams, i.e. the teams of surgeons belonging to the same specialty that actually carry out 

surgeries are considered explicitly in all but two models (i.e. the model of Vissers et al. (2005) and 

van Oostrum et al. (2008)). In the remaining works, the availability of surgical teams is modelled by 

limiting the number of sessions that each surgical specialty can perform on a weekly basis and/or 

daily basis. Based on these constraints, almost all models assign sessions to specialties, thereby 

identifying when a surgical team will potentially operate in the planning horizon (session assignment). 

In addition, some models (Santibáñez et al., 2007, van Oostrum et al., 2008, Banditori et al., 2013) 

also determine the type and/or the number of surgeries that surgical teams will execute in each session 

(surgery types assignment). In (Agnetis et al., 2012), instead, one of the proposed models assumes 

that the session assignment has already been done and, consequently, supports the surgery types 

assignment only. Most studies suggest that the session assignment should be carried out once and 

should not be changed frequently (Guerriero and Guido, 2011). The underlying assumption of these 

studies is that it is not technically feasible to change the session assignment on a monthly (or more 

frequent) basis because it would make it very complex for surgeons to coordinate their activities 

inside and outside the OT (van Oostrum et al., 2010). Nonetheless, Agnetis et al. (2012) demonstrate 

that small and frequent changes in the session assignment can yield substantial benefits and that these 

benefits are higher than those associated with large yet less frequent changes. Therefore, the authors 

argue that a limited amount of flexibility in managing surgical teams can produce benefits that are 

higher than the organisational cost of implementing this solution. For that reason, we decided to 
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include this latter case in our study and compare it with the case where the session assignment is 

considered as already having been performed.  

Contrary to surgical teams, ORs are considered as critical in all the reviewed models. However, 

different authors model these resources in different ways. A first distinction is between 

interchangeable and partially interchangeable ORs. The former can host every type of surgery; the 

latter, instead, can host only a limited subset of surgeries and/or specialties. A second distinction 

pertains to how OR time is divided into sessions. Some authors consider one session per OR per day 

(van Oostrum et al., 2008), some consider two (Santibáñez et al., 2007) or more (Beliën et al., 2009) 

sessions per OR per day, while others allow both daily sessions and shorter sessions (Agnetis et al., 

2012). A third distinction concerns the types of surgery that can be performed in the same OR session. 

For example, Agnetis et al. (2012) distinguishes two macro-types of surgeries: general surgeries and 

day surgeries. The former includes all the procedures leading to a LoS of at least two days (one night), 

and the latter includes those procedures associated with a LoS of just one day. Based on this 

distinction, Agnetis et al. (2012)’s model allows only dedicated sessions, meaning that within the 

same session it is not possible to execute both  day-surgeries and general surgeries. Instead, other 

models (e.g. Banditori et al. (2013)) allow mixed sessions where these types of surgeries can coexist. 

While the interchangeability of an OR depends on the structural characteristics (e.g. the presence of 

certain equipment) of the OR itself, hospital managers have more degrees of freedom in deciding how 

to subdivide the OR time. Nonetheless, this decision is influenced by the actual number of surgical 

teams available for each specialty (Banditori et al., 2013). For example, all-day-long sessions cannot 

be planned for those specialties relying on less than two surgical teams per day (except in 

extraordinary cases, one team cannot operate for the entire day). The decision to organise dedicated 

or mixed sessions, instead, is generally free. The literature suggests that surgeons usually prefer 

dedicated sessions; surgeons, in fact, can reduce surgery time because of the repetitive nature of their 

work (Hans et al., 2008). On the other hand, a mixed session makes the scheduling process less 
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constrained and as such, it potentially allows scheduling a greater number of surgeries. In this study, 

we explore both options. 

Finally, surgical units, i.e. the facilities where patients are cared for following surgical procedures, 

are considered in six out of eight models. These units are usually classified based on the intensity of 

care required by the hospitalised patients: e.g. ICUs, day-surgery units, regular units. Moreover, these 

units are characterised by a given capacity that is expressed in terms of the number of beds. Certain 

hospitals (e.g. Meyer Hospital) allocate patients to the regular units based on the specialty. Such a 

practice makes it easier and faster for surgeons to control and visit their hospitalised patients. 

Different models assume different numbers of units and unit types. All the reviewed models except 

Banditori et al. (2013) constrain each type of patient to be hospitalised into a specific unit. In general, 

the literature (Vincent et al., 1998) suggests that it is risky to accommodate patients requiring 

thorough care in units characterised by reduced nursing staff or that are physically located far away 

from the intensive care unit. Thus, units should be pooled only if they are characterised by similar 

care settings, which is the flexible practice explored in this study. Banditori et al. (2013)’s model, 

instead, violates this recommendation and allows bed mismatches whenever they allow increasing 

the OT throughput. 

According to Table 1, it can be argued that flexible practices are considered in several studies.  

However, no study proposes an analysis that investigates how different flexible practices can interact. 

With this study, we aim to address this literature gap. In sum, our study (i) proposes a model that 

considers critical resources that are included in the vast majority of the other studies; (ii) investigates 

three flexible practices that are reasonable and justified in light of the extant literature but that 

previous studies have considered only separately or by combining a very limited number of different 

scenarios (two at maximum); (iii) assesses, in statistical terms, the main and the interaction effects of 

the mentioned practices and to the best of our knowledge is the only study to do so. These facts ensure 
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that the results presented in the next sections can be of value for a wide audience of practitioners and 

scholars and also that this study adds a significant contribution to the literature. 

3 Model description 

In this section, we present the mathematical models we have developed. Specifically, first we present 

a version of the model that does not implement any flexible practice (hereafter referred to as the “rigid 

model”). Then we show how such a model can be modified to incorporate flexibility with respect to 

the management of surgical teams, ORs and surgical units. 

All the models presented in this work address a twofold problem: (i) determining the number of cases 

to assign to each OR session of the planning horizon; (ii) determining the surgery group these cases 

must belong to. The models consider three critical resources: (i) ORs, whose available time is 

organised in sessions; (ii) surgical units, which accommodate patients after the surgery; (iii) surgical 

teams, dedicated to one specialty each, whose availability is defined in terms of number of OR 

sessions. Cases belonging to the same surgery group require the same specialty, the same amount of 

OR time and will occupy a surgical unit for the same amount of time. 

Let us define the following sets and parameters that are common to the rigid model and to its 

extensions as follows: 

W the set of weeks in the planning horizon, indexed by w 

D the set of days in the planning horizon, indexed by d 

T the set of sessions, indexed by t 

O the set of ORs, indexed by o 

S the set of surgical specialties, indexed by s 

K the set of surgery groups, indexed by k 
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M a suitably big constant 

Hodt the available time of OR o, on day d and session t 

Fbd the number of beds in the surgical unit b available on day d 

Lsw the availability of surgical teams with specialty s for week w, expressed in number of 

OR sessions 

sk the specialty of surgery group k 

rk the typology of surgery group k (short-stay surgery – SS vs. long-stay surgery – LS) 

ck the average surgery duration of surgery group k 

bk, ak the average number of days of hospitalisation, before and after surgery, required by 

surgery group k 

Yk the minimum number of procedures of surgery group k to be scheduled.  

3.1 Rigid model 

In this model, we assume that the session assignment has already been done. Consequently, we rely 

on an allocation grid G as an input. Specifically, for each specialty s, day d and session t, Gsdt is equal 

to 1 if specialty s is allocated on day d, session t, and 0 otherwise.  

Grid G must respect the following feasibility constraints: 





Ss

sdt OG ||   TtDd  ,  (3.1.1) 

sw

w

wd

sdt

Tt

LG = 
−= 

7

67

  WwSs  ,  (3.1.2) 
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Constraints (3.1.1) assure that on each day d and session t, the number of specialties assigned to an 

OR does not exceed the number of available ORs (|O|). Constraints (3.1.2) instead control that the 

number of sessions assigned weekly to a given s is exactly the value resulting from the upstream case-

mix planning problem. Then, in the rigid model, an OR o has to be assigned to each triple (s,d,t) for 

which Gsdt = 1. For a matter of convenience, we denote this with the following: 

 ( , , ) s.t. , , and 1 
sdt

G s d t s S d D t T G=    = . 

The rigid scheduling model takes the following two main decisions: 

1. Assign an OR to each triple (s,d,t) in G   

2. Determine, for each surgery group k, the number of procedures to schedule in correspondence 

with each triple (s,d,t) in G  where s is the specialty associated with k. 

Then let us define the following main and auxiliary variables:  

qgo binary, 1 if triple g = (s,d,t) in G  is assigned to OR o, 0 otherwise  

ykdto the number of procedures in surgery group k assigned to OR o on day d in time slot t 

zbd the number of beds belonging to surgical unit b occupied on day d 

uodt binary, 1 if OR o on day d and session t is dedicated to short-stay surgeries, 0 

otherwise. 

Using these variables and parameters, we can state the rigid model as follows: 

 




TtDd
OoKk

kodty

,
,,

max  
(3.1.3) 


=


GtdsgSs

goq
),,(:

1 TtDdOo  ,,  (3.1.4) 
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


=
Oo

goq 1 Gg  (3.1.5) 


=


ssKk

gokdto

k

Mqy
:

 OoGtdsg = ,),,(  (3.1.6) 





Kk

odtkdtok Hyc  TtDdOo  ,,  (3.1.7) 

 



+

−=

=

Tt
OoKk

bd

bdD

add

tokd zy
k

k,,

),min(

),1max('

' 
 DdBb  ,  (3.1.8) 

bdbd Fz   DdBb  ,  (3.1.9) 

: " "

kdto odt

k K r SSk

y Mu
 =

  TtDdOo  ,,  (3.1.10) 

: " "

(1 )
kdto odt

k K r LSk

y M u
 =

 −  TtDdOo  ,,  (3.1.11) 

k

Tt
DdOo

kdto Yy 

 ,,

 
Kk  (3.1.12) 

 1,0goq  OoGg  ,  (3.1.13) 

Nkdtoy  OoTtDdKk  ,,,  (3.1.14) 

N
bd

z   DdBb  ,  (3.1.15) 

 0,1
odt

u   TtDdOo  ,,  (3.1.16) 

The objective function (3.1.3) maximises the number of procedures scheduled in the planning 

horizon. Constraints (3.1.4) guarantee that each OR-session can host a specialty at most. Constraints 

(3.1.5) assure that all the triples (s,d,t) in G  are assigned to some OR o. Constraints (3.1.6) bind 

together assignment variables q and variables y: specifically, they state that if the triple (s,d,t) in G  

has not been assigned to OR o, then no procedure belonging to a group characterised by specialty s 

can be performed in OR o, on day d and session t. In contrast, when the triple g=(s,d,t) in G  is 

assigned to OR o (qgo=1), then the corresponding constraint is redundant since it imposes that the 
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number of procedures of that specialty scheduled in that OR session does not exceed the suitably big 

constant M. Specifically, M is set equal to the maximum number of shortest procedures a session can 

host. Constraints (3.1.7) guarantee that the total duration of the procedures scheduled in an OR session 

does not exceed the available time of that OR session. Constraints (3.1.8) and (3.1.9) are used to 

properly manage beds; specifically, for each day d and surgical unit b, they respectively compute the 

number zbd of beds occupied and limit such a number to the bed availability Fbd. To correctly 

determine the bed occupancy on a given day d, we have to consider all the patients whose stay in the 

surgical units, before (bk) and after surgery (ak), overlaps day d. More specifically, in a given day d, 

we have to consider the beds occupied by patients who have undergone a surgery before day d and 

who are still in the hospital on day d as well as all the patients who will undergo surgeries after day 

d and that have been pre-hospitalised, in addition to the patients that undergo a surgery exactly on 

day d. Constraints (3.1.10) and (3.1.11) refer to the management of dedicated sessions, and they 

assure that in a given OR session, long-stay and short-stay surgeries are mutually exclusive. In fact, 

the binary variable uodt is equal to 1 if OR o on day d and session t is dedicated to short-stay surgeries. 

In this case, constraints (3.1.11) assure that in that OR session no long-stay surgery is performed. In 

contrast, when uodt is equal to 0, the corresponding OR session can host only long-stay surgeries. 

Constraints (3.1.12) relate to target efficiency and they impose that for each surgery group k the 

number of procedures performed is not smaller than the target value Yk. Indeed, the MSS must 

guarantee to schedule a minimum number of surgeries for each surgery group. Such a requisite is set 

to avoid solutions planning an excessive number of surgeries belonging to easy -to-schedule surgery 

groups (i.e. groups characterised by short ST and LoS). This method ensures a reasonable waiting 

time for patients of each group and allows distributing complex-to-schedule surgeries over time. 

Finally, constraints (3.1.13), (3.1.14), (3.1.15), and (3.1.16) define the domain of the variables.  

In the following section, we describe how to extend/modify the rigid model in order to take into 

account the flexible practices discussed in the previous section. 
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3.2 Flexibility with respect to surgical teams 

In this scenario, differently from the rigid model, the allocation grid is not an input for the scheduling 

model. Instead, the grid is the output of the model that decides the specialty to assign to each OR, day 

and session in the planning horizon. However, only limited variations with respect to the original grid 

are allowed in order to guarantee that the new grid is still implementable. To this aim, the following 

variables are defined: 

xsdto binary, 1 if specialty s is assigned to OR o on day d and session t, 0 otherwise  

x+
sdt binary, 1 if a swap from 0 to 1 occurs with respect to Gsdt, 0 otherwise. 

All the constraints that in the rigid model are implicitly satisfied by the pre-defined grid G have now 

to be explicitly guaranteed through the following set of constraints: 





Ss

sodtx 1   TtDdOo  ,,  (3.2.1) 





Oo

sodtx 1  TtDdSs  ,,  (3.2.2) 
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67,

  WwSs  ,  (3.2.3) 


=


ssKk

sodtkodt

k

Mxy
:

  TtDdOoSs  ,,,  (3.2.4) 

 1,0sodtx   TtDdOoSs  ,,,  (3.2.5) 

 

Specifically, constraints (3.2.1) assure that each OR on each day and in each session of the planning 

horizon is assigned to at most one specialty. Constraints (3.2.2) guarantee that each specialty is 

assigned to at most one OR in each day and session. Constraints (3.2.3) impose that the number of 

sessions assigned weekly to a given specialty s is exactly the value resulting from the upstream case-
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mix planning problem. Constraints (3.2.4) bind together assignment (x) and scheduling (y) variables; 

specifically, they assure that no procedure with specialty s is scheduled in OR o, on day d and session 

t unless specialty s has been assigned to that OR, on that day and session. Conversely, these 

constraints become redundant when xsodt=1 since they impose that the number of procedures 

scheduled does not exceed a suitably defined big M. Finally, constraints (3.2.5) define the domain of 

the assignment variables. 

Furthermore, we introduced the following constraints to control the variations with respect to the grid 

G: 

+



+ sdtsdt

Oo

sodt xGx  TtDdSs  ,,  (3.2.6) 




+ 
TtDd

sdt Ax
,

 Ss  (3.2.7) 

Specifically, constraints (3.2.6) allow that any variation of element Gsdt can occur. In particular, if 

Gsdt = 0, i.e. if specialty s is not allocated to day d, session t, the new grid defined through variables 

x may allow that specialty s is assigned to some OR in that day and session. When this variation 

occurs, variable x+
sdt takes value 1 and it accounts for a zero to one swap with respect to G. In addition, 

xsodt specifies the OR o to which specialty s is assigned in day d, session t. 

One to zero swaps, instead, do not need to be explicitly controlled. In fact, since we hypothesize that 

the number of sessions dedicated to each specialty in the planning period is constant, when a one to 

zero swap occurs also a zero to one swap takes place and this latter swap is controlled by x+
sdt as well. 

The number of zero to one swaps affecting the specialty s cannot exceed the maximum number A  

of allowed variations (see constraints (3.2.7)). 
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3.3 Flexibility with respect to ORs 

To implement this type of flexibility, it is sufficient to remove constraints (3.1.10) and (3.1.11), thus 

enlarging the feasibility region and allowing both short-stay and long-stay surgeries to be scheduled 

in the same session. 

3.4 Flexibility with respect to surgical units  

Each procedure is associated with a surgical unit. If surgical units are managed flexibly, then they are 

pooled. With this method, patients can be hospitalised in units that differ from the one originally 

assigned to them. To model this practice, we introduce the following variables: 

vbb’d the number of beds of surgical unit b’ used in place of beds of surgical unit b on day d. 

Constraints (3.1.9) in the rigid model are then updated with constraints (3.4.1). These constraints 

allow that on a given day for a given surgical unit the number of beds occupied in that unit exceeds 

capacity. Moreover, we add constraints (3.4.2), which limit the overall number of beds occupied to 

the overall bed availability. 




+
bbBb

dbbbdbd vFz
':'
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DdBb  ,  (3.4.1) 




+
Bb

db

bbBbb

dbb

Bb

bd Fvz
':',

'

  
Dd  (3.4.2) 

4 Methodology 

To assess the effects of the implementation of flexible practices on MSS efficiency, we use a 23 

factorial design comprising the following: 

• Three factors: Teams, ORs, Units. Each factor corresponds to one of the critical resources 

incorporated in the model. 
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• Two possible levels for each factor: high when the resource is managed in a flexible way and 

low otherwise.  

• One response variable, i.e. the number of surgeries scheduled. 

Factors and factor levels are reported in Table 2, and the experimental design is illustrated in Figure 

1. 

Table 2 - Factorial design 

Symbol Factor Name Low level High level 

A Teams Fixed surgical teams assignment. The 
allocation grid is fixed. 

Variable surgical teams assignment. At 
maximum, one swap per specialty is 

allowed with respect to a predefined 
allocation grid. 

B ORs Dedicated sessions. OR can host either 

short-stay or long-stay surgeries. 

Mixed sessions. OR can host both short-

stay and long-stay surgeries. 
C Units Dedicated units. Unit 1 and Unit 2 are 

dedicated to different types of long-
stay patients. 

Pooled units. Unit 1 and Unit 2 are used 

interchangeably. 

 

 

Treatment 
Factors 

Teams 

(A) 

ORs  

(B) 

Units  

(C) 
(1) Low Low Low 

a High Low Low 

b Low High Low 

c Low Low High 
ab High High Low 

ac High Low High 

bc Low High High 
abc High High High 

 

Figure 1 Experimental design 

Each factor is associated with an uppercase letter (A, B, C). Each vertex of the cube represents a 

treatment. Treatments are labelled according to the Montgomery and Runger’s (2003, p.524) notation. 

According to this notation, a treatment combination is represented by a series of lowercase letters. If 

a letter is present, the corresponding factor is run at the high level in that treatment combination; if it 

ac 

Teams (A) 

Units (C) 

abc 

(1) 

bc 

a 

c 

b ab 

OR (B) 
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is absent, the factor is run at its low level. The treatment combination with all the factors at the low 

level is represented by (1). 

To implement the different treatments, the optimisation model is extended as described in Section 3. 

For each treatment, we have analysed the result of the optimisation model in correspondence of 30 

randomly generated instances. These instances differ in each other’s in terms of allocation grid G.  

We coded the optimisation models in AMPL and solved them through the IBM ILOG Cplex Solver 

(version 12.4) running on a personal computer equipped with an Intel Core i7 processor and 8 GB of 

RAM. For each optimisation run, we bound the computational time to 1 hour. The results of our 

experimental campaign are presented in the next section. 

5 Empirical results 

In this section, we present the data we used to run the optimisation model(s) and the results of the 

experiments. 

5.1 Input data 

As we pointed out in the introduction, our study was inspired by Meyer Hospital. Such a hospital is 

characterised by the following features: 

(i) 12 surgical specialties. Each surgical specialty is associated with surgical teams that can 

cover a certain number of sessions per week. 

(ii) 38 surgery groups. Surgery groups have been created following Banditori et al.’s (2013) 

methodology. For each surgery group (k), we calculated the mean value of LoS and ST 

and used these values to set the parameters ak and ck of the optimisation models, 

respectively. 

(iii) A planning horizon of two weeks. 
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(iv) Defined lower bounds (Yk) for the number of surgeries to schedule within the planning 

horizon for each surgery group k. These lower bounds are fixed by the hospital’s top 

management on a yearly basis.  

(v) 3 surgical units: a day surgery unit and two regular units (Unit 1 and 2). The day surgery 

unit contains 14 beds, and Unit 1 and Unit 2 contain 19 and 14 beds, respectively. 

(vi) The day surgery unit can host only short-stay patients, i.e. patients whose expected LoS 

is one day (no night), regardless of the speciality. In contrast, Units 1 and 2 can 

accommodate long-stay patients only for certain specialties. Long-stay patients can be 

hospitalised either in Unit 1 or in Unit 2, and mismatches are not allowed.  

(vii) 4 interchangeable ORs dedicated to elective patients. Each OR is open 10 hours a day, 

5 days per week. The OR time is subdivided into two sessions, morning and afternoon. 

Additional OR sessions and beds are allocated to non-elective patients (emergencies and 

urgencies).  

(viii) OR sessions are “dedicated,” i.e. in a session where long-stay surgeries are performed, 

no short-stay surgery can be scheduled and vice versa. In addition, afternoon sessions 

can host only long-stay surgeries, while morning sessions can host both long-stay and 

short-stay surgeries. 

(ix) An allocation grid G that fixes the specialty to assign to each OR session. 

(x) No deviation from the allocation grid G is tolerated. 

Features (i, ii, iii, iv, v, and vii) do not change across treatments and instances. Features (vi, viii and 

x) change depending on the treatment, as described in Table 2. Feature (ix) changes according to the  

instance, which is randomly generated. The Meyer Hospital case corresponds to the treatment (1) in 

Table 2. 



21 

5.2 Optimisation output 

Table 3 shows the results of the optimisation models. It displays the mean values, calculated across 

instances, of the scheduled surgeries and of the optimality gap. In addition, for each treatment, the 

table shows the number of instances for which the optimisation model found the optimal solution and 

the minimum and the maximum optimality gaps across the 30 instances. 

Table 3 Optimisation Output 

Treatment 

Mean of 

scheduled  
surgeries 

Mean of 

optimality gap 

Optimal 

solutions found 

Min of 

optimality gap 

Max of 

optimality gap 

(1) 272.1 0.0% 30/30 0.0% 0.0% 

a 280.2 2.7% 0/30 1.8% 3.6% 

b 278.2 0.0% 30/30 0.0% 0.0% 

c 274.7 0.0% 30/30 0.0% 0.0% 
ab 286.7 0.5% 7/30 0.0% 1.4% 

ac 281.9 2.6% 0/30 1.4% 3.6% 

bc 279.2 0.0% 30/30 0.0% 0.0% 

abc 287.0 0.5% 5/30 0.0% 1.4% 

 

As can be seen for some treatments and instances, it was not possible to find an optimal solution 

within the fixed time limit. Nonetheless, the mean optimality gap associated with each treatment 

never exceeds 3.6%. The table shows that when moving from treatment (1) to treatment abc, the 

number of surgeries scheduled increases by 14.9. Therefore, implementing all the mentioned flexible 

practices yields, on average, a monthly increase of around 30 surgeries. To interpret these results, we 

performed an analysis of variance (ANOVA) and assessed the statistical significance and the 

magnitude of all main and interaction effects. Moreover, we carried out several Tukey’s post-hoc 

tests to compare treatments with each other and rank them in terms of scheduled surgeries while 

controlling the familywise error rate (Field, 2005, p.310) to a 0.05 level. These statistical analyses are 

presented in the next section. 

5.3 Statistical analysis 

Table 4 displays the complete ANOVA table including the magnitude of the estimated effects and 

their level of significance. The ANOVA analysis included an accurate check of the assumptions of 
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normality of error terms and homogeneity of variance. More specifically, we carried out a Ryan-

Joiner test and failed to reject (p=0.099) the null hypothesis of normally distributed errors. Similarly, 

we performed the Levene’s test and failed to reject the null hypothesis of the variances being equal 

(p=0.087).  

Table 4 Analysis of variance and effects summary table for scheduled surgeries 

 
DF Sum of squares Mean squares F Effect  p 

Teams 1 3744.6 3744.6 2378.4 7.9 0.000 (*) 

Ors 1 1837.1 1837.1 1166.8 5.5 0.000 (*) 
Units 1 117.6 117.6 74.7 1.4 0.000 (*) 
Teams*Ors 1 4.8 4.8 3.1 0.3 0.080 
Teams*Units 1 8.8 8.8 5.6 -0.4 0.020 (*) 

Ors*Units 1 33.8 33.8 21.4 -0.8 0.000 (*) 
Teams*Ors*Units 1 0.1 0.1 0.0 0.0 0.837 
Error 232.0 365.3    2.1    

Total 239.0 6112.0     
(*) significant at the α = 0.05 level 

 

Table 4 shows that, assuming an α = 0.05 significance level, all the main effects are significant 

(p<0.05). Similarly there is a significant, yet negative, interaction effect between Teams factor (A) 

and the Units factor (C) (p=0.020) and between the ORs factor (B) and Units factor (C) (p=0.000). 

Other 2-way and 3-way interaction effects, instead, are not statistically significant (p>0.05). The main 

and interaction effects are plotted in Figure 2 and Figure 3, respectively.  

Looking at the main effects (Figure 2), it can be noted that, on average, an increase in the level of 

each factor leads to an increase in the number of surgeries scheduled. For example, when the Teams 

factor (A) is run at a high level (i.e. treatments a, ab, ac, abc), the model schedules, on average, 283.9 

surgeries. Instead, when the Teams factor (A) is run at its low level (i.e. treatments b, c, bc, (1)), the 

model schedules, on average, 276 surgeries (in fact, main effect (A) =283.9-276= 7.9) 
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Figure 2 Main effects for scheduled surgeries, mean values 

However, as in our case, when one or more significant interaction effects are present, the 

interpretation of the main effects can be incomplete or misleading. In fact, when an interaction factor 

is significant, the impact of one factor depends on the level of another factor.  For example, in our 

case, the significant interaction between B and C factors implies that the effect on scheduling 

surgeries (dependent variable) of B depends on the level of C and vice versa. In particular, since the 

interaction effect is negative, increasing B when C is at a high level leads, on average, to a  variation 

in terms of the number of scheduled surgeries that is significantly smaller than the variation obtained 

by increasing B when C is at a low level. If this latter variation were negative, i.e. if increasing B 

when C is low would lead to a decrease in the surgeries scheduled, then the interpretation of the main 

effects would be completely misleading. In this latter case, in fact, increasing B from low to high in 

the presence of a high level of C would determine a decrease of the surgeries scheduled,  which is the 

opposite of what one would expect looking at the main effects of B and C. To prevent misleading 

interpretations of the main effects, however, it is sufficient to observe the interaction graphs in Figure 

3. 
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Figure 3 Interaction plot for scheduled surgeries, data means 

In Figure 3, the lines in each cell do not cross. Therefore, for each factor, the number of surgeries 

scheduled is, on average, higher when the factor is high than when the factor is low, regardless of the 

level of the other factors. Therefore, moving a factor from low to high leads to a benefit in terms of 

scheduled surgeries, regardless of the levels of the other factors. 

To compare treatments with each other and rank them, we used the Tukey’s post hoc procedure. This 

procedure allows us to compare all different combinations of the treatment groups and to control the 

familywise error rate without sacrificing the statistical power. For each pairwise comparison, we 

assigned the same rank (1, 2, etc.) to those treatment groups for which the post-hoc test did not allow 

for the identification of a significant (p>0.05) difference between the number of scheduled surgeries. 

The results of these tests are shown in Table 5 and will be discussed in the next section along with 

their practical implications. 
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Table 5 Pairwise comparisons, grouping information using Tukey’s method and 95.0% confidence level  

Comparisons 
Treatment group 

code 
Treatment groups N Mean Rank 

1 (1.1) a, ab, ac, abc 120 283.9 1 
 (1.2) b, c, bc, (1) 120 276 2 

2 (2.1) ab, abc, bc, b 120 282.8 1 

 (2.2) ac, a , c, (1) 120 277.2 2 

3 (3.1) abc, ac, bc, c 120 280.7 1 

 (3.2) ab, a , b, (1) 120 279.3 2 

4 (4.1) ab, abc 60 286.9 1 

 (4.2) ac, a  60 281 2 

 (4.3) bc, b 60 278.7 3 

 (4.4) c, (1) 60 273.4 4 

5 (5.1) abc, ac 60 284.5 1 
 (5.2) ab, a  60 283.4 2 

 (5.3) bc, c 60 276.9 3 

 (5.4) b, (1) 60 275.1 4 

6 (6.1) abc, bc 60 283.1 1 
 (6.2) ab, b 60 282.4 2 

 (6.3) ac, c 60 278.3 3 

 (6.4) a, (1) 60 276.1 4 

7 (7.1) abc 30 287 1 

 (7.2) ab 30 286.7 1 

 (7.3) ac 30 281.9 2 

 (7.4) a 30 280.2 3 

 (7.5) bc 30 279.2 4 

 (7.6) b 30 278.2 5 

 (7.7) c 30 274.7 6 

 (7.8) (1) 30 272.1 7 

6 Discussion 

Looking at pairwise comparisons 1 to 3 in Table 5, emerges that, between the three investigated 

flexible practices, the one that, on average, leads to the largest increase in the number of surgeries 

scheduled is the variable surgical teams assignment (groups 1.1 vs. 1.2). This practice is followed by 

the introduction of mixed session (groups 2.1 vs. 2.2) and by the surgical units pooling (groups 3.1 

vs. 3.2). 

The pairwise comparisons 4 in Table 5, in their turn, reveal that, on average, the introduction of a 

variable surgical teams assignment significantly increases the number of surgeries scheduled both 

when ORs can host mixed sessions (groups 4.1 vs. 4.3) and when ORs are organised into dedicated 

sessions (groups 4.2 vs. 4.4). Similarly, they reveal that introducing mixed sessions increases the 
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number of surgeries scheduled in the presence of both a variable surgical teams assignment (groups 

4.1 vs. 4.2) and fixed surgical teams assignment (groups 4.3 vs. 4.4). However, the increase that can 

be obtained introducing a variable surgical teams assignment is larger than the one that can be 

obtained introducing mixed sessions (groups 4.2 vs. 4.3). 

Similarly, the pairwise comparisons 5 in Table 5, show that, on average, introducing a variable 

surgical teams assignment increases the number of surgeries scheduled both when surgical units are 

pooled (groups 5.1 vs. 5.3) and when they are not (groups 5.2 vs. 5.4). Similarly, pooling surgical 

units increases the number of surgeries scheduled both in presence of a variable (groups 5.1 vs. 5.2) 

and a fixed surgical teams assignment (groups 5.3 vs. 5.4). The increase that can be obtained 

introducing a variable surgical teams assignment is larger than the one that can be obtained by pooling 

surgical units (groups 5.2 vs. 5.3). 

In the same way, the pairwise comparisons 6 in Table 5, show that, on average, introducing mixed 

sessions increases the number of surgeries scheduled, both when surgical units are pooled (groups 

6.1 vs. 6.3) and when they are not pooled (groups 6.2 vs. 6.4). Similarly, pooling surgical units 

increases the number of surgeries scheduled, both in the presence of dedicated sessions (groups 6.1 

vs. 6.2) and in presence of mixed sessions (groups 6.3 vs. 6.4). The increase that can be obtained 

introducing mixed sessions is larger than those that can be obtained by pooling surgical units (groups 

6.2 vs. 6.3) 

Finally, from the pairwise comparisons 7 in Table 5 emerges that for hospitals where no flexible 

practices are implemented, the best results in terms of surgeries scheduled can be achieved by 

introducing flexibility with respect to surgical teams and ORs (groups 7.2 vs. 7.8). In fact, once these 

two flexible practices are implemented, pooling surgical units does not yield  any significant 

additional advantage (groups 7.1 vs. 7.2). On the other hand, if mixed session cannot be implemented, 

then pooling surgical units significantly increases the number of surgeries scheduled both when 
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surgical teams are managed flexibly (groups 7.3 vs. 7.4) and when they are not (groups 7.7 vs. 7.8). 

Equivalently, if surgical teams cannot be managed flexibly, then pooling surgical units significantly 

increases the number of surgeries scheduled both when ORs are managed flexibly (groups 7.5 vs. 

7.6) and when they are not (groups 7.6 vs. 7.8). Finally, for hospitals where no flexible practice is 

implemented, introducing flexibility with respect to surgical teams leads to an increase in the 

scheduled surgeries that is statistically larger than the one that can be obtained by introducing 

flexibility with respect to ORs and surgical units (groups 7.4 vs. 7.5). 

As a final remark, it is worth mentioning that the statistical significance of an effect does not 

necessarily imply that such an effect is also practically relevant. The post-hoc test, in fact, reveals if 

the difference between the mean number of surgeries associated with two treatment groups is 

statistically different from zero. A difference greater than zero (say, one surgery in two weeks) is not 

necessarily practically relevant and does not necessarily imply that the associated flexible practice 

deserves to be implemented. Indeed, the benefits that are possible to obtain with a flexible practice 

should always be traded off with the costs of implementation. For example, the sessions assignment 

is often the output of a lengthy and complex negotiation process between stakeholders (surgeons, 

management, nursing staff) with different priorities and needs. Thus to avoid conflicts, a  hospital 

could also decide to renounce the potential benefits of implementing a variable surgical teams 

assignment. 

7 Conclusion and future research 

In this study, we presented a novel mixed integer programming model to address the master surgical 

scheduling problem. In addition, we evaluated the impact in terms of scheduled surgeries of the 

implementation of different combinations of three flexible practices: (i) variable surgical teams 

assignment, (ii) mixed sessions and (iii) pooled surgical units.  
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Our analysis revealed that to maximise the number of scheduled surgeries it is sufficient to introduce 

a variable surgical teams assignment and mixed sessions. In fact, if both these practices are 

implemented, pooling surgical units carries no additional advantages. However, if only one of these 

flexible practices (or none) is implemented, then pooling surgical units produces significant benefits. 

Moreover, the analysis showed that, if a hospital cannot implement a variable surgical teams 

assignment, then it can still improve its efficiency by introducing mixed sessions and, similarly, if it 

cannot implement mixed sessions, it can improve its efficiency by introducing a variable surgical 

teams assignment.  

This study considers hospital features that are included in the vast majority of the contributions 

available in the master surgical scheduling literature and explores flexible practices that are 

reasonable according to such a literature. Moreover, it is the first study to propose a systematic 

analysis of the effect of the implementation of these practices. As such, both the presented model and 

the implications of the analysis can be of interest for a wide audience of practitioners and scholars.  

Of course, this study is not without limitations. First, we investigated only a limited number of 

hospital settings. For example, we neglected to factor in certain hospital resources (e.g. ICU, electro-

medical devices) that are not considered critical at Meyer Hospital but that may be highly critical in 

other hospitals. Second, we have not investigated how the MIP model would perform in terms of 

computational time if the problem dimension increases, e.g. if the planning horizon is extended to 

one month or if the number of ORs and beds increases. Finally, we only considered elective patients. 

Nonetheless, it might be interesting to investigate how the implementation of flexible practices could 

help improve hospital performance in presence of emergencies, urgencies and no-shows (Stuart and 

Kozan, 2012). The extension of the computational campaign to other hospital settings, the analysis 

of the optimisation model scalability, the design of ad-hoc methodologies to cope with large scale 

instances and the incorporation of non-elective patients in the analysis will certainly be the object of 

our future research efforts. 
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