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Abstract 

The solubility of some univalent potassium salts (KF, KCl, KBr, KI, KClO4, KSCN, and 

KCNO) in propylene carbonate (PC) was determined at different temperatures through Flame 

Emission Spectroscopy. From the solubility measurements, the thermodynamic parameters 

∆G0, ∆H0 and ∆S0 of solution were calculated. Measurements were carried out via 

conductimetry and FTIR to investigate the formation of ion pairs, and the ion-solvent 

interactions. This study was motivated by the open question of whether specific ion 

(Hofmeister) effects are related to the structure of the solvent (i.e. hydrogen bonding). As for 

water the effects are due to solute induced solvent structure changes not accounted for by 

electrostatic forces.  
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1 Introduction 

The expression “Hofmeister effect” refers to the specificity that ions exhibit on a plethora of 

phenomena. Some examples are colloidal interactions, surfactant dispersions, 

microemulsions stability, polymers, and biomacromolecules (proteins, enzymes, nucleic 

acids, etc.) [1, 2]. The ion effect is usually quantified and organized in a specific trend, which 

may parallel one or more ion properties such as the size, charge, polarizability, partial molar 

volume, etc. In particular, Hofmeister studied the precipitation of egg yolk albumin from 

aqueous dispersions upon the addition of some sodium salts, and discovered that their effect 

can be ordered according to the following ranking for anions (at fixed cation) [1, 2]: 

SO4
2- > PO4

3- > F- > Cl- > Br- > I- > NO3
- > ClO4

- 

Indeed, Hofmeister phenomena are not restricted to aqueous environments. Some studies 

have shown the occurrence of specific ion effects in water-free systems, for example, the 

solubility of salts in organic polar solvents [3], the physico-chemical properties of ionic 

liquids [4, 5], the bubble-bubble coalescence in different organic liquids [6], and the activity 

of enzymes in non-aqueous media [7]. 

In a previous study we reported on the solubility of some potassium salts in ethylene 

carbonate (EC) [8], and showed that the solubility increases with temperature and with the 

size of the anions according to the following series: 

F- < Cl- < Br- < NO3
- < ClO4

- < I-. 

Like EC, propylene carbonate (PC) is a polar aprotic solvent, and bears a methyl group on the 

lactone ring (see Fig. 1). Possessing a large dipole moment (4.81 D), a large dielectric 

constant (64.9 at 25ºC) [9], and a significant donor number (63.2 kJ·mol-1), PC solubilizes 

strong electrolytes and, for this reason, it is used in a variety of syntheses and applications. 
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Fig. 1 Chemical structure and atom numbering for ethylene carbonate (EC) and propylene 
carbonate (PC) 
 
For example, it is possible to obtain sodium, potassium and other alkali metals by electrolysis 

of their chlorides [10]. PC is used as a co-solvent in cleaning systems to remove naturally 

aged polymeric acrylic layers from the surface of wall paintings [11, 12]. Alkylene 

carbonates are also used as “safe” solvent substitutes in agriculture and as carrier solvents in 

therapeutic and cosmetic preparations [13]. The electrochemical stability and the high 

dielectric constant of propylene carbonate make it a prime choice for solvents studied for 

application in lithium-ion batteries [14]. This liquid, and its mixtures with EC and/or 

dimethyl carbonate (DMC), has proved to be among the most efficient solvents in terms of 

battery cyclability [15]. Because the electrolyte defines how fast the energy can be released 

[16], by controlling the rate of mass flow within the battery, the solvation properties of the 

selected solvent play an important role. 

Our choice of PC lies further in studying the effect of an additional methyl group to EC, and 

of the different solvent structuredness on the thermodynamic parameters of solvation. More 

than that a comparison of electrolyte solubilities in different aprotic organic liquids should 

help in clarifying whether Hofmeister phenomena are driven by a specific ion induced 

perturbation of the three dimensional structure of the solvent or not. 
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Prompted by this motivation we measured the solubility of KF, KCl, KBr, KI, KClO4, 

KSCN, and KCNO in PC at 25°, 30°, 35°, 40°, and 45° C through Flame Emission 

Spectroscopy (FES). FTIR measurements were performed in order to detect any modification 

of the solvent infrared spectral properties upon addition of the salts, and conductivity 

measurements were carried out to detect the presence of ion pairs. 

 

2 Experimental Section 

2.1 Materials 

Anhydrous propylene carbonate (purity > 99.7%), potassium fluoride (purity ≥ 99.5%), 

chloride (purity ≥ 99.0%), bromide (purity ≥ 99.0%), iodide (purity ≥ 99.5%), perchlorate  

(purity ≥ 99%), thiocyanate (purity ≥ 99.0%) and cyanate (purity 96%) were purchased from 

Sigma-Aldrich-Fluka (Milan, Italy). 

PC, stored in a sealed bottle (Sure/Seal), was used without any further purification, while all 

salts were recrystallized and purified according to literature recommendations [17]. They 

were stored under vacuum in a dessicator at room temperature over CaCl2. 

2.2 Sample preparation 

In order to measure the salt solubility in PC at different temperatures, a certain amount of 

liquid anhydrous PC was transferred in a vial and an excess of dry salt was added. The vial 

was sealed and kept under magnetic stirring for 2 days in a thermostatted bath at the required 

temperature (±0.1 °C). Then, the stirring was stopped and the saturated solution was left to 

equilibrate in the presence of the salt for 24 h, before a certain amount (b, in grams) of 

solution was carefully sucked from the top of the solution and transferred to a flask and 

diluted with Millipore water, filtered with 0.22 µm Millipore filters, up to a volume V (in L). 

Repeated sample uptakes up to 48 h did not result in a variation of the average measured 

concentration. 
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2.3 Experimental Apparatus 

Potassium was determined by FES using a Perkin Elmer Analist 100 instrument operating in 

emission mode at 766.5 nm. Acetylene-air in 1:2 ratio flame was used for atomization and 

excitation. The sample flux on the flame was regularly measured and kept constant at 9.5 

mL·min-1. 

The reproducibility of the measure is 5% and the detection limit (calculated as the 

concentration corresponding to three times the standard deviation of the signal obtained by 10 

replicates of a 0.05 g·L-1 of K+ standard) is 0.020 mg·L-1. 

The calibration curve was obtained by six standard solutions in the concentration range 

between 0.05 and 13.0 mg·L-1 by dilution of 400 ppm KBr with ultrapure water (MilliQ 

water, resistivity > 18 MΩ). 

The calibration data were fitted with a linear plot with a correlation coefficient R2 of 0.99993. 

The solubility (m in molal units, i.e., moles of solute per 1 kg of PC) of the salt was then 

calculated as: 

m =
1000VcK

1000bMK !VMcK
    (1) 

Where MK is the atomic mass of potassium (39.102 g·mol-1), cK is the concentration of 

potassium ions in mg·L-1, and M is the molar mass of the salt. 

Conductivity measurements were made with a Metrohm 712 conductometer equipped with a 

6.0910.120 conductivity measuring cell, cell constant C = 0.9 cm-1, purchased from 

Metrohm. 

The cell constant was determined before each set of measurements with a standard solution 

of KCl 0.0100 mol·L-1, for which the tabulated specific conductivity is κtab = 1412 µS·cm-1 

[18]. 
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Before each measurement, the solution (about 25 or 50 mL) in the cell was magnetically 

stirred for 10 min and then was left to equilibrate for 5 min. The measurements were carried 

out in a thermostatted bath at (25.0 ± 0.2) °C. 

FTIR analysis was carried out in transmission mode using a Bio-Rad FTS-40 spectrometer 

with 4 cm−1 resolution and 32 scans. The spectral range was 4000−1000 cm−1. The 

transmission spectra were recorded using a liquid cell equipped with NaCl aperture plates. 

FTIR transmission was selected to perform a qualitative analysis of pure PC and of its 

solutions with the salts, at room temperature, choosing a concentration of 2.510-4 mol·L-1 

for all salts except KCl. In the latter case the spectra were recorded on a saturated solution, 

due to the poor solubility of potassium chloride in propylene carbonate. 

 

3 Experimental results and discussion 

3.1 Solvent structure 

Like EC, PC has a large dipole moment (see Table 1), which promotes ion-dipole attractive 

interactions. 

As the PC dipole moment is very close to that of EC, every variation of the thermodynamic 

functions is presumably ascribed to the steric hindrance of the methyl group. 

Supposedly, the replacement of a hydrogen atom by a methyl group in the ring affects its 

capability to solvate the ions, modifying the entropy and the enthalpy change of solution. We 

will discuss this issue later. 

Due to the presence of a large permanent dipole moment, the liquid molecules of EC 

associate in dimers. This has also been confirmed by Monte Carlo studies [19]. The presence 

of the methyl group makes PC a more asymmetric molecule with respect to EC, and thus a 

less structured solvent. In fact no dimers have been detected [9]. Dielectric measurements 

complemented by IR and NMR data indicate that PC behaves as a typical polar liquid with 
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strong dipole-dipole interactions but no association [20]. 

The lack of a solvent structure in PC is also suggested by the value of the Trouton constant 

ΔSvap/R and by the Kirkwood correlation parameter g, defined as: 

g =
9kB!0Vm ! !1.1nD

2( ) 2! +1.1nD2( )
!Nµ 2 2+1.1nD

2( )
    (2) 

Here, kB, ε0, Vm, T, nD, ε, N, and µ are the Boltzmann constant, the vacuum permittivity, the 

molar volume, the absolute temperature, the refractive index, the static dielectric constant, the 

Avogadro number, and the dipole moment, respectively. For PC, g comes out to be about 

1.23 and ΔSvap/R = 11.63. According to Marcus [21], solvents with ΔSvap/R lower than 13 

and/or g lower than 2 should be considered as unstructured. 

Table 1 lists some physico-chemical properties of PC and for comparison those of EC. 

Table 1 Physico-chemical properties of PC and EC at 25 °C [9, 22] 
Property PC EC 
Dielectric constant, ε 64.9 89.8 
Dipole moment, µ (D) 4.81 4.61 
Viscosity, η (cP) 2.53 1.90 (40 °C) 
Density, ρ (g·cm−3) 1.200 1.321 
Molecular mass, M (g·mol−1) 102.09 88.06 
Hildebrand parameter, δ (MPa1/2) 27.2 30.1 
Hansen dispersion term, δD (MPa1/2) 20.0 19.4 
Hansen polar term, δP (MPa1/2) 18.0 22.4 
Hansen H bonding term, δH (MPa1/2) 4.1 5.1 
Electrostatic factor, f = µε (D) 311.52 413.98 
Polarizability, α (Å3)a 8.7 6.8 
Molar polarization, PM 81.2 64.5 
Donor number, DN (kJ·mol-1) 63.2 68.6 
Acceptor number, AN (ppm) 18.3 - 
Kirkwood parameter, g 1.23 1.60 
a calculated from the Clausius-Mossotti equation. 

3.2 Solubility of electrolytes and ion solvation in PC 

The solubility in PC (in molal units) of the equilibrated saturated solutions of the electrolytes 

investigated was determined as a function of temperature (Table 2). 
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The solubility of the electrolytes in PC is lower than that in EC. We discuss the results in 

terms of the ion-dipole interactions that the ions establish with the solvent molecules, of the 

solvent donicity for the cation, and of the solvent structuredness, and compare these data to 

those previously obtained in EC. 

The data for KCl, KBr, KI and KClO4 are close to those reported in previous reports [23, 24]. 

Table 2 Solubility (in molal units, mol·kg-1) of electrolytes in PC as a function of 
temperature. The uncertainty on each measurement is calculated with the error propagation 
formula 
T/(°C) KF KCl KBr KI 
25.0 (1.70±0.20)10-4 (3.67±0.40)10-4 (3.98±0.40)10-3 0.221±0.020 
30.0 (2.78±0.30)10-4 (3.69±0.40)10-4 (3.81±0.40)10-3 0.199±0.020 
35.0 (2.85±0.30)10-4 (3.63±0.40)10-4 (3.76±0.40)10-3 0.218±0.020 
40.0 (1.45±0.15)10-4 (4.18±0.40)10-4 (3.86±0.40)10-3 0.216±0.020 
45.0 (2.75±0.30)10-4 (5.18±0.50)10-4 (4.19±0.40)10-3 0.211±0.020 
 

T/(°C) KClO4 KSCN KCNO 
25.0 (4.57±0.20)10-2 1.09±0.02 (1.52±0.15)10-3 
30.0 (4.65±0.20)10-2 1.33±0.03 (1.70±0.17)10-3 
35.0 (5.03±0.25)10-2 1.72±0.03 (1.92±0.20)10-3 
40.0 (5.10±0.25)10-2 1.97±0.04 (2.34±0.23)10-3 
45.0 (5.21±0.26)10-2 2.10±0.04 (2.50±0.25)10-3 
 

The solubility increases with the size of the anion according to the trend: 

F- < Cl- < CNO- < Br- < ClO4
- < I- < SCN-. 

These results agree with those already found for solutions in EC [8]. Moreover, also in the 

case of PC, KI is the only salt whose solubility decreases with temperature. The comparison 

between the solubilities of the same potassium salts in PC and in EC [8] shows that the 

investigated electrolytes are by far more soluble in ethylene carbonate, presumably due to the 

higher dielectric constant and donor number of this liquid (see Table 1). We note that the 

solubility of potassium thiocyanate is particularly large, and increases with the temperature. 

One possible explanation of this behavior might be the chemical reaction between the SCN- 

ion and the C4 carbon atom of the cyclic carbonate (see Fig. 1), leading to the formation of 
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episulfide, CNO-, and CO2. We had already encountered this phenomenon in a previous 

paper, where we measured the solubility of some potassium salts in ethylene carbonate [8]. 

The enthalpy, Gibbs free energy and entropy changes of solution were calculated from Eqs. 

3-5 [8, 25, 26], and are listed in Table 3: 

!Gsol
0 = "RT lnKps = "RT ln !±m( )2    (3) 

!Hsol
0 = "2R

# ln !±m( )
# 1 T( )

$

%
&
&

'

(
)
)

 (4) 

!Ssol
0 =

1
T
!Gsol

0 "!Hsol
0( )  (5) 

where γ± is the mean molal activity coefficient and Ksp is the solubility product of the salt in 

PC. 

Table 3 Enthalpy (ΔH0
sol, in kJ·mol-1), Gibbs free energy (ΔG0

sol, in kJ·mol-1), entropy (ΔS0
sol, 

in J·K-1·mol-1) changes of solution at 40 °C, experimental lattice energy (U, in kJ·mol-1) [28], 
enthalpy change of solvation (ΔH0

solv, in kJ·mol-1) calculated according to Eq. 10 for 
electrolytes in PC, and crystallographic radius of the anion (ri, in Å) 
Salt ΔH0

sol ΔG0
sol ΔS0

sol U ΔH0
solv ri 

KCl 24.7±1.2 40.6±2.0 -50.8±5.1 715 -690±34 1.81 
KBr 9.2±0.5 29.4±1.5 -64.5±6.5 682 -673±34 1.96 
KI -3.0±0.2 10.3±0.5 -42.5±4.2 649 -652±33 2.16 
KClO4 8.0±0.4 16.9±0.8 -25.5±2.6 602 -593±30 2.36 
KSCN 44.3±2.2 -0.1±0.1 141.6±14 615 -571±28 2.13 
KCNO 39.5±2.0 31.9±1.6 24.3±2.4 653a -614±31 2.34 
a calculated value [28]. 

The value of γ± was estimated through the Debye-Hückel theory as [27]: 

log10 !± = !
A m

1+Ba m
     (6) 

Here m is the molal concentration of the salt. 

A =1.8247!106 !
"3T 3

"

#
$

%

&
'
1 2

 (7) 

B = 50.2901 !
"T
!

"
#

$

%
&
1 2

     (8) 
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where ρ, ε and T are the density and the static dielectric constant of the solvent, and the 

absolute temperature, respectively. A is given in kg1/2·mol-1/2 and B in kg1/2·mol-1/2·Å-1. 

a is the distance of closest approach. For fully dissociated 1:1 electrolytes a can be taken as 

the Bjerrum length q:  

q = e2

2!kBT       
(9) 

where e and kB are the elementary charge and the Boltzmann constant, respectively. 

Table 4 shows the values of ε, A, ρ, q, and B as a function of temperature that were used for 

the calculation of the average ionic activity coefficients in PC solutions. 

Table 4 Values of ρ (in g·mL-1), ε, q (in Å), A and B as a function of temperature (T, in °C) 
that were used for the calculation of γ± in PC solutions 
T/(°C) ρa εb q A B 
30 1.1946 63.664 4.3294 0.74382 0.39565 
35 1.1892 62.630 4.3294 0.74216 0.39476 
40 1.1841 61.515 4.3389 0.74300 0.39435 
45 1.1787 60.240 4.3597 0.74665 0.39439 
a from [29]; b from [30]. 
 
We note that especially for KI and KSCN the solubility of the electrolytes is probably beyond 

the validity range of Eq. 6, therefore the calculated mean molal activity coefficient should be 

considered as a rough estimate. 

The enthalpy change of solvation was obtained as: 

!Hsolv
0 = !Hsol

0 "U  (10) 

where U is the lattice energy of each salt (see Table 3). 

The data for KF were not calculated because of the low reproducibility of its solubility 

measurements. The dissolution process is always endothermic, except for KI. The enthalpy 

change of solution decreases from hard (Cl-) to soft (I-) anions. In the case of large, soft 

anions the ion-solvent interactions (ion-dipole and dispersive) overcome the weak 

electrostatic ion-ion interaction in the lattice. 

Plotting ΔH0
sol as a function of the crystallographic ion radius we obtain the graph reported in 
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Fig. 2. ΔH0
sol decreases as the anion size increases. Interestingly there are two different trends 

for spherical (halides) and non-spherical (thiocyanate and cyanate) anions. Moreover 

perchlorate, although spherical, does not fall on the halide trend. There are two effects to be 

noted here: the effect of shape (which changes the dipolar contribution) as well as the effect 

of the multipoles. 

Higher order multipoles may contribute as much as half of the total dispersion solvation 

energy of electron-rich spherical (monoatomic) ions [31]. Moreover both perchlorate and the 

linear polyatomic ions have a strong permanent quadrupole moments that the monoatomic 

species do not possess. We note that perchlorate, although spherical, has a strong quadrupole 

moment and deviates significantly from the behaviour of the monoatomic spherical halides. 

According to Parsons apparently the shape effect is of less importance than the multipolar 

effect [32]. 

 

Fig. 2 Enthalpy changes of solution vs. the crystallographic radius ri for each anion. The lines 
are a guide for the eye 
 

Assuming that the contribution of K+ to solvation is constant for all electrolytes, the solute-

solvent interactions are stronger for Cl- than for I-, as indicated by the values of ΔH0
solv. 
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The sign of ΔH0
sol is due to the fact that the anion-cation interaction in the lattice is stronger 

in KCl than in KI for electrostatic reasons. 

The free energy of solution decreases when the anion size increases, in agreement to the data 

reported by Muhuri [23]. The entropy change of solution increases with the size of the anion. 

The comparison of the solution thermodynamic functions for PC and EC [8] shows that large 

differences in solubility (ΔG0
sol) are found for the two alkyl carbonates in spite of their 

structural similarity. The dielectric constant and the dipole moment of the solvents determine 

the extent of molecular interactions and hence are responsible for the solubility of the 

electrolytes in the solvents. Table 1 lists some useful parameters to describe the solvating 

power of liquids [9]. We note that the dipole moments are quite similar in the liquids, 4.61 D 

for EC and 4.81 D for PC. The static polarizability – that determines the strength of 

dispersion forces – and the molar polarization are greater in PC that in EC, however their 

relevance in determining the salt solubility is probably negligible because dispersion forces 

are weaker than ion-dipole interactions. The Hildebrand parameter is larger for EC than for 

PC, mainly because of the higher Hansen polar contribution (δP), which in turn depends on 

the dipole moment [13]. Finally, the dielectric constant of EC is almost 40% higher than that 

of PC, and the donor number of EC is about 9% higher than that of PC, resulting in a larger 

solubility of salts in the former, that possesses a stronger solvating capability towards the K+ 

ion, due to the dipolar negative side of the carbonyl group. The solubilization process is thus 

driven by the cation-solvent interactions due to the relevant donicity of the solvents. 

Unexpectedly, the enthalpy of solution is slightly higher in EC than in PC. This result was 

also observed in the case of LiF [9]. The steric hindrance due to the presence of the methyl 

group in PC seems to suggest that the solute-solvent interaction is stronger in EC than in PC. 

However the dipole moment of PC is slightly higher than that of EC, allowing a stronger 

cation-solvent interaction. Presumably, as the dissolution process is driven by the cation (see 
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later), the weaker anion-solvent interaction is balanced by the stronger cation-solvent 

interaction. 

Moreover the difference between the experimental enthalpy of solvation in EC and PC is 

greater for small anions. Thus, small anions can approach the PC molecule and establish 

stronger interactions as a consequence of its larger dipole moment, while the approach of 

large anions is hindered by the hanging methyl group. In fact KI and KSCN are more 

solvated in EC than in PC. 

Presumably, the steric hindrance due to the presence of the methyl group in PC is responsible 

for its weaker structuredness respect to that of ethylene carbonate [33]. 

The addition of an electrolyte to a solvent determines a re-orientation of the solvent 

molecules around the ions, producing a negative entropic solute-solvent term. In the case of 

structured solvents there is also a solvent-solvent term which is positive, especially in the 

case of kosmotropic electrolytes, because the ions disrupt the solvent structure [34]. 

If the solvent is unstructured this positive solvent-solvent term is presumably less important 

in balancing the negative solute-solvent term resulting in a dissolution process which is, 

globally, less favourable from an entropic point of view. Thus, interestingly, the solvent 

structuredness seems to determine the observed inversion of the trend that describes the 

dependence of ΔS0
sol on ri (see Fig. 3). 

This explains why in PC the entropy change of solution is negative, except for KSCN and 

KCNO, and increases in passing from kosmotropic to chaotropic ions (see Fig. 3), in fact 

kosmotropic ions order the solvating PC molecules more tightly. 

Moreover the difference between the values of ΔS0
sol in the two solvents (∆∆S0

sol) decreases 

for chaotropic ions because they bind the solvent molecules more weakly, therefore their 

behaviour in EC and PC is similar. 
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Fig. 3 ΔS0
sol in PC (black squares) and EC (black triangles) for the different salts versus the 

crystallographic radius ri of the anion 
 

We argue that K+ is more solvated than the anions in PC. In fact, PC possesses a large dipole 

moment and the negative side of its carbonyl group can approach more closely and point 

straight toward the cation. On the other hand, anion solvation of PC is poor, as a result of the 

fact that the positive charge is spread over a broader set of atoms, as shown in Fig. 4 [35]. 

Moreover the anion solvation is prevented by the -CH3 group, due to steric hindrance. We 

also note in this respect that, in spite of its high lattice energy, LiF is more soluble than KF in 

PC, as a consequence of the stronger ion-dipole interactions that Li+ establishes with the 

solvent in virtue of its larger charge density [9]. 

 

Fig. 4 Charge distribution in PC. For all hydrogens the charge is +0.1165 Å [35] 
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3.3 Conductivity measurements 

These data were collected in order to evaluate the tendency of the investigated salts to form 

ion pairs. 

The ion conductivity of KF in PC is too low to obtain reproducible data. 

The results of conductivity measurements on the different samples are given in Table 5 and 

shown in Figs. 5 and 6. 

Table 5 Equivalent conductivity Λeq (S·cm2·mol-1, ±0.2) of salts as a function of the molar 
concentration (c, mol·L-1) 

KCl KBr KI 
c Λeq	
   c Λeq	
   c Λeq	
  

3.0510-5 15.7 2.9610-5 31.7 2.9610-4 31.1 
4.6010-5 16.5 6.0710-5 31.9 4.4710-4 31.5 
6.1010-5 16.1 8.9510-5 31.6 6.7410-4 31.7 
9.2010-5 16.1 3.0910-5 30.1 2.5010-3 31.1 
1.2210-4 15.4 6.0310-4 29.6 3.7310-3 31.3 
2.1410-4 16.7 8.8910-4 29.4 4.4610-3 31.3 
3.0510-4 15.0 1.8910-3 28.4 6.7110-3 30.9 
4.6010-4 16.0 2.4910-3 28.0 2.4810-2 27.2 
6.1010-4 14.2 4.9610-3 27.0 3.7310-2 26.0 

    4.4810-2 25.7 
    6.7310-2 24.5 
    9.0910-2 23.4 
    1.0910-1 22.5 

 

KSCN KClO4 
c Λeq	
   c Λeq 

3.0810-4 36.2 9.7810-5 29.3 
5.9210-4 35.0 2.5210-4 28.2 
8.9910-4 34.4 5.0110-4 28.6 
2.5010-3 32.4 7.5010-4 28.0 
4.9510-3 31.1 1.0110-3 28.1 
7.5010-3 31.5 2.5110-3 27.5 
1.0010-2 30.8 5.0010-3 25.5 
4.1110-2 25.2   
7.3710-2 21.6   
1.0310-1 19.9   
2.6610-1 11.4   
5.9210-1 9.2   
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Fig. 5 Plot of Λeq vs c1/2 at 25.0 °C. Left: KBr (black circles), KClO4 (red diamonds), and 
KCl (blue triangles) in PC. Right: KI in PC. The full straight lines represent the Onsager 
equation, the dotted lines are a guide for the eyes 
 

 

Fig. 6 Plot of Λeq vs c1/2 for KSCN in PC at 25.0 °C. The full straight lines represent the 
Onsager equation, the dotted lines are a guide for the eyes 
 

According to the Kohlrausch law the equivalent conductivity at infinite diluition (Λ0
eq) (see 

Table 6) was determined by extrapolating the equivalent conductivity as a function of the 

square root of the concentration for c < 0.01 M. 

The equivalent conductivities of KCl, KBr and KClO4 fall on a curve which lies below the 

limiting tangent obtained from the Onsager equation (see Fig. 5) [36-38]: 

!eq = !eq
0 "

8.20#105

!T( )3 2
+

82.4
! "T( )1 2

$

%
&
&

'

(
)
)

    (11) 



	
   18	
  

where Λeq is the equivalent conductivity, Λ0
eq the equivalent conductivity at infinite diluition, 

ε the dielectric constant, η the viscosity and T the absolute temperature. 

The plot clearly shows that for KCl, KClO4 and KBr ion-association takes place at a different 

extent. On the other hand, the plot for KI lies above the limiting tangent, suggesting that in 

this case ion pairs are not formed (see Fig. 5). Following the conclusions proposed by Jansen 

and Yeager, we argue that presumably KSCN shows that ion-pairing occurs slightly [39]. 

Referring to Figs. 5 and 6, the difference in slope between the experimental and the Onsager 

trends is larger for KCl, indicating that in comparison to KBr, KI, KClO4, and KSCN this is 

the mostly associated electrolyte in PC, despite its low concentration. According to the 

Collins' law of matching water affinities, in the case of small anions the greater electrostatic 

ion-ion interactions overcome the solvent-solute ion-dipole interactions and this fact 

promotes ion pairing. The conductivity results seem to confirm this conclusion drawn from 

the thermodynamic parameters obtained from the solubility data. Moreover, the results for 

KI, KClO4, and KSCN agree with those reported in the literature by Jansen and Yeager [39]. 

Table 6 Equivalent conductivity (Λ0
eq, S·cm2·mol-1) at infinite diluition for each salt in PC at 

25.0 °C (this work) in comparison to the data reported in the literature [39, 40] 
Salt Λ0

eq Ref. 39 Ref. 40 
KCl 17.1±0.2   
KClO4 29.9±0.1 29.64 30.75 
KBr 31.8±0.2   
KI 32.6±0.2 29.41 30.75 
KSCN 37.4±0.3 33.31  
 

The equivalent conductivity at infinite diluition increases according to the trend: Cl- < ClO4
- < 

Br- < I- < SCN-. This sequence is reversed compared to that found by Mukherjee et al. for 

lithium and tetrabutyl ammonium salts in PC, while it is the same as that for tetraethyl 

ammonium electrolytes in the same solvent [36]. 

Thus, the mobility of Cl- is smaller than that of the other anions, suggesting that the effective 

size of Cl- is larger than that of the other anions as a result of the stronger solvation. 
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These comments are in line with the results obtained by Mukherjee on the conductivity of 

different electrolytes in PC at 25 ºC [30]. He determined the ion conductivities of different 

cations and anions and concluded that small cations, like Li+, are more solvated than larger 

cations. 

3.4 FTIR spectra 

Figure 7 shows the spectra of liquid PC at room temperature, Table 7 lists the main peak 

assignements [41]. 

 
 
Table 7 Assignments of the main FTIR peaks (see Fig. 1 for atom numbering) 
Wavenumber (cm-1) Vibration mode 
1060 C5-H twist + C4-H bending 
1120 C7-H wag + C4-H bending 
1148 C5-C4 +C2-O6 + C2-O3 stretch 
1177 O6-C5 stretch + C7-H wag 
1337 C7-H bending 
1355 C7-Hbending 
1391 C5-H wag + C7-H bending 
1484 C7-H umbrella 
1800 C2-O1 stretching 
2882 -CH2 stretching 
2937 -CH3 stretching 
2990 -CH3 stretching 
 

 

 
Fig. 7 FTIR spectrum of liquid PC at room temperature 
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The spectra were recorded also on 2.510-3 mol·L-1 salt solutions in PC. In the case of KCl 

the spectrum was collected on the saturated solution. In particular Fig. 8 shows the spectra for 

the wavenumber range between 1600 and 1900 cm-1. The addition of the salts determines, 

globally, a reduction of the peak intensity, respect to the pure solvent, while there is no effect 

on the peak frequency. The reduction of the intensity follows the trend: KCNO < KClO4 < KI 

< KBr < KSCN < KCl. 

Since the FTIR experiment was conducted using NaCl windows, we considered the potential 

effect due to the dissolution of sodium chloride in the PC salt solutions. The reported 

solubility of NaCl in PC at 25 °C is roughly 1.710-4 mol·L-1 [23], about one order of 

magnitude lower than the concentration of the electrolytes solutions in PC that we 

investigated in the present study by FTIR. For this reason we assume that the effect due to 

sodium chloride is negligible and in any case it should affect all spectra in the same way. 

 

 

Fig. 8 FTIR spectra of salt solutions in PC between 1600 and 1900 cm-1. Pure PC (), KCl 
(), KI (), KCNO (), KClO4 (), KBr (), and KSCN () 
 

These results suggest that smaller anions, like chloride, establish a stronger interaction with 

the positive side of the dipole, reducing the dipole moments changes required for the IR 

absorption to occur. On the other hand, large anions like CNO- or ClO4
- cannot approach the 
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positive side of the carbonyl group. KSCN shows a significant effect on the peak intensity. 

Presumably this effect is related to the nucleophilic activity that we discussed in our previous 

contribution [8]. 

 

4 Conclusions 

Propylene carbonate (PC) is a polar organic solvent with a high dielectric constant and a large 

dipole moment, but does not possess hydrogen bonding. 

We measured the solubility of some potassium salts in PC as a function of temperature and 

the conductivity of their solutions in PC at 25 °C. The solubility data were compared to those 

previously obtained in ethylene carbonate (EC). Although EC possesses about the same 

dipole moment and a larger donor number than PC, it has a stronger molecular structuredness. 

In fact, EC associates in dimers, while the presence of a methyl group in PC hinders the 

formation of stable dimers and significantly reduces the intermolecular interactions. 

The solubility of salts in PC is lower than in EC, increases with the temperature and with the 

size of the anions according to the sequence: F- < Cl- < CNO- < Br- < ClO4
- < I- < SCN-. 

From the experimental data the values of the main thermodynamic functions of solution and 

solvation were determined. As in EC, the enthalpy change of solution (ΔH0
sol) is positive for 

all salts in PC except for KI. 

The presence of the methyl group in PC has a twofold effect: 1) it reduces the solvent 

structuredness, preventing the formation of dimers, and results in a negative ΔS0
sol, 2) it keeps 

the anion more distant from the PC ring, and lowers the anion-solvent interactions. 

Comparing a structured solvent like EC with water we previously argued that the 

thermodynamic behaviour of salt solutions mainly depends on the solvent-solute interactions 

rather than on hydrogen bonding. On the other hand the data obtained with PC suggest that 
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the solvent structure plays a great role in the dissolution process, acting on the entropy 

change of solution. 

The FTIR spectra confirm that small anions with low polarizability interact strongly with the 

PC molecule. 

This fact is supported also by the conductivity measurements. The lower mobility of small 

anions reflects their greater solvation. Moreover these data highlight that in PC kosmotropic 

anions tend to form ion-pairs with K+, respect to chaotropic anions. 

In conclusion this work shows the relevance of dielectric and donicity properties, and - more 

importantly - of the solvent structuredness on the solubility of salts in organic solvents. 
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