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Abstract Urine contains a clear individual metabolic

signature, although embedded within a large daily vari-

ability. Given the potential of metabolomics to monitor

disease onset from deviations from the ‘‘healthy’’ meta-

bolic state, we have evaluated the effectiveness of a stan-

dardized lifestyle in reducing the ‘‘metabolic’’ noise. Urine

was collected from 24 (5 men and 19 women) healthy

volunteers over a period of 10 days: phase I, days 1–7 in a

real-life situation; phase II, days 8–10 in a standardized

diet and day 10 plus exercise program. Data on dietary

intake and physical activity have been analyzed by a

nation-specific software and monitored by published pro-

tocols. Urine samples have been analyzed by 1H NMR

followed by multivariate statistics. The individual finger-

print emerged and consolidated with increasing the number

of samples and reaches *100 % cross-validated accuracy

for about 40 samples. Diet standardization reduced both the

intra-individual and the interindividual variability; the

effect was due to a reduction in the dispersion of the

concentration values of several metabolites. Under stan-

dardized diet, however, the individual phenotype was still

clearly visible, indicating that the individual’s signature

was a strong feature of the metabolome. Consequently,

cohort studies designed to investigate the relation of indi-

vidual metabolic traits and nutrition require multiple

samples from each participant even under highly stan-

dardized lifestyle conditions in order to exploit the ana-

lytical potential of metabolomics. We have established

criteria to facilitate design of urine metabolomic studies

aimed at monitoring the effects of drugs, lifestyle, dietary

supplements, and for accurate determination of signatures

of diseases.

Keywords Diet � Exercise � Metabolomics � Short term �
Urine � NMR

Introduction

Diet is an important environmental exposure, and many

dietary factors (nutrients and non-nutrients) are associated

with disease prevention or causation, health promotion,

and performance improvement (Bingham 2002; Gavaghan

et al. 2000). Different nutritional habits are reflected in

the small-molecule composition of urine. Metabolomic

profiling, i.e., the measurement of the ensemble of com-

pounds of molecular mass \1,500 Da in a biological

sample, applied to urine analysis revealed dietary intake
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patterns (Lenz et al. 2004; Lloyd et al. 2011; Solanky

et al. 2005; Zuppi et al. 1998) and has been proposed as a

powerful tool for a better understanding of the outcomes

of dietary intervention (Andersen et al. 2014; ÓSullivan

et al. 2011).

The presence of dietary intake patterns, on the other

hand, introduces a major day-to-day intrapersonal vari-

ability as well as interpersonal differences in metabolomic

profiles that can be considered as confounding factors in

studies aimed at disease diagnosis, prognosis, and evalua-

tion of the individual response to medical intervention.

However, the presence of an invariant part of the urine

metabolomic profile has been established via a multivariate

statistical analysis of multiple collection of urine samples

from each individual (Assfalg et al. 2008). This individual

metabolic phenotype is stable over the timescale of years

(Bernini et al. 2009) in healthy subjects, and deviations

from the individual’s profile can be used to monitor disease

onset. Most metabolomics studies of clinical relevance rely

on the comparison of the profiles from different subjects

(patients vs. healthy donors, groups of patients undergoing

different treatments or at various degrees of disease pro-

gression), and non-uniform lifestyle habits are expected to

introduce a high level of metabolic noise. Examples of

metabolomic studies aimed at evaluating the effect on

urinary metabolic profiles induced by very short (24 h)

(Lenz et al. 2003; Walsh et al. 2006; Winnike et al. 2009)

or prolonged (2 weeks) (Winnike et al. 2009) standardized

diet are available. In the latter case, it was established that

any normalization that does occur in urine would do so

within 24 h. A comparative study performed in humans

and monkeys shows that dietary habits have little or none

effects on the urinary metabolic phenotype (Saccent et al.

2014). Characteristic changes in metabolite levels have

also been reported in response to physical exercise (Enea

et al. 2010). Nevertheless, the extent to which the urine

metabolome can be normalized by standardized lifestyle/

dietary protocols is not yet described in detail, and the

added discriminating value of normalization itself is not

clear.

Here, we have evaluated the effect of 3 days of stan-

dardized diet and physical activity in reducing the urinary

‘‘metabolic’’ noise by daily multiple collection of urine

samples from 24 healthy volunteers over a period of

10 days, with days 1–7 of documented real life (phase I),

followed by days 8–10 in a standardized diet and day 10

plus exercise program (phase II) (Fig. 1). Nuclear magnetic

resonance (NMR) was used to acquire urinary metabolic

profiles for all 1,335 collected samples. Multivariate sta-

tistical analysis of the profiles was used to assess the dis-

criminatory power of samples collected during the different

phases. Standardized diet resulted effectively in reducing

the interindividual variability for several metabolites. The

relevance of these results for the design of future meta-

bolomics studies is discussed.

Materials and methods

This study was conducted in accordance with the ethical

principles of Good Clinical Practice and the Declaration of

Helsinki. The local Research Ethics Committee of the

Medical University of Graz approved the protocol before

commencement of the study, and all subjects gave written

informed consent.

Subject selection

Twenty-four healthy, 19 females and 5 males, subjects,

over 21 years of age (22–57, mean 32.1 years) with a body

mass index between 18 and 30, were recruited for this

study, as summarized in Table 1. The volunteers are not

genetically related. Individuals have been recruited by

public announcement. Only one female has been screened,

but not included in the study, because of time management

problems. There were no dropouts. Exclusion criteria used

in the selection of the subjects included current use of any

regular medication or therapy, participation in another

•  Controlled water • No alcohol 
consump�on

• Limited 
physical 
ac�vity

• Controlled 
overnight 
water intake

Day 1 – standardized nutri�on         

Day 2 – standardized nutri�on

Day 3 – standardized nutri�on 

PRE-TEST TEST DAY1 WEEK  
REAL LIFE REPORT

•   7d-FRDs
•   7d-EX.RDs
•   Ex. TESTING
•   PEDOMETER

Phase I Phase II

Urine sample collec�on every day [first urine under fas�ng condi�ons, addi�onal 
collec�ons le� free without �me framing and at least 4 collec�ons per day]

Sampling 1

Sampling 2

Sampling 3

Fig. 1 Study design of data and biosample collection

Table 1 Demographic charac-

teristics of the subjects partici-

pating in the study

(mean ± SD)

N 24

Male/female 5/19

Age (year) 32.1 ± 10.6

Height (m) 169.8 ± 8.0

Body weight (kg) 64.4 ± 12.5

BMI (kg/m2) 22.2 ± 3.4
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study within 3 months before the start of the present study,

and acute illness within the 2 weeks preceding the start of

the study. In addition, subjects were excluded from the

study if clinically significant abnormalities in clinical

chemistry or hematology were present or there was evi-

dence for a risk of transmitting, through blood or other

body fluids, the agents responsible for acquired immune

deficiency syndrome, hepatitis B or C. Excessive intake of

alcohol, defined as a regular maximum weekly intake of

greater than 28 units, was also used to exclude subjects

from the study.

Study design

Data on dietary intake have been analyzed by a nation-

specific software and nutrition database. Physical activity

has been monitored by published protocols and pedometers

(Denkwerkzeuge 2010; Hofmann and Tschakert 2011).

Subjects were required to abstain from taking any medi-

cation (including over-the-counter remedies).

Phase I: Subjects completed a ‘‘1-week real-life report’’

on nutrition and physical activity (7d-Food Record, 7d-

Exercise Report, ActiGraph�Pedometer-Report). Physical

activity level has also been assessed by a standardized

questionnaire (International Physical Activity Question-

naire, IPAQ). Urine was collected from all 24 volunteers

for 7 days in a real-life situation and daily documentation

of lifestyle factors.

Phase II: The same monitoring was done during 3 days

in a standardized diet (Table 2), and an additional stan-

dardized exercise program on the third of these days

(Fig. 1) was performed individually between 8:00 a.m. and

3:30 p.m.. The standardized diet criteria focused on mini-

mizing the daily variations (low intake of phytochemicals,

fiber, alcohol, and coffein) to obtain a more stable meta-

bolic profile. We integrated the Fresubin�Energy drink

(Fresenius Kabi), because this is a well-tolerated fiber-free,

energy- and nutrient-defined (150 kcal/100 ml, 15 % of

energy protein, 35 % Fat, 50 % carbohydrates) sip feed

nutrition product.

The test started with 3 min of passive rest sitting on the

cycle ergometer and 3 min of warm up at either 20 W

(female) or 40 W (male) subjects. Work load was increased

by 10–15 W (female) and 20 W (male) dependent on

exercise performance determined in an incremental exer-

cise test before the start of the 10-day intervention period.

Subjects completed the incremental increase of workload

until reaching the target workload which was set midpoint

between the first (LTP1) and the second (LTP2) lactate turn

point to guarantee a metabolically balanced situation for

the whole 45 min of constant load exercise. (Hofmann and

Tschakert 2011) A 3-min active cool down at 20 W

(female) or 40 W (male) and 3-min passive recovery fin-

ished the test.

Sample collection

For this analysis, we have collected a total of 1,335 urine

samples from all 24 donors. Urine samples were collected

from 24 healthy donors 4–6 times a day. Samples were

immediately filtrated through a 0.2-lm Whatman GD/X

filter (#6904-2502), kept at -20 �C for a minimum of

30 min to a maximum of 75 h before long-term storage in

liquid nitrogen without additives. In consequence of our

aim to reflect ‘‘normal lifestyle,’’ we included 1 weekend

in phase I in the probands testing, which caused herein the

maximum of 75 h. Time points of collection, storage at

-20 �C, and transfer into liquid nitrogen were recorded.

NMR sample preparation

According to a widely used protocol (Assfalg et al. 2008;

Bernini et al. 2009; Weckwerth 2007), frozen urine sam-

ples were thawed at room temperature and shaken before

use. A total of 540 ll of urine was added to 60 ll of

sodium phosphate buffer (0.2 M Na2HPO4 and 0.2 M

NaH2PO4 in 100 % 2H2O, pH 7.0), also containing 10 mM

sodium trimethylsilyl [2,2,3,3–2H4] propionate (TSP) and

30 mM sodium azide. 450 ll of the mixture was pipetted

into 4.25-mm NMR tubes (Bruker BioSpin srl).

NMR spectra

1H-NMR spectra were acquired using a Bruker 600-MHz

spectrometer operating at 600.13-MHz proton Larmor

frequency and equipped with a 5-mm CPTCI
1H-13C-31P-2H cryo-probe including a z-axis gradient coil,

Table 2 Standardized diet conditions

Day 7, after 18:00 p.m. Days 8–10

No alcohol, tea, coffee,

chocolate

No alcohol, tea, coffee, chocolate

Little physical activity Little physical activity

Standardized evening meal: Standardized meals:

1 9 200 ml Fresenius�Energy 5 (for women) and 7 (for

men) 9 200 ml

Fresenius�Energy

Foods low in phytochemicals

(for ‘‘bite pleasure’’)a
Foods low in phytochemicals (for

‘‘bite pleasure’’)a

At least 1.5 l water At least 1.5 l water

a Allowed food in addition to Fresubin (if needed) was white bread,

rolls, rice wafers, maize wafers, cornflakes, oat flakes, potatoes, white

rice, noodles, milk, yogurt, curd, buttermilk, sour milk, gouda,

emmentaler, cottage cheese, cream cheese. All diaries should be

lactose-free
b Allowed beverages: water, mineral water, and herbal tea

Genes Nutr (2015) 10:441 Page 3 of 9 441
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an automatic tuning-matching (ATM), and an automatic

sample changer. A PT 100 thermocouple served for tem-

perature stabilization at the level of approximately ±0.1 K

at the sample. Before measurement, samples were kept for

3–5 min inside the NMR probehead, for temperature

equilibration. For each urine sample, a one-dimensional

(1D) NMR spectrum was acquired with water peak sup-

pression using a standard pulse sequence (NOESYpresat;

Bruker), 64 scans, 64 k data points, a spectral width of

12,019 Hz, an acquisition time of 2.7 s, a relaxation delay

of 4 s, and a mixing time of 100 ms. 1H-1H J-resolved (J-

res) spectra were also acquired in order to get more

information about signal multiplicity and coupling patterns.

Spectral processing and analysis

Free induction decays were multiplied by an exponential

function equivalent to a 1.0-Hz line-broadening factor

before applying Fourier transform. Transformed spectra

were automatically corrected for phase and baseline dis-

tortions and calibrated using TopSpin 2.1 (Bruker Biospin).

Spectra were aligned calibrating the TSP peak at 0.00 ppm.

Each 1D spectrum in the range between 0.2 and 10.00 ppm

was segmented into 0.02-ppm chemical shift bins, and the

corresponding spectral areas were integrated using AMIX

software (Bruker BioSpin). Regions between 6.0 and

4.5 ppm containing residual water and urea signals were

removed. The total spectral area was calculated on the

remaining bins, and prior to pattern recognition, normali-

zation was carried out dividing each bin by the total

spectral area value. Alternatively, probabilistic quotient

normalization (PQN) was used as a further scaling method

(Dieterle et al. 2006).

All resonances of interest were assigned on template

one-dimensional NMR profiles by using matching routines

of AMIX 3.8.4 (Bruker BioSpin) in combination with the

BBIOREFCODE (version 2-0-0; Bruker BioSpin) refer-

ence database and published literature when available.

Statistical analysis

Unsupervised and supervised statistical analysis tools were

applied to study the metabolomics profiles (Madsen et al.

2010). Principal component analysis (PCA) was used for

first-step exploratory data analysis, to get a general over-

view of samples distribution. The supervised statistical

procedure employed for data reduction and classification

was a combination of PSA (Assfalg et al. 2008) or partial

least squares (PLS) (Bertini et al. 2009) with canonical

analysis that was used as the method for discriminating

different groups, depending on the focus of the analysis

performed (e.g., to discriminate individuals, to discriminate

different days of the study, and to discriminate samples

collected at different times of the day). The accuracy,

sensitivity, and specificity for the classification were

assessed by means of a double cross-validation scheme

(Szymanska et al. 2012). The original dataset was split into

a training set (80 % of the samples) and a test set (20 % of

the samples) prior to any step of statistical analysis. To

avoid overfitting, the number of PLS components was

chosen on the basis of a 5-fold cross-validation performed

on the training set only, and the best model was used to

predict the samples in the test set, using a k-nearest

neighbors learning method (k = 5) as the final classifier.

The whole procedure was repeated inside a Monte Carlo

cross-validation scheme, and the results were averaged.

To assess which metabolites (i.e., NMR peaks) were

significantly different between different sets and to follow

the metabolites’ changes over different time points, uni-

variate Wilcoxon test was used. A P value B0.05 (after

Bonferroni correction for multiple tests) was considered

statistically significant. The reason to use a univariate test

to enlighten relevant metabolites is that univariate models

are easy to interpret and provide a mean to assess the

significance of the results, while multivariate models pro-

vide a full overview of the metabolic fingerprints, but often

lack interpretability, especially in high-dimensional data

(Hageman et al. 2008). All calculations were made using

the R statistical environment (Ihaka and Gentleman 1996).

Results

The metabolic information contained in the NMR spectra

of all samples was analyzed to derive information about

phase I, phase II, and from the comparison of the two

phases. In both phases, we based our analyses on the first

urine in the morning and all urines of the day collected

without regular times.

In phase I, each individual was under free lifestyle, but

food intake was carefully recorded; a summary of the

average per day energy and macronutrients intake is shown

in the first column of Table 3.

When all the 928 samples (corresponding to an average

of 38.7 samples/individual) collected during phase I were

used to retrieve the individual phenotype, a good interin-

dividual discrimination was obtained, with a mean accu-

racy of 98.7 % (Fig. 2a). The corresponding diagonal

values of the confusion matrix, i.e., the recognition accu-

racy for each individual, are shown in Table 4. The mean

value of accuracy drops to 88.7 % when only the first urine

of the morning was used to build the dataset. These values

were obtained using total area normalization. To exclude

any possible bias deriving from the normalization method,

a PQN approach was also used, which provided mean

values of accuracy of 99.3 and 90.1 %, when using all

441 Page 4 of 9 Genes Nutr (2015) 10:441

123



sample or the first urine of the morning only, respectively.

This test demonstrates the reliability of the analysis irre-

spectively from the normalization method. The effect was

reasonably attributable to the decreased number of samples

per individual (7 vs. 38.7). Here, we verified the impact of

the total number of samples on recognition accuracy,

demonstrating that what counts the most for a high rec-

ognition accuracy is the total number of samples and that

multiple collections within the same day are equally good

as the same number of samples collected as first urine of

the morning under fasting conditions in different days,

despite the effect of food/beverage intake and the estab-

lished modulation of the urine metabolome by the circadian

clock (Slupsky et al. 2007). A circadian dependence of the

NMR profile was also clearly visible in our samples. When

a supervised analysis was done for all 24 individuals sep-

arately as a function of the collection time during the day

(4–6 time points per day), we observed a good clustering of

samples that belongs to one of 6 time points; in general, the

cluster composed of the first samples in the morning is well

separated from the other 5 clusters of the day.

A good separation existed between samples from male

and female donors (5 male and 19 female donors); in a

supervised analysis regarding gender of the individuals

using samples from all 10 days, we obtained an accuracy of

98.7 % using all samples and of 94.06 % using the first

urines only).

When a supervised PLS/CA analysis was performed on

all samples of phases I and II providing the information

about collection day (day 1–10), phase II samples are

clearly separated from those of phase I (Fig. 3), indicating

significant differences in the urinary metabolome between

the free and standardized diet regimes. Within phase II, day

10, in which standardized exercise was introduced in

Table 3 Per-day/person average energy and macronutrients intake

(mean ± SD) during the two phases of the study

Phase I Phase II

Energy (kcal/d/kg) 29.8 ± 7.3 25.6 ± 5.6

Protein (g/d) 71.1 ± 17.5 63.6 ± 18.6

Carbohydrate (g/d) 218.1 ± 57.1 207.2 ± 52.0

Fat (g/d) 69.6 ± 18.9 60.3 ± 18.7

Protein (% of energy) 15.8 ± 2.8 15.9 ± 0.1

Carbohydrate (% of energy) 47.7 ± 5.1 52.2 ± 4.3

Fat (% of energy) 30.3 ± 8.6 34.1 ± 3.8

Alcohol (g/d) 17.8 ± 4.1 –

Alcohol (% of energy) 10.2 ± 11.4 –

Fiber (g/d) 17.8 ± 4.0 2.9 ± 2.0

Fig. 2 PCA/CA score plots for

the discrimination between

individuals using: a Phase I

samples. b Phase II samples.

c all available samples. Samples

are colored by individuals;

some colors are repeated

Genes Nutr (2015) 10:441 Page 5 of 9 441
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addition to standardized diet, was only slightly different

from days 8 and 9. Although standardization started at 6:00

p.m. of day 7 (see Fig. 1), the first urine of day 8 was still

closer to the samples of phase I than those from phase II.

Subdividing samples into three groups, a better recognition

accuracy was obtained maintaining the first urine of day 8

together with samples of phase I: an accuracy of 92.7 %

was obtained when considering group I composed by all

samples of phase I plus the first urine of day 8, group 2

composed by all samples of day 8 but the first urine and all

samples of day 9, and group 3 composed by all samples of

day 10; the accuracy is 91.3 % when the first urine of day 8

was included in group 2.

The observed differences between samples in phases I

and II originated from significant changes in the levels of

several metabolites. During phase I, the metabolite levels

measured for different subjects varied without following

any specific trend; instead, clear differences were observed

between phase I and phase II, with an overall reduction in

the spreading of the concentration of most metabolites

among the different individuals as a result of the diet

standardization (Fig. 4). This analysis was performed using

only the first urine of the morning, and urine of day 8 was

associated with the samples of phase I. More homogenous

metabolite levels were observed already on day 9. Addi-

tionally, hippuric acid (p = 9.643 9 10-7), m-hydroxy

phenyl-proprionic acid (m-HPPA; p = 0.000919), trigo-

nelline (p = 1.381 9 10-6), and trimethylamine N-oxide

(TMAO; p = 0.002159) displayed significantly lower

concentrations in phase II than in phase I (Fig. 4) reflecting

the different contents of many food compounds in the free

and standardized diets (Table 3). Under the standardized

diet regime, the nutrients contents were extremely similar

at each meal. Still, differences among samples collected at

different time points during the day reproduced the same

pattern observed in phase I, thus demonstrating how daily

changes in urinary profiles are dominated by circadian

rhythms.

The observed homogenization of the metabolome

composition under standardized diet in phase II contributes

to the reduction in the intrapersonal variability, as visible

from the comparison of panels A and B of Fig. 2, without

any significant loss in the interindividual discrimination;

the mentioned recognition accuracy of 98.7 % obtained

with samples of phase I compares well with the accuracy of

98.9 and 99.2 % obtained, respectively, using the 407

samples of phase II only, or all 1,335 samples of both

phases together. It should be noted that these calculations

were conducted on different numbers of samples. To

evaluate the real advantage of collecting samples under a

standardized regime in clinical studies, we have also

compared the accuracies obtained for groups of samples

coming from 3 days of phase I with all sample from phase

II (in such a way to have a similar number of samples in

each group). Under these conditions, the PCA score plot

shows more compact clusters for each individual in phase

II than in phase I (Fig. 2c). Additionally, to explain the

99.9 % of total variance, a lower number (89) of PCA

components was needed for phase II than for phase I (94

components).

Discussion

In this metabolomics study, we present the impact of the

total number of samples on the recognition accuracy and

report on the extent to which the urine metabolome can be

normalized by our standardized lifestyle/dietary protocols.

The daily multiple collection of urine samples during

phase I was used to retrieve the individual phenotype. In

phase II, we evaluated the effect of 3 days of standardized

diet and exercise in reducing the urinary ‘‘metabolic’’

noise. The use of only the first urine of the morning to build

the dataset dropped the mean value of accuracy from 98.7

to 88.7 % (or from 99.2 to 90.1 using the PQN approach),

Table 4 Individual recognition accuracies using all samples of phase

I (PCA/CA/KNN analysis, supervised by individual)

1 M 97.7 % 13 F 98.7 %

2 F 95.5 % 14 F 97.8 %

3 F 97.6 % 15 F 98.6 %

4 F 96.6 % 16 F 99.3 %

5 F 98.7 % 17 F 99.1 %

6 F 96.5 % 18 F 100 %

7 F 99.5 % 19 M 100 %

8 M 99.2 % 20 F 98.6 %

9 F 97.4 % 21 M 99.2 %

10 M 99.4 % 22 F 100 %

11 F 96.6 % 24 F 100 %

12 M 100 % 25 F 96.6 %

Fig. 3 PLS/CA score plots for the discrimination between days of

study. Phase II days are encircled. Samples are colored by the day of

study
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an effect that is reasonably attributable to the decreased

number of samples per individual. An optimal minimum

number of samples per individual of the order of 40 has

been indeed already identified in previous works (Assfalg

et al. 2008). Compared with previous studies, where the 40

samples had been collected as first urine of the morning

under fasting conditions in different days, we showed here

that what has the greatest impact on a high recognition

accuracy is the total number of samples and that multiple

collections within the same day are equally good, despite

the effect of food/beverage intake and a possible modula-

tion of the urine metabolome by the circadian clock

(Slupsky et al. 2007). The last effect was also clearly vis-

ible in our samples. Our data support that small variations

due to meal composition represent a random background

that do not alters the individual metabolome. In a recent

paper, the authors reported only minor effects due to the

meal on the urinary metabolome. The authors reported

small intra-individuals variations during the day, with

major variations only for the first void urines (Lenz et al.

2003). Dallmann and colleagues demonstrated that there is

a strong direct effect of the endogenous circadian clock on

multiple human metabolic pathways that is independent of

sleep or meals (Dallmann et al. 2012).

Urinary metabolomics is well established as a tool to

monitor dietary intake and to evaluate the outcome of

dietary intervention (Andersen et al. 2014; Holmes et al.

2008; Lenz et al. 2004; Lloyd et al. 2011; ÓSullivan et al.

2011; Solanky et al. 2005; Zuppi et al. 1998). The

metabolite levels measured for different subjects varied

without following any specific trend in phase I, but were

different between phase I and phase II. More homogenous

metabolite levels were observed already on day 9, con-

firming earlier observations that the effects of diet on the

urinary metabolome are already visible within the first 24 h

(Lenz et al. 2003; Walsh et al. 2006). Accordingly, under

Fig. 4 Box whiskers plots

showing the trends of significant

metabolites in the first urine of

the morning in phases I and II.

Relative intensities are reported

in arbitrary units
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the standardized diet of phase II, we could observe a clear

overall homogenization in metabolites levels and signifi-

cant decreases in the concentration of four molecules,

namely hippuric acid, m-HPPA, trigonelline, and TMAO,

which are reconducible to exclusion of a number of food

and beverages in this phase, as detailed below. Elevated

urinary excretion of hippuric acid is associated with the

intake of tea, coffee, wine, fruits, and vegetables (Cathcart-

Rake et al. 1975; DuPont et al. 2002; Gonthier et al. 2003;

Mulder et al. 2005; Olthof et al. 2003; Rechner et al. 2002;

Toromanovic et al. 2008), which were all excluded in

phase II. m-HPPA is one of the major metabolites of

ingested caffeic acid and of the phenolic degradation pro-

ducts of proanthocyanidins, the most abundant polyphenol

present in chocolate (Konishi and Kobayashi 2004; Rios

et al. 2003), and coffee and chocolate consumption was

forbidden in phase II. Trigonelline is a product of the

metabolism of niacin (vitamin B3), which is excreted in the

urine; it is also found in coffee and several plants such as

oats and potatoes (Wishart et al. 2013). TMAO is biosyn-

thesized endogenously from trimethylamine, which is

derived from choline, which can be derived from dietary

lecithin (phosphatidylcholines) or dietary carnitine; carni-

tine is found in red meat, and lecithin is found in eggs and

is commonly used as an ingredient in processed food; high

levels of TMAO are found in many seafoods (Stella et al.

2006; Wang et al. 2005; Wishart et al. 2013).

The reduction in the differences among the NMR

profiles induced by standardized diet/lifestyle gave rise to

a reduction in the distance between the points associated

with each individual in the metabolic space of Fig. 2.

Furthermore, a small reduction in interindividual distances

was also observed. However, each donor was still well

discriminated from the others. This is a very important

result that provides a clear evidence of the fact that the

individual lifestyle is not the key determinant of the

invariant part of its metabolome and negligibly contrib-

utes to the individual phenotype. Diet standardization may

help identifying the invariant part of the urinary metab-

olome removing some of the day-to-day intrapersonal and

interpersonal variability, thus possibly reducing the min-

imum set of required samples and facilitating the statis-

tical analysis, but the interpersonal differences associated

with the metabolic phenotype are still well ‘‘visible.’’ This

finding is further proof of concept of the relevance of

metabolomics in biomedical research; the presence of a

strong signature of the personal phenotype, which goes

beyond the individual lifestyle, will permit to assign

deviations from individual-specific metabolic traits to

biochemical alterations of his/her ‘‘healthy’’ status for an

early disease diagnosis. To further explore individual-

specific metabolic traits and its relation to nutrition, future

cohort studies should collect multiple samples for each

study participant even when lifestyle conditions are highly

standardized.
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nutritional-software.at

Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic

quotient normalization as robust method to account for dilution of

complex biological mixtures. Application in 1H NMR metabo-

nomics. Anal Chem 78:4281–4290. doi:10.1021/ac051632c

DuPont MS, Bennett RN, Mellon FA, Williamson G (2002)

Polyphenols from alcoholic apple cider are absorbed, metabo-

lized and excreted by humans. J Nutr 132:172–175

Enea C et al (2010) 1H NMR-based metabolomics approach for

exploring urinary metabolome modifications after acute and

chronic physical exercise. Anal Bioanal Chem 396:1167–1176.

doi:10.1007/s00216-009-3289-4

Gavaghan CL, Holmes E, Lenz E, Wilson ID, Nicholson JK (2000)

An NMR-based metabonomic approach to investigate the

biochemical consequences of genetic strain differences: appli-

cation to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett

484:169–174

Gonthier MP et al (2003) Microbial aromatic acid metabolites formed

in the gut account for a major fraction of the polyphenols

excreted in urine of rats fed red wine polyphenols. J Nutr

133:461–467

441 Page 8 of 9 Genes Nutr (2015) 10:441

123

http://dx.doi.org/10.1021/pr400964s
http://dx.doi.org/10.1073/pnas.0705685105
http://dx.doi.org/10.1073/pnas.0705685105
http://dx.doi.org/10.1021/pr900344m
http://dx.doi.org/10.1021/pr900344m
http://dx.doi.org/10.1021/pr800548z
http://dx.doi.org/10.1073/pnas.1114410109
http://www.nutritional-software.at
http://www.nutritional-software.at
http://dx.doi.org/10.1021/ac051632c
http://dx.doi.org/10.1007/s00216-009-3289-4


Hageman JA, Hendriks MM, Westerhuis JA, van der Werf MJ,

Berger R, Smilde AK (2008) Simplivariate models: ideas and

first examples. PLoS One 3:e3259. doi:10.1371/journal.pone.

0003259

Hofmann P, Tschakert G (2011) Special needs to prescribe exercise

intensity for scientific studies. Cardiol Res Pract 209302:209310.

doi:10.4061/2011/209302

Holmes E et al (2008) Human metabolic phenotype diversity and its

association with diet and blood pressure. Nature 453:396–400.

doi:10.1038/nature06882

Ihaka R, Gentleman R (1996) A language for data analysis and

graphics. J Comput Stat Graph 5:299–314

Konishi Y, Kobayashi S (2004) Microbial metabolites of ingested

caffeic acid are absorbed by the monocarboxylic acid transporter

(MCT) in intestinal Caco-2 cell monolayers. J Agric Food Chem

52:6418–6424. doi:10.1021/jf049560y

Lenz EM, Bright J, Wilson ID, Morgan SR, Nash AF (2003) A 1H

NMR-based metabonomic study of urine and plasma samples

obtained from healthy human subjects. J Pharm Biomed Anal

33:1103–1115

Lenz EM, Bright J, Wilson ID, Hughes A, Morrisson J, Lindberg H,

Lockton A (2004) Metabonomics, dietary influences and cultural

differences: a 1H NMR-based study of urine samples obtained

from healthy British and Swedish subjects. J Pharm Biomed

Anal 36:841–849. doi:10.1016/j.jpba.2004.08.002

Lloyd AJ, Beckmann M, Fave G, Mathers JC, Draper J (2011) Proline

betaine and its biotransformation products in fasting urine

samples are potential biomarkers of habitual citrus fruit

consumption. Br J Nutr 106:812–824. doi:10.1017/S0007

114511001164

Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolo-

mics: a review in human disease diagnosis. Anal Chim Acta

659:23–33. doi:10.1016/j.aca.2009.11.042

Mulder TP, Rietveld AG, van Amelsvoort JM (2005) Consumption of

both black tea and green tea results in an increase in the

excretion of hippuric acid into urine. Am J Clin Nutr 81:256S–

260S
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