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Abstract

We propose an adaptive structured pooling strategy to solve the action recognition
problem in videos. Our method aims at individuating several spatio-temporal pooling
regions each corresponding to a consistent spatial and temporal subset of the video. Each
subset of the video gives a pooling weight map and is represented as a Fisher vector
computed from the soft weighted contributions of all dense trajectories evolving in it. We
further represent each video through a graph structure, defined over multiple granularities
of spatio-temporal subsets. The graph structures extracted from all videos are finally
compared with an efficient graph matching kernel. Our approach does not rely on a fixed
partitioning of the video. Moreover, the graph structure depicts both spatial and temporal
relationships between the spatio-temporal subsets. Experiments on the UCF Sports and
the HighFive datasets show performance above the state-of-the-art.

1 Introduction
Automatic human action recognition in videos is an important and popular research topic in
computer vision, with potential applications in video analytics, video retrieval and video
surveillance. While near perfect performance has been achieved in simplistic lab video
datasets [7, 25], recognizing human action in realistic videos such as sports videos and TV
programs is still quite challenging due to camera and object motion, background distraction,
occlusion and viewpoint variation. To tackle these issues, several local space-time features
have been proposed, e.g. space-time interest points [12] and dense trajectories [34].

The most common approach to exploit these features is to build a Bag-of-Words [27] like
representation of the whole video. These representations rely on the definition of a vocabu-
lary of local space-time features. Then the local features are encoded with respect to the vo-
cabulary. The Fisher encoding method [20] has proven to be very powerful when applied on
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Figure 1: An overview of our method. Top left: a frame of the “kiss” action of the HighFive
dataset. Right: the video structure graph where nodes are pooling regions at different gran-
ularities (the bigger the node, the coarser the granularity). All the remaining plots are the
pooling map of each node where the color correspond to the node color in the graph. Active
nodes on this frame are depicted with filled circles. Note how node 9 selects both actors
faces. Note that pooling regions are spatio-temporal regions, a video illustrating the pooling
process on the whole video is available in the supplementary material.

images and recently has been applied successfully in videos. All top performers [8, 16, 32]
of the recent THUMOS Action Recognition challenge used Fisher encoding.

However, many action recognition approaches discard the space, time and hierarchical
relationships among the local video subvolumes that these space-time features represent.
These overlooked relationships may constitute discriminative structures of local space-time
features, which could be very useful for correctly recognizing human actions, e.g. complex
but structural movements of different body parts in sports such as bench swing or an in-
teraction between two persons. Indeed, a video contains highly dynamic content, and the
visual content corresponding to semantic concepts of the target class may appear at different
position, time and speed for different videos of the same class. Hence, the computation of
a single global representation may be harmed by some noisy elements in the surrounding
(both spatially and temporally) of the event of interest.

In this work, we aim at exploiting multiple dynamic pooling regions that adapt to the
spatial layout and dynamics of each video. Each pooling region is represented through a soft
Fisher encoding. The relationships between the pooling regions are captured in a graph struc-
ture that represents the whole video. Our method is illustrated in Fig. 1. The video structures
are efficiently comparable with the state-of-the-art GraphHopper kernel [4]. Our adaptive
structured pooling shows an improvement over the state of the art for action recognition.

2 Related works
The most powerful video representation is based on local spatio-temporal features either
sampled on a regular grid [33] or along trajectories [34]. Typically local features are encoded
following a bag-of-words approach such as [12, 14, 31, 34]. Although simple and relatively
successful, these methods largely left the relationships among local features unexplored, and
thus potentially omitted discriminative information contained in such relationships.
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To better exploit local features and their relational information, many works have sought
to encode or model space-time structures of local features. Some works explicitly model
local feature neighborhoods, such as [6, 10, 15]. Kovashka et al. [10] construct higher-
level features composed of local features and their neighborhoods. Class-specific distance
functions are learned for defining neighborhoods so that they cover the most informative
configurations. Gilbert et al. [6] group simple 2D corners spatially and temporally using a
hierarchical process, and discriminative features are then mined at each stage of that hier-
archy. In [15] quantized local features are augmented with relative space-time relationships
between pairs of features. More recently, Ma et al. [14] proposed the hierarchical space-time
segments (HSTS) that can extract both static and non-static relevant human body regions and
exclude irrelevant background regions.

Another major branch of works, such as [17, 22, 29, 30, 37] learn structural models
for human actions. For instance, Wang et al. [37] use a hidden conditional random field to
model a human action as a constellation of parts, where the model parameters are learned
in a max-margin framework. Raptis et al. [22] cluster dense trajectories and learn a graph-
ical model per action where the nodes correspond to latent variables selecting appropriate
dense trajectory clusters for an action. Some recent works propose to represent a video as a
graph [2, 35] of local features and use graph kernel or graph matching techniques for action
classification. For example, in [35] the nodes are clusters of dense trajectories and the edges
represent temporal relationships, and the random walk graph kernel is used for training ac-
tion classifier. In [2] the nodes are space-time subvolumes of video and the edges depict the
space, time and hierarchical relationships among the subvolumes, and action classification is
cast as a graph matching problem.

Approaches that use local features for action recognition typically extract a set of features
from a video, while the feature set cardinalities can vary from video to video. To get fixed
size feature vectors from videos to ease the learning step, e.g. SVM classifier learning, a
feature pooling step is usually used. The straight forward approach is to pool features from
the whole video [14, 31, 34], but the space time configuration of the local features is then
lost. To encode the space and time configuration information among the local features, one
popular approach is to pool features within pre-defined fixed sized space-time grids [12,
24]. In [12] space-time interest point descriptors are pooled within space-time grids that are
arranged as a space-time pyramid, and in [24] action detector responses are pooled in grids
of a similar pyramid. Simple temporal grids are also used [17, 29], where local features
are pooled in temporal segments of a video. More recently, Fisher vector encoding method
has been effectively applied as a feature encoding method for action recognition [8, 16, 18,
28, 31, 32, 36], but all these methods use fixed grids (or the whole video) for pooling the
encoded Fisher vectors. Obviously, such fixed grids do not adapt to the content of the video,
especially the spatial-temporal layout of the regions that contain the human action, so it is
quite possible that significantly different feature vectors may be produced through feature
pooling of videos that contain the same action.

Instead of using fixed grids, some methods perform feature pooling within space-time
clusters of local features such as [5, 22]. In [22] dense trajectories are grouped according
to their space-time overlaps and then feature pooling is performed on feature descriptors of
group members. In [5] a hierarchical clustering is carried out on tracklets in a video and
feature pooling is done in every cluster in the cluster tree to make a Bag-of-Words tree. Our
pooling method is closely related to this line of research, but with the following three im-
portant distinctions. First, we cluster HSTS [14], which also preserves both the moving and
static relevant regions within a video, while the clusters in [5, 22] are based on trajectories

Citation
Citation
{Gilbert, Illingworth, and Bowden} 2011

Citation
Citation
{Kovashka and Grauman} 2010

Citation
Citation
{Matikainen, Hebert, and Sukthankar} 2010

Citation
Citation
{Kovashka and Grauman} 2010

Citation
Citation
{Gilbert, Illingworth, and Bowden} 2011

Citation
Citation
{Matikainen, Hebert, and Sukthankar} 2010

Citation
Citation
{Ma, Zhang, Ikizler-Cinbis, and Sclaroff} 2013

Citation
Citation
{Niebles, Chen, and Li} 2010

Citation
Citation
{Raptis, Kokkinos, and Soatto} 2012

Citation
Citation
{Tang, Li, and Koller} 2012

Citation
Citation
{Tian, Sukthankar, and Shah} 2013

Citation
Citation
{Wang and Mori} 2011

Citation
Citation
{Wang and Mori} 2011

Citation
Citation
{Raptis, Kokkinos, and Soatto} 2012

Citation
Citation
{Brendel and Todorovic} 2011

Citation
Citation
{Wang and Sahbi} 2013

Citation
Citation
{Wang and Sahbi} 2013

Citation
Citation
{Brendel and Todorovic} 2011

Citation
Citation
{Ma, Zhang, Ikizler-Cinbis, and Sclaroff} 2013

Citation
Citation
{Wang and Schmid} 2013{}

Citation
Citation
{Wang, Kl{ä}ser, Schmid, and Liu} 2013

Citation
Citation
{Laptev, Marsza{T1l }ek, Schmid, and Rozenfeld} 2008

Citation
Citation
{Sadanand and Corso} 2012

Citation
Citation
{Laptev, Marsza{T1l }ek, Schmid, and Rozenfeld} 2008

Citation
Citation
{Sadanand and Corso} 2012

Citation
Citation
{Niebles, Chen, and Li} 2010

Citation
Citation
{Tang, Li, and Koller} 2012

Citation
Citation
{Karaman, Seidenari, Bagdanov, and Delprotect unhbox voidb@x penalty @M  {}Bimbo} 2013

Citation
Citation
{Murthy and Goecke} 2013

Citation
Citation
{Oneata, Verbeek, and Schmid} 2013

Citation
Citation
{Sun and Nevatia} 2013

Citation
Citation
{Wang and Schmid} 2013{}

Citation
Citation
{Wang and Schmid} 2013{}

Citation
Citation
{Wang, Wang, and Qiao} 2012

Citation
Citation
{Gaidon, Harchaoui, and Schmid} 2013

Citation
Citation
{Raptis, Kokkinos, and Soatto} 2012

Citation
Citation
{Raptis, Kokkinos, and Soatto} 2012

Citation
Citation
{Gaidon, Harchaoui, and Schmid} 2013

Citation
Citation
{Ma, Zhang, Ikizler-Cinbis, and Sclaroff} 2013

Citation
Citation
{Gaidon, Harchaoui, and Schmid} 2013

Citation
Citation
{Raptis, Kokkinos, and Soatto} 2012



4 AUTHORS: ADAPTIVE STRUCTURED POOLING FOR ACTION RECOGNITION

that focus on moving regions and relevant static regions may be missing. Secondly, in [5, 22]
each feature is weighted equally during pooling, while we use HSTS to compute a pooling
map that emphasizes the regions of human action and the features are weighted according to
the map. In this way, the pooling result may better represent the human action contained in
the video. Finally, our structured representation is not limited to be a tree and the node rep-
resentation is not limited to histograms as in [5]. This flexibility allows us to model different
kind of relationship among video regions. Moreover our approach does not need to learn a
specific graph representation for each action as [17, 22, 29, 30, 37].

3 Adaptive structured pooling

In this section, we first formalize how to apply Fisher encoding with a weighting of the local
features in 3.1. We then detail our strategy to obtain pooling regions and weights in 3.2.1. We
rely on HSTS to define spatio-temporal pooling regions (STPR). Each pooling region defines
a weighting map for all local features to be encoded in a video. We further define several
granularities of STPR and a graph on top of them, thus yielding a structural representation
of the whole video.

3.1 Fisher encoding with soft pooling

A Fisher vector representation requires a generative model for local features in a video. In
our case we fit a Gaussian Mixture Model uλ on a set of randomly sampled local features
from videos. The Fisher kernel between two sets of local features X and Y is defined as
KFV = GX>

λ
F−1

λ
GY

λ
, where Fλ is the Fisher information matrix of uλ and GX

λ
is the gradient

of the log-likelihood of the data X with respect to the parameters λ of the generative model
GX

λ
= ∇λ loguλ (X).
To obtain the Fisher vector representation one can apply the Cholesky factorization of

F−1
λ

= L>
λ

Lλ and defining GX
λ
= Lλ GX

λ
we can write KFV(X ,Y ) = GX>

λ
GY

λ
. Assuming that

descriptors in X are independent, the Fisher vector of a video X is a normalized sum of
gradients at each point x ∈ X with respect to the model parameters λ :

GX
λ
= ∑

x∈X
Lλ ∇λ loguλ (x) (1)

Fisher vectors are usually computed for a set of features from a whole video or image [18,
21]. The ideas of spatial pyramid (SPM) and spatio-temporal pyramid matching (STPM)
can be easily adapted simply computing Fisher encoding over the subset of features that
have coordinates inside the boundary of the pyramid sub-region. In [3] a weighted Fisher
encoding approach has been proposed for object detection in image, where the weights are
based on multiple segmentation outputs. In this work we formalize a flexible way of pooling
for Fisher vectors that adapts to arbitrary spatio-temporal regions in video.

We obtain soft-pooling by computing a weight wm for each feature xm ∈ X to encode.
Given the GMM uλ = ∑

N
n=1 ωnun(x; µn,σn) and the M features of X , we compute for each
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component un the mean Gµ
n (X) and covariance elements Gσ

n (X) of a Fisher vector as:

Gµ
n (X) =

1
√

ωn

M

∑
m=1

wmγn(xm)

(
xm−µn

σn

)
, (2)

Gσ
n (X) =

1√
2ωn

M

∑
m=1

wmγn(xm)

(
(xm−µn)

2

σ2
n

−1
)
, (3)

where γn(xm) is the posterior probability of the feature xm for the component n of the GMM:

γn(xm) =
ωnun(xm)

∑
N
j=1 ω ju j(xm)

. (4)

3.2 Spatially and temporally structured pooling of a video

In this section, we first present how we define pooling regions and corresponding weights
from a set of HSTS in 3.2.1. We then detail our approach to obtain a structured representation
of the video as a graph linking local pooling regions in 3.2.2.

3.2.1 Soft weighted pooling regions

Given a video, we extract a set of HSTS S via the method in [14], which comprises two
major steps: hierarchical video frame segment extraction and video frame segment tracking.

In the first step, a hierarchical segmentation [1] is produced for each video frame using
both motion and color channels [13]. After some initial pruning of oversized or undersized
segments, a set of segment trees T t is extracted from each video frame (t is the frame index).
Each segment tree T t

i ∈ T t is considered as a candidate segment tree of human body and we
denote T t

i = {st
i j} where each st

i j is a video frame segment. T t is then pruned using shape,
motion and color cues. Note that each T t

i ∈ T t is either pruned altogether or retained with
all its segments. For example, all segments in T t

i = {st
i j} will be preserved as long as at least

one segment st
i j contains motion. In this way, relevant but static segments can be maintained,

e.g. the torso in a hand shaking action.
In a second step, every segment st

i j of all surviving segment trees of a video frame is
tracked separately both forward and backward in time in the video sequence based on its
motion and color. Finally, the space-time segment st

i j is the set of bounding boxes obtained
from the tracking process. Since the number of segments may be large and many of them
cover non-static body parts, the tracking procedure is designed to be efficient and allow non-
rigid deformation of the target segment. Due to the extraction algorithm described above, the
resulting HSTS set S = {st

i j | ∀ t, i, j} is dense with many overlapping space-time segments.
Given a set of HSTS Sk ⊆ S we can define a weighted pooling map Mk by accumulating

how many segments of Sk are present in each frame at each position. Formally, let us denote
St

k all segments of Sk existing at frame t. For every pixel p = (x,y) of frame t, we compute
the corresponding pooling map value Mt

k(p) as the count of segments enclosing this position:

Mt
k = ∑

s∈St
k

Ψs (5)
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Figure 2: A frame of one HandShake action video from the HighFive dataset and its corre-
sponding pooling map using all segments.

where for each segment s ∈ St
k we define the function of pixels p in an image

Ψs(p) =

{
1 if p ∈ s
0 otherwise

(6)

The pooling map Mt
k is further normalized by the total number of segments in the frame

and square-rooted. This pooling maps represent at any moment of the video, how much
each pixel is relevant with respect to the set Sk. The more segments overlap in one position
the more likely this pixel is significant for the action taking place. A pooling map with all
segments of the corresponding frame is depicted in Fig. 2. Finally, for a video with T frames
we define the spatio-temporal pooling map as

Mk(x,y, t) =
{

M1
k (x,y) . . .M

T
k (x,y)

}
(7)

For each local feature xm to be encoded, we estimate the weight wk
m with respect to set

Sk as a small local integral of the pooling map Mk around its centroid. The parameters
(vx,vy,vt) are respectively the horizontal, vertical and temporal span of integration. That is
for each xm ∈ X with the spatio-temporal coordinates of its centroid being (xxm ,yxm , txm), wk

m
is estimated as:

wk
m =

∫ xxm+vx

xxm−vx

∫ yxm+vy

yxm−vy

∫ txm+vt

txm−vt

Mk(x,y, t) dx dy dt (8)

Finally, all weights of a pooling region are normalized to sum to one in order to have a
comparable representation no matter how many features are present within the region.

3.2.2 Structured representation of videos

The previous section detailed how to obtain weights to encode local features from a given
set of HSTS. We want to build a structured representation of each video. We therefore need
to divide the whole set of segments into meaningful subsets. We propose to find coherent
subsets by grouping together segments according to their overlap. This will create a set of
local (both spatially and temporally) pooling regions.

We first compute an affinity matrix A of all segments S of a video. The affinity of two
segments si (alive from frame tis to tie) and s j (alive from frame t js to t je) is computed as:

A(si,s j) = 1
min(tie−tis,t je−t js) ∑

t∈[max(tis , t js),min(tie , t je)]

st
i ∩ st

j

st
i ∪ st

j
. (9)
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The affinity between two segments will be equal to one only if a segment is temporally fully
included in the other and with a perfect spatial overlap in every frame of coexistence. The
affinity is zero if two segments do not overlap in any frame. Given this affinity matrix we
run the normalized cuts algorithm [26] to obtain the subsets of segments.

Instead of choosing one fixed number of subsets, we propose to use multiple increasing
sizes that will each provide a set of finer local representations of the video. We hence run
the normalized cuts algorithm with different number of clusters (namely 4 and 16 subsets)
to obtain multiple levels of representation. This setting is inspired by the spatial pyramid
usually defined with corresponding numbers of cells. Given all the HSTS clusters obtained
from the previous step (including the complete set of HSTS as the single cluster of the first
level), we can build a graph representing the whole video. We represent each cluster as a
node in the graph, and each node attribute is the soft pooling of dense trajectories features
weighted by the map computed on all segments of this cluster. We link clusters based on
their overlap, we create a link between all clusters that have at least a pair of overlapping
segments (even partially). An illustration of one video graph is shown in Fig. 1.

To compare the video graphs we use the efficient GraphHopper kernel from [4]. The
GraphHopper kernel is a scalable kernel that can deal with vector values for the nodes at-
tributes. The comparison between two graphs relies on the similarity of the nodes and the
computation of shortest paths in each graph. Formally, given two graphs G = (V,E) and
H = (V ′,E ′) the GraphHopper kernel Kgh(G,H) is decomposed as a sum of node kernels:

Kgh(G,H) = ∑
v∈V

∑
v′∈V ′

w(v,v′)kn(v,v′) (10)

where w(v,v) counts the number of times v and v′ appear at the same hop in shortest paths of
equal discrete length and kn(v,v′) is a kernel between the node attributes, as proposed [4].
In our experiments, kn(v,v′) is a simple dot product between the soft-pooled Fisher vectors
of v and v′.

4 Experiments

4.1 Experimental protocol
We test our approach on two widely-used action recognition benchmark datasets. The UCF
Sports Dataset contains 150 videos and 13 classes. Experiments are typically conducted
using either the split proposed in [11] or using leave-one-out (LOO). The three “Golfing”
classes are merged in a single “Golf” class and the same is done for “Kicking” actions.
Considering the smaller size of this dataset, we augmented the training data by flipping
training videos as in [34]. Performance is reported as mean per class accuracy.

The HighFive dataset is a challenging dataset of human interactions. The dataset is
collected from TV series and contains 4 classes plus a set of negative examples. The dataset
contains 300 videos and experiments are performed following the split proposed by [19].
Results are reported in terms of mean average precision on the 4 classes of interest.

We employ features computed along improved dense trajectories [31]. We use Fisher
vector coding for HOG, HOF, MBH and Trajectory (TR) features similarly to [18]. We
apply PCA to each descriptor vector preserving 64 components for HOG, HOF, MBH and
20 for TR and train a GMM with 256 components on a random set of 200k samples for each
of the five descriptors. Each graph node is represented with a soft-pooled Fisher vector, as
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described in Section 3.1, with L2 and power normalization [21]. The parameters vx, vy and
vt are all set to 7, the rational for vt being that dense trajectories are defined over 15 frames.

As a feature fusion strategy we adopt a simple kernel fusion approach. For each feature
f we compute a graph matching kernel K f (G,H), comparing graphs G and H. Each kernel
is normalized by applying:

K′f (G,H) =
K f (G,H)√

K f (G,G)K f (H,H)
(11)

The final kernel, for an ensemble of features F , is K(G,H) = ∑ f∈F K′f (G,H). Finally, a
one-vs-all SVM is learnt for each class using the fused kernel.

4.2 Results
Table 2 reports results on the UCF Sports dataset. On this easier dataset we get very strong
results. Our FV baseline gets 89.4% (88.6% using LOO) accuracy while the structured
representation obtains 90.8 % (90.4 % using LOO). Note that our approach does not rely on
any person bounding box annotation.

Table 1 reports the results for the HighFive dataset. In this challenging dataset we obtain
an improvement of 3% mean average precision (mAP). Note that our Fisher vector baseline
(FVB) is very close to previous state-of-the-art but our structured representation improves
over our FV baseline by 4%. We include results with our proposed method using only the
MBH feature channel to get a fair comparison with [5, 14] that only exploit the MBH feature.

Our method performs better and requires less supervision than [19], which needs dis-
criminatively trained head pose estimators and people detectors. Our approach also has an
edge over the methods of [5] and [14], which also extract the spatio-temporal structure in
the video. The method of Ma et al. [14] exploit space-time segments to sample features but
discard spatio-temporal relationships. The video model proposed by Gaidon et al. [5] only
captures hierarchical relationship in a top-down manner while our method models the rela-
tionship between video sub-volumes at different granularity. To the best of our knowledge
these are the best results on these datasets.

Fig. 3 shows the top five ranked videos for each action on the HighFive dataset. The
videos are represented by their central frame for simplicity. The top two videos are correct
for all actions, while the top five videos are correct for both “highFive” and “hug”. The
fourth video for the kiss action is actually a video of the hug action, but one can see that
these two actions do share similar characteristics. Note also that this central frame may hide
ambiguous elements happening before or after that frame within the video.

5 Conclusions
We have introduced a powerful and generic representation of videos for action recognition.
Our structured representation is adaptive to the content of the video and does not rely on a
fixed partition of neither space nor time. Our method only requires video level label annota-
tion. Indeed we exploit an unsupervised procedure to generate a structured representation of
the video. Our representation jointly models the hierarchical and spatio-temporal relation-
ship of videos without imposing a strict hierarchy. Moreover, our method does not require a
specific learnt graph model for each action.
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Method mean AP
Our (all features) 65.4
Our (MBH only) 62.8
FVB (all features) 61.3
Gaidon et al. [5] 62.4
Ma et al. [14] 53.3
Wang et al. [34] 53.4
Laptev et al. [12] 36.9
Patron-Perez et al. [19] 42.4

Table 1: Comparison with the state of the
art on the HighFive dataset. Results are
reported as mean average precision over
the 4 classes.

Method LOO Split [11]
Our (all features) 90.4 90.8
Our (MBH only) 88.3 90.0
FVB (all features) 88.6 89.4
Lan et al. [11] 83.7 73.1
Kovashka et al. [10] 87.3 -
Klaser et al. [9] 86.7 -
Wang et al. [34] 85.6 -
Yeffet et al. [38] 79.3 -
Rodriguez et al. [23] 69.2 -
Wang et al. [35] - 85.2
Ma et al. [14] - 81.7
Raptis et al. [22] - 79.4
Tian et al. [30] - 75.2

Table 2: Comparison with the state of the
art on the UCF Sports dataset. Results are
reported as mean per-class accuracy over
the 10 classes.

handShake

highFive

hug

kiss

handShake

highFive

hug

kiss

hug

highFive

hug

kiss
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hug
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hug

negative

Figure 3: Top five ranked videos (leftmost is higher ranked) by our method for each action
(handShake, highFive, hug and kiss) of the HighFive dataset.
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Experiments conducted on two standard datasets for action recognition show a significant
improvement over the state-of-the-art. In the future, we would like to see if our structured
representation could also be used to solve the action localization problem by identifying the
paths and/or nodes that are most relevant for the action.
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