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1. Oleuropein Aglycone: a natural polyphenol which protects 

against the cytotoxicity associated with Transthyretin 

fibrillogenesis 

 

Transthyretin (TTR) is a plasma protein secreted by hepatocytes into the blood and 

cerebrospinal fluid, where it transports thyroid hormones, thyroxine (T4) and 

triiodothyronine (T3) and cotransport of vitamin A through Retinol Binding Protein 

(RBP). TTR is an amyloidogenic protein implicated in diseases such as senile systemic 

amyloidosis (SSA) and familial amyloid polyneuropathy (FAP), both characterized by 

extracellular deposition of insoluble amyloid fibrils in heart, peripheral nerves and other 

organs. In particular, fibrils in FAP patients are composed of single-site mutant TTR 

and among the numerous pathogenic variants Leu55 � Pro55 (L55P) is highly 

amyloidogenic and forms amyloid fibrils in vitro. It is suspected that the single-point 

mutations accelerate amyloidogenesis by destabilizing the monomeric partially 

unfolded amyloidogenic intermediate state rather than by altering the tetrameric native 

state. TTR fibrils have been considered direct responsible of tissue impairment in FAP 

and SSA, but the unstable fibril precursors are increasingly considered the main 

responsible of cell sufferance and tissue impairment in amyloid diseases. In particular, 

the early unstable oligomeric intermediates are highly toxic due to their ability to 

interact with, disassemble and permeabilize cell membranes. Moreover, increasing 

information on polymorphism of pre-fibrillar and fibrillar assemblies has led to propose 

that apparently similar fibrils can display different stability and efficiency in generating 

toxic species. These data suggest the opportunity to search natural or synthetic 

molecules interfering with amyloid aggregation by stabilizing the TTR native state by 

hindering the appearance of toxic species, or by favouring the growth of less toxic 

assemblies. We have recently described a natural compound (oleuropein aglycone) 

which is protective in Tg animal models of Abeta deposition and cultured cells by 

stimulating cell autophagy and the endolysosomal path and by modifying the pattern of 

aggregation of amylin and Abeta peptides skipping the appearance of toxic oligomers 

and reducing plaque load. Our study is focused on the ability of oleuropein aglycone 

(the main phenolic component of the extra virgin olive oil) to inhibit the toxic effects to 

HL-1 cells of amyloid aggregates of both wild-type TTR and its highly amyloidogenic 

L55P variant. Our data offer the possibility to validate and optimize the use of 
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oleuropein as itself or as a starting point to rationally designe promising drugs that 

could enter in a clinical experimental phase. 

 

 

 

 

2. Wild-type and Leu55Pro Transthyretin Homocysteynilation, 

worsening of cardiomiopathy onset 
 
Homocysteine (Hcy) is a homologue of the amino acid cysteine, differing by an 

additional methylene bridge (-CH2-), and it is biosynthesized from methionine. Some 

diseases are associated with higher homocysteine levels.  

One of proposed mechanisms of homocysteine toxicity includes endoplasmatic 

reticulum stress and the unfolded protein response. In particular, protein 

homocysteinylation is a novel example of protein damage that may explain the 

involvement of Hcy in the pathology of human vascular diseases. Post-translational 

modifications in addition to amino acid substitution can affect the structure of TTR 

affecting its ability to bind these receptors. Recent data show that L-homocysteine 

reacts with transthyretin in the human plasma to form a stable covalent adduct. TTR 

undergoes homocysteinylation at its single cysteine residue (Cys10). The ratio TTR-

Cys10-S-S-homocysteine/unmodified TTR increased with increasing homocysteine 

plasma concentrations. In our study we decided to perform some in vitro and in vivo 

experiments to study the effect of Hcy on wt- and L55P-TTR in physiological 

conditions by using HL-1 cells, a cardiomyocyte cell line.  

Our results showed that Hcy in physiological conditions have a double effect, it is able 

to stabilize the tetrameric form of wt-TTR and to destabilize the mutant L55P enriching 

the solution with monomeric species and faciliting the formation of fibrils. The kinetics 

of aggregation of both wt- and L55P-TTR were analyzed by biophysical analysis such 

as: dynamic light scattering, circular dichroism, resveratrol binding assay and 

turbidimetry. The toxicity on the HL-1 cardiomyocyte cell line was analyzed by the 

MTT assay. Our data confirm the binding of Hcy to TTR and this modification may 

contribute to worsening the cardiomiopathy onset. 
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3. Molecular insights into membrane interaction of a new 

amyloidogenic variant of �2-microglobulin 

 
Systemic amyloidosis is a fatal disease caused by misfolding of �2-microglobulin, a 

normally soluble protein, which then aggregate into insoluble fibrils. �2-microglobulin 

(�2-m) is present at the surface of all nucleated cells, where it participates to the 

formation of the major histocompatibility complex. In patients with end stage renal 

failure subjected to haemodialysis, blood levels of �2-m increase remarkably causing 

protein precipitation into fibrils deposited in bones, skeletal muscle and joints, causing 

arthropathy, an event which ultimately leads to a pathological condition known as 

dialysis-related amyloidosis (DRA), a pathology for which were not described familial 

forms. However, recently, kindreds were found with slowly progressive gastrointestinal 

symptoms caused by the autosomal dominant D76N mutation in the �2-m gene; unlike 

patients with dialysis-related amyloidosis, this family displayed normal renal function. 

Extensive amyloid deposits were found in the spleen, liver, heart, salivary glands and 

nerves. The D76N variant was thermodynamically unstable and remarkably 

fibrillogenic in vitro under physiological conditions. The aim of this study was to 

examine the correlation between the structural features of amyloid aggregates of D76N 

and their toxic effects on human neuroblastoma cell line SH-SY5Y. The results showed 

that the D76N fibrillar species interacted with the ganglioside GM1, a key component 

of raft domains at the SH-SY5Y membrane. The resulting toxic effects resulted from 

increases of both ROS levels and calcium permeability whichtriggered necrotic cell 

death. In summary, our data provide a mechanistic insight into the mechanisms of 

cytotoxicity of aggregated �2-m D76N and support the idea that GM1 is a key site of 

interaction of amyloid species with the cell membrane, stressing the role of lipid rafts as 

fundamental mediators of amyloid toxicity. 
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1 Protein Folding and Misfolding 

1.1 Protein Folding 

The folding of proteins into their compact three-dimensional structures is the most 

fundamental and universal example of biological self-assembly; understanding this 

complex process will therefore provide a unique insight into the way evolutionary 

selection has influenced the properties of a molecular system for functional advantage 

(Dobson 2003). The process of protein folding has been widely studied, and for better 

understanding its characteristics the theory of "energy landscape" has been developed 

that considers the native state of a protein as the absolute minimum in the folding 

energy landscape that depends on a large number of degrees of freedom. The folding 

process allows proteins to assume their native structure correctly and achieve their 

physiological function. Secondary structure, including strands, helices and sheets that 

are found in nearly all native protein structures, is stabilized primarily by hydrogen 

bonding between the amide and carbonyl groups of the main chain (the so-called 

backbone). The formation of such structure is an important element in the overall 

folding process, although it might not have a role as fundamental as the establishment of 

the overall chain topology (Makarov et al. 2003). The folding mechanism is very fast, 

ranging from milliseconds to fractions of a second, so it is difficult to describe, given 

the multiple conformations that unfolded polypeptide chains can take. Levinthal, in 

1969, indicated the infinity of degrees of freedom that a nascent polypeptide could 

display. If the protein would pass through all of these possible conformations, it would 

need a time enormously greater than that measured in vivo (E.coli produces a protein of 

100 amino acids in 5 seconds at 37 C). The difference that exists between the theoretical 

time for the correct folding to be achieved and the observed one it is known as the 

"Levinthal's paradox" (Levinthal 1968).  

Currently, the "core folding" of a polypeptide chain is considered to be entirely 

contained within its amino acid sequence; the protein folding exploits molecular 

dynamics that allow specific residues, although very distant in the amino acid sequence, 

to quickly enter in close contact. The formation of these contacts is a cooperative 

process, and conformational restrictions provided by an interaction will favour other 

interactions in a self-reinforcing process (Stefani 2008). The inherent fluctuations in the 

conformation of an unfolded or incompletely folded polypeptide chain enable residues 

that are far in the amino-acid sequence to come into contact with other residues. Since, 
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on average, native-like interactions between residues are more stable than non-native 

ones, they are more persistent and the polypeptide chain is able to find its lowest-energy 

structure by a trial-and-error process. Moreover, if the energy surface or ‘landscape’ has 

the right shape (Fig.1) only a small number among all possible conformations needs to 

be sampled by any given protein molecule during its transition from a random coil to a 

native structure (Dobson et al.1998). 

The energy landscape contains all conformational stages accessible to the polypeptide 

chain, with their entropy, free energy and fraction of native contacts. These species are 

heterogeneous and include highly dynamic and complex disordered conformations, 

whose structures are far from the native ones. Initially they form most of the secondary 

structure: alpha helices and β sheets. Subsequently, the increasing interactions of non-

polar hydrophobic residues near the central core of the protein lead to a collapse of the 

polypeptide chain in a state called "Molten Globule". Molten Globules are deprived of 

many bonds between side chains that the protein shows in its final tertiary structure. The 

final steps to reach the native state include bond formation between side chains and the 

formation of covalent disulfide bridges. Although it is still not well clear how a protein 

may contain information for training of its structure, it has been hypothesized that this is 

due to the presence of hydrophobic and polar residues, which favour the formation of 

specific interactions between residues ensuring the compactness of the structure. Within 

the cell are present both natively folded and natively unfolded proteins (NUPS). Many 

of these proteins are involved in cell cycle control, DNA transcription and in ribosome 

structure; they are characterized by low hydrophobicity and high net charge; these 

features make them incapable of folding in the intracellular environment and 

simultaneously prevent their possible aggregation (Uversky et al. 2002). In addition, 

their lack of structure favours the binding of chaperones with these proteins favouring 

their clearance and preventing their aggregation (Uversky et al. 2002). These proteins 

are an example of how the presence of surfaces can play an important role in facilitating 

the folding process. In fact, many NUPS reach their correct three-dimensional structure 

upon binding to their target proteins, which have a surface adequate for NUP folding, 

(Dedmon et al. 2002).  

 

 

 

 



Introduction 

 

 

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A schematic energy landscape for protein folding. The surface ‘funnels’ the multitude of 
denatured conformations to the unique native structure. The critical region on a simple surface such as 
this one is the saddle point corresponding to the transition state, the barrier that all molecules must cross if 
they are to fold to the native state. Superimposed on this schematic surface are ensembles of structures 
corresponding to different stages of the folding process. The structure of the native state is shown at the 
bottom of the surface; at the top are indicated schematically some contributors to the distribution of 
unfolded species that represent the starting point for folding. 

 

Probably, targets contain structural information, as charged and hydrophobic residues, 

required for NUP folding. Alternatively, naturally unfolded proteins undergo rapid 

intracellular turnover such that their unfolded state represents a mechanism of cellular 

control (Wright et al. 1999).  

Experiments carried out in vitro led to understand the bases of the folding process in a 

simple environment consisting of a buffered pH and a known ionic strength, sometimes 

containing a co-solvent or a denaturing agent. These conditions are very different from 

those present in the intracellular environment where other factors can potentially affect 

protein folding, misfolding or aggregation (Stefani 2008). The intracellular protein 

concentration is about 300 - 400 mg / mL. This feature, known as “macromolecular 

crowding”, is very important in thermodynamics terms as it can affect the 

conformational states of proteins (Ellis et al. 2001). The cell membrane can promote the 

crowding and a reversible unfolding / refolding of specific proteins when they 
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physiologically translocate through the membrane (Bychkova et al. 1988). Intracellular 

macromolecules can facilitate the folding of specific proteins. Some of these are a 

heterogeneous family of proteins termed “chaperones”, including prokaryotic GroES / 

GroEL and DnaK / DnaJ, also known in eukaryotes as Hsp70 / Hsp40. The role of 

chaperones is to facilitate the correct folding of other proteins, ensuring the presence of 

an appropriate environment, contacts with surfaces with which a protein can fold 

quickly and effectively and avoiding the formation of inappropriate interactions (Hartl 

et al. 2002). In the absence of chaperones, proteins will fail to achieve their native state 

(a process known as misfolding) and instead may associate with other unfolded 

polypeptide chains to form large aggregated structures (in vivo, this may result in 

deposition of extracellular aggregates or inclusion body formation). A similar scenario 

can occur when proteins acquire mutations or when they are exposed to unfavourable 

conditions, such as extreme heat or pH. Indeed, the presence of unfolded peptides, that 

expose to the aqueous environment their hydrophobic amino acid residues, induces a 

tendency to aggregation of hydrophobic side chains belonging to the same protein or 

different proteins, in the logic of decreasing the surface contact area with the solvent. In 

this case the polar solvent drives the formation of oligomeric protein aggregates, 

characterized by a high content of β-structures (Dobson 2001). Protein folding and 

misfolding are associated with the regulation a wide range of cellular processes, leading 

to the conclusion that uncorrect folding may alter protein functionality with the 

consequent onset of pathologies (Stefani and Dobson 2003). Misfolded proteins are 

devoid of their biological and functional activity and they are prone to aggregate and/or 

interact inappropriately with other cell components, eventually leading to cell death. 

Some diseases often known as conformational diseases are due to misfolding and, as a 

consequence, the proteins acquire some normally absenttoxicity (gain of function) or 

lose their functional activity (loss of function) (Thomas et al. 1995). Misfolding and 

growth of molecular aggregates with amyloid characteristics are two closely related 

phenomena. Indeed, it is not a coincidence that many amyloidoses are associated with 

mutations of specific chaperones or of proteins involved in the ubiquitin-proteasome 

system, that drive the polypeptide chain to a correct folding or degrade proteins that lose 

thair correct tertiary structure, respectively (Macario et al. 2002 - Layfield et al. 2001). 

Amyloidogenic proteins are diverse in sequence and share few characteristics – they can 

be large or small, have a catalytic or a structural role, be abundant or sparse. The lack of 

sequence or structural similarity amongst amyloidogenic proteins reinforces the notion 
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that amyloid is a primitive structure that can be generated by many polypeptide 

sequences at proper conditions. Thus, it has been hypothesized that amyloid has existed 

as long as proteins exists, and it was probably a prominent fold in the early evolution of 

life (Chernoff 2004). Recent studies have identified amyloid fibers in bacteria, fungi, 

insects, invertebrates and humans that have a functional role. As an example, human 

Pmel17 has important roles in the biosynthesis of the pigment melanin, and the factor 

XII protein of the homeostatic system is activated by amyloid ( referenze). The 

functional amyloid hypothesis states that organisms have evolved to take advantage of 

the fact that many polypeptides can form amyloid, despite the fact that amyloid can be 

toxic (Mackay et al. 2001; Fowler et al. 2006). However, the discovery of functional 

amyloid was surprising because amyloid has been associated solely with human 

diseases for over a century before its physiological role was discovered. Functional 

amyloid was identified initially within the past decade in several lower organisms, 

including bacteria (Chapman et al. 2002; Claessen et al. 2003), fungi (Mackay et al. 

2001), and insects (Iconomidou et al. 2006) and subsequently in humans (Fowler et al. 

2006). 

 

 

1.2 Amyloid diseases 

 

Many human degenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s 

disease (PD), transmissible spongiform encephalopathies (TSEs) and non-insulin-

dependent type II diabetes (NIMMD), are associated with an abnormal deposition of 

proteinaceous fibrillar aggregates (amyloid fibrils) in various tissues and organs (Stefani 

and Dobson, 2003; Stefani 2004). In medicine, these pathologies are called 

“Amyloidoses”. Approximately 25 different proteins and peptides are known to be able 

to form amyloid fibrils in various diseases. The polypeptides involved include full-

length proteins (e.g. lysozyme, transthyretin), biological peptides (e.g. insulin, human 

amylin) and fragments of larger proteins produced by specific processing or by more 

general degradation (e.g the Alzheimer β-peptide). The peptides and proteins associated 

with the main amyloid diseases are listed in Table 1.2. These diseases can be grouped 

into three different categories (Chiti and Dobson 2006): 
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- neurodegenerative diseases, in which aggregation occurs in the brain (such as AD, PD, 

TSEs and Huntington’s disease). 

- non-neuropathic localized amyloidoses, in which aggregation occurs in a single type 

of tissue other than the brain (such as NIMMD and medullary carcinoma of the thyroid). 

- non-neuropathic systemic amyloidosis, in which aggregation occurs in multiple tissues 

(such as lysozyme amyloidosis and fibrinogen amyloidosis). 

 

Table 1. A summary of the main amyloidoses and proteins or peptides involved. 

Disease Main aggregate component 

Alzheimer's disease Aβ peptides (plaques); tau protein (tangles) 

Spongiform encephalopathies Prion (whole or fragments) 

Parkinson's disease α-synuclein (wt or mutant) 

Primary systemic amyloidosis Ig light chains (whole or fragments) 

Secondary systemic amyloidosis Serum amyloid A (whole or 76-residue fragment) 

Fronto-temporal dementias Tau (wt or mutant) 

Senile systemic amyloidosis Transthyretin (whole or fragments) 

Familial amyloid polyneuropathy I Transthyretin (over 45 mutants) 

Hereditary cerebral amyloid angiopathy Cystatin C (minus a 10-residue fragment) 

Haemodialysis-related amyloidosis β2-microglobulin 

Familial amyloid polyneuropathy III Apolipoprotein AI (fragments) 

Finnish hereditary systemic amyloidosis Gelsolin (71 amino acid fragment) 

Type II diabetes Amylin (fragment) 

Medullary carcinoma of the thyroid Calcitonin (fragment) 

Atrial amyloidosis Atrial natriuretic factor 

Hereditary non-neuropathic systemic 
amyloidosis 

Lysozyme (whole or fragments) 

Injection-localised amyloidosis Insulin 

Hereditary renal amyloidosis Fibrinogen -A chain, transthyretin, apolipoprotein AI, 
apolipoprotein AII, lysozyme, gelsolin, cystatin C  

Amyotrophic lateral sclerosis Superoxide dismutase 1 (wt or mutant) 

Huntington's disease Huntingtin 

Spinal and bulbar muscular atrophy Androgen receptor [whole or poly(Q) fragments] 

Spinocerebellar ataxias  Ataxins [whole or poly(Q) fragments] 

Spinocerebellar ataxia 17 
TATA box-binding protein [whole or poly(Q) 
fragments] 
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It has also been demonstrated that many non-pathological peptides and proteins can 

aggregate in vitro, under appropriate conditions, into fibrils which are indistinguishable 

from those associated with amyloid diseases (Guijarro et al. 1998; Litvinovitch et al. 

1998; Chiti et al. 2001; Uversky and Fink 2004). The amyloidogenic proteins, either 

related or unrelated to a disease, are very different in their sequence, function, size and 

tertiary structure, but all of them are able to form fibrils that share very similar 

morphological, structural and tinctorial features with amyloid. All these evidences led to 

the idea that the propensity to form amyloid fibrils is not an unusual feature of the small 

number of proteins associated with diseases, but is instead a generic property of 

polypeptide chains. A modification in the three-dimensional structure can be therefore 

sufficient to enable the production of aggregation-prone species by many, if not all, 

proteins or peptides.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The possible fates of newly synthesized polypeptide chains. The equilibrium 1 between 
partially folded and native molecules is usually strongly in favour of the latter, except as results of 
mutations, chemical modifications or destabilizing solution conditions. Under normal conditions, the 
increased partially or completely unfolded populations are refolded by molecular chaperones (Hsp) or 
cleared by the ubiquitin–proteasome machinery. When these clearance machineries are impaired, 
disordered aggregates arise or the aggregation path (equilibrium 2) is undertaken, towards the nucleation 
of prefibrillar assemblies that eventually grow into mature amyloid fibrils (equilibrium 3). The formation 
of prefibrillar assemblies as amyloid pores could be directly related to the cytotoxic effects of amyloids. 
The question mark indicates that it is not known whether amyloid pores are on path or dead end 
intermediates of fibril formation. DANGER! indicates the processes generating prefibrillar assemblies, 
presently considered mostly associated with cell impairment. Molecular chaperones may suppress the 
appearance of prefibrillar aggregates by reducing the population of misfolded protein molecules assisting 
their correct folding or favouring their complete misfolding for proteasome degradation (Stefani 2004). 
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Amyloidoses belong to the larger group of misfolding or conformational diseases, 

because protein aggregation into amyloid fibrils results from the presence of 

“misfolded” forms of a specific protein/peptide that lose their functional, native 

conformation and are often devoid of their normal biological activity. Such proteins, fail 

to reach or to maintain their correct native three-dimensional structure and may 

aggregate and/or interact inappropriately with other cellular components, leading to 

impairment of cell viability. These events can be due to mutations, changes in the 

environmental conditions, such as pH or temperature, misprocessing or proteolysis. The 

possible fates of a newly synthesized polypeptide chain are described in Figure 2. 

Perturbations of the conformational properties of the polypeptide may affect 

equilibrium 1, increasing the population of partially unfolded or misfolded species 

which are more prone to aggregation than the native state. 

 

 

1.3 Structure and formation of amyloid fibrils 

 

In general a protein or a peptide is termed as amyloid if, due to an alteration of its native 

functional state, it converts from its soluble functional state to a particular insoluble 

form, called the β-pleated-sheet, whose polymerization originates highly organized 

fibrillar aggregates. These structures are defined “amyloid fibrils” or “plaques” when 

they accumulate extracellularly or as “intracellular inclusions” when they are formed 

inside the cell (Chiti and Dobson 2006). The presence of amyloid fibrils (either ex vivo 

or in vitro) is defined by the following three criteria (Nilsson 2004): 

 

1) All amyloid fibrils are able to bind the dye Congo red, giving rise to an apple-green 

birefringence when observed under cross-polarized light. 

2) All amyloid fibrils have a fibrillar morphology and appear as long, straight, 

unbranched fibers, with a diameter of 70-120 Å and a variable length (Serpell 2000), 

when they are investigated by electron or atomic force microscopy.  

3) All amyloid fibrils are enriched in β-sheet secondary structure. 

 

The fibrils are also stained with Thioflavin T (ThT), giving a shift in the fluorescence of 

the dye (Levine, 1993; Munishkina and Fink 2007). Both circular dichroism (CD) and 
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Fourier transform infra red spectroscopy (FT-IR) detect a high β-sheet content in 

amyloid fibrils, even when the precursor monomeric peptide or protein is substantially 

disordered or rich in α-helical structure. Finally, amyloid fibrils reveal a typical X-ray 

diffraction pattern indicating the presence of the characteristic cross-β structure in the 

fiber (Sunde et al. 1997).  

The cross-β structure and texture is a robust, stable structure in which the protein chains 

are securely held together by repetitive hydrogen-bonding that extends for the whole 

length of the fibrils. An amyloid fibril usually appears as composed by two to six 20-35 

Å wide “protofilaments”, which are often twisted around each other to form supercoiled 

rope-like structures arranged around a hollow centre (Serpell et al. 2000). Each 

protofilament in such structures appears to have a highly ordered inner core that consists 

of polypeptide chains arranged in the characteristic cross-β structure. In this 

organization, the β-strands run perpendicularly to the protofilament axis, resulting in a 

series of β-sheets that propagate along the fibril axis (Fig.3). So the cross-β structure of 

the core of the amyloid aggregates is the main structural peculiarity of these assemblies. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Close-up view of the structural organization of an amyloid fibril. Four protofilaments are 
wound around each other and their core structure is a row of β-sheets where each strand runs 
perpendicular to the fibril axis (Stefani, 2004). 
 

 

The X-ray diffraction pattern characteristic of the cross-β structure consists of a sharp 

4.7 Å meridional reflection arising from the spacing between hydrogen-bonded β-

strands within a β-sheet. A broad reflection centred at 10 Å on the equator is also 

observed, which arises from the inter-sheet spacing (Fig.4). The spacing between the β-

sheets depends on the size of the side-chain groups (Makin and Serpell 2005). 



Introduction 

 

 

13 

So far, little is known about the detailed arrangement of the polypeptide chains into the 

amyloid fibrils, either those parts which form the core β-strands or the regions that 

connect the β-strands. Recent studies indicate that the sheets are relatively untwisted 

and they may exist, at least in some cases, in specific super secondary structure such as 

β-helices (Wetzel, 2002) or the α-helix (Kourie et al. 2001). There may be important 

differences in the way the strands are assembled depending on characteristics of the 

involved polypeptide chain, including length, sequence (Wetzel 2002; Chamberlain et 

al. 2000) and presence of intramolecular disulfide bonds that stabilize the proteins (Fink 

2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Amyloid is a fibrous protein quaternary structure that has a cross b-sheet fold. (a) The Aβ (1–
42) fiber structure obtained from NMR and complementation mutagenesis methodology reveals the 
characteristic cross b-sheet amyloid structure (PDB code: 2BEG) (Luhrs et al. 2005). (b) A transmission 
electron micrograph of negatively stained amyloid fibers formed from full-length islet amyloid 
polypeptide (IAPP). Higher magnifications (lower panels) reveal twisted-rope and sheet-like 
arrangements of individual protofilaments. (c) An X-ray fiber-diffraction pattern from partially aligned 
Aβ (1–42) amyloid fibers associated with Alzheimer’s disease exhibiting the characteristic reflections at 
4.7 Å and ~10 Å The meridional reflection at 4.7 Å results from the interstrand repeats, and the ~10 Å 
equatorial reflection arises from intersheet packing. Molecular graphics were produced with Pymol 
(http://www.pymol.org) (Fowler et al. 2006). 
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At present, the physico-chemical basis of amyloid formation remains poorly 

understood. It is largely believed that most amyloidogenic proteins aggregate via a 

nucleation dependent pathway from an ensemble of partially unfolded conformations. 

This may occur under solution conditions (such as low pH, lack of specific ligands, high 

temperature, moderate concentrations of salts or co-solvents), such that the native 

structure is partially or completely disrupted but under which interactions such as 

hydrogen-bonds are not completely inhibited. However, native-like mechanisms of 

aggregation have also been described. For example, “lithostathine” maintains its native 

content of secondary structure upon aggregation into fibrils (Laurine et al. 2003). 

Association of protein molecules in their native-like states can therefore be the first 

event in the aggregation process, with the structural conversion into an amyloid 

conformation occurring subsequently. The time course to convert a peptide or a protein 

into amyloid fibrils typically includes a lag phase which is followed by a rapid 

exponential growth phase. The lag phase is assumed to be the time required for “nuclei” 

to form, where a nucleus is an ordered oligomeric amyloid species that can serve as a 

template for amyloid growth. When a nucleus is formed, fibril growth proceeds rapidly 

by further association with the nucleus of either monomers or oligomers. This protein 

aggregation eventually gives rise to short fibrillar structures referred to as protofibrils, 

which appear to be precursors of the mature fibrils and are generally shorter than the 

latter. Moreover, to form amyloid fibrils, proteins adopt at least in most cases, β-sheet-

rich conformations. For example, in the case of the Aβ peptides, the main constituents 

of amyloid plaques in AD, small ordered, β-sheet-rich aggregates or “protofibrils” 

formed at early stages of amyloid growth have been described (Harper et al. 1997). 

Protofibrils have been observed in heterogeneous populations of small, roughly 

spherical or tubular assemblies, 2.5-5.0 nm in diameter (Lashuel et al. 2002; Poirier et 

al. 2002; Quintas et al. 2001). These species are often associated into bead-like chains 

or annular “doughnut”-shaped rings and appear, in most cases, to be precursors of 

longer protofilaments and mature fibrils that appear only at later stages of the assembly 

process. These “early aggregates” formed from different peptides and proteins may be 

very important to understand the nature and origins of the pathological properties of 

amyloid structures associated with neurodegenerative diseases. The soluble prefibrillar 

aggregates of different peptides and proteins have been shown to be equally recognised 

by polyclonal antibodies raised against prefibrillar assemblies grown from Aβ peptides 

(Kayed et al. 2003). The same antibodies, however, are unable to recognise the 
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corresponding monomers and fibrillar aggregates, thus confirming that prefibrillar 

assemblies from very different peptides and proteins share common structural features 

which are different form those exhibited by the monomers or the mature fibrils. 

 

1.4 Cytotoxicity of amyloid aggregates 

 

The presence of amyloid fibrils in post-mortem brains of demented patients led to the 

first description of AD and resulted in the hypothesis that mature fibrils themselves 

could be the primary pathogenic species. However, the absence of any correlation 

between the amount of fibrillar Aβ deposits at autopsy and the clinical severity of AD 

during life, the appearance of clinical symptoms of the disease before amyloid plaques 

can be detected, and several other evidences led to the failure of this initial hypothesis. 

At present, it is widely believed that early soluble, oligomeric precursors, rather than 

mature fibrils, are the main pathogenic species of amyloidosis (Hardy and Selkoe 2002). 

Indeed, many studies carried out on Aβ peptides and other amyloidogenic proteins 

showed that spherical and/or chain-like oligomers are highly neurotoxic (Lashuel and 

Lansbury 2006). Moreover, the soluble Aβ levels in human brain are better correlated 

with the severity of AD than plaques are (Lue et al. 1999). 

Therefore, the mature fibrils could be seen as inert material substantially harmless to 

cells, although great controversy still exists on the biological role of fibrils.Indeed, it 

has been suggested that the large insoluble amyloid deposits may serve as reservoirs 

that release toxic soluble oligomers (Haass and Selkoe 2007) and recent findings 

support the existence of a dynamic equilibrium between fibrils and their constituent 

monomers (Carulla et al. 2005). Recently, mature amyloid fibrils produced from full-

length recombinant mammalian prion protein (PrP) have been shown to be highly toxic 

to cultured cells and primary hippocampal and cerebellar neurons, in a manner 

comparable to that of soluble small β-oligomers generated from the same protein 

(Novitskaya et al. 2006).  

Similarly, both oligomers and amyloid fibrils grown from hen lysozyme are toxic to 

cultured cells, though with different mechanisms and time-scales (Gharibyan et al. 

2006). Finally, mature fibrils from Aβ1-40 exhibit different morphologies with differing 

cytotoxicity when they are produced under different conditions.(Petkova et al. 2005).  
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In conclusion, it remains to be established which aggregation state is the main 

responsible of neurotoxicity, and difficulties in preparing highly homogeneous and 

stable populations of monomers, oligomeric intermediates and fibrils may account for 

the reported highly variable experimental results (Kawahara et al. 2000). Many amyloid 

proteins have been shown to induce cellular toxicity by common mechanisms; such a 

toxicity is likely to arise from the “misfolded’ nature of the aggregated species and their 

precursors and from the exposure, in such species, of hydrophobic residues or regions 

that are normally buried in the native state. As many of these regions are likely to be 

aggregation-prone (or “sticky”), they may be able to interact with, and damage, 

membranes and other cellular components (Bucciantini et al. 2002). Indeed, by itself, 

the intrinsic instability of prefibrillar species that enables them to assemble further and 

to organize into more ordered structures reflects the presence of accessible regions. In 

agreement with these conclusions, prefibrillar assemblies have been shown to interact 

with synthetic phospholipid bilayers (Lin et al. 2001; Hirakura and Kagan 2001; Volles 

and Lansbury 2001) and cell membranes, possibly destabilizing them and impairing the 

function of specific membrane-bound proteins (Zhu et al. 2000; Kourie and Shorthouse 

2000). Pre-fibrillar amyloid aggregates may interact with cell membranes in a way 

similar to the action of many prokaryotic or eukaryotic peptides or proteins (e.g. some 

bacterial toxins) that oligomerize onto the membranes of the target cells forming pore-

like assemblies that destabilize cell membranes and impair ion balance across these 

structures (referenza). So membrane damage may be a common molecular basis for 

viability impairment in cells exposed to misfolded proteins or amyloid aggregates. 

Because of the initial membrane perturbation, changes in the intracellular redox status 

and free Ca2+ levels in cells exposed to toxic aggregates have been described as crucial 

events in the cell function impairment by the aggregates (Kourie 2001; Milhavet and 

Lehmann 2002; Wyttenbach et al. 2002). 

A modification of the intracellular redox state in cells exposed to amyloid aggregates is 

associated with a sharp increase in the quantity of reactive oxygen species (ROS), 

resulting in a high oxidizing activity towards several molecular substrates. In addition, 

changes have been observed in reactive nitrogen species, lipid peroxidation, 

deregulation of NO metabolism, protein nitrosylation and upregulation of heme 

oxygenase-1, a specific marker of oxidative stress. Moreover, it has been shown that 

cells can be protected against amyloid toxicity by treatment with antioxidants. 
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Although it is not clear why protein aggregation induces production of ROS, in general 

terms oxidative stress could be related to some form of destabilization of cell 

membranes by toxic species, leading to an upregulation of the activity of hydrogen 

peroxidase-producing membrane enzymes, such as NADPH-oxidase and a failure in 

regulation of other plasma membrane proteins, such as receptors and ion pumps 

(Mattson 1999) and/or to impairment of mitochondrial function. Mitochondria play an 

important role in oxidative stress and apoptosis; in this regard, a key factor in Aβ 

peptide neurotoxicity could be the opening of mitochondrial permeability transition 

pores by Ca2+ entry in neuronal mitochondria followed by release of cytochrome c, a 

strong inducer of apoptosis. It has been suggested that intracellular ROS increase 

following exposure to amyloid aggregates is a consequence of Ca2+ entry into cells 

followed by stimulation of oxidative metabolism aimed at providing the ATP needed to 

support the activity of membrane ion pumps involved in clearing excess Ca2+. ROS 

increase would in turn oxidize not only the proteins involved in ion transfer but also 

proteins such as calmodulin that, when oxidized, is unable to activate the Ca2+-ATPase. 

The down-regulation of the Ca2+-ATPase activity would then reduce the need for ATP, 

and hence ROS production by oxidative metabolism, leading to a further increase in 

intracellular Ca2+ concentration (Squier 2001). This hypothesis can explain the 

relationship between ROS, apoptosis, mitochondrial damage and intracellular free Ca2+ 

increase shown by cells exposed to toxic amyloid aggregates. Calcium dysregulation 

and oxidative stress have been observed in AD, PD, NIMMD and prion diseases, as 

well as in cultured cells exposed to prefibrillar aggregates of disease-unrelated proteins. 

The increase in intracellular free Ca2+ levels is probably a consequence of the 

impairment of membrane permeability and may be a consequence of the presence into 

the membrane of unspecific amyloid pores or may follow oxidative stress, membrane 

lipid peroxidation producing reactive alkenes such as 4-hydroxynonenal, and the 

chemical modification of membrane proteins acting as ion pumps (Varadarajan et al. 

2000).  
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1.5 Protein-membrane interaction and cytotoxicity 

 

It is largely accepted that the toxicity of protein amyloid aggregates is mainly induced 

by their interaction with the cell membranes. The toxic aggregates are known to interact 

with cellular membranes and to compromise their integrity, by forming a range of ion 

channels through which they lead to imbalance of ion homeostasis and oxidative stress, 

eventually leading to cell death. Such a mechanism is reminiscent of the action of pore-

forming proteins such as peptides found in venoms and antimicrobial secretions, 

bacterial toxins, perforin (Stefani and Dobson, 2003). The protein-membrane interaction 

is enabled by the presence, at the surface of the misfolded protein/peptide, of exposed 

hydrophobic residues and clusters, which prefer the hydrophobic environment of the 

lipid membranes (Kourie and Henry, 2002).In addition to the hydrophobic interactions, 

electrostatic interactions can also play an important role: amyloidogenic peptides often 

possess distinct positively charged regions allowing them to interact with negatively 

charged membranes.  

The extent and the mechanism of membrane destabilization depends upon the balance 

of the electrostatic and hydrophobic properties and the amphipatic character of the 

protein. Membrane alterations induced by proteins can vary depending on the nature of 

the protein and lipids. Some peptides disrupt the membrane by binding through 

electrostatic interaction to the charged residues or regions to the charged headgroups of 

the phospholipids (Fujii 1999). This disturbance, likely to be reversible by itself, may be 

followed by insertion of hydrophobic regions of the protein into the bilayer. Following 

protein insertion, the cell membrane can be affected in several ways (general 

electrostatic disturbance, fusion of vesicles, loss of membrane integrity, alteration in 

membrane thickness around the protein and/or pore formation). 

The similarity between the mechanism of toxicity of pore-forming toxins (Kourie and 

Shorthouse, 2000; Kourie and Henry, 2002) and the cytotoxicity of amyloid aggregates 

led to propose, since 1993, the “channel hypothesis” (Arispe et al. 1993); a number of 

experimental data, coming from both artificial lipid bilayers and cell membranes, 

indicate that the ability of misfolded proteins and amyloid aggregates to interact with 

lipid membranes is of crucial importance. 
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Protein aggregates can exert their toxic effect in several ways: 

1) by insertion into the membrane lipid bilayer to form ion channels (Kourie and Henry, 

2002 ; Kourie, 2001); 

2) by modifying the membrane viscosity and lipid packing (Salmona et al. 1997; 

Tagliavini et al. 2001) thus interfering with membrane proteins; 

3) by penetrating into the cell with subsequent interaction with intracellular components 

(reviewed in Kourie and Henry, 2002). 

 

Many proteins have been shown to undergo changes in secondary structure upon their 

toxic interaction with membranes. Both α-helix to β-sheet and β-sheet to α-helix 

transformations, as well as secondary structure increase from a random coil 

conformation, have been described. For example, for some natively unfolded 

polypeptides like Aβ peptides, calcitonin and human amylin, the literature strongly 

suggests that these peptides populate an early oligomeric helical intermediate during 

amyloid aggregation in vitro. So, unfolding of the α-helix of a protein followed by 

refolding to β-sheet may be an important step in inducing a membrane-active structure 

for cytotoxic peptides, such as prion and Aβ peptides or human amylin. However, it is 

important to note that both β-sheet and α-helix-based protein structural changes could 

confer cytotoxicity to refolded proteins. 

While it appears that no particular secondary structure confers an inherent advantage for 

membrane interaction, it may be that, for any particular peptide, some specific structure 

may allow better access of the hydrophobic residues to the membrane. This means that a 

change in secondary structure mayundergo the ability to interact with the membrane. 

Anyway it is important to underline that the changes in secondary structure often arise 

as a consequence of the contact with the lipid environment: the hydrophobic lipids 

allow for lower energy exposure of hydrophobic residues, which leads to a 

rearrangement of the whole protein. The importance of secondary structure in 

hydrophobic residues exposure was shown by Gasset et al., who analyzed the structural 

requirements of α-sarcin to destabilize lipid bilayers. It was hard to explain the 

hydrophobic interactions of α-sarcin with a membrane, because this protein is highly 

polar in its native conformation. They demonstrated that, upon interaction with lipid 

vesicles, α-sarcin undergoes a structural change, with an increase in α-helix and 

decrease in β-sheet content from the most unfolded variant (Gasset et al. 1995). 
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The 106-126 fragment of PrP, which is the main part of the small amount of β-sheet in 

the normal cellular prion (PrPc), contains a hydrophobic core sequence (residues 113-

120), which is hypothesized to be involved in prion toxic properties via membrane 

interaction and destabilization, thus playing a key role in the pathological effect of the 

protein. It has been reported that β-sheet content of PrP[106-126] increases in the 

presence of lipids, and this structural change contributes to membrane destabilization 

and PrP[106-126] toxicity. The cytotoxic effect of amyloid β protein has been shown to 

involve the formation of ion channels within cell membranes, thus altering cell function 

and regulation. The Aβ peptide fragments, which are between 39 and 42 residues in 

length, are involved in forming these channels through a hydrophobic region at the C-

terminus. The incorporation of Aβ peptides into membranes to form ion channels is 

thought to be determined preferentially by the presence of negatively charged, rather 

than by neutral, phospholipids (Alarcon et al. 2006). α-synuclein protofibrils, that are 

thought to be the main responsible of cell death in parkinson’s disease (PD) and form 

annular structures which are reminiscent of the known structures of toxin pores (Ding et 

al. 2002), have also been found to tightly bind and to permeabilize acidic phospholipid 

vesicles in a pore-like fashion, with a strong size selectivity in allowing molecules to 

cross the cell membrane (Volles et al. 2001). Calcitonin, an amyloid-forming peptide 

consisting of 32 residues, is known to be able to interact with membranes either directly 

and/or at receptor sites. Recent data showed that annular oligomers from salmon 

calcitonin are able to form Ca2+-permeable pores when inserted into liposomes, and that 

such an interaction is accompanied by an increase in the β-sheet content of the protein 

(Diociaiuti et al. 2006).  

Mechanisms of membrane disruption other than pore formation have also been 

described: for example, according to some studies, human islet amyloid polypeptide 

(hIAPP), which is associated with death of insulin-producing pancreatic β-cells in type 

2 diabetes mellitus and permeabilizes a variety of model membranes, could destroy the 

barrier properties of the cell membrane by extracting lipids from the latter and taking 

them up in the forming amyloid fibrils. It is important to note that the exact mechanism 

of membrane disruption by hIAPP aggregates is not known. However, lipid extraction 

has been shown to occur for a variety of proteins and has been proposed as a generic 

mechanism underlying amyloid toxicity (Sparr et al. 2004). 
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1.6 Membrane lipid composition influences protein aggregation 

 

The fibrillogenic properties of membrane-bound proteins are determined by the 

chemical nature of membrane lipids and the mode of protein-lipid interactions. A lot of 

studies on membrane-mediated fibrillogenesis have been undertaken with model 

systems such as amyloidogenic peptides or proteins and lipid vesicles of varying 

composition (Bokvist et al. 2004; Sparr et al. 2004). Membranes may be implicated not 

only as targets of aggregate toxicity, via disruption of membrane integrity, but also as 

catalyst that facilitate protein conformational changes and oligomer formation. Indeed, 

it is well established that lipid membranes can promote the aggregation of many 

different proteins/peptides. In particular, lipid composition, especially the presence of 

negatively charged lipids in the membrane, appears as one of the primary factors that 

determine the extent of membrane-mediated aggregation. 

Many studies have been carried out to investigate the potential of acidic phospholipid-

containing membranes in providing an environment able to enhance amyloid formation. 

For example, the formation of fibrous aggregates by a number of proteins in the 

presence of acidic, negatively-charged phospholipids, such as phosphatidylglycerol 

(PG), cardiolipin, or phosphatidiylserine (PS), has been described in recent studies. 

Membranes containing PS, an acidic phospholipid which is normally expressed in the 

outer surface of the plasma membrane of cancer cells and vascular endothelial cells in 

tumours, have been suggested to create surfaces with a high local concentration of 

protons, required for aggregation (Zhao et al. 2004). All these proteins share the 

presence of cationic residues or cationic amino acid clusters able to interact with 

negatively charged lipids, with subsequent fusion. Binding to acidic phospholipids 

neutralizes the positive charges in these proteins; accordingly, protein-protein 

interactions would not be counteracted by repulsion due to cationic residues, thus 

facilitating protein aggregation. The fibrils formed under these conditions have also 

been shown to incorporate lipid molecules, thus suggesting a lipid extraction by the 

protein on the membrane (Sparr et al. 2004; Zhao et al. 2004). The liposome-induced 

fiber formation has been described as very rapid, with macroscopic structures becoming 

clearly visible almost instantaneously after the addition of the protein to a solution of 

PS-containing liposomes. Enhanced fiber formation has been seen to occur also on 
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negatively charged mica, thus underlining the important role of these surfaces for all 

amyloidogenic proteins (Zhu et al. 2002). 

Increasing evidence has indicated that gangliosides, particularly GM1 in lipid rafts play 

a pivotal role in amyloid deposition of Aβ and the related cytotoxicity in AD. Despite 

recent efforts to characterize Aβ-lipid interactions, the effect of Aβ aggregation on 

dynamic properties and organization of lipid membranes is poorly understood. 

 

 

1.7  The importance of GM1  

 

Growing evidence shows that GM1 ganglioside is involved in amyloid deposition and 

toxicity. Glycosphingolipids possess highly heterogeneous and diverse molecular 

structures in their carbohydrate chains and the lipid moieties. Based on their basic 

carbohydrate structures, glycosphingolipids are classified into numerous series, namely 

ganglio-, isoganglio-, lacto-, neolacto-, lactoganglio-, globo-, isoglobo-, muco-, gala-, 

neogala-, mollu-, arthro-, schisto- and spirometo-series (Table 2). Acidic 

glycosphingolipids containing one or more sialic acid (N-acetylneuraminic acid or N-

glycolylneuraminic acid) residue(s) in their carbohydrate moiety are especially referred 

to as gangliosides. Gangliosides are ubiquitously found in tissues and body fluids, and 

are more abundantly expressed in the nervous system (Yu et al. 2009). In cells, 

gangliosides are primarily, but not exclusively, localized in the outer leaflet of plasma 

membrane. 

On the cell surface, together with other membrane components such as sphingomyelin 

and cholesterol, gangliosides are involved in cell-cell recognition and adhesion and 

signal transduction within specific cell surface microdomains, termed caveolae 

(Anderson RG. 1998), lipid rafts (Simons K 2000) or glycosphingolipid-enriched 

microdomains (Hakomori S. 1998).. In addition to the cell plasma membrane, 

gangliosides have been shown to be present in the nuclear membrane, and they have 

recently been proposed to play important roles in modulating intracellular and 

intranuclear calcium homeostasis and the ensuing cellular functions (Ledeen et al. 

2008). 
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Table 2. Carbohydrate structures of glycosphingolipids (J Oleo Sci. 2011) 
 

Gangliosides are involved in the pathology of many diseases. For example, Guillain-

Barré syndrome, an acute polyradiculoneuropathy that leads to acute quadriplegia, is 

caused by an autoimmune response to cell surface gangliosides (Kaida et al 2009). In 

influenza, a well known viral infectious disease, influenza A viruses recognize sialic 

acid residues of gangliosides and glycoproteins on cell surfaces as receptor molecules 

for cell invasion (Suzuki Y 2005). During aging and neurodegeneration, the 

physicochemical properties of membranes are altered. This can result in unbalanced 

proportion of lipids in the membrane and/or in changed ratios of membrane lipids, 

which may contribute to Alzheimer’s disease (AD) pathogenesis (Kalanj-Bognar, S. 

2006). In brain cells, ganglioside and lipid abnormalities, in addition to pathogenic Aβ 

production, may contribute to the pathological conditions found in AD (Mutoh et al. 

2006). 

Altered distribution of GM1 and GM2 gangliosides has recently been found in AD 

brains (Pernber et al. 2012). The interaction with GM1 has been reported to be a crucial 

factor also in mediating the aggregation and toxicity of other amyloidogenic proteins 

and peptides (Gellermann et al. 2005; Wakabayashi and Matsuzaki 2009), such 

ashIAPP, whose aggregation and binding to the plasma membrane is thought to be the 

main factor determining the death of pancreatic β-cells in type II diabetes (Engel MF 

2009). While plasma membrane permeation and deformation have been the subject of 
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many studies, the impairment and dysfunction caused by changes in mobility and lateral 

trafficking of membrane molecules induced by amyloid aggregates have been poorly 

investigated. Considering that amyloids can bind to a large number of biological 

molecules that range from glycosaminoglycans and nucleic acids to a variety of proteins 

and lipids, the change in membrane dynamics observed for GM1 may imply that 

amyloids can potentially harm all those cellular mechanisms that base their efficiency 

on molecules mobility (Calamai and Pavone 2013). Actually, growing evidence shows 

that amyloid aggregates can alter membrane mobility of a number of proteins and other 

plasma membrane components, leading either to a gain or to a loss of function. For 

example, the binding of Sup35 amyloid fibrils to the plasma membrane can cause an 

accumulation of Fas receptors associated with GM1 with subsequent activation of the 

extrinsic apoptotic pathway (Bucciantini et al. 2012). On the other hand, sequestration 

of neurotransmitter receptors, such as the metabotropic glutamate mGluR5, by Aβ 1-42 

oligomers has been shown to impair intracellular calcium levels and synaptic network 

activity (Renner et al. 2010). Within this context, an alteration of GM1 mobility may 

compromise its regulatory role in neurodevelopment and neuroprotection (Furukawa et 

al. 2011; Yu et al. 2012), or influence cellular pathways linked to raft dynamics. 
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2 Proteins involved in this study 

2.1 Transthyretin structure 

 

Transthyretin (TTR) was first discovered in the cerebrospinal fluid (CSF) in 1942 

(Hamilton et al. 2001; Kabat et al. 1942) and then sequenced in 1984 (Mita et al. 1984), 

and named prealbumin because of its electrophoretic migration pattern compared to 

albumin. Afterwards, aiming to better describe its functionality, the name was changed 

to transthyretin- the transporter of thyroxine (T4) and retinol binding protein (Hamilton 

et al. 2001). Transthyretin transports only 25% of all thyroxine in the blood plasma, the 

other 75% resulting from thyroxine-binding globulinHowever, TTR is the main 

thyroxine transporter in cerebrospinal fluid, implying a main role in the central nervous 

system. TTR has been known to “promiscuously” bind to many small molecules, 

particularly aromatic compounds such as resveratrol, diflunisol (a drug), and PCB (a 

toxin). Therefore, it is believed that transthyretin's real function is to clean the 

bloodstream by removing toxins and drugs.  

TTR is a 55 kDa tetramer composed by four identical 127 residue monomeric subunits. 

Each monomer is composed of two four-stranded beta-sheets together with a small 

helical region. The two four-stranded beta-sheets run antiparallel, one forming the 

external surface and the other the binding channel surface. Two associated monomers 

form an extended beta-sandwich stable dimer by hydrogen bonding between beta sheets 

of each monomer. Further association of two dimers originates a tetrameric structure 

known as transthyretin. TTR has two thyroxine binding sites that sit in a central channel 

at the interface between the two dimers. The channel is created by contact through 

symmetry related loops by the two dimers. The binding sites are funnel-shaped and 

mainly hydrophobic, with some hydrophilic residues near the entrance of the binding 

site (Monaco et al. 1995).  

The crystallographic structure of human TTR, solved in 1971 (Blake et al. 1971), 

revealed that each TTR monomer is composed of 127 amino acid residues, forming 8 β-

strands named from A-H, which are arranged in a β-sandwich of two four-stranded β-

sheets and one small α-helix found between β-strands E and F (Blake et al. 1971; Foss 

et al. 2005;). TTR monomers interact via hydrogen bonds between the antiparallel, 

adjacent β-strands H-H’ and F-F’ to form a dimeric species. The two dimers (A-B and 

C-D) predominantly form the tetramer through hydrophobic contacts between the 



Introduction 

 

 

26 

residues of the A-B and G-H loops. The tetramer forms a central hydrophobic pocket 

(T4 channel) with two binding sites for hormones (Blake et al. 1971; Foss et al. 2005). 

Each TTR monomer contains one cysteine residue at position 10 and two tryptophan 

residues at positions 41 and 79, which can be used as a tool to monitor protein unfolding 

(Silva et al. 2006). Many groups have studied the structure of TTR and its aggregation 

process to understand the factors that favour TTR aggregation, which occurs in a non-

nucleated manner known as a downhill polymerisation reaction because tetramer 

dissociation into monomers is the rate-liming step of the aggregation reaction 

(Hurshman et al. 2004). Based on this model, many studies have focused to develop 

effective and selective TTR ligands that can prevent TTR dissociation and aggregation 

(Johnson et al 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. X-ray structure of Transthyretin. TTR is a homotetrameric protein composed of four monomers 
of 127 aminoacids. Structurally, in its native state, TTR contains eight stands (A-H) and a small α-helix. 
The contacts between the dimers form two hydrophobic pockets where T4 binds (T4 channel). As shown 
in red, each monomer contains one small α-helix and eight β-strands (CBEF and DAGH). Adapted from a 
model; PDB code 1DVQ (Azevedo et al. 2013). 
 

The primary ligand of TTR, thyroxine, binds deeply in the cleft of the channel surface 

between the side chains of L17, A18, and L110. Thyroxine has a phenolic substituent 

which is important for TTR ligands. This phenolic ring interacts with S117 and T119 at 

the tetramer center, and also interacts with E54 and K15 near the binding channel 

entrance. Thyroxine makes hydrogen bond contacts well with K15 and E54 which 

contribute to hold thyroxine in the binding channel (Wojtczak et al.1996).  
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Figure 2. A surface representation of one dimer of the transthyretin tetramer along with a ball and stick 
representation of thyroxine showing how thyroxine sits within the cleft of the TTR binding channel. The 
gray ball and stick residues are those that make contact with thyroxine, colored in red. (PDB ID: 2rox, 
Wojtczak et al. 1996). 

 

Within the binding site of TTR, there are small depressions named halogen binding 

pockets (HBPs) that bind the four iodine substituents of thyroxine and other ligands. 

Each monomer has three halogen-binding pockets, and since there are two binding sites, 

there are six HBPs per binding site and twelve HBPs overall. As mentioned earlier, 

thyroxine contains 4 iodine atoms bound in two different conformations; either a 

“forward” conformation or a “backward conformation”. When thyroxine is bound to 

TTR, four of the six HBPs are occupied. Halogens are negatively charged ions, so they 

prefer the positively charged side chains of certain residues. HBPs occupation is of 

primary importance because they contribute strongly to the overall binding affinity 

between TTR and thyroxine. All three HBPs provide a depressed, hydrophobic surface. 

A conformational change in TTR provides additional residues for hydrogen binding. 

Halogen-binding pocket 1 (HBP1) is formed between the side chains of Methionine13, 

Lysine 15, Threonine106, and Alanine108. It is the outermost pocket and is positioned 

between strands A and G of the monomer. Lys15 and Glu54 make a significant 
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contribution to ligand binding near where the HBP1 pocket is formed. Halogen-binding 

site 2 (HBP2) is formed between the side chains of Lys15, Leu17, Ala109 and Leu110. 

The pocket is primarily hydrophobic and has nucleophilic contributions from the 

carbonyl groups of Lys15, Ala108 and Ala109. The innermost pocket in the tetramer 

center, the halogen-binding site 3 (HBP3), is located between the side chains of Ala108, 

Ala109 and Leu110 of strand G and Ser117 and Thr119 of strand H (Wojtczak et al. 

1996).  

Transthyretin binds retinol (vitamin A) through the retinol-binding protein. and favour 

its circulation through the body. Each TTR tetramer can bind a maximum of two retinol 

molecules and two RBPs may be complexed. The overall structure of the 1:2 TTR-RBP 

complex can be seen below in figure 4A. RBP binds to the alpha helix at the surface of 

the TTR molecule while the thyroxine-binding site is positioned in the hydrophobic 

channels at the TTR dimer-dimer interface. Retinol binds deep within RBP. Retinol 

must be bound to RBP for a stable complex can be made with TTR. Once retinol is 

removed from the complex, the complex loses stability and dissociates. A few specific 

residues are important for TTR-RBP complex formation. Leu35, Trp67, Lys89, Trp91, 

Ser95, Phe96, Leu97, and Lys99 are significant contact residues of the RBP. TTR has 

contributions from 3 different monomer chains at the TTR-RBP interface: Asp99 and 

Ser100 from the A chain, Gly83, Ile84, Ser85, and Tyr114 from the B chain, and Val20, 

Arg21, and Ile84 from the C chain all make contact with RBP residues (Monaco et al. 

1995). 
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2.2 TTR-related amyloidosis 

 

Transthyretin is one of the 25 known proteins that are capable of forming amyloid 

fibrils in vivo. Transthyretin amyloidosis is a systemic disorder characterized by the 

extracellular deposition of amyloid fibrils composed of TTR. The TTR amyloidoses 

include senile systemic amyloidosis (SSA), familial amyloid cardiomyopathy (FAC), 

familial amyloid polyneuropathy (FAP), and central nervous system selective 

amyloidoses (CNSA). SSA is a common age-related amyloidosis that involves the 

accumulation of wt TTR predominantly in the heart as well as in other organs, e.g., the 

lungs, kidneys and gastrointestinal tract. 10-15 % of individuals older than 65 years and 

one-quarter of people aged over 85 years are affected (Ueda et al. 2011). Pathologically, 

the TTR amyloid deposits exhibit a patchy plaque-like shape and develop mainly inside 

the ventricular wall in SSA, whereas in FAP they develop mainly in the pericardium 

and the surrounding muscle fascicles (Ueda et al. 2011). In SSA, TTR appears 

fragmented more than 90 % whereas in most hereditary amyloidosis cases with variant 

TTR it maintains full length. A series of C-terminal TTR fragments with N-terminals 

ranging from 46 to 55 amino acids in length have been identified in tissues from SSA 

patients, (Ando and Ueda 2008). A report suggested that myocardial infarction, and 

variations in the genes for alpha2M and tau may be associated with SSA (Tanskanen et 

al. 2008). The pre-mortem diagnosis of SSA is rare in spite of disease frequency, so it is 

important to develop several diagnostic methods. 

FAC, which is characterized by prominent cardiomyopathy and the absence of 

polyneuropathy, is associated with the apparently preferential amyloid deposition in the 

heart of some TTR mutants causing congestive heart failure. The diagnosis of FAC can 

be made by means of endomyocardial biopsy (Jacobson et al. 2011). Three TTR 

mutations, A45T, L111M and V122I, are associated predominantly with FAC. V122I 

FAC, which is found in approximately 3–4 % of AfroAmericans and causes late-onset 

restrictive cardiomyopathy, originated on the west coast of Africa, and its clinical 

penetrance is thought to be high (Afolabi et al. 2000; Jacobson et al. 1997). 

Amyloidotic cardiomyopathy without leptomeningeal involvement is also associated 

with vitreous opacity. 

CNSA, leptomeningeal amyloidosis or meningocerebrovascular amyloidosis is a form 

of hereditary TTR amyloidosis characterized by primary involvement of the central 
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nervous system. The clinical features include seizures, stroke-like episodes, dementia, 

psychomotor deterioration, hydrocephalus, spinal cord infarction, and variable amyloid 

deposition in the vitreous humor. Pathologically, amyloid is detected in the walls of 

leptomeningeal vessels and around connective tissue structures, and in the pio-

arachnoid and subpial region, which leads to cerebral infarction and, in later stages, 

cerebral hemorrhage (Blevins et al. 2003). Several mutations of the TTR sequence (e.g., 

L12P, D18G, A25T, V30G, A36P, G53E, G53A, F64S, Y69H, or Y114C) have been 

reported to be associated with this phenotype (Blevins et al. 2003; Connors et al. 2003). 

Mild systemic amyloidosis may also be a complication. Familial oculoleptomeningeal 

amyloidosis (FOLMA) is a leptomeningeal amyloidosis in association with vitreous 

amyloid deposits. 

FAP is an autosomal dominant inherited disease characterized by amyloid deposition in 

various organs. FAP, Portuguese type variant I (FAP type I), was first described in 1952 

(Andrade 1952). The genetic defect in the kindreds from northern Portugal, i.e. 

heterozygosity for a Val-to-Met single amino acid substitution at residue 30 

(Val30Met), has been reported (Saraiva et al. 1984). 

Treatment of familial TTR amyloidosis has historically relied on liver transplantation as 

a crude form of gene therapy (Holmgren G et al. 1993). Because TTR is primarily 

produced in the liver, replacement of the liver gene carrying the mutation with the 

normal form is able to reduce the mutant TTR levels in the body to < 5% of 

pretransplant levels. Certain mutations, however, cause CNS amyloidosis, and due to 

the their production by the choroid plexus, these forms do not respond to liver 

transplantation. 

In 2011, the European Medicines Agency approved Tafamidis or Vyndaqe (Razavi et 

al. 2003) for FAP treatment. Vyndaqel kinetically stabilizes the TTR tetramer, 

preventing its dissociation required for TTR amyloidogenesis and degradation of the 

autonomic nervous system (Ando Y and Suhr OB December 1998) and/or the peripheral 

nervous system and/or the heart (Hammarström et al 2003).  
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2.3 Familial Amyloidotic Polyneuropathy and Transthyretin 

 

Classically, FAP has been classified into four types according to ethnic origin, differing 

amyloid proteins and patterns of neuropathy; FAP type I (Portuguese, Japanese, and 

Swedish type) and FAP type II (Indiana/Swiss and Maryland/German type) are 

associated with TTR. Several TTR mutations associated with FAP type II with the 

Leu58His variant, in the Maryland/German kindred, Ile84Ser, in the Indiana/Swiss 

kindred (Wallace et al. 1988), and Lys70Asn in a FAP pedigree of German ancestry 

residing in New Jersey (Izumoto et al. 1992), have been reported. Clinically, FAP type 

II is a systemic disease characterized by carpal tunnel syndrome (CTS), followed by a 

generalized polyneuropathy developing with vitreous opacity, and death due to 

myocardial impairment. However, it is inappropriate to classify FAP into type I or II 

because of the diversity of its symptoms with various TTR mutations, and it has been 

designated as a TTR-related amyloidosis recently. FAP type III (Iowa type) and IV 

(Finnish type) involve apolipoprotein A1 and gelsolin, respectively. 

The hallmarks of the disease are is inherited, with onset in the second or third decade, 

an unremitting course to death due to cachexia and infection 7–10 years later, on 

average, and a characteristic pattern of symptoms; paresis, early impairment of thermal 

and pain sensibilities, and an- hidrosis in the lower limbs. Concomitant symptoms are 

nausea, vomiting, abdominal pain, and sexual and sphincter disorders. A unique feature 

is the dissociated sensory loss. Andrade found that the various sensation modalities 

were lost in the following order: temperature, pain, touch, and, finally, joint position. On 

postmortem examination, large amounts of amyloid deposits are found in the kidneys 

and peripheral nerves and, to a lesser extent, in other organs. 

FAP usually presents as a peripheral neuropathy including autonomic failure. The 

neuropathy usually starts with small-fiber dysfunction in the lower extremities, a lack of 

thermal sensation being an early feature.. Walking difficulty, weakness, and cardiac or 

gastrointestinal manifestations are less common at onset. Dysesthesia in the distal parts 

of the four extremites may be prominent with or without varying degrees of pain. The 

level of sensory symptoms slowly progresses from the distal to the proximal parts of the 

four extremities bilaterally. Motor function tends to be relatively preserved until the 

sensory manifestations become severe. Muscular atrophy is remarkable compared with 

motor weakness (Benson and Cohen 1977). 
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Jacobson et al. (1992) reported a, early-onset, and rapidly progressive type of FAP with 

Leu55Pro and severe cardiac involvement. In that study, four of seven cases showed 

heavy amyloid deposition limited to the blood vessels and nerves in the heart, the 

thyroid, blood vessels, peripheral nerves, and the gastrointestinal tract. Biochemically, 

several lines of evidence of severe amyloidogenicity of TTR L55P have been reported 

(Sebastião et al. 1998). The Glu54Lys variant was reported to be an aggressive form of 

FAP. The Arg104His variant was found to induce structural alterations leading to an 

increase of tetramer stability heterozygotes for TTR Val30Met in a study of mild-type 

FAP with TTR Val30Met/Arg104His (Almeida et al. 2000). These characteristics are 

very similar to those found in heterozygotic carriers of TTR Val30Met/Thr119Met. 

TTR Asp99Asn in a Danish kindred has been reported to be a non-pathogenic benign 

mutation with properties similar to those of the wt TTR (Groenning et al. 2011). These 

findings suggest that a specific mutation is important for the severity of FAP. The heart 

and kidneys are the main sites of amyloid deposition other than peripheral nerves in 

FAP. 

At present, no specific treatment for TTR amyloidosis has been proven to prevent or 

cure the disease. There are various symptoms in FAP, so several conservative therapies 

for orthostatic hypotension, gastro-intestinal symptoms, anemia, heart failure, 

neuropathic pain, hypothyroidism, hypoglycemia, decubitus ulcers, and vitreous opacity 

are needed. 

 

 

2.4 Mechanisms of wild-type and L55P mutant TTR Aggregation  

 

Over the last decade various groups have elucidated the crystal structure of over 20 

mutant TTR variants. While these studies have shown structural differences that could 

be explained in terms of fibrillar structures, there is no apparent mechanism or 

conformational change that describes fibril formation by all mutant forms of TTR. More 

recently, several studies have suggested that mutations of wild-type TTR result in TTR 

tetramer destabilisation and dissociation into unfolded monomers and dimers which 

undergo further partial refolding, forming amyloidogenic intermediates (Cardoso et al. 

2007; Lai et al. 1996; Lashuel et al. 1998, 1999). Significantly, there is a strong 



Introduction 

 

 

33 

correlation between the thermodynamic stability of TTR variants and their propensity to 

form unfolded, soluble aggregates (Quintas et al. 2001). 

On X-ray analysis, a slight conformational change of the crystal structure of variant 

TTR was shown (Terry et al. 1993), including distortion of the T4-binding cavity, 

resulting in a decreased affinity for T4. As far as the mechanism underlying the onset of 

aggregation of wt TTR and several variants is concerned, amyloid fibril formation might 

be triggered by tetramer dissociation into a compact non-native monomer with low 

conformational stability, which results in non-fibrillar TTR aggregates or partially 

unfolded monomeric species that can subsequently self-assemble into profibrils and 

mature amyloid fibrils (Colon and Kelly 1992; Lai et al. 1996; Hammarström et al. 

2003; Quintas et al. 2001). The folded monomer that results from dissociation must 

subsequently undergo partial denaturation to misassemble into aggregated structures 

including amyloid fibrils. The monomeric amyloidogenic intermediate undergoes self-

assembly into a ladder of quaternary structural intermediates for the formation of wt, 

Val30Met, and Leu55Pro TTR amyloid fibrils (Lashuel et al. 1998). 

The V30M mutation is the most frequently occurring variant and an examination of its 

crystal structure suggests that the substitution drives a conformational change in strand 

A, exposing Cys10, and increasing thiol group exposure (Terry et al. 1993). The growth 

of fibrils resulting from the association of TTR through disulphide bridges has also been 

suggested, however the existence of an amyloidogenic Cys10Arg (C10A) variant would 

suggest that such a mechanism is not of significance in V30M fibrillogenesis. 
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Figure 3. Transthyretin (TTR) amyloid cascade. For amyloidogenesis to occur, the TTR tetramer must 
dissociate into four folded monomers and undergo partial denaturation in order to subsequently 
misassemble into a spectrum of aggregate structures including cross-β-sheet amyloid fibrils. 

 

A “hot spot” for amyloidogenic mutations is located in the 45-58 region thet contains 

the C strand, C-D loop, and D strand which are located at the edge of each dimer 

(Serpell et al. 1995). Several studies have shown that mutant TTR form high molecular 

weight oligomers more readily than wild-type TTR, and that further aggregation leads 

to the formation of amyloid fibrils (Kayed et al. 2003). There is a good correlation 

between the rate of aggregation of TTR in vitro and the extent or severity of the disease 

(Hurshman et al. 2008; Lashuel et al. 1999; Quintas et al. 1997). In particular, my work 

dealt with the L55P mutation, that produces a significantly more aggressive amyloidosis 

than the more common V30M mutation, and in vitro studies have shown that L55P TTR 

aggregates much more readily than V30M (Quintas et al. 1997; Lashuel et al. 1998, 

1999; Pokrzywa et al. 2007). The structure of the highly amyloidogenic and clinically 

aggressive L55P variant crystallizes in a different space respect to wt TTR and other 

variants (Quintas et al. 1997). Analysis of the 3D structure suggests that strands C and 

D are disrupted, altering the hydrogen bonds between the AB loop of one dimer and 

strand H of the other dimer (Sebastião et al. 1998), in an area that defines weak, native 

dimer-dimer interactions. These observations suggest a significant destabilisation of the 

L55P tetramer with the formation of undefined intermediate species that subsequently 

aggregate further to form fibrils. It has not been determined whether these destabilised 
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intermediates serve a dual purpose, as seeds for further polymerisation and aggregation 

and as soluble, toxic oligomeric species responsible for FAP pathogenesis. Since the 

L55P variant is clinically aggressive, it has been the focus of much of my work which 

investigated the mechanisms responsible for the toxicity of L55P in sensory neurons 

(Gasperini et al. 2011) 

Studies on the kinetics of amyloid growth indicate that the L55P variant exists in an 

amyloidogenic conformation at physiological conditions, whereas the wt TTR is stable 

and non-amyloidogenic. It was observed that amyloid formation from the wild-type 

protein had an initial rate determining step, not diminished in the presence of pre-

formed fibrils, which could be associated with the conformational change of the protein 

into an amyloidogenic intermediate. However, the kinetics of amyloid formation from 

the L55P variant showed the absence of this lag time (Bonifacio et al. 1996). This could 

suggest that L55P TTR is already in an amyloidogenic conformation, which assembles 

immediately into amyloid fibrils, under the conditions tested.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Aggregation of transthyretin in vitro. AFM images of freshly prepared a Wild-type and b L55P 
transthyretin. Arrows denote large, oligomeric aggregates of L55PTTR (scale bar is 100 nm). c When 
particle cross-sectional areas from the AFM are quantitated, L55P (red) contain a higher proportion of 
large particles than wild-type preparation (green). d Using a dynamic light scattering technique, L55P 
(red) contains a population of large, soluble oligomeric aggregates ranging in size from 100–300 nm in 
diameter. e Qualitatively, when L55P is monitored by DLS at 37◦C over 36 h, these oligomeric species 
decrease in average size and appear to form much larger (1,000 nm) aggregates, probably protofibrils 
(Gasperini et al. 2011). 
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The aggregation properties of the L55P variant with wt TTR were investigated by 

atomic force microscopy (AFM) and dynamic light scattering (DLS). Freshly prepared 

L55P and wt TTR in physiological buffers contains predominantly globular or 

amorphous particles ranging in apparent size from 10–50 nm in diameter (Fig. 4a, b). 

The smallest particles observed by AFM are approximately 10 nm in diameter and are 

probably tetramers. Significantly, using quantitative image analysis of particle cross-

sectional area (Fig. 4c), the average AFM particle sizes of L55P are greater than those 

of wild-type preparations confirming that L55P is highly unstable at physiological pH 

and ionic strength (Quintas et al. 1997b). 

In wt TTR, substantial fluctuations, both locally or globally, which is designated by 

intrinsic instability/flexibility were seen. At variance, the L55P variant displays 

significant local structural changes, including the displacement of the Φ angle of Pro55 

from -134° to near -69° of Leu55 and the increase of the average C-alpha distance 

between residue 55 and its native hydrogen bonding partner in the wt TTR, Val14, from 

5.2 Å to 6.6 Å (Lei et al. 2004). This observation suggests that the local conformation 

adopted by the L55P variant is thermally accessible to wt TTR. Therefore, the D strand 

may be intrinsically unstable so that the mutations which destabilize this site will 

increase the local and global mobility leading to higher tendency towards 

amyloidogenicity. Earlier spectroscopic analyses and proteolysis sensitivity studies have 

suggested that C-strand-loop–D-strand rearrangement leads to the formation of a 

monomeric amyloidogenic intermediate (Lai et al. 1996). In addition to the D strand, 

the alpha-helical region and the strands at the monomer–monomer interface are also 

intrinsically unstable. The central channel of L55P undergoes opening and closing 

fluctuations (Fig.5), which may provide an explanation of the fact that while the 

mutation is far from the channel, the mutant shows a substantial low binding affinity of 

thyroxine (Lei et al. 2004). 
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Figure 5. A) Schematic representation of the main-chain hydrogen bonds and β-strands ; B and C) 
Ribbon diagram of the tetramer and central channel; D) The dimer interface formed by monomer. The 
residues tht make the hydrofobic contacts are shown with a ball-and-stick model (Lei et al. 2004). 

 

 

TTR most likely disassembles and forms amyloid when its ligands are released to the 

target organs (White and Kelly 2001). It was proposed that monomers are the building 

block of fibrils, in vitro, whose elementary protofilamentscontain two twisted β-sheets 

and comprise a single vertical stack of structurally modifed TTR monomers (Cardoso et 

al. 2002; Quintas et al. 2001). In vivo studies have revealed that TTR might be 

deposited in a non-fibrillar or pre-fibrillar form in the nerves prior to major nerve fiber 

degeneration in the early stages of FAP (Sousa et al. 2001). N-terminally truncated 

dimers can also form amyloid fibrils after limited proteolysis (Schormann et al. 1998). 

The contribution of the inserted amino acid does not alter the overall structure of the 

protein but may interfere with disease aggressiveness and, affect tetramer stability, 

dissociation rate and aggregate trafficking to specific tissues such as the peripheral 

nerves, heart, and meninges. 

Although these structural alterations may predict TTR amyloidogenicity, some studies 

have also shown that because of the presence of cysteine residues (4 per tetramer), TTR 

is more prone to be post-translationally modified by S-thiolation and S-sulphonation 

(Nakanishi et al. 2010; Lim et al. 2003), which have been shown to affect TTR 
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amyloidogenicity. In addition, only 5-15% of circulating TTR is free of post-

translational modifications (Hagen et al. 1973). It has also been shown that the 

interaction of TTR with anionic lipids and cholesterol might accelerate the aggregation 

process (Hou et al. 2008).  

TTR aggregation, especially in vivo, does not occur without additional proteins. In fact, 

in addition to the factors mentioned above, there are many other factors involved in 

TTR aggregation. TTR amyloid fibrils from FAP patient deposits and nearly all amyloid 

fibrils in vivo are found to be co-aggregated with many other molecules such as serum 

amyloid P (SAP), heparan sulphate, and metalloproteinases, which makes it even more 

difficult to analyse which one of these molecules actually contributes to TTR 

aggregation and clearance in vivo and in vitro (Cardoso et al. 2008; Murakami et al. 

1992). Among the various molecules that co-aggregate with TTR, glycosaminoglycans 

(GAGs) are able to speed up TTR aggregation in vitro, and this phenomenon is 

dependent on the degree of GAG sulphation. Because GAG composition and 

concentrations vary among different tissues, this might partly explain the specificity of 

these aggregates for certain tissues (Bourgault et al. 2011). 

 

 

2.5 Selective Transthyretin Kinetic Stabilizers  

 

Destabilization of the tetrameric fold of TTR is important for protein aggregation which 

culminates with fibril formation. Many TTR mutations interfere with tetramer stability, 

increasing the amyloidogenic potential of the protein. A series of 12 different 

compounds, described in the literature as in vitro TTR fibrillogenesis inhibitors, were 

tested for their ability to inhibit L55P aggregate formation; J. W. Kelly and the 

company FoldRx, Inc., which he founded, have pioneered the use of small-molecule 

ligands to stabilize the native homotetrameric TTR (Johnson et al. 2005), and their 

compound, Fx-1006A (tafamidis), is currently in clinical trials (Johnson et al. 2008). 

Kinetic stabilizers for the treatment of the TTR amyloidoses must be both highly potent 

and selective. The ligands must not interact with the thyroid hormone receptor (THR), a 

major concern arises from the similarity of some kinetic stabilizers to triiodothyronine 

(T3, the primary thyroid hormone) and T4 (the prohormone). Nonsteroidal anti-

inflammatory drug (NSAID) activity is also contraindicated to treat TTR amyloidosis 
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patients; thus, TTR kinetic stabilizers should exhibit minimal NSAID activity, such as 

salicylic acid (Gales et al. 2008), diflunisal (Miller et al. 2004), and analogues of 

flufenamic (Baures et al. 1999). While sometimes unpredictable, these activities can 

usually be minimized by maximizing TTR amyloid inhibition potency, TTR binding 

affinity and binding selectivity to TTR in human plasma, have been accomplished using 

a combination of structure-based drug design and assays to evaluate the above 

mentioned criteria (Johnson et al. 2005). A wide variety of TTR kinetic stabilizers have 

been identified including naturally derived flavonoid and xanthone derivatives (Baures 

1998; Maia et al. 2005) as well as synthetic compounds belonging to five families 

including: bisaryloxime ethers, biphenyls, 1-aryl-4,6-biscarboxydibenzofurans, 2-

phenylbenzoxazoles and biphenylamines (Petrassi et al. 2005; Petrassi et al. 2000; 

Wojtczak et al. 1992). More recently, additional ligands, such as isatin (Gonzalez et al. 

2009) and β-aminoxypropionic acid linked aryl or fluorenyl derivatives have been 

identified (Palaninathan et al. 2009). The primary candidates for the most potent and 

selective kinetic stabilizers were biphenyls, 2-phenylbenzoxazoles and dibenzofurans, 

since some bisaryloxime ethers display reduced chemical stability (Johnson et al. 2005). 

This relative lack of selective, structurally diverse TTR kinetic stabilizers is largely due 

to the fact that, until recently, no systematic optimization had been attempted on the 

three structural elements composing a typical TTR amyloidogenesis inhibitor (Johnson 

et al. 2008). Optimization of the ideal aryl substituents and their substitution pattern on 

aromatic rings X and Z, as well as the linker substructure joining the rings, revealed 

numerous high affinity solutions for the occupancy of thyroxine binding sites (Johnson 

et al. 2009). At present, on the basis of these new SAR data, it is possible to make 

accurate predictions of which structures will exhibit TTR kinetic stabilizer potency, 

TTR plasma binding selectivity and the desired binding orientation (Choi et al. 2010).  
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Figure 6. Structures of thyroxine (T4), the natural ligand of TTR, the NSAIDs tested as fibril formation 
inhibitors, and designed TTR fibril formation inhibitors (10–12). oFLU is o-tri-fluoromethylphenyl 
anthranilic acid; DDBF is dibenzofuran-4,6-dicarboxylic acid; PHENOX is N-m-trifluoromethylphenyl-
phenoxazine-4,6-dicarboxylic acid (Klabunde et al. 2000). 
 
 

Several natural polyphenols have been reported to act on different amyloidogenic 

proteins inhibiting amyloid formation (see the following section). In particular, for 

TTR, the attention is focused on some natural polyphenols such as curcumin, 

nordiidroguaiaretic acid (NDGA), epigallocatechin 3-gallate (EGCG) that have 

similarities with T4, and have been studied in relation with TTR amyloidogenesis. 

These studies showed that all these compounds stabilize the TTR and inhibit 

aggregation by three different means: EGCG strongly suppresses the dissociation of the 

TTR tetramer maintaining it as a soluble protein; curcumin induces the oligomerization 

of TTR in a characteristic homogeneous population of non-toxic "off-pathway" small 

aggregates and NDGA moderately reduces the amount of aggregated TTR (Ferreira et 

al. 2011). Furthermore, the oligomers and the intermediate species formed with the 

treatment of EGCG and curcumin are not toxic to the neuronal cells (Ferreira et al. 

2012). 

 



Introduction 

 

 

41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. TEM and DLS analysis of aggregation. The proteins was incubated at 37°C under stagnant 
conditions, in the absence (control) and presence of EGCG, curcumin or NDGA for 4 days. Scale bar = 
200 nm. DLS, dynamic light scattering; EGCG, epigallocatechin-3-gallate; NDGA, nordihydroguaiaretic 
acid; TEM, transmission electron microscopy; TTR, transthyretin. (Ferreira et al. 2012). 
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3 β2-Microglobulin  

 

3.1 β2-Microglobulin structure and functions. 

 
 

The major histocompatibility complex class I (MHC I) molecule and antigenic peptide 

are recognized by CD8+ cytotoxic lymphocytes (CTL) during CTL activation and lysis 

of targets. The heavy chain of the MHCI molecule can interact non-covalently with a 

number of other molecules to form a CTL activating complex. One of these molecules 

is β2-microglobulin (β2m), whose role is to serve as a co-receptor for the presentation 

of the MHC I in nucleated cells for cytotoxic T-cell recognition (Pedersen LO et al. 

1994). CD8+ and β2m, the non-polymorphic ligands of the MHC I heavy chain, have 

been shown by X ray crystallography to interact with the immunoglobulin- like α3 

domain and the α1α2 domains of the MHC I heavy chain in addition to interacting to 

each other (Saper et al. 1991). 

β2-microglobulin is a low molecular weight polypeptide of 11800 Da, synthesized by 

all nucleated cells, initially as a 119 residue protein and, after processing, secreted as a 

99 residue protein. β2m has a β-sandwich fold typical of the immunoglobulin 

superfamily, and contains seven β-strands (Fig. 1). Three strands form one side of the 

sandwich and four strands the other. An internal disulfide bond tethers strands 2 and 6 

in the folded protein. Its structure resembles that of the constant domains of IgG and it 

is found on the cytoplasmic membrane of most cells, where it forms the light chain of 

histocompatibility antigens (Bjerrvm et al. 1985). Free β2m is released into the blood 

and other body fluids during cell membrane turnover and it is freely filtered by renal 

glomeruli and then catabolized by the tubules (Peterson et al. 1972). It has been 

calculated that approximately 150 mg of β2m is metabolized daily by the normal kidney 

(Vincent et al. 1980), the major site of β2m degradation. In conditions characterized by 

reduced glomerular filtration rate the serum levels of β2m increase (Wibell et al. 1973). 

Serum levels are also elevated in diseases associated with increased cell turnover and in 

several benign conditions such as chronic inflammation, liver disease, renal 

dysfunction, some acute viral infections, and a number of malignancies, especially 

hematologic malignancies associated with the B-lymphocyte lineage. In uremia, the 

increase is massive, which is in contrast to the moderately increased values (two- to 

threefold the normal) seen in some other conditions, e.g., lymphoproliferative (Cassuto 
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et al. 1978), autoimmune (Maury et al. 1982), and hepatobiliary diseases (Rashid et al. 

1981). Serum β2m level < 4 mcg/mL is a good prognostic factor in patients with 

multiple myeloma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Ribbon structure of β2m. The N- and C-terminal h-strands are shown in red.( P.J. Bjorkman et 

al. 1997). 

 

 
 

3.2 β2-Microglobulin amyloidosis 

 
 
In 1985 Gejyo et al. identified a new type of amyloid fibril protein consisting of β2m. 

The protein was isolated from amyloid-laden tissue from a patient with chronic renal 

failure and carpal tunnel syndrome (CTS) who had been on regular hemodialysis (HD) 

treatment for 13 years. The identification of β2m as an amyloidogenic protein has 

brought a fundamental contribution to the understanding of the mechanisms of 

amyloidogenesis in general and has further emphasized the complexity of amyloid 

disease and the diversity of proteins capable of forming, under certain circumstances, 

congophilic fibrillar deposits in human tissues. 

β2m deposition is associated with the syndrome of arthralgias and arthropathy in long-

term dialysis patients, although the precise pathogenic role played by amyloid deposits 
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still needs to be clarified. The chronic arthralgias are usually bilateral and often involve 

the shoulders initially. Other joints, in particular the knees, wrists and small joints of the 

hands, may also be involved. Chronic joint swelling is another important feature of the 

disease, as may be recurrent haemarthrosis and chronic tenosynovitides of the finger 

flexors.  

CTS is a well-recognized complication in HD patients (Warren et al. 1975; Brown et al. 

1986) and is clearly related to the duration of HD (Brown et al. 1982). A prevalence of 

50% has been reported in patients who have received more than 12 years of HD 

(Schwarz et al. 1984). In HD patients on conventional dialyzers mean serum β2m levels 

are of the order 30-50 mg/1 (Hurst et al. 1989; Thielemans et al. 1988) (normal 

reference range, 0.8-3.0 mg/1). The β2m level appears rather stable in follow-up studies 

of 2-6 months, but in longer follow-up it tends to increase with the number of years in 

HD. The serum level of β2m does not discriminate between HD patients who have β2m 

amyloid and those who do not (Gejyo et al. 1986). In patients on continuous ambulatory 

peritoneal dialysis (CAPD) serum β2m levels are markedly elevated and are of the same 

order, although slightly lower, than in HD (Ballardie et al. 1986; Chanard et al. 1986). 

The slightly lower levels could be explained by the permeability of the peritoneal 

membrane to β2m (Thielemans et al. 1988). In fact, the interaction between the blood 

and the dialysis membranes triggers the activation of mononuclear cells, which 

stimulate the production of inflammatory cytokines. The activation depends on the 

material used for dialysis, which is also considered as an index of biocompatibility. 

Cytokines, such as interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and 

interleukin-6 (IL-6), can induce an inflammatory state of the base during the process of 

hemodialysis , connected in acute manifestations, such as increased temperature and 

hypotension (Piazza et al 2006). 

Amyloidogenic properties of β2m have been associated to its secondary structure in 

particular because it contains two antiparallel beta-pleated sheets (Lancet et al. 1979). 

The beta structure has been suggested to be important in the stabilization of the tertiary 

conformation of heavy chains of class I HLA antigens on the cell surface (Lancet et al. 

1979) and is obviously involved in the amyloidogenic properties of β2m. Connors et al. 

demonstrated that amyloid fibrils can be created in vitro from intact molecules of β2m 

(Connors et al. 1985). This is remarkable, since in vitro and in vivo creation of amyloid 

from precursor proteins usually involves limited proteolysis of the precursor (Glenner et 

al. 1980). Fragments of β2m may also form amyloid as suggested by the presenceof 
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β2m fragments in synovial amyloid in dialysis patients and amyloid kidney stones of 

uremic patients (Linke et al. 1986). 

The current pathogenetic model of β2m amyloidosis has several similarities with the 

models of the major acquired systemic amyloid diseases, AA and AL amyloidoses 

(Glenner et al. 1980). First, there is a circulating precursor which may be either normal 

or abnormal. In the case of β2m amyloidosis, the precursor is most probably normal 

β2m, although some evidence suggests the presence of an abnormal β2m fraction in sera 

from patients on longterm HD. Second, the level of the circulating precursoris markedly 

elevated. In β2m amyloidosis, the mean serum level of β2m is about 20- to 30-fold the 

level found under normal conditions. Third, the precursor is elevated for a long period 

of time. In the case of β2m amyloidosis the duration of the massive elevation is usually 

10 years or more. Finally, not all patients with prolonged elevation of the amyloid 

precursors develop amyloidosis. The additional factors required for amyloidogenesis to 

occur are, however, poorly defined. The role of the mononuclear phagocyte system in 

amyloid precursor proteins processing is probably important. The possible roles of the 

amyloid P protein (Woo et al. 1987), a characteristic component of extracerebral 

amyloid including β2m amyloid (Gorevic et al. 1986), and of amyloid-degrading 

proteases (Maury CPJ 1988) and amyloid-enhancing factors (Kisilevsky et al. 1986) are 

yet to be assessed. A number of factors that favour the conversion of β2-m fibrils in 

vitro have been identified such as the incubation of highly concentrated β2-m for 5-6 

days at physiological pH and at a temperature of 20 °C, in addition, the presence of 

fibrils can act as a trigger for a rapid aggregation of the protein (Esposito et al. 2009). 

High concentrations of soluble β2-m may play a pathogenic role explaining protein 

toxicity to HL60 cells by stimulating osteoclastogenesis. Studies with human 

neuroblastoma cells, SH-SY5Y, showed instead that, although β2-m is potentially 

neurotoxic, it is unlikely that this protein plays a role in the pathophysiology of 

cognitive impairment observed in people on hemodialysis because of the protective 

blood-brain barrier, which keeps low the β2-m concentration in the cerebrospinal fluid 

(Giorgetti et al. 2009).  

Although transformation of wild-type β2-m into amyloid fibrils is difficult to achieve in 

vitro, many recombinant β2-m variants have been investigated, and hypotheses have 

been developed about the mechanisms underlying fibrillogenesis. The most important 

rearrangements of the protein, with respect to its structure in MHC-I, were observed for 

strands D and E, the interstrand loop D-E, and strand A, including the N-terminal 
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segment. Data showed that these modifications can be considered as the prodromes of 

the amyloid transition that starts at sheet 1 with the rupture of strand A pairing, and 

leads to polymerization, through intermolecular pairing at strand D and probably strand 

C, and precipitation into fibrils. Instead two variants of human β2-m were compared 

with wild-type protein, namely the mutant R3Aβ2-m and the form devoid of the N-

terminal tripeptide (∆N3β2-m), a reduced unfolding free energy was measured 

compared with wild-type. The results of a systematic investigation on 13 amyloidogenic 

β2-m mutants have recently been published (Jones et al. 2003; Smith et al. 2003). 

Although no correlation was proposed between the location of the mutations and the 

extent of destabilization with respect to wild-type sequence, a unique role in amyloid 

formation was envisaged for the N and C-terminal β-strands of β2-m (A and G, 

respectively) from the increased fibrillogenesis rate at acidic and mildly acidic pH of the 

variants with mutations in strands A and G. The underlying rationale is based on the 

loss of local hydrophobic packing by β-strand unpairing, leading to increased 

population of conformers with exposed assembly-competent surfaces (Corazza et al. 

2004). 

 

 

 

 

3.3 Asp76Asn Variant β 2 –Microglobulin 

 
 
Recently the first naturally occurring structural variant, Asp76Asn (D76N), of human 

β2-m was identified in members of a French family showing an autosomal dominant, 

inheritable systemic amyloidosis with slowly progressive gastrointestinal symptoms and 

autonomic neuropathy. 

In contrast to patients with dialysis-related amyloidosis, all members of this family had 

normal circulating concentrations of β2-m and normal renal function. The pathogenic 

protein was aggressively fibrillogenic in vitro, prompting a re-evaluation of previously 

hypothesized mechanisms of β2-m fibrillogenesis. Extensive amyloid deposits were 

found in the spleen, liver, heart, salivary glands, and nerves (Valleix et al. 2012). 

Despite the misfolding propensity of the D76N variant and the essential contribution of 

β2–m to the structure of the HLA class I complex, none of the heterozygotes had 

clinical evidence of immunodeficiency. 
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The high-resolution crystal structures of the D76N variant at 1.40 Å, and wild-type β2-

m (Protein Data Bank code 2YXF) matched closely, with a root mean square difference 

of 0.59 Å, as calculated over the whole C-alpha backbone (Esposito G et al. 2008). The 

Asp76Asn β2-m variant was thermodynamically unstable and remarkably fibrillogenic 

in vitro under physiological conditions. The substitution of asparagine to aspartate at 

residue 76 has two notable effects. First, the Asn76 amide establishes a new hydrogen 

bond with Tyr78, which consequently moves about 1.5 Å closer to residue 76. In its 

new position, Tyr78 provides a hydrogen bond to the amide nitrogen of Thr73. Second, 

the theoretical isoelectric point increases from 6.05 to 6.40, which is of particular 

interest because the negative Asp76 residue in the wild-type protein partly balances the 

positive charges of the neighbouring Lys41 and Lys75 residues, whereas this region of 

the protein has a strong positive charge in the D76N variant (Fig. 2). 

The new hydrogen bonds, Asn76–Tyr78 and Tyr78–Thr73, appear to stabilize the 73–

78 region of the polypeptide sequence that connects the E and F strands of the protein 

(E–F loop) (Fig.2A). Indeed, the high B-factors (a measure of the fluctuation of each 

atom around its position in the crystal) of the E–F loop (165% of the molecularity of 

native protein folding inferred from the crystal structure) indicate that this is the most 

flexible part of the structure of wild-type β2-m, whereas the equivalent region of the 

D76N variant is more rigid, with reduced B factors (120% of average) (Valleix et al. 

2012). 

The D76N substitution allows a fully folded three-dimensional structure almost 

identical to that of the wild type protein that forms amyloid fibrils in dialysis-related 

amyloidosis. However, dissection of the mechanism of D76N β2-m fibrillogenesis 

confirmed the previously established paradigm that the amyloidogenicity of monomeric 

globular proteins is intimately connected to native fold destabilization (Booth, D. R et 

al. 1997).  

Importantly, a specific intermediate of the folding pathway of wt β2-m which was 

previously structurally characterized and shown to play a crucial role in priming the 

amyloid transition (Chiti et al. 2001), is abundantly populated in the D76N variant. It is 

therefore possible that this specific residue substitution facilitates the molecular 

mechanism responsible for the inherent amyloidogenicity of wt β2-m and thereby 

enables the variant to cause clinical pathology even at normal plasma concentrations. 
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Figure 2. Crystal Structure of D76N Variant β2-Microglobulin.Panel A is a ribbon representation of the 
D76N variant. Panel B is a close-up view of the E–F loop (residues 70 to 80) shown in Panel A, 
superimposed on the wild-type β2-microglobulin structure (blue–green). Residues belong-ing to the 
D76N variant are yellow, and Tyr78 belonging to wild-type β2-microglobulin is blue–green; hydrogen 
(H) bonds are shown as dashed lines. Panel C shows the surface electrostatic potential of the E–F loop 
region in the D76N variant (top) and in wild-type β2-microglobulin (bottom); circles indicate the mutated 
residue. Blue represents positively charged regions, and red negatively charged regions (Valleix et al. 
2012). 
 

Data suggested that the ability of D76N β2-m to catalyze fibrillogenesis by wt β2-m can 

be modulated and even blocked by typical chaperones such as crystallin, leading to 

inhibition of fibrillization that depends on the stoichiometric chaperone/ β2-m ratio. A 

role for extracellular chaperone-like proteins in the inhibition of wt β2-m 

amyloidogenesis has been proposed previously (Ozawa et al. 2011), and it is plausible 

that the persistent, extremely high concentration of wt β2-m in renal failure patients on 

dialysis may overcome the natural protective role of physiological chaperones that 

otherwise protect against deposition of this weakly amyloidogenic protein when it 

circulates at its normal serum concentration. 
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4 Role of Phenols in health and diseases  

4.1 Origin 

 

Phenolic compounds are synthesized and act as secondary metabolites in plants. The 

biosynthesis of phenolic compounds in plants requires complex metabolic processes 

encompassing the flavonoids, shikimate and phenylpropanoid pathways. In contrast 

with primary metabolities (e.g. phytosterols, acyl lipids, nucleotides, amino acids and 

organic acids), which have a clear and essential role associated with principal events of 

plant metabolism (photosynthesis, respiration, growth or development), secondary 

metabolites have long been neglected. Nevertheless, secondary metabolites, with a wide 

variety of molecular structures and irregular distribution throughout the plant kingdom, 

have several functions involving defence and survival strategies, such as plant 

protection against herbivores and microbial infections, action as signal molecules in the 

interaction between plants and their environment, protection against UV radiation or 

action as attractants for pollinators and seed-dispersing animals. Phenolic compounds 

are sometimes accumulated at high concentration in plant tissues and other structures 

and are thus abundant micronutrients of our diets (Duthie et al. 2003). 

 

 

4.2 Classification 

 

Polyphenols can be classified into different classes, according to the number of phenolic 

rings in their structure, the structural elements that bind these rings each other, and the 

substituents linked to the rings (Fig.1). Phenolic compounds have at least one aromatic 

ring with one or more hydroxyl groups and are classified as flavonoids and 

nonflavonoids. Processed foods and beverages, such as black tea, matured red wine, 

coffee and cocoa, may contain phenolic transformation products that are best described 

as derived polyphenols. Crozier and coworkers that proposed the flavonoids and non-

flavonoids classification, describe dietary non-flavonoids as characterized by C6-C1 

phenolic acids, with gallic acid as the precursor of hydrolysable tannins, 

hydroxycinammates (C6-C3) and their conjugated derivates, and stilbenes (C6-C2-C6). 

Despite this, the classification omits a sub-class of phenolic compound named lignans (-

(C6-C3)n), a phenolic family of compounds formed by two phenylpropanoid units linked 
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by a hydrogen bridge, these being the monomeric and dimeric forms of 

hydroxycynammic acid and cynammic alcohol. Flavonoids are polyphenolic 

compounds comprising 15 carbons with two aromatic rings connected by a three-carbon 

bridge. Flavonoids are charecterized by a C15 phenylchromane core, composed of two 

aromatic rings cnnected by a three carbon bridge (Crozier et al. 2009; Passamonti et al. 

2009). The main subclasses of these compounds are the flavones, flavonols, flavan-3-

ols, isoflavones, flavanones, and anthocyanidins. Other flavonoid groups that provide 

less dietary components are the chalcones, dihy- drochalcones, dihydroflavonols, 

flavan-3,4-diols, coumarins, and aurones. The basic flavonoid skeleton may have 

numerous substituents. The majority of flavonoids occur naturally as glycosides rather 

than aglycones. The presence of methyl groups or isopentyl units may give a lipophilic 

character to flavonoid molecules (Crozier et al. 2009). Moreover, most flavonoids in 

foods are conjugated to a carbohydrate moiety, representing a wide range of 

combinations depending on the flavonoid, its linkage and the linked mono- and 

disaccharide (Passamonti et al. 2009). 

Among the nonflavonoids of dietary significance are the phenolic acids. Gallic acid is 

the commonest phenolic acid, and occurs widely in complex sugar esters in gallo-

tannins, such as 2-O-digalloyl-tetra-O-galloyl-glucose, which are minor dietary 

components. The related ellagic acid-based ellagitannins, such as sanguiin H-6 and 

punicalagin, are found in a variety of fruits, including raspberries (Rubus idaeus), 

strawberries (Fragaria ananassa), blackberries (Rubus spp.), and many others, including 

pomegranate (Punica granatum) and persimmon (Diospyroskaki), as well as walnuts 

(Juglans regia), hazelnuts (Corylus avellana), and oak-aged wines where they are 

leached from the oak during maturation of the wines (Landete JM. 2011.). The 

ellagitannin content of some food products can be high (e.g. a glass of pomegranate 

juice plus 100 g serving of raspberries provide 300 mg, while four walnuts provide 400 

mg) (Larrosa et al. 2012). The C6–C3 hydroxycinnamates occur mainly as conjugates, 

for example, with tartaric acid or quinic acid, and collectively are referred to as 

chlorogenic acids. Chlorogenic acids, principally 3-O-, 4-O-, and 5-O-caffeoylquinic 

acids, form 10% of green robusta coffee beans (Coffea canephora). Regular consumers 

of coffee may experience a daily intake exceeding 1 g of chlorogenic acid, and it 

constitutes for many people the major intake of dietary phenolics. Accumulating in the 

flesh of grapes, caftaric acid is the main hydroxycinnamate in both red and white wines 

produced from Vitis vinifera and well as Concord grape juice, which is a product of 
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grapes of Vitis lambrusca. Stilbenes have a C6-C2-C6 structure and are phytoalexins 

produced by plants in response to disease, injury, and stress (Langcake P and Pryce RJ 

1977.). Although only extremely minor dietary components, the main stilbene is 

resveratrol (3,5,4¢-trihdroxystilbene), which occurs as cis and trans isomers as well as 

conjugated derivatives, including trans-resveratrol-3-O-glucoside (trans-piceid). The 

woody root of the noxious weed Polygonum cuspidatum (Japanese knotweed or 

Mexican bamboo) contains unusually high levels of trans-resveratrol and its glucoside 

with concentrations of up to 377 mg/100 g dry weight (Vastrano et al. 2000). Red wines 

contain a diversity of stilbene derivatives, but invariably in very low concentrations 

compared to the levels of other (poly)phenolic components (Crozier et al. 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Classification of common dietary polyphenols, with characteristic examples of each phenolic 

compound. 
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4.3 Nutrition and prevention of disease 

 

The importance of nutrition for disease prevention has been recognized since the days 

of Hippocrates 460-377 B.C. who said: “Let food be your medicine and medicine be 

your food”. Nutrition is one of the lifestyle factors that can contribute to the 

development and progression of chronic diseases such as diabetes, cancer, 

atherosclerosis, cardiovascular disease and neurodegenerative diseases (Virmani et al. 

2006; Lillycrop et al. 2012). 

In the early 1990s, various research groups started talking about use of antioxidants 

(e.g., melatonin, resveratrol, green tea, lipoic acid) and metabolic compounds (e.g., 

nicotinamide, acetyl-L-carnitine, creatine, coenzyme Q 10 ) as possible candidates in 

neuroprotection. Apart from providing proof of efficacy for a particular health claim, 

other factors such as finding the right dosages, the safety profile, and especially the 

level of purification and presence of solvents and contaminants, heavy metals, bacteria, 

fungi, etc. are all issues needed to be considered as their use becomes widespread (NIH 

Office of Dietary Supplements (2012); Gold et al. 1999). Considering recent advances 

in research, especially nutrigenomics, it can be shown that they are intimately linked, 

via evolution and genetics, to cell health status an ability to modulate apoptosis, 

detoxification, and appropriate gene response. Nutritional deficiency and disease, 

especially lack of vitamins and minerals, were well known and associated with specific 

disease conditions, major examples being lack of vitamin C and scurvy or lack of niacin 

(vitamin B3) and pellagra (Jukes TH 1989). The classical mechanism for the actions of 

minerals, vitamins, and nutrients as substrates and cofactors in various enzyme- or 

receptor-related activities is well known. Studies suggest that many natural compounds 

such as curcumin, carotenoids, acetyl-L-carnitine, coenzyme Q10, vitamin D and other 

nutraceuticals have the potential to target multiple pathways. Additional functions have 

been found for these compounds when used in times of particular stress and deficiency 

states and/or at higher than normal dosages, in particular, their ability to modulate cell 

health status, inducing for example apoptosis or detoxification, especially in response to 

free radical stress, e.g., reactive oxygen species (ROS) and reactive nitrogen species 

(RNS) or both (Roberts et al. 2009). Epidemiological studies suggest that high dietary 

intake of polyphenols is associated with decreased risk of a range of diseases including 

cardiovascular disease (CVD), specific forms of cancer (Kuriyama et al. 2006) and 

neurodegenerative diseases (Checkoway et al. 2002). 
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Many of the anti-cancer properties associated with green tea are believed to be mediated 

by the flavanol epigallocatechin gallate (EGCG), which has been shown to induce 

apoptosis and inhibit cancer cell growth by altering the expression of cell cycle 

regulatory proteins and the activity of signaling proteins involved in cell proliferation, 

transformation and metastasis (Khan et al. 2006). In addition to flavonoids, phenolic 

alcohols, lignans and secoiridoids (all found at high concentration in olive oil) are also 

thought to possess anti-carcinogenic effects (Owen et al. 2000) that have been reported 

in large intestinal cancer cell models, in animals (Bartoli et al. 2000) and in humans 

(Owen et al. 2000). These effects may be mediated by the ability of olive oil phenolics 

to inhibit the initiation, promotion and metastasis in human colon adenocarcinoma cells 

(Hashim et al. 2008) and to down-regulate the expression of COX-2 and Bcl-2 proteins 

that have a crucial role in colorectal carcinogenesis (figure 2) (Llor et al. 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2. The interaction of polyphenols with cellular signaling pathways involved in chronic disease. 
Flavonoid-induced activation and/or inhibition of MAP kinase and PI3 kinase signaling leads to the 
activation of transcription factors which drive gene expression. For example, activation of ERK/Akt and 
the downstream transcription factor CREB by flavonoids may promote changes in neuronal viability and 
synaptic plasticity, which ultimately influence neurodegenerative processes. Polyphenol-induced 
inhibition of mthe JNK, ASK1 and p38 pathways leads to inhibition of both apoptosis in neurons and a 
reduction of neuroinflammatory reactions in microglia (reduced iNOS expression and NO•release). 
Alternatively, their interaction with signaling may lead to direct activation of proteins such as eNOS, 
which controls nitric oxide release in the vasculature and thus influences CVD risk (Vauzour et al. 2010). 
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Cardiovascular disease (CVD), in particular coronary heart disease and stroke, is a 

major cause of mortality in developed nations. CVD is a chronic, multi-factorial disease 

in which a range of genetic and environmental factors plays a role in its initiation, 

progression and development. For example, smoking, high saturated fat diets and 

physical inactivity are well known environmental factors that are known to increase the 

risk of CVD (Ambrose et al. 2004). Prospective studies have indicated a correlation 

between the intake of flavonols, flavones and flavanols and a reduced risk of coronary 

artery disease (Arts et al. 2005) and anthocyanin and flavanone intake and reduced 

CVD related mortality (Mink et al. 2007). 

Various human, animal and cell studies have suggested that polyphenols may exert 

beneficial effects on the vascular system via an induction of antioxidant defenses (Wan 

et al. 2001), by lowering blood pressure, improving endothelial function (Papamichael 

et al. 2004), inhibiting platelet aggregation (Erlund et al. 2008), lower density 

lipoprotein oxidation and reducing inflammatory responses (Schramm et al. 2003). One 

suggested mechanism for the action of polyphenols on vascular function involves their 

ability to modulate the levels and activity of nitric oxide synthase (eNOS) and therefore, 

nitric oxide (NO) bioavailability to the endothelium (Figure 2) (Leikert et al. 2002). 

Neurodegenerative conditions such as Parkinson’s (PD) and Alzheimer’s (AD) diseases, 

multiple sclerosis (MS) and other neurodegenerative disorders appear to be triggered by 

multi-factorial events including neuroinflammation, glutamatergic excitotoxicity, 

increases of oxidative stress, iron and/or depletion of endogenous antioxidants. 

Flavonoids such as quercetin, puerarin, narinigenin and ginistein protect dopaminergic 

neurons against oxidation and apoptosis (Mercer et al. 2005). Recent data show that 

regular dietary intake of flavonoid-rich foods and/or beverages has been associated with 

50% reduction in the risk of dementia (Commenges et al 2000), a preservation of 

cognitive performance with ageing (Letenneur et al 2007; Morris et al. 2006), a delay in 

the onset of Alzheimer’s disease (Dai et al. 2006) and a reduction of the risk of 

developing Parkinson’s disease (Checkoway et al. 2002).  

In the brain, free radical production induces inflammatory processes called 

neuroinflammation, and in this condition antioxidants exert a protective action.  

Indeed, in pathologies like AD or PD, flavonoids can exert positive actions (Virmani et 

al. 2013) since they: 

- attenutate the release of cytokines as IL1β; 

- exhibit inhibitory actions against the production of iNOS 
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- inhibit the activation of NADH oxidase and ROS 

- have a regulatory activity on the action of NFkB 

- can modulate the MKKK network 

For example, one of the main components of green tea, EGCG, demonstrates 

neuroprotective actions via MAPK, Akt, and Proteinase C. Indeed, EGCG acts via alpha 

secretases to allow the amyloid beta peptide processing typical of AD (Mandel et al. 

2005). 

In the context of Parkinson’s disease, the citrus flavanone tangeretin has been observed 

to maintain nigro-striatal integrity and functionality following lesioning with 6-

hydroxydopamine, suggesting that it may serve as a potential neuroprotective agent 

against the underlying pathology associated with Parkinson’s disease (Datla, K.P et al. 

2001).  

In addition to the neuroprotection elicited by flavonoids, phenolic compounds such as 

caffeic acid and tyrosol have also been shown to protect against 5-S-cysteinyl-dopamine 

(Vauzour et al. 2010) and peroxynitrite neurotoxicity in vitro (Vauzour et al. 2007).  

There is also a growing interest in the potential of polyphenols to improve memory, 

learning and general cognitive ability (Spencer et al. 2008). Human investigations have 

suggested that fruits and vegetables may have an impact on memory (How et al. 2007) 

and depression (Krikorian et al. 2010) and there is a large body of animal behavioural 

evidence to suggest that berries, in particular blueberries and strawberries, are effective 

in reversing age-related deficits in spatial working memory (Joseph et al. 1998) in 

improving object recognition memory (Goyarzu et al. 2004) and in modulating 

inhibitory fear conditioning (Ramirez et al. 2005). 

 

4.4 Mediterranean diet and polyphenols 

 

The present concept of Mediterranean diet (MeDi) is based on the recent traditional 

Mediterranean diet that was studied in the 1950s to 1960s in the South of Europe during 

the Seven-Country study (Keys 1997). 

MeDi is based on the point of view that nutrition is considered a paradox: that although 

the people living in Mediterranean countries tend to consume relatively high amounts of 

fat and salt (Leclercq and Ferro-Luzzi Mar 1991), they have far lower rates of 

cardiovascular disease than in countries like the United States, where similar levels of 
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fat consumption are found. The MeDi often is cited as beneficial due to its low content 

of saturated fats and high content of monounsaturated fats and dietary fiber. One of the 

main explanations is thought to be the health effects of olive oil included in the 

Mediterranean diet. The inclusion of red wine is considered a factor contributing to 

health as it contains flavonoids with powerful antioxidant properties (Baron-Menguy et 

al. 2007). MeDi is extremely rich in polyphenols from various foods and beverages, and 

there is no doubt they provide protection against various diseases. A meta-analysis 

published in BMJ in 2008 showed that following strictly the Mediterranean diet reduced 

the risk of dying from cancer and cardiovascular disease as well as the risk of 

developing Parkinson's and Alzheimer's disease. The results report 9% and 6% 

reduction in overall, cardiovascular, and cancer mortality respectively. Additionally a 

13% reduction in incidence of Parkinson's and Alzheimer's diseases is to be expected 

provided strict adherence to the diet is observed (Sofi et al. 2008). Similarly, a 2007 

study found that adherence to the MeDi may affect not only risk for Alzheimer disease 

(AD) but also subsequent disease course with lower mortality rate. A recent randomized 

Spanish trial of diet pattern published in The New England Journal of Medicine in 2013 

followed almost 7,500 individuals over around 5 years: they found that individuals on a 

MeDi supplemented with mixed nuts and olive oil had a 30% reduction in risk of having 

a major cardiovascular event and a 49% decrease in stroke risk. Subjects followed one 

of three different diets. They included either a low fat diet, a Mediterranean diet with 50 

ml of extra virgin olive oil daily or a Mediterranean diet with 30 grams of mixed nuts. 

The nuts were primarily walnuts which have a high amount of omega-3 fatty acids 

(Estruch et al 2013). Recently, an observational study published, November 5, 2013, in 

Annals of Internal Medicine concluded that following a Mediterranean diet might help 

middle-aged women to live longer and thrive. The study was a 15 years long 

observational study done to examine the association between dietary patterns at midlife 

and health in aging. The participants in this study were 10,670 women with dietary data 

and no major chronic diseases between 1984 and 1986. In addition, all women were in 

their late 50s and early 60s. After reviewing the data of 15 years, researchers in this 

study calculated the outcomes and reported that middle-aged women who followed the 

Mediterranean diet had a 40% more chance to live up to age 70, compared with other 

participants who followed a dissimilar eating style (Samieri et al. 2013).  
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4.5 Inhibition of amyloid fibrils formation by polyphenols 

 

Natural compounds from medicinal plants are capable of binding to different targets 

implicated in AD and thereby exert neuroprotective effects. Previous studies have 

demonstrated that certain medicinal plants such as Gingko biloba, Huperzia serrata, 

Salvia officinalis and Melissa officinalis exert neuroprotective effects by preventing 

membrane lipid oxidation, reducing inflammation, inhibiting Aβ aggregation and 

attenuatining apoptosis (Wang et al. 2006; Izzo and Capasso 2007). Certain 

phytochemicals such as romarinic acid, curcumin and xanthone (Lim et al. 2001; Izzo 

and Capasso 2007) have also shown multipotent neuroprotective effects (Youdim and 

Buccafusco 2005; Van Der Schyf et al. 2006; Ji and Zhang 2008). Self-assembly of 

amyloid proteins into toxic oligomeric and fibrillary aggregates is considered the main 

cause in amyloid disease. Consequently, the research for new compounds interfering 

with aggregation of amyloid proteins is considered a rewarding strategy to develop new 

therapeutic compounds. Natural polyphenols have been extensively studied for their 

multiple biological activities, which make them interesting compounds in the prevention 

and pathological tissue reactions related to deposits of amyloidogenic proteins 

(Sgarbossa A et al. 2012; Bhullar et al. 2013). Lansbury and coworkers screened 169 

compounds for in vitro inhibition of α-synuclein, an amyloidogenic protein that is found 

to accumulate in Lewy bodies in the brain of Parkinson's disease patients. Using 

thioflavin T assay, the researchers identified 15 inhibitory catecholamine compounds, 

including the polyphenols dobutamine and apomorphine (Conway KA et al. 2001). The 

mechanism of inhibition of amyloid formation is not the same for all natural 

polyphenols. They can act on various assembly pathwaysinteracting with different 

amyloid forms, such as monomeric, oligomeric or fibrillary aggregates. Some 

compounds inhibit the formation of oligomers, but promote fibril formation, others 

inhibit fibrils, but not oligomers formation , others inhibit both. Other polyphenols, like 

EGCG redirect amyloid fibril formation from fibrillogenic forms to non-fibrillogenic 

oligomers.  

The initial hypothesis about the role of aromatic interactions in amyloid fibril formation 

was based on the remarkable occurrence of aromatic residues in many amyloid-related 

proteins and short peptide fragments (Gazit et al. 2002), and the well-known role of 

aromatic stacking in self-assembly processes in chemistry and biochemistry (Aggeli A. 

et al. 1997). This hypothesis led to the suggestion that stacking of aromatic residues 
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may play a role in assembly acceleration in many cases of amyloid fibril formation. 

Stacking interactions may provide an energetic contribution as well as directionality and 

orientation that are facilitated by the restricted geometry of planar aromatic stacking 

(Platt et al 2005). Natural polyphenols are characterized by the presence of aromatic 

rings and one or more phenolic rings which may interact with the aromatic residue 

present in amyloidogenic proteins (Porat et al. 2006; Wu et al. 2006), inhibiting the 

self-assembly process in amyloid fibril formation. Examples (Table 3) are: curcumin, 

resveratrol, rosmarinic acid, tannic acid, baicalein, piceid, oleuropein, ferulic acid, 

EGCG, salvianolic acid B, silibinin, keampferol, myrecetin, quercetin, morin, catechin 

and epicatechin. All these polyphenols have at least one aromatic ring with hydroxyl 

groups responsible for hydrophobic interactions with the proteins. According to some 

data, the mechanism of inhibition is due to the interaction between phenolic rings of 

polyphenols and aromatic residue of amyloidogenic proteins which prevent the π-π 

interaction disturbing π-stacking between protein units within the β-structure and block 

the self assembly leading to amyloid fibril formation. (Porat et al. 2006; Cheng et 

al.2013). 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3. Some polyphenols with anti-amyloidogenic effects (Viviane L. Ndam Ngoungoure et al. 2014). 



Introduction 

 

 

59 

4.6 Oleuropein aglycone: Olive oil phenol 

 

Olea europaea is native to the Mediterranean region and, both the oil and the fruit are 

amongst the main components of the Mediterranean diet. The main active constituents 

of olive oil include oleic acid, phenolic constituents, and squalene. The main phenolic 

compounds, hydroxytyrosol and oleuropein, give extra-virgin olive oil its bitter, 

pungent taste. The pharmacological properties of olive oil, the olive fruit and its leaves 

have been recognized as important components of medicine and a healthy diet because 

of their phenolic content (Visioli et al. 2002). Oleuropein belongs to the secoiridoid 

class, compounds abundant in Oleaceae, Gentianaceae, Cornaleae, as well as in many 

other plants. Iridoids and secoiridoids are usually glycosidically bound and are 

produced from the secondary metabolism of terpenes as precursors of various indole 

alkaloids. The secoiridoids in Oleaceae are usually derived from the oleoside type of 

glucosides (oleosides), which are characterized by an exocyclic 8,9-olefinic 

functionality, a combination of elenolic acid and a glucosidic residue. Oleuropein is an 

ester of 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol) and has the oleosidic skeleton 

that is common to the secoiridoid glucosides of Oleaceae (Soler-Rivas et al. 2000), it is 

deglycosylated by a β-glucosidase released from olive fruits during crushing giving rise 

to oleuropein aglycone (OleA) which, due to its high hydrophobicity, is retrieved in 

olive oil (Fig.3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Structures of oleuropein and oleuropein aglycone 
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In the development of the olive fruit, three phases are usually distinguished: a growth 

phase, during which accumulation of oleuropein occurs; a green maturation phase that 

coincides with a reduction in the levels of chlorophyll and oleuropein; and a black 

maturation phase that is characterized by the appearance of anthocyanins and during 

which the oleuropein levels continue to fall (Amiot et al. 1989). 

The content of OLE in olive drupes depends on the cultivar and the time of ripening; in 

addition, the recovery of the de-glycosylated oleuropein derivative depends on the way 

the fruits are processed to obtain EVOO. Finally, the content of OLE in EVOO depends 

on oil ageing, as the molecule undergoes degradation (mainly oxidation) with time. In a 

recent review Cicerale et al. report for the aglycone concentrations up to 351.7 mg/kg in 

EVOO, while a value of 2.0 mg/kg is reported for oleuropein (Cicerale et al. 2009). 

Oleuropein has several pharmacological properties (Fig. 4); these include antioxidant 

(Visioli et al. 2002), anti-inflammatory (Visioli et al. 1198), anti-atherogenic (Carluccio 

et al. 2003), anti-cancer (Owen et al. 2000), antimicrobial (Tripoli et al. 2005), and 

antiviral (Fredrickson et al. 2000) properties, and for these reasons, it is commercially 

available as food supplement in Mediterranean countries. In addition, oleuropein has 

been shown to be cardioprotective against acute adriamycin cardiotoxicity (Andreadou 

et al. 2007) and has been shown to exhibit anti-ischemic and hypolipidemic activities 

(Andreadou et al. 2006). 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Pharmacological effects of oleuropein and oleuropein aglycone. 
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The aglycone is able to cross the plasma membrane acting inside the cells and is better 

absorbed in the intestine because is more hydrophobic than the glycated form. Another 

important aspect to be considered is that OleA interaction with cell membranes would 

increase its local concentration; this is particularly relevant when considering the 

beneficial effects that would be attained above critical concentration of the molecule. 

Moreover, OleA acts not only as an antioxidant, rather, it seems to be able to interact 

with molecular targets, in some cases with high specificity. A number of studies, 

including the ‘‘Three city study’’ (Bazoti et al. 2008) have clearly shown a strict 

association between most of the protective effects of the MeDi and the sustained 

consumption of EVOO, a basic component of the MeDi. In particular, a number of 

polyphenols and secoiridoids found in EVOO, including oleocanthal, hydroxythyrosol 

and OleA, have been considered potential candidates as key responsible of the 

protective effect of EVOO (Mori et al. 2012). Most of the research on oleuropein as an 

aggregation inhibitor was performed on its aglycone derivative, which was shown to 

interfere with both hIAPP and Aβ42 aggregation (Rigacci et al. 2010; Rigacci et al. 

2011), skipping the appearance of toxic oligomers and promoting peptide aggregation 

into aggregates devoid of cytotoxicity (Link CD 1995). Studies in vivo show an OleA 

protection against Aβ42 aggregation in tissue, which generates the plaque deposits 

found in AD, using C. elegans as a simplified invertebrate model of AD (Wu et al. 

2006). Finally, we recently showed that dietary supplementation of OLE strongly 

improved the cognitive performance of the TgCRND8 mouse model of AD; mice 

showed remarkably reduced plaque deposits, microglia migration to the plaques for 

phagocytosis. Data obtained with cultured cells confirmed that OleA is able to induce 

autophagy, possibly by acting on the mTOR pathway (Grossi et al. 2013). Also, OleA 

was more effective than oleuropein and hydroxytyrosol (that, anyway, were also active) 

as an inhibitor of Tau fibrillization (Kostomoiri et al. 2013). Oleuropein was also shown 

to modify APP processing, increasing the formation of the non-amyloidogenic and 

neuroprotective sAPPα fragment and to decrease Aβ oligomers in HEK695 cell 

supernatants by increasing matrix metalloproteinase-9 (MMP-9) secretion (Pitt, J et al. 

2009). These results are very promising and pave the way to a more extensive 

investigation of OleA ability to inhibit toxic amyloid aggregation of other proteins too, 

given the high similarity of amyloid aggregates originated from different 

protein/peptides. 
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5 Transthyretin and hyperhomocysteinemia 

 

5.1 Homocysteine and Hyperhomocysteinemia 

 
 

Homocysteine is a homologue of the amino acid cysteine, from which it differs by an 

additional methylene bridge (-CH2-), and it is biosynthesized from methionine. 

Homocysteine is metabolized through two pathways: methionine receives an adenosine 

group from ATP, a reaction catalyzed by S-adenosyl-methionine synthetase, to give S-

adenosyl methionine (SAM). L-Homocysteine has two primary fates: conversion via 

tetrahydrofolate (THF) back into L-methionine or conversion to L-cysteine (Champe et 

al. 2008). Remethylation requires folate and B12 coenzymes; trans-sulfuration requires 

pyridoxal-5’-phosphate, the B6 coenzyme (Selhub 1999). In kidney and liver, 

homocysteine is also remethylated by the enzyme betaine homocysteine 

methyltransferase (BHMT), which transfers a methyl group to homocysteine via betaine 

demethylation to dimethylglycine (DMG). The trans-sulfuration pathway requires the 

enzyme cystathionine-synthase (CBS) and vitamin B6 (pyridoxal-5’-phosphate). Once 

formed from cystathionine, cysteine can be used in protein synthesis and glutathione 

production. 

The above pathway yields cysteine, which is then used by the body to make glutathione, 

a powerful antioxidant that protects cellular components against oxidative damage. 

Blood levels of total homocysteine increase throughout life in men and women (Selhub 

et al. 1999). Prior to puberty, both sexes enjoy optimal healthy levels (about 6 µmol/L). 

During puberty, levels rise, more in males than females reaching, on average, almost 10 

µmol/L in men and over 8 µmol/L in women (Ganji et al. 2006). For reasons not yet 

clear, homocysteine levels tend to be higher in males incrasing with age, smoking 

habits, and caffeine consumption. As we grow old, mean values of homocysteine 

continue to rise and the concentrations usually remain lower in women than in men 

(Ganji et al. 2006). The higher total homocysteine concentrations seen in the oldest 

individuals may be caused by many factors including defects in absorption of vitamin 

B12 or a suboptimal intake of B-vitamins (especially vitamin B12) due to reduced 

kidney function, medications that reduce the absorption of vitamins (Ruscin et al. 2002) 

or increase the catabolism of the vitamins (Wulffele et al. 2003). Certain diseases are 

associated with higher homocysteine levels, similarly to lifestyle factors such as coffee 
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consumption (Temple et al. 2000) and excessive alcohol intake (Sakuta et al. 2005). 

Lack of exercise, obesity, and stress are also associated with hyperhomocysteinemia. 

Homocysteine can both initiate and potentiate atherosclerosis. For example, 

homocysteine-induced injury to the arterial walls is one of the factors that can initiate 

the process of atherosclerosis, leading to endothelial dysfunction and eventually to heart 

attacks and strokes (Gallai et al. 2001, Papatheodorou et al. 2007). Several studies have 

shown that homocysteine can inflict damage to the arterial wall via multiple destructive 

molecular mechanisms (Zeng et al. 2003, Hofmann et al. 2001). The risk associated 

with homocysteine appears to increase throughout the normal range of concentrations; 

each 1 micromolar rise in the blood concentration corresponding to an increase of about 

10% in cardiovascular risk. Homocysteine can be directly toxic to blood vessels — 

similarly to oxidized LDL andcholesterol it disrupts the healthful function of the cells 

lining the blood vessels— it seems likely that homocysteine is not merely a marker for 

some other pathogenic (disease causing) factor. It is therefore highly desirable to 

develop and implement safe measures for minimizing serum homocysteine levels.  

 

 

5.2 Homocysteine and alteration on protein structure 

 

 

The problem of Hcy toxicity has attracted a great deal of interest. At molecular level, 

several potential mechanisms were proposed, including those involving ROS formation 

(McDowell and Lang, 2000), hypomethylation (Hultberg et al. 2000), induction of 

unfolded protein response and protein N-homocysteinylation. One of proposed 

homocysteine toxicity mechanisms includes endoplasmatic reticulum stress and the 

unfolded protein response. The cellular consequence of protein modification with 

homocysteine is endoplasmatic reticulum (ER) stress, a condition in which unfolded 

proteins accumulate in the ER (Kaufman, 1999). 

It was found that homocysteine decreases extracellular superoxide dismutase (EC-SOD) 

(a glycoprotein that protects the vascular wall from oxidative stress), mRNA expression 

and protein secretion. Moreover, homocysteine induces the expression of GRP78 

mRNA and activates PERK in vascular smooth muscle cells, responses observed during 

ER stress (Nonaka et al. 2001). Vascular endothelial growth factor (VEGF) expression 
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is increased by exposure to chemical inducers of ER stress (Abcouwer et al. 2002). 

Homocysteine increases VEGF expression 4.4-fold due to ATF4-dependent activation 

of VEGF transcription in the retinal-pigmented epithelial cell line ARPE-19. HTL and 

DTT induce VEGF expression 7.9 and 8.8-fold, respectively (Roybal et al. 2004). 

Homocysteine forms stable disulfide bonds with cysteine residues which may alter or 

impair protein function (Jacobsen et al. 2005). Homocysteine exhibits the greatest 

(comparing to cysteine and glutathione) tendency to generate disulfide bonds with 

protein thiols groups involved in the function of many enzymes, structural proteins and 

receptors; accordingly, the interaction with these groups might disrupt cellular 

metabolism (Hultberg et al. 1998). Binding of homocysteine to plasma protein is 

biphasic. The first reaction, involving displacement of cysteine from plasma proteins, is 

rapid and oxygen-independent, while the second reaction is a slower, oxygen dependent 

thiol oxidation (Togawa et al. 2000). S-homocysteinylated proteins (S-Hcy-proteins) are 

present in human plasma. Major components of the S-Hcy-protein pool in human 

plasma are albumin, containing about 1 homcysteine molecule per 100 protein 

molecules, and γ-globulins, containing about 3.4 molecules per 100 protein molecules. 

Other proteins contain >10-fold less S-Hcy/protein than albumin (Jakubowski, 2002b). 

Human serum albumin is the major plasma protein, making up more than 50% of the 

total plasma protein. In vitro and in vivo studies have shown that post-translational 

homocysteine incorporation into proteins via S-homocysteinylation may impair protein 

function (Hajjar et al. 1998; Undas et al. 2001; Majors et al. 2002). Homocysteinylated 

proteins are prone to multimerization and undergo structural changes that lead to their 

denaturation. Homocysteine thiolactone may also inactivate enzymes by other 

mechanisms. For example, lysine oxidase, an important enzyme responsible for 

posttranslational collagen modification essential for the biogenesis of connective tissue 

matrices, is inactivated by Hcy thiolactone, which derivatizes the active site 

tyrosinequinone cofactor (Liu et al. 1997). In addition to a loss of function, protein 

homocysteinylation can also generate modified proteins that are physiologically 

detrimental in other ways. For example, homocysteinylated LDL has been recently 

shown to elicit immune response in rabbits (Ferguson et al. 1998). Protein 

homocysteinylation is a novel example of protein damage that may explain the 

involvement of Hcy in the pathology of human vascular diseases.  
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5.3 Transthyretin and Homocysteine: post-translational modifications 

and TTR amyloidogenesis  

 
 

It is not known whether posttranslational modifications of TTR occur intracellularly or 

extracellularly. However, in plasma, the reduced, oxidized, and protein-bound forms of 

homocysteine, cysteine, cysteinylglycine, and glutathione interact by redox and 

disulfide exchange reactions. These interactions may play an important role in the 

extracellular antioxidant defence system (Ueland et al. 1996). Sulfitolysis of disulfide 

bonds in proteins produces S-sulfonated proteins. The reaction involves the nucleophilic 

attack of the sulfite ions on disulfide bonds in proteins (Cecil and Wake 1962). For 

example, S-sulfonation of albumin and fibronectin is well documented. Formation of S-

sulfonated proteins may disrupt the redox thiol status in plasma, allowing excessive 

reactive oxygen species to oxidize proteins. The levels of oxidized proteins increase 

with age, possibly due to the increase of ROS generation (Berlett and Stadtman 1997). 

Post-translational modification of human TTR at Cys10 alter protein structure of. 

Monomeric TTR has a single cysteine residue at position 10. In the normally folded 

tetrameric protein, the Cys10 residues are in exposed sites at the beginning of the helical 

regions and can conjugate with cysteine and other sulfur-containing ligands. According 

to the crystal structure of wild-type TTR, the Cys10 residue is located at the edge of β-

strand A and its sulfur atom could form a sulfur-hydrogen bond (Terry et al. 1993). 

When the Cys10 residue is post-translationally modified, the sulfur atom of Cys10 is no 

longer available to form hydrogen bond, and the distruption of this bond may alter TTR 

structure causing it to adopt a different conformation. Modifications are heterogeneous, 

with S-sulfonation or S-thiolation (cysteine or cysteineglycine) most commonly 

reported. Cys10 modification reportedly affects TTR stability. S-cysteinylation 

destabilizes TTR at both low pH (Zhang and Kelly, 2003) and high pH, whereas S-

sulfonation stabilizes against aggregation under acidic conditions and at pH 9 

(Kingsbury et al. 2008). Kishikawa et al. reported that S-sulfonation enhanced the 

amyloidogenicity of TTR (Kishikawa et al. 1999). The formation of TTR fibrils was 

studied with three different preparations: unmodified TTR (with thiol compounds bound 

to Cys10 and containing approximately 20% S-sulfonated protein), DTT-treated TTR 

(with a free sulfhydryl group at Cys10), and TTR conjugated with sulfite (S-sulfonate 

TTR). At pH 4.0 there was a 3-fold enhancement of fibril formation with S-sulfonate 
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TTR compared to unmodified TTR while reduced TTR had very low ability to fibrillize. 

These results show that sulfonation of Cys10 in TTR might increase the fibrillization 

potential of the protein, which could lead to a more rapid progression of familial TTR 

amyloidosis or senile systemic amyloidosis. Interestingly, a higher percentage of S-

conjugated TTR to the unmodified form has been reported in patients with symptomatic 

amyloid disease (Suhr et al. 1999). Likewise, the Cys33 residue is within a structured 

region of TTR and its post-translational modification may interrupt normal folding. 

Interestingly, only one other Cys substitution (at position 114) has been described by 

DNA sequence analysis. However, no data have been reported on the post- translational 

modification of Cys114.  

Protein conformational changes resulting from amino acid substitution and 

posttranslational modification may affect the rate of protein degradation. Degradation of 

extracellular proteins involves pinocytosis and specific receptor-mediated endocytosis. 

Through these processes, extracellular proteins are taken inside the cell for degradation 

in lysosomes. The mechanism of TTR cellular uptake and degradation is not well 

understood. However, cellular uptake of TTR has been shown to be receptor-mediated, 

and the structure of the TTR can affect receptor recognition (Sousa and Saraiva 2001). 

Post-translational modifications, in addition to amino acid substitution, can affect TTR 

structure and thus its ability to bind these receptors.  

TTR undergoes homocysteinylation at its single cysteine residue (Cys 10) both in vitro 

and in vivo (Lim et al. 2003). The ratios of TTR-Cys10-S-S-homocysteine and TTR-

Cys10-S-S-sulfonate to that of unmodified TTR increased with increasing homocysteine 

plasma concentrations, whereas the ratio of TTR-Cys10-S-S-cysteine to that of 

unmodified protein decreased. Recent data show that L-homocysteine reacts with TTR 

in the human plasma to form a stable covalent adduct both in vitro and in vivo. TTR is 

the third plasma protein, after albumin (Refsum et al. 1985; Sengupta et al. 2001) and 

fibronectin (Majors et al. 2002), to be identified as a carrier of homocysteine in vivo. 
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AIM OF THE STUDY 

 

During my PhD I have focused my attention different aspects of the Aggregation 

pathway of TTR and �2-microglobulin variant, D76N as well as on the study of possible 

inhibitors of the fibrillogenesis process. 

 

1. Oleuropein Aglycone: a natural polyphenol which protects 

against the cytotoxicity associated with Transthyretin 

fibrillogenesis 

 

In addition to liver and heart transplantation, there is no effective medical treatment to 

improve or blocks the progression of the diseases; it is therefore evident the importance 

of studying strategies to inhibit the formation of TTR amyloid fibrils or to delineate 

appropriate therapeutic interventions. Recent data show that some compounds, natural 

and not, stabilize the TTR native state and inhibit fibril formation, suggesting the 

possibility of medical treatment for TTR-amyloidosis associated. In particular it has 

been shown that natural compounds, such as curcumin, rosmarinic acid, EGCG or 

Resveratrol Can have a protective effect on the aggregation of TTR. On the basis of 

these results, we decided to investigate the effects of OleA on TTR aggregation and 

cytotoxicity. In order to study the effects of OleA I have used various various analysis 

in vitro techniques, such as Intrinsic Fluorescence, FT-IR, DLS, protein digestion with 

PK, and TEM, and in vivo analysis on HL-1 cardiomyocytes by the MTT cytotoxicity 

assay and immunofluorescence. 

 

2. Wild-type and Leu55Pro Transthyretin Homocysteynilation, 

worsening of cardiomiopathy onset 
 

 

The problem of Homocysteine (Hcy) toxicity has become of great interest considering 

that Hcy can form stable disulfide bonds with proteins cysteine residues, which may 

alter or impair the function of the protein itself. Protein homocysteinylation is a novel 

example of protein damage that may explain the involvement of Hcy in a series of 

human cardiovascular. 

Recently the binding of cysteine and homocysteine with wt-TTR have been found in 

human serum. Considering the mass-spectrometry data already available on about the 
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binding of wt-TTR and Hcy, we performed made some in vitro and in vivo experiments 

to study the effect of Hcy on wt- and L55P-TTR in physiological conditions. In 

particular on L55P, that it induces a cardiomiopathy in patients, and we tested the 

samples on HL-1, cardiomyocyte cell line.  

 

3. Molecular insights into membrane interaction of a new 

amyloidogenic variant of �2-microglobulin 
 

I have investigated the cytotoxicity of D76N-�2m on neuroblastoma cell line SH-SY5Y 

with particular emphasis on the correlation between the structural aspects of the 

aggregates and their cytotoxic effect. Studies with human neuroblastoma cells, SH-

SY5Y showed that �2-m is not neurotoxic, because the protective blood-brain barrier 

keeps the protein at lower concentration in the cerebrospinal fluid. The pathogenic 

protein was aggressively fibrillogenic in vitro, prompting a revaluation of previously 

hypothesized mechanisms of �2-m fibrillogenesis. Extensive amyloid deposits were 

found in the spleen, liver, heart, salivary glands, and nerves. So resulted be important 

characterize the way by the aggregates resulted be cytotoxic. Preliminary results 

indicate that the pre-fibrillar species of D76N are toxic and appear to interact 

preferentially with the extensions of SH-SY5Y cells, confirming the neurodeposition of 

these aggregates observed in patients. These observations have led to carry out a series 

of experiments on SH-SY5Y cells differentiated by treatment with retinoic acid. In 

addition to vitality and cellular localization of the aggregates we analyzed cellular 

apoptosis, the intracellular calcium flux and ROS production. 
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1. Oleuropein Aglycone: a natural polyphenol which protects 

against the cytotoxicity associated with Transthyretin 

fibrillogenesis 

Oleuropein deglycosilation. Oleuropein was purchased from Extrasynthese and 

deglycosilated by almond �-glycosidase (EC 3.2.1.21, Fluka, Sigma-Aldrich) as 

previously described (Rigacci et al. 2010). Briefly, a 10 mM solution of Oleuropein in 

310 �l of 0.1 M sodium phosphate buffer, pH 7.0, was incubated with 9 IU of �-

glycosidase overnight at room temperature. The reaction mixture was centrifuged at 

18,000 rpm for 10 min to precipitate the oleuropeina aglycon, which was dissolved in 

DMSO (dimethylsulfoxide) (Rigacci et al. 2010). The complete oleuropein 

deglycosylation was confirmed by assaying the glucose released in the supernatant with 

Glucose (HK) Assay kit (SIGMA), the 100mM stock was protected from light and used 

by the day it was prepared. 

TTR samples. Lyophilized TTR was dissolved in buffer 30mM sodium phosphate pH 

7.5 and the aggregation was induced by added of 100mM sodium acetate pH 4.0.TTR 

fibrils were obtained by incubating wt-TTR at 37°C and pH 4.4 for 72h whereas the 

L55P fibrils were grown upon incubation at 37°C and pH 5.5 for 96h, as previously 

reported (Bonifacio et al. 1996; Lai et al. 1996). Aggregation kinetic was followed by 

FT-IR. To study the interference of OleA with aggregation, wt-TTR and L55P were 

incubated with 3XOleA for 72h and 96h, respectively; disaggregation experiments were 

carried out using pre-formed fibrils incubated with OleA for different time lengths. 

Congo Red Assay. Congo Red (CR) is used to demonstrate the presence of amyloidal 

deposits in tissue. CR appears red at normal light but yellow/green between crossed 

polarisers. Binding the amyloid induces a characteristic shift in CR maximal optical 

absorbance from 490nm to 540 nm (Frid et. al. 2007). The assay was performed as 

previously described (Nilsson et al. 2004), 7,14 �M of TTR incubated in the presence or 

in absence of 3x Ole during the aggregation. Ole was added also with pre-formed fibills 

of TTR for 10 minutes and 5 hours. Fibrills and native wt-TTR were incubated with 

5mM Sodium phosphate buffer, 150 mM NaCl, pH 7.4 contained 20�M of CR. The 

spectrum was recorded in the 400-700 nm region using Jasco V-630 Spectrophotometer. 

Blank spectra were acquired for CR alone, in the presence or in absence of Ole, and 

subtracted to each sample spectrum. Spectral difference was obtained by substracting 
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the spectrum of CR with buffer of TTR aggregation, CR with Ole and TTR in 

aggregation buffer without CR. 

Transmission Electron Microscopy. Five microliter aliquots from TTR in presence and 

absence of Ole were withdraw at different time points and were loaded onto a 

formvar/carbon-coated 400 mesh nickel grids (Agar Scientific, Stansted, UK) and 

negatively stained with 2.0% (w/v) uranyl acetate (Sigma-Aldrich). The grid was 

airdried and examined using JEM 1010 trasmission electron microscope at 80kV 

excitation voltage.  

Isolation and culture of HL-1 cardiomyocyte. Mouse atrial myocytes HL-1 were 

obtained from Dr W. C. Claycomb (Louisiana State University Health Science Center, 

New Orleans, LA, USA) and grown in T25, gelatin- fibronectin coated flasks, as 

previously described (Sartiani et al. 2002). The cells were maintained in Claycomb 

Medium (JRH Biosciences), supplemented with 10% fetal bovine serum (Sigma-

Aldrich), 2.0 mM L-glutamine (Sigma-Aldrich), 0.1 mM noradrenaline (Sigma-Aldrich) 

and 100U/mL penicillin-streptomycin (Sigma-Aldrich). Every three days the cells were 

detached and re-plated at a 1:3 dilution in a new T25 flask or in 96 well plates (70-90% 

confluent) and used for experimental measurements. 

MTT Assay. The MTT assay is based on the protocol described for the first time by 

Mosmann (Mosmann T, 1983). The assay was optimized for the cell lines used in the 

experiments. To test if the drug was able to reduce the toxicity of amyloid aggregates of 

TTR was used a test of cell viability using the 3-(4,5-dimethylthiazol-2-y1)-2,5-

dipheniltetrazolium-bromide (MTT). This product is of yellowish colour in solution. 

Mitochondrial dehydrogenases of viable cells cleave the tetrazolium ring, leading to the 

formation of purple crystals which are insoluble in aqueous solutions. The crystals are 

re-dissolved in isopropanol and the resulting purple solution is measured 

spectrophotometrically. An increase or decrease in cell number results in a concomitant 

change in the amount of formazan formed, indicating the degree of cytotoxicity caused 

by the test material. This assay is used to assess the viability of cells subjected to 

appropriate treatments compared to control cells. HL-1 cells were seeded into 96-well 

plates at a density of 6000 cells/well in fresh complete medium and grown fro 48h.Cells 

were treated with 20�M of wt-TTR and L55P in presence and absence of 3X Ole, also 

with pre-fibrillar aggregates incubated with Ole. After 24h of incubation, the culture 
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medium was removed and the cells were incubated with 100 µl of serum-free DMEM 

without phenol red, containing 0,5 mg/ml MTT for 1h at 37°C. Then, 100 µl of cell 

lysis solution (20% SDS, 50% N, N-dimethylformamide) was added to each well and 

the samples were incubated at 37 °C to allow complete lysis. The absorbance of the blue 

formazan was read at 570 nm using a spectrophotometric microplate reader 

automatically. The final values of absorption were calculated by averaging of each 

sample in triplicate and subtracting from this the average of the white, consisting of 

100�l of MTT solution and 100 �l of lysis solution. All data were expressed as mean ± 

deviation standard. 

Confocal Immunofluorescence. Subconfluent HL-1 cells grown on glass coverslips 

were treated for 24h with the different samples of wt-TTR and L55P (20�M). After 

incubation the cells were washed with PBS and cell surfaces GM1 labeling was 

performed by incubating the cells with 10 ng/ml CTX-B Alexa488 in complete medium 

for 10 min at room temperature. Then fixed in 2.0% buffered paraformaldehyde for 10 

min and permeabilized by treatment with 50% acetone 50% ethanol for 4 min at room 

temperature, washed with PBS and blocked with PBS containing 0.5 % BSA and 0.2 % 

gelatine. The cells were incubated 1.0 h at room temperature with a rabbit polyclonal 

antibody raised against TTR diluted 1:600 in the blocking solution; then the cells were 

washed with PBS for 30 min under stirring. The immunoreaction was revealed with 

Alexa568-conjugated anti-rabbit secondary antibody (Molecular Probes) diluted 1:100 

in PBS. Finally, the cells were washed twice in PBS and once in redistilled water to 

remove non-specifically bound antibodies. Cell fluorescence was visualized using a 

confocal Leica TCS SP5 scanning microscope (Leica, Mannheim, Ge) equipped with a 

HeNe/Ar laser source for fluorescence measurements. The observations were performed 

using a Leica Plan 7 Apo X63 oil immersion objective, suited with optics for DIC 

acquisition. 

Fluorescence resonance energy transfer (FRET). Fluorescence resonance energy 

transfer (FRET) misuring a distance-dependent physical process by which energy is 

transferred non radiatively from an excited molecular fluorophore (the donor) to another 

fluorophore (the acceptor). The analysis was based on the immunoreaction between 

GM1 (donor) and TTR (acceptor) aggregates labeled with Alexa FLUO-488 and Alexa 
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FLUO-568, respectively. 3D volume renderings were obtained by using OsiriX 

software (http://www.osirix-viewer.com). 

Dynamic light scattering (DLS). DLS is a well-established technique for measuring the 

size and size distribution of molecules and particles typically in the submicron region, 

and with the latest technology lower than 1nm. Typical applications of dynamic light 

scattering are the characterization of particles which have been dispersed or dissolved in 

a liquid. The Brownian motion of particles or molecules in suspension causes laser light 

to be scattered at different intensities. Analysis of these intensity fluctuations yields the 

velocity of the Brownian motion and hence the particle size using the Stokes-Einstein 

relationship. The basic principle is simple: The sample is illuminated by a laser beam 

and the fluctuations of the scattered light are detected at a known scattering angle � by a 

fast photon detector. Simple DLS instruments that measure at a fixed angle can 

determine the mean particle size in a limited size range. More elaborated multi-angle 

instruments can determine the full particle size distribution. From a microscopic point 

of view the particles scatter the light and thereby imprint information about their 

motion. Analysis of the fluctuation of the scattered light thus yields information about 

the particles. Experimentally one characterizes intensity fluctuations by computing the 

intensity correlation function g2 (t), whose analysis provides the diffusion coefficient of 

the particles (also known as diffusion constant). The diffusion coefficient D is then 

related to the radius R of the particles by means of the Stokes-Einstein Equation: 

  

 

Where k is the Boltzmann-Konstant, T the temperature and � the viscosity. The 

correlation of the intensity can be performed by electronic hardware or software 

software analysis of the photon statistics. Because fluctuation is typically in the range of 

nanoseconds to milliseconds, electronic hardware is typically faster and more reliable at 

this job.  

FT-IR spectroscopy. These experiments were made in collaboration with the University 

of Milan, the Department of Physyscs, briefly aliquots of lyophilized protein were 

resuspended at a final concentration of 80µM in deuterated 30 mM phosphate buffer, 

with and without Oleuropein, at different pD. Deuterated buffers containing Oleuropein 



Materials and Methods 

 73 

were prepared from a stock solution of Oleuropein 50 mM in DMSO. Fourier transform 

infrared (FTIR) spectra were collected and analyzed as previously described (Ami et al. 

2012). In particular, a volume of 15 µl of the protein solution was placed in a 

temperature-controlled transmission cell (Wilmad, USA) with BaF2 windows and an 

optical path made by a Teflon spacer of 100 µm. FTIR spectra were collected in 

transmission mode during incubation at 37°C for 72 hours in the transmission cell. A 

Varian 670-IR spectrometer (Varian Australia Pty Ltd., Mulgrave VIC, AU) was 

employed under the following conditions: 2 cm-1 spectral resolution, 5 KHz scan speed, 

triangularapodization, and 256 and 1000 scan coadditions. After 72 hour at 37°C, the 

same solution was heated up to 100°C at a rate of 0.2°C/min. Buffer subtraction, vapor 

correction (when necessary), and the second derivative of the absorption spectra (Susi et 

al. 1986; Natalello et al. 2012) were performed using the Resolutions-Pro software 

(Varian Australia Pty Ltd., Mulgrave VIC, AU). 

Acrylamide Quenching. Aliquots of the protein solutions were drawn at various time 

points during the course of fibrillation and mixed with increasing concentrations of 

acrylamide, from 0 to 0.6 M in buffer phosphate pH7 followed by mixing and 

incubation for 5 minutes in the dark. The intrinsic fluorescence was recorded before and 

after addition of the quencher. Excitation wave-lenght was set to 280 nm and emission 

intensity was scanned from 300 to 450 nm. Fluorescence intensities were further 

corrected for diluition because of the step-wise addition of acrylamide. Quenching data 

were analysed by fitting to the Stern-Volmer equation that describes collisional 

quenching processes: 

(I0/I )=1 + Ksv[Q] 

where I0 is the fluorescence intensity prior to the addition of the quencher, I is the 

intensity after quencher addition, and [Q] is the molar quencher concentration. High 

Ksv values indicate a high degree of quenching and therefore high Trp accessibility. 

Stern-Volmer plots for the TTR were fitted with the equation: 

F0/F = (1 + Ksv-[A]) exp(Kst)[A]) 

where F0 and F are the intrinsic fluorescence intensities in the absence and presence of 

acrylamide, respectively, [A] is the concentration of the acrylamide, Ksv is the Stern-



Materials and Methods 

 74 

Volmer constant for dynamic quenching, and Kst is the static component of the 

quenching process (Souillac et al. 2003). 

Protease Digestion. Samples of TTR fibrils in presence and absence of Ole was treated 

with 50X of Proteinase K at different times (Bateman et al. 2010). Aliquots of these 

samples were taken at defined times and analyzed by SDS-PAGE using 15% (w/v) 

polyacrilamide gels. The progressive digestions were monitored observing a progressive 

intensity change of the corresponding bands. 

Intrinsic fluorescence. The fluorescence emission spectra were normalized to an 

intensity of 1.0 at the observed �max using FLwinlab software (Perkin-Elmer 

Instrument Corporation, Wellesley, MA) prior to derivatization. Trp emission scan 

normalization was essential to compare the intensities and the positions of various 

bands appearing in the second derivatives of the fluorescence emission scans. The 

average of five scans was then subjected to smoothing using a 11-point smoothing 

average and a Savitzky-Golay algorithm using Omnic-software (Nicolet Inc., Madison, 

WI). Finally, the second derivatives of the smoothed spectrum were obtained using the 

same software. A smoothing step of the normalized data was required to reduce the 

noise in the second derivative. The smoothing criteria meet the need that the overall 

shape and intensity of the raw emission scan is not affected following smoothing and at 

the same time the overall shape of the bands in the second derivative is preserved and 

the excess noise is removed. 

Statistical Analysis. Statistical analysis of the data was performed by using one way 

analysis of variance (ANOVA) and Bonferroni test to determine differences in 

cytotoxicity. 
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2. Wild-type and Leu55Pro Transthyretin Homocysteynilation, 

worsening of cardiomiopathy onset 

 

Materials. All reagents were of analytical grade or of the highes tpurity available.bovine 

serum albumin (BSA), fetal bovine serum (FBS), were from Sigma-Aldrich (Milan, 

Italy), unless otherwise stated. Fluo3-AM, calcein-AM and CM-H2 DCFDA (Life 

Technologies, CA, USA) were prepared as stock solutions in dimethylsulfoxide 

(DMSO), dried under nitrogen and stored in light-protected vessels at −20 °C until use.  

 

Isolation and culture of HL-1 cardiomyocytes. How said above, for these experiments 

I have used HL-1 mouse atrial myocytes and grown in T25, gelatin- fibronectin coated 

flasks. The cells were maintained in Claycomb Medium (JRH Biosciences), 

supplemented with 10% fetal bovine serum (Sigma-Aldrich), 2.0 mM L-glutamine 

(Sigma-Aldrich), 0.1 mM noradrenaline (Sigma-Aldrich) and 100U/mL penicillin-

streptomycin (Sigma-Aldrich).  

TTR samples. Lyophilized L55P-TTR was dissolved in buffer 30mM sodium phosphate 

pH 7.4. To study the interference of Hcy with aggregation, L55P was incubated with 

Hcy in a molar ratio 1:2 (TTR tetramer:Hcy) in 10min-7days range. 

SDS-PAGE. Proteins were separated by SDS-PAGE. SDS is an anionic detergent 

applied to protein sample to linearize proteins and to impart a negative charge to 

linearized proteins. In most proteins, the binding of SDS to the polypeptide chain 

imparts an even distribution of charge per unit mass, thereby resulting in a fractionation 

by approximate size during electrophoresis. Sample were dissolved in Laemmli sample 

buffer (62.5mM Tris-HCl, pH 6.8, 2% SDS, 25% glycerol, 0.01% bromphenol blue). 

The 0.1% of 2-�mercaptoethanol (BME) was added before the boiling (10 min, 95 °C) 

in a water bath, a 10�l sample was applied onto the 15% SDS-PAGE gel. The 

visualization was carried out using Coomassie Brilliant Blue dye. 

Native-PAGE. "Native" or "non-denaturing" gel electrophoresis is run in the absence of 

SDS. While in SDS-PAGE the electrophoretic mobility of proteins depends primarily 

on their molecular mass, in native PAGE the mobility depends on both the protein's 

charge and its hydrodynamic size. The electric charge driving the electrophoresis is 

governed by the intrinsic charge on the protein at the pH of the running buffer. This 
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charge will, of course, depend on the amino acid composition of the protein as well as 

post-translational modifications such as addition of sialic acids. Running Buffer 5x, 

Leammli 2x and 12% Acrylamide gel without SDS. The samples were not boiled and 

the visualization was carried out using Coomassie Brilliant Blue dye. 

Dot-blot assay. Accordingly to Abcam protocol, briefly, 2�l of samples were spotted 

onto the nitrocellulose membrane and this latter was air-dried and blocked with PBS 

containing 5% BSA (Bovine Serum Albumin, SIGMA, Aldrich). Following incubation 

with anti-TTR primary antibodies (1:600) or A11 anti-oligomer antibodies (a gift from 

Glabe C.) (1:1000), peroxidase-conjugated anti-rabbit antibodies and a 

chemiluminescent substrate, the image was acquired with a ChemiDoc system (Bio-

Rad). 

Turbidimetric Assay. According to Arsequell T and co-workers (Arsequell et al. 2012) 

we monitored turbidity in a 96 multiwells contained 5 µM L55P- TTR and 10 µM Hcy 

(1:2) in buffer sodium phosphate at pH 7.0 and were carried out at 37 °C without 

stirring. The absorbance was determined at 400nm with an automatic plate reader (Bio-

Rad). 

Transmission Electron Microscopy. 5 �l aliquots of the TTR in presence and absence 

of Hcy were withdraw at different time points, loaded onto a formvar/carbon-coated 400 

mesh nickel grids (Agar Scientific, Stansted, UK) and negatively stained with 2.0% 

(w/v) uranyl acetate (Sigma-Aldrich). The grid was air-dried and examined using JEM 

1010 trasmission electron microscope at 80kV excitation voltage. 

MTT Assay. The MTT assay was optimized for the cell lines used in the experiments. 

Briefly, HL-1 cells were seeded into 96-well plates at a density of 6000 cells/well in 

fresh complete medium and grown for 48h. Then the cells were treated for 24 h with 

5�M L55P-TTR (tetramer) at different times of aggregation in the presence or in the 

absence of Hcy (10 �M). HypF-N oligomers were formed in according to protocol of 

Campioni and co-workers (Campioni et al. 2010). Native proteins were diluted to a final 

concentration of 12�M into the same media. Oligomers were then incubated in the 

appropriate media for 1 h at37 °C while shaking, in the absence or presence of each 

TTR, and then added to cultured cells or subjected to biophysical/biochemical analysis. 

The protein : TTR molar ratio was 10:1 (Cascella  et al. 2013). 
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Circular Dichroism spettroscopy. The spectra were recorded with a Jasco J-810 

spectropolarimeter equipped with a thermostated cell holder attached to a Thermo 

Haake C25P water bath. The spectra were acquired with a 2 cm/min scan speed and data 

points were collected from 260 to 190 nm at 25 ° C with a 1 mm path length quartz cell. 

The final concentration of all samples was 40 �M. All spectra were blank-subtracted 

and converted to molar ellipticity per residue.  

Dynamic light scattering (DLS). DLS measurements were performed using a Zetasizer 

Nano S DLS device from Malvern Instruments (Malvern, Worcestershire, UK), 

thermostated with a Peltier system and using a low-volume (45 �l), ultramicro cell 

(code 105.251-QS) from Hellma Analytics (Müllheim, Germany). Size distributions by 

intensity and total light-scattering intensity were determined at regular time-intervals 

over a period of 10 min. The temperature was maintained at 37 °C and the parameters 

were set manually on the instrument to allow the same settings in the various 

distributions acquired at different time-values. These included ten acquisitions each of 

10 second duration, with cell position 4.2 cm and attenuator index 7. The reported data 

are the average of three consecutive measurements.  

Resveratrol binding assay. Fluorescence studies were based on Tatyana et al 2008 

(Tatyana et al. 2008; Choi et al. 2010). Briefly, Resveratrol was excited at 320nm and 

Emission spectra were recorded over a range of 350−450 nm. Free resveratrol has a 

fluorescence maximum at 390 nm. Fluorescence intensity increased substantially upon 

binding to TTR. All data have been obtained in presence of 10�M Resveratrol and 

10�M Hcy incubated with 5�M TTR in native condition (sodium phosphate buffer pH 

7.5). 

Statistical Analysis. Statistical analysis of the data was performed by using T-student 

test to determine differences in cytotoxicity. 
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3. Molecular insights into membrane interaction of a new 

amyloidogenic variant of �2-microglobulin 

 

Cell Culture. Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line 

which has been used as an in vitro model for neurotoxicity experiments (Chand et al. 

2002). Briefly, SH-SY5Y cell were cultured with complete medium (50% HAM, 50% 

DMEM, 10% fetal bovine serum, 3.0mM glutamine, 100units/ml penicillin and 100 

�g/ml streptomycin), in a humidified, 5% CO2, 37°C incubator. 48 hour after seeding, 

serum levels of the medium were reduced to 3% with RA (10�M) for differentiation for 

four days prior to treatment (Yuen-Ting et al. 2009). All the materials used for cell 

culture were from Sigma. 

Cell viability assay. The toxicity of the different forms of D76N aggregates (5�M) by 

the MTT assay. The assay was optimized for the cell lines used in the experiments. This 

product is of yellowish colour in solution. In all of the MTT-experiments, SH-SY5Y 

cells were plated at a density of 10000 cells per well on 96-well plates in 100�l of 

culture medium. After the treatment the absorbance value of blue formazan were 

determined at 595nm with automatic plate reader (Bio-Rad). The final values of 

absorption were calculated by averaging of each sample in triplicate and subtracting 

from this the average of the white and all data were expressed as mean ± deviation 

standard. 

Reactive oxygen species (ROS) measurement. Intracellular ROS levels were 

determined using the fluorescent probe 2’, 7’–dichlorofluorescin diacetate, acetyl ester 

(CM-H2 DCFDA) from Molecular Probes. CM-H2 DCFDA is a cell-permeant indicator 

for reactive oxygen species that is nonfluorescent until removal of the acetate groups by 

intracellular esterases and oxidation occurs within the cell. Oxidation of these probes 

can be detected by monitoring the increase in fluorescence. SH-SY5Y cells were plated 

at a density of 10000 cells per well on 96-well, like MTT-Assay, after 24h of 

treatments, DCFDA 10�m in DMEM without phenol red was added. 

After 30 min the fluorescence values at 538nm were detected by Fluoroscan Ascent FL 

(Thermo-Fisher). 
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Intracellular Free Ca
2+

 levels. The cytosolic levels of free Ca
2+

 were measured using 

fluorescent probe Fluo-3 acetoxymethyl ester (Fluo-3 AM) from Molecular Probes. 

Fluo-e posses an absorption spectrum compatible with excitation at 488nm by argon-ion 

laser sources, and a very large fluorescence intensity increase upon Ca
2+

 binding. 

Subconfluent SH-SY5Y cells cultured on glass coverslips were incubated at 37°C for 5 

min with 5.0�M Fluo-3 AM prior to D76N addition. Then the cells were fixed in 2.0% 

buffered paraformaldehyde for 10 min. Cell fluorescence was visualized using a 

confocal Leica TCS SP5 scanning microscope (Leica, Mannheim, Ge) equipped with a 

HeNe/Ar laser source for fluorescence measurements. The observations were performed 

using a Leica Plan 7 Apo X63 oil immersion objective, suited with optics for DIC 

acquisition. 

Apoptosis Detection. The apoptosis effects induced by D76N aggregates were detected 

by Annexin V-FITC Apoptosis detection kit (Sigma-Aldrich). Also Propidium Iodide 

Solution with Annexic V-FITC were used to discriminate among viable, apoptotic and 

secondary necrotic cells. Briefly, after the treating for 24h with the most toxic D76N 

aggregates, cells are incubated with Annexim V-FITC and propidium iodide for 10 min, 

at room temperature. The cells are analyzed by flow cytometry, annexinV-FITC is 

detected as a green fluorescence and propridium iodide is detected as a red fluorescence. 

Confocal Immunofluorescence. Subconfluent SH-SY5Y cells grown on glass 

coverslips were treated for 24h with the different D76N aggregates (5�M). How said 

previously, cell surfaces GM1 labeling was performed by incubating the cells with 10 

ng/ml CTX-B Alexa488 in complete medium for 10 min at room temperature. Then 

fixed in 2.0% buffered paraformaldehyde for 10 min and permeabilized and blocked 

with PBS containing 0.5 % BSA and 0.2 % gelatine. The cells were incubated 1.0 h at 

room temperature with a rabbit polyclonal antibody raised against �2-microglobulin 

diluted 1:600 in the blocking solution; and the immunoreactions was revealed with 

Alexa 568-conjugated anti-rabbit secondary antibody (Molecular Probes) diluted 1:100 

in PBS. Finally, the cells were washed twice in PBS and once in redistilled water to 

remove non-specifically bound antibodies. Cell fluorescence was visualized using a 

confocal Leica TCS SP5 scanning microscope (Leica, Mannheim, Ge) equipped with a 

HeNe/Ar laser source for fluorescence measurements. The observations were performed 
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using a Leica Plan 7 Apo X63 oil immersion objective, suited with optics for DIC 

acquisition. 

Single particle imaging and tracking. Briefly, living cells previously exposed to 

aggregates were incubated in phenol red-free Leibovitz’s L-15 medium 10% FBS at 37 

°C first with anti-�2m (1:600) for 20 min, then for 5 min with anti-mouse Alexa 488 

(1:500) and 10 �g/ml biotinylated CTX-B, and finally with streptavidin QDs 

(Invitrogen) in QD binding buffer for 1 min. QDs emitting at 655 nm were used at a 

1:10000 dilution. Cells were monitored with a custom-made wide-field epifluorescence 

microscope equipped with an oil-immersion objective (Nikon Plan Apo TIRF 

60x/1.45), a Reliant 150 Select argon ion laser (excitation line 488 nm) and a heating 

chamber. A FF499-Di01-25 dichroic, and FF01-655/15-25 (for QDs) and FF01-530/43-

25 (for Alexa 488) emission filters (Semrock) were used. 250 or 100 consecutive frames 

were acquired with an integration time of 10 ms, respectively, with an Electron 

Multiplying Charge-Coupled iXon Ultra camera (Andor). Recording sessions did not 

last more than 30 min. Tracking of single QDs, which were identified by their 

fluorescence intermittence, was performed with MATLAB (MathWorks, Natick, MA) 

using a homemade macro that accounts for blinking in the fluorescence signal.  

Quantitative analysis of diffusion coefficient. The mean square displacement (MSD) 

analysis allows to calculate the initial diffusion coefficient (D) of each particle. Briefly, 

physical parameters can be extracted from each trajectory (x(t),y(t)) by computing the 

MSD, determined from the following formula: 

 

where xi and yi are the coordinates of a particle on frame i, dt is the time between two 

successive frames, N the total number of frames of the trajectory and ndt the time 

interval over which the displacement is averaged. This function enables the analysis of 

the lateral dynamics on short (initial diffusion coefficient) and long (types of motion) 

time scales. Different types of motion can be distinguished from the time dependence of 

the MSD. The initial diffusion coefficient (D) is determined by fitting the initial 2 to 5 

points of the MSD against time plot with MSD(t) = 4D2-5 t + b. The cumulative 

probability C (d) of D defines the probability that D is less that d. We compared 



Materials and Methods 

 81 

cumulative probability distributions and median instead of mean values because D 

values were spread over four orders of magnitude. Images were threshold with ImageJ 

software, creating binary masks corresponding to amyloid aggregates. 

GM1 depletion. To reduce cell membrane GM1, the plated SH-SY5Y cells were treated 

by inhibiting cell glucosylceramide synthase by supplementing the cell culture medium 

with 25�M D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP; 

Matreya, LLC, Bellefonte, PA) for 48 hours at 37°C in complete medium (Tamboli et 

al. 2005). The pre-treatment was made for a MTT-Assay and Immunofluorescence. 

Statistical Analysis. Statistical analysis of the data was performed by using T-student 

test to determine differences in cytotoxicity. For QDs: Comparisons between the 

different cumulative distributions were performed by Kolmogorov-Smirnov test. 

A p value < 0.05 was considered statistically significant. SPT data were collected from 

10 cells from three independent experiments. 
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1. Oleuropein Aglycone: a natural polyphenol which protects 

against the cytotoxicity associated with Transthyretin 

fibrillogenesis 

 
Ole is cytoprotective against TTR toxicity. Ole exhibits a wide range of 

pharmacological properties. In the current study, we first investigated Ole for its 

protective effects against cytotoxicity on human HL-1 cells induced by wt-TTR and 

L55P-TTR amyloid aggregates. The wt-TTR and L55P-TTR were incubated with Ole in 

a 1:3 (TTR monomeric:Ole molar ratio) ratio for 30 min at 37 °C and then the pH was 

raised to 4.4 and 5.0, respectively, to start the aggregation process. At different times, 

aliquots of protein solutions were taken to test them on HL-1 cells by the MTT assay. 

The cells were treated with 20 µM protein solutions for 24 h (monomeric TTR 

concentration). No toxic effect of treatment with Ole alone was observed. As shown in 

Figure1, the wt-TTR and L55P-TTR, after 72 h (wt-TTR-i72h) or 96 h (L55P-TTR-

i96h) of acid-treatment were cytotoxic and the exposed cells displayed about 35%±6,8 

and 50%±3,32 toxicity, respectively, compared to vehicle-exposed cells. However, the 

aggregates of both proteins grown in the presence of OleA (wt-TTR/OleA-i72h and 

L55P-TTR/OleA-i96h) were much less toxic, in fact, cell sufferance was abrogated 

completely for wt-TTR/OleA (Fig.1A) and partially for L55P-TTR/OleA (80%±8,5) 

(Fig.1B). We also checked whether the phenol could modify the toxicity of wt-TTR and 

L55P pre-formed fibrils. To this aim the preformed fibrils, corrisponding to wt-

TTR/OleA-i72h and L55P-TTR/OleA-i96h, of either protein were incubated with OleA 

1:3 monomer TTR:OleA, molar ratio for 10 min (wt-TTR/OleA-dis10min and L55P-

TTR/OleA-dis10min, respectively) or 5 h (wt-TTR/OleA-dis5h and L55P-TTR-OleA-

dis5h, respectively). The resulting MTT assay showed a decrease of toxicity to values of 

85±8.5% for wt-TTR/OleA-dis10min and 95±4.54% for wt-TTR/OleA-dis5h (Fig.1A), 

while the cell viability values were about 80±5.6% for both L55P-TTR/OleA-dis10min 

and L55P-TTR-OleA-dis5h samples (Fig.1B). Finally, we determined whether OleA 

inhibited the toxicity of TTR aggregates or increased cell resistance by exposing the 

cardiomyocytes to the phenol before the addition of TTR aggregates. The results of 

these experiments (data not shown) showed that cell pre-incubation with OleA for 24 h 

did not enhance cell viability. These findings suggest that OleA protection does not 

result from any stimulation of cell defences; rather it could arise from some interference 

with the protein aggregation process or with the association of TTR-toxic species with 
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the exposed cells. Therefore, we sought to characterize the effect of OleA on the 

aggregation of either wt-TTR or the L55P mutant. These preliminary results could 

indicate that Ole could be an efficient compound for protection against cell death 

induced by TTR fibrils . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Effects of Ole on TTR induced cytotoxicity. Cells were treated with TTR (20µM) for 24h in 

the absence or presence of Ole (1:3 ratio). Cell viability was assessed by MTT reduction assay. Error bars 

indicate the standard deviation of triplicate independent experiments. A) F8,36= 14.74; * p< 0.01 vs 

control ; ° p< 0.01 vs wt-TTR-i72h. B) F8,36= 27.21; *p<0.01; ° p<0.01 vs L55P-TTR-i96h. 

Confocal analysis. To determine whether aggregate toxicity was related to their ability 

to interact with the plasma membrane of HL-1 cells, we looked for the presence of the 

fibrillar aggregates on the cell surface. Confocal fluorescence microscopy experiments 

were performed using a polyclonal antibody raised against recombinant TTR. The cell 

membranes were counterstained with Alexa-488 conjugated CTX-B, a probe that 

specifically binds the monosialoganglioside GM1, a common lipid raft marker. Then 

wechecked whether the structural changes induced by OleA in TTR fibrils might alter 

their interaction with elements of cell plasma membrane. Confocal images show 

evidence of wtTTR-i72h and L55P-TTR-i96h fibril clustering on HL-1 cell membrane 

(Fig.2A, E). The interaction with HL-1 plasma membrane of wt-TTR fibrils grown in 

the presence of OleA (wt-TTR/OleA-i72h) was suppressed (Fig.2B) whereas L55P-TTR 

fibrils grown in the presence of OleA (L55P-TTR/OleA-i96h) displayed only sporadic 

events of clusterization onto the surface of the exposed cells (Fig. 2F).  
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Figure 2. Ole effects on fibril clustering on HL-1 cells. Confocal Z-projections of HL-1 cells exposed to 

WT-TTR and L55P-TTR fibrils (blue) stained to reveal GM1 (magenta). (A) WT-TTR fibrils and (E) 

L55P-TTR fibrils grown in aggregation medium for 72 and 96 h, respectively; (B)wt-TTR/Ole-ifibrils 

and (F) L55P-TTR/Ole-i (3:1, Ole: monomer TTR). 

Then, we performed a 3D analysis, to assess whether fibrils could affect membrane 

integrity, and sensitized FRET analysis, to monitor fibril interaction with GM1. Both 

wt- and L55P-TTR untreated fibrils interacted with the cell membrane (Figs. 3A, C and 

E, G). However, while the former were found only in surface depressions enclosed by 

intact plasma membrane (Fig.3A, inserts 1 and 1a), the latter were found also inside cell 

cytoplasm (Fig.3C, inserts 3 and 3a), suggesting that the two species interact differently 

with cell membrane components. These data were confirmed by the sensitized analysis 

of FRET between TTR immunofluorescence and stained GM1 fluorescence. In fact, 

FRET signal in L55P-TTRi96h appeared more defined and homogeneously distributed 

(Fig.3G), and its efficiency was higher when compared to wt-TTR (Fig.3E). Figure 3B 

shows a HL-1 cell treated with wt-TTR/OleA-i72h fibrils: despite the absence of evident 

aggregates we found diffused dots of TTR immunofluorescence signal characterized by 

a low efficiency FRET with GM1 fluorescent staining. When present, clusters of L55P-

TTR/OleA-i96h on the plasma membrane were characterized by a higher FRET 

efficiency than wt-TTR/OleA-i72h fibrils (Fig.3D, H). Of note, a diffused staining of 

fluorescence dots, with low FRET efficiency was evident also in this sample (Fig.3D, H 

and insert 4). 

 

 



Results 

 
 

85 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 3D and FRET confocal analysis of fibrils interaction with HL-1 cell plasmamembrane. (A) 

Z-projection of wt-TTR immunostaining (blue) and GM1 (magenta) on HL-1 cell plasmamembrane; (1 

and 1a) 3D-volume renderings of regions selected in A show details of cell surface (1) and cytoplasmic 

area (1a) obtained by performing a volume crop on z-axis. (B and 2) Analysis of FRET between GM1 

staining and fibril immunostaining; FRET (Yellow) and 543 nm laser (Blue) excited fibril 

immunofluorescence are shown in (B), FRET efficiency is shown in 2. (C) wt-TTR/Ole-ifibrils on HL-1 

cells. (3 and 3a) 3D-volume renderings of the corresponding selected regions; TTR aggregates on cell 

surface are indicated by arrows in 3a. (D) FRET analysis between GM1 staining and wt-TTR/Ole-ifibrils 

immunostaining; FRET efficiency is shown in 4. (E) L55P-TTRfibrilson HL-1cells. (5 and 5a) 3D-

volume renderings of regions selected in E show details of cell surface (5) and cytoplasmic area (5a). (F) 

FRET analysis between GM1 staining and L55P-TTRfibrils immunostaining; FRET efficiency is shown 

in 6. (G) L55P-TTR/Ole-ifibrilson HL-1cells. (7 and 7a) 3D-volume renderings of the corresponding 

selected regions; TTR aggregates on cell surface are indicated by arrows in 7a. (H) FRET analysis 

between GM1 staining and L55P-TTR/Ole-ifibrils immunostaining. 

Finally, we analyzed the effect of OleA on the interaction of preformed fibrils with the 

cell membrane. wt-TTR/ and L55P/OleA-dis10m immunofluorescent fibrils were seen 

as aggregates with a low FRET emission localized principally in their internal portions 

and as immunofluorescent diffused dots with low FRET signal (Figs.4A, C and E, G). 

Interestingly, dots of fluorescent wt- and mutant-TTR increased with the time of fibril 

treatment with OleA (Figs.4B, D and F, H). Overall, all these data, along with those on 

aggregate cytotoxicity and TEM analyses reported in Figures 2 and 8, suggest that OleA 

may remodel fibrils to less-toxic, smaller aggregates that interact with the cell 

membrane without affecting its integrity.  
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Figure 4. OleA effect on fibrils and following changes of fibril/membrane interaction. (A) Z-

projection of wt-TTR/OleA-dis10m fibril immunostaining (blue) and GM1 (magenta) on HL-1 cell 

plasmamembrane; (inserts 1 and 1a) 3D-volume renderings of corresponding selected regions show 

increasing magnifications of amyloid TTR aggregate interacting with GM1 on cell surface. (B and insert 

2) Analysis of FRET between GM1 staining and fibril immunostaining; FRET (Yellow) and 543 nm laser 

(Blue) excited fibril immunofluorescence are shown in (B), FRET efficiency is shown in insert 2. (C) wt-

TTR/OleA-dis5h fibrils on HL-1 cells. (inserts 3 and 3a) 3D-volume renderings of regions selected in C 

showing amyloid aggregates interacting with GM1 on cell surface (3); dots TTR aggregates on cell 

surface are indicated by arrows in 3a. (D) FRET analysis between GM1 staining and wt-TTR/OleA-

dis5hfibrils immunostaining; FRET efficiency is shown in insert 4. (E and inserts 5 and 5a) L55P-

TTR/OleA-dis10mfibrilson HL-1cells. (5 and 5a) 3D-volume renderings of the selected regions showing 

details of cell surface; arrows indicate diffused TTR aggregates on cell surface. (F) FRET analysis 

between GM1 staining and L55P-TTR/OleA-dis10mfibrils immunostaining; FRET efficiency is shown in 

6. (G) L55P-TTR/OleA-dis5hfibrilson HL-1cells; (7 and 7a) 3D-volume renderings of selected regions 

showing details of cell surface; arrows indicate diffused TTR aggregates on cell surface. (H) FRET 

analysis between GM1 staining and L55P-TTR/OleA-dis5hfibrils immunostaining; FRET efficiency is 

shown in 8.  

 

Congo Red Assay and DLS analysis. Considering the cytoprotective effects of OleA we 

decided to investigate in vitro these effects on TTR aggregation by spectroscopic and 

fluorimetric techniques. To disclose the structural bases of OleA cytoprotection we first 

assessed whether it inhibited protein aggregation. To explore the effects of OleA on 

TTR fibrillogenesis, we compared the Congo Red (CR) absorption spectra of TTR 

samples in the presence or in the absence of OleA. At pH 7.0 both wt-TTR and L55P-
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TTR were not stained with CR, as shown in Fig 4A and B. The absorption maximum at 

490 nm of non-bound CR displayed a red-shifted to a higher wavelength (550 nm) when 

it bound amyloid material present in the samples of wt-TTR and L55P-TTR at acidic 

pH. At these conditions, the presence of OleA reduced significantly CR optical 

absorbance and its red-shift, indicating a decrease in the formation of amyloid fibrillar 

species associated with increased cross β-pleated sheet.  

In parallel, the same samples were analysed by dynamic light scattering (DLS) for 

additional characterization of the protein species in the sample. At pH 7 the TTR sample 

contained particles of about 7 nm apparent hydrodynamic diameter (DH), which is 

consistent with previous reports relative to soluble TTR molecules (Fig.5C) (Pires et al. 

2012). After 72 h in aggregation medium, the DH increased to about 1700 nm. The wt-

TTR/OleA-i72h sample was a homogenous population with DH around 400 nm, 

corresponding to TTR smaller aggregates (Fig.5C). L55P-TTR after 30 min of 

incubation at pH 7.0 in aggregating buffer contained a particle population corresponding 

to a soluble protein also in the presence of the phenol (Fig. 5D). The presence of OleA 

did not prevent fibril formation after 96 h of aggregation, even though particle size was 

lower than that found in phenol-untreated samples (Fig.5D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Congo red and DLS analysis .Absorption spectra of CR and wt-TTR (A) and L55P-TTR (B) in 

native or amyloidogenic conditions in presence or absence of OleA. DLS spectra of wt-TTR (C) and 

L55P-TTR (D) in native or amyloidogenic conditions in presence or absence of OleA.  
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FTIR-analysis. To investigate more in depth the interference of OleA with TTR 

aggregation, the protein secondary structure and thermal stability was analyzed by FTIR 

spectroscopy in collaboration with the Department of Physics “Giuseppe Occhialini at 

the University of Milan, . The FTIR spectra are highly descriptive of the intra- and 

intermolecular modifications in a peptide/protein sample undergoing aggregation, in 

particular by showing the occurrence of intra- or intermolecular beta-sheets. Fig. 6A and 

Fig. 7A show the FTIR spectra of wt-TTR and L55P-TTR at pH 7.0, collected at 

different times during sample incubation at 37 °C for 72 h; the spectra were recorded in 

the Amide I region, where absorption results from C=O stretching vibration of the 

peptide bonds. The spectra are dominated by a component at 1628 cm
-1

 that can be 

assigned to the β-sheet structure of the native protein, in agreement with previous FTIR 

studies (Cordeiro et al. 2006; Zandomeneghi et al. 2004). The second derivative of the 

absorption spectra disclosed a second β sheet component around 1689 cm
-1

 togheter 

with additional components assigned to protein secondary structures, as indicated in 

Fig. 6B and Fig. 7B (Cordeiro et al. 2006; Zandomeneghi et al. 2004). Only minor 

structural changes of wt-TTR were revealed by FTIR analysis during 72 h of incubation 

(Fig. 6C); these were mainly due to the hydrogen/deuterium exchange of the native 

protein (Natalello et al. 2012), whereas a partial unfolding of the L55P mutant was 

indicated by a decrease of the 1628 cm
-1

 component (Fig. 7C). After the incubation, the 

same solutions were heated up to 100 °C at a rate of 0.2 °C/min, and transmission 

spectra were collected at 1.7 °C steps (Fig. 6C and Fig. 7C). At these conditions, wt-

TTR but not L55P-TTR displayed a very high thermal stability, in agreement with 

previously reported findings (Cordeiro et al. 2006; Ami et al. 2012). Indeed, in the wt-

TTR second derivative spectrum the 1628 cm
-1

 peak of native β-sheet retained about 

50% of its initial intensity, whereas in L55P-TTR this component was lost. 

Furthermore, a peak around 1615 cm
-1

, typical of amyloid aggregates (Cordeiro et al. 

2006; Natalello et al. 2012), appeared and steadily increased in the wt-TTR and L55P-

TTR second derivative spectra. This peak, was present also after sample cooling from 

100 °C to 37 °C (Fig. 6C and 7C), indicating that unfolding and aggregation are 

irreversible processes. The same study was also carried out in acidic conditions in the 

absence or in the presence of OleA (Fig. 6D-I and Fig.7D-I). The FTIR absorption 

spectra collected at different times of acid incubation and their second derivatives 

showed several spectral features (Fig. 6E, D and 7E, D) indicating loss of native 
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secondary structure and consequent amyloid aggregation of both wt- and mutant 

proteins independently of OleA presence or absence in the aggregation medium. In 

particular, the native β-sheet components decreased in intensity and two amyloid-related 

peaks around 1615 cm
-1

 and 1682 cm
-1

appeared in the spectra (Fig. 6E, H and 7E, H). 

Heating of protein solution resulted in the complete disappearance of the native spectral 

components with further aggregation of both proteins (Fig. 6F, I and 7F, I), indicating 

that OleA was not able to inhibit their heath-induced misfolding. 

 

 

 

 

 

 

 

 

 

  

 

Figure 6. FTIR characterization of WT TTR. (A) FTIR absorption spectra of wt-TTR at pH 7.5 

collected at different times of incubation up to 72 hours at 37 °C. (B) Second derivatives of the absorption 

spectra reported in (A). Band assignments to protein secondary structures are indicated. (C) Second 

derivatives of the absorption spectra of WT TTR at pD7.5 collected during heating from 37°C to 100°C 

and after sample cooling to 37°C. (D) FTIR absorption spectra of wt-TTR at pD3.5 collected at different 

incubation times up to 72 hours at 37°C. (E) Second derivatives of the absorption spectra reported in (D). 

(F) Second derivatives of the absorption spectra of wt-TTR at pD3.5 collected during heating from 37°C 

to 100°C, and after sample cooling to 37°C. G-H) Absorption (G) and second derivative spectra (H) of 

wt-TTR at pD3.5 in the presence of OleA. Spectra were collected at different incubation times up to 72 

hours at 37°C.I) Second derivatives of the absorption spectra of WT TTR at pD3.5 in the presence of 

OleA collected during the thermal treatment from 37°C to 100°C,and after cooling the sample to 

37°C.The arrows point to the spectral changes occurring at increasing incubation times (E, H) or 

temperature (C, F, I).  

 

 

 

wt-TTR 
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Figure 7. FTIR characterization of the L55P mutant. (A) FTIR absorption spectra of L55P mutant at pH 

7.5 collected at different times of incubation at 37°C up to 72 hours. (B) Second derivatives of the 

absorption spectra reported in (A). The band assignments to the protein secondary structures are 

indicated. (C) Second derivatives of the absorption spectra of L55P at pD7.5 collected during heating 

form 37°C to 100°C, and after sample cooling to 37°C. (D) FTIR absorption spectra of L55P at pD 5.0 

collected at different incubation times up to 72 hours at 37°C. (E) Second derivatives of the absorption 

spectra reported in (D). (F) Second derivatives of the absorption spectra of L55P at pD5 collected during 

the heating form 37°C to 100°C, and after sample cooling to 37°C. G-H) Absorption (G) and second 

derivative spectra (H) of L55P at pD5 in the presence of OleA. Spectra were collected at different 

incubation times up to 72 hours at 37°C. (I) Second derivatives of the absorption spectra of L55P at pD5 

in the presence of OleA collected during heating from 37°C to 100°C, and after sample cooling to 37°C. 

The arrows point to the spectral changes occurring at increasing incubation times (E, H) or temperature 

(C, F, I). 

 

Intrinsic autofluorescence. The aggregation of TTR in the presence or in the absence 

of OleA was investigated by monitoring the fluorescence emission maximum of its 

intrinsic autofluorescence. Fig 5B shows that incubation of TTR at pH 4.4 induced a red 

shift of the emission maximum, suggesting that autofluorescence elements moved to a 

relatively more polar environment in the ongoing aggregation process. A red shift was 

also seen in OleA-treated samples (Fig.8B). To enhance the resolution of tryptophan 

(Trp) emission spectrum during wt-TTR aggregation in the presence or in the absence 

of OleA, we performed spectrum derivatization against wavelength. In the second 

derivative plots three main peaks at 320, 340 and 350 nm were observed, corresponding 

L55P 
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to increasing polarity of the Trp environment. The 320 nm peak was evident after 10 

min of aggregation and gradually decreased at later times reaching its minimum in 72 h-

old fibrils (Fig.8). Accordingly, the 350 nm peak corresponding to the highest polarized 

environment started to rise with aggregation and was particularly evident after 48 h. 

Moreover, at this time a further 335 nm peak appeared. After 72 h of incubation in 

aggregation medium the 350 nm component decreased while the 335 nm peak was more 

evident. These data connect the highest value of 72 h-old amyloid TTR toxicity to a 

higher exposure to the solvent of aromatic residues. The addition of OleA in the 

aggregation medium inhibited such a transition since the 320 nm peak retained almost 

completely its initial values in all samples and the 335 nm peak was inhibited (Fig.8B). 

Interestingly, the L55P-TTR emission spectra showed a blue-shift during the 

aggregation time (Fig.8C). These data indicate that the substitution consistently alters 

the conformation of amyloid TTR aggregates, as previously reported (Keetch et al. 

2005).. However, the blue-shift was inhibited by OleA addition to the aggregating 

medium. The analysis of the second derivative plots of the untreated mutant revealed a 

shift of the 350 nm peak, evident after 10 min of aggregation, to 335 nm in the cytotoxic 

96 h-old sample. These data associate the onset of cytotoxicity of both wt- and L55P-

TTR to the appearance of this autofluorescent component. Of note, these alterations 

were not observed in phenol-treated samples (Fig.8D). The effects of OleA on the 

emission spectra of wt-TTR and L55P fibrils are shown in Fig.7. We found that OleA 

treatment rapidly affected fibrils autofluorescence, and after 10 min fibril emission 

spectra appeared superimposed to those obtained from fibrils grown in the presence of 

OleA. Accordingly, the second derivative plots showed a recover of the 320 nm peak 

together with the decline of the 335 nm component (Fig.8). These data suggest that 

similar binding sites on both oligomeric and fibrillar conformation are involved in the 

interaction between the phenol and wt- or L55P-TTR. 
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Figure 8. Effect of OleA on fluorescence emission of TTR. (A, C) Intrinsic fluorescence emission 

spectra of wt-TTR (A) and L55P-TTR (C), alone (left) and OleA treated (right) at different times of acid 

aggregation. The spectra were normalized to fluorescence intensity of 1.0 at λmax, λexc = 280 nm. (B, D) 

Time point comparison of second derivatives obtained from emission spectra reported in A and C. The 

arrows point to the spectral changes occurring at increasing incubation times. 

 

Fluorescence quenching measurements and Proteinase-K digestion. Acrylamide 

quenching has been used to provide insights into conformational changes of proteins by 

probing solvent accessibility of fluorescence moieties (Tallmadge  et al. 1989). To 

perform these experiments, aliquots of the wt- or L55P-TTR samples were withdrawn 

from the aggregation solution at various aggregation times and mixed with acrylamide 

to measure solvent exposure of aromatic residues. Time-dependent changes of intrinsic 

fluorescence quenching were observed (Fig.8A and 8B). In detail, we found a 

significant increase of acrylamide quenching that reached its highest values after 48 h 

and 48/72 h of aggregation for wt- and L55P-TTR, respectively. A similar behaviour 

was observed for the native structure, confirming the presence of eight solvent -exposed 

Trp residues in the tetrameric structure. L55P-TTR showed a highest quenching effect 
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due to structural destabilization induced by the mutation. These changes possibly 

correspond to some increased availability to the quencher of the aromatic residues in 

meta-stable intermediate states of the aggregation process. Addition of OleA to the 

aggregation medium reduced the increase of acrylamide quenching, especially at the 

aggregation times corresponding to the highest quenching values of untreated fibrils 

(Fig. 9A and 9B). These data suggest that OleA may reduce the exposure of aromatic 

residues to the solvent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 9. OleA affects surface contacts of TTR amyloid assemblies. Acrylamide quenching of intrinsic 

fluorescence of wt-TTR (A) and L55P (B) at increasing times of aggregation. Proteins were incubated in 

the aggregation medium in the absence (left) or in the presence of OleA (right). PK digestion of native 

TTR (left). Amyloid fibrils (right) obtained upon incubation of wt-TTR at pH 4.0 for 72h in the absence 

(columns 2-4) or in the presence of OleA (columns 5-7) were treated with Proteinase-k at 37 °C for 30 sec 

(columns 3 and 6) and 1 min (columns 4 and 7). Samples were analyzed by SDS-PAGE;MW, molecular 

mass. 
 

Given that hydrophobic interactions are known to be relevant factors in protein 

aggregation, we checked whether OleA interaction with exposed hydrophobic sites of 

wt- and L55P-TTR altered their interaction with Proteinase-K (PK), an endoprotease 

known to cleave peptides preferentially after hydrophobic residues. Resistance of TTR 



Results 

 
 

94 

fibrils to Proteinase-K digestion has been previously analyzed by Betaman and 

colleagues (Bateman et al. 2011). In particular they noticed that TTR amyloid deposits 

are more sensitive to PK catalysis than native TTR. At our experimental conditions, 

treatment with PK for 30 s and 1 min resulted in a complete degradation of amyloid 

aggregates of both wt-TTR and L55P-TTR (Fig.9). By contrast, wt-TTR/OleA-i72h and 

L55P/OleA-i96h showed high resistance to PK digestion (Fig.9), similarly to the 

natively folded protein. These data suggest that OleAprotects TTR aggregates from 

Proteinase K cleavage by binding to hydrophobic sites of both wt- and L55P- TTR 

peptides. 

 

EM Analysis of Inhibition of Fibril Formation. EM was used to examine samples of 

TTR incubated with and without OleA, as described under “Material and Methods.” wt-

TTR (0.28 mg/ml) incubated for 24 h at 37 °C were predominantly composed of typical 

fibrils with branchings and bumps (Fig.10A). Moreover, annular units with a diameter 

compatible with TTR oligomers (about 30-50 nm) were recognizable as components of 

the fibrillar structure (Fig.10A and inserts 1,2). After 72 h of incubation, wt-TTR 

appeared more bundled and oligomer-like subunits were crowded and tightly packed 

(Fig.10B and insert 3). Uniform fibrillar structures were not seen in the L55P-TTR 

(0.28mg/ml) incubated for 96h at pH 5.5; rather, oligomer-like components similar to 

those found in the wt-TTR sample were present at these conditions. In the presence of 

OleA, the fibrillar structures were absent and only unstructured aggregates were 

detectable for all TTR species (Fig.10D-F). Moreover, a thin layer of non-aggregated 

oligomer-like subunits was detectable in all samples (Fig.10E-F and inserts 5-7).  

 

 

 

 

 

 

 

Figure 10. Ultrastructural analysis of TTR amyloid assemblies. TEM micrographs of wt-TTR and 

L55P-TTR, alone (A-C) and OleA treated (D-F) at different times of acid aggregation. (Inserts 1-7) 

Details of the corresponding selected ROIs showing oligomers-like structures polimerized inside 

aggregates (Inserts 1-4) or dispersed on the formvar surface (Inserts 5-7).  
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2. Homocysteynilation of Wild-type and Leu55Pro TTR, worsens 

the onset of cardiomiopathy  
 

 wt-TTR Homocysteinylation TTR undergoes homocysteinylation at its single cysteine 

residue (Cys10) both in vitro and in vivo. The effect of homocysteinylation on the wt-

TTR tetramer (1:2; tetramericTTR:Hcy ratio), was analysed by native- and SDS-PAGE, 

Resveratrol binding and DLS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Effects of Hcy on wt-TTR. A) Native and (B) SDS-PAGE gel of wt-TTR in presence and 

absence of Hcy;(bottom) quantification of the tetramer band with respect to the total bands in the gels. C) 

Spectra of Resveratrol binding assay after 24h of incubation of TTR with Hcy and addition of Resveratrol 

for 10min before the lecture. D) Dinamic Light Scattering of wt-TTR in presence and absence of Hcy. 
 

When analyzed in native conditions, the wt-TTR samples incubated with Hcy displayed 

a 20% increase of the tetramer/total TTR ratio with respect to untreated TTR (Fig.1A). 

In SDS-PAGE the wt-TTR sample displayed two bands corresponding to the monomer 

and the dimer. Incubation of wt-TTR with Hcy decreased the level of the monomer and 

the dimer band and resulted in the appearance of a new band approximately at 75 kDa 

corresponding to the size of tetrameric TTR. This band was not observed in the 
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presence of the reducing agent 0.1% 2-β-mercaptoethanol (BME) (Fig.1B). Resveratrol 

is a polyphenol known to bind and to stabilize the TTR tetramer. trans-resveratrol 

displays a specific emission spectrum with a maximum fluorescence peak about 390 nm 

when it is excited at 320 nm (Figueiras et al. 2011); moreover, it displays an increase in 

its fluorescence quantum yield upon binding the TTR tetramer. Using this binding assay 

we observed that the TTR-Hcy complex maintains the same ability to bind this 

polyphenol as well as the wt-TTR (Fig.1C).The DLS analysis revealed that upon 

incubation up to 24 h at pH 7.0, both wt-TTR and wt-TTR-Hcy were present in the 

sample as particles with an apparent hydrodynamic diameter (DH) about 7 nm consistent 

with a native tetrameric fold (Fig.1D). From these data we hypothesize that wt-TTR 

homocysteinylation produced a stabilization of the TTR tetrameric fold and wondered 

whether this covalent modification could produce the same effects on the highly 

amyloidogenic variant L55P-TTR.  

 

L55P-TTR Homocysteynilation. To gain insight into the structural alterations induced 

by Hcy binding to L55P-TTR, we performed a far-UV CD spectroscopic study. The CD 

spectra, recorded at 25 °C were obtained at different times of aggregation of L55P 

incubated at pH 7.0 for 10 days in the absence or in the presence of Hcy (tetrameric 

L55P-TTR:Hcy; 1:2 ratio) as described in Materials and Methods (Fig.2B). After 30 

min of incubation with Hcy, the CD analysis showed some structural changes of the 

tetrameric fold attributable to Hcy binding to the Cys10 of L55P-TTR. Nevertheless, a 

highest β-sheet content was observed in all samples of L55P-TTR incubated with Hcy, 

as suggested by the signal at 216 nm, (in particular after 96h of incubation (Fig.3B) and 

it was maintained in the subsequent incubation times. These effects are not present on 

the spectra of wt-TTR treated with Hcy (Fig.2A), confirming a stabilization by Hcy of 

the tetrameric form of wt-TTR. Figure 3C shows time-dependent turbidity and the 

absorbance at 400 nm recorded at different times of treatment of L55P-TTR with Hcy. 

At each incubation time, the L55P-TTR/Hcy complex showed a higher turbidity value 

suggesting that Hcy favoured aggregation of L55P-TTR but not of wt-TTR. DLS 

analysis of L55-TTR at pH 7 showed the presence of particles with an DH at 7.987 nm 

(Fig.3D). In the first hour of protein incubation with homocysteine the sample was 

nearly homogenously populated by particles with a DH value corresponding to that of 

the natively folded protein (Fig.2E). After 96 h of L55P-TTR incubation at pH 7.0 the 
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homocysteynilated sample resulted mainly populated of particles with DH about 4.7 nm 

(Fig. 3D,E) with respect to the sample without Hcy. It is known that the aggregation 

process requires disassembly of tetrameric TTR into monomers, in particular the variant 

L55P requires subtle conformational changes within the monomeric subunit to undergo 

self-assembly. After 96 h of incubation with Hcy, the average particle size was reduced 

to 4.7 nm indicating disassembly of the quaternary structure of the protein; in fact this 

value is compatible, within the experimental error, with previously reported values by 

Pires and co-workers of RH 1.9nm (Pires et al. 2012). From these data we can 

hypothesise that L55P-TTR homocysteinylation could result in some increase of the 

number of monomeric species prone to aggregate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Secondary structure Analysis. CD spectra of wt- and L55P-TTR recorded in presence and 

absence of Hcy. A) Spectra are shown for the protein at 37°C in the absence (solid black line) and in the 

presence (dashed black line) of Hcy. Buffer spectra was subtracted from TTR alone, while CD spectra of 

Hcy in buffer were subtracted from TTR with Hcy. B) CD spectra of L55P and L55PiHcy at different 

time of aggregation. C) Turbidimetryc Plot of L55P-TTR in presence of Hcy (packed diamond line) and 

in absence (packed circles line), and wt-TTR in absence (empty circles line), and in presence of Hcy 

(empty diamond line). D,E) Hydrodynamic diameter of L55P (D) at different time of incubation with Hcy 

(E). 

 

The morphology of L55P-TTR aggregates in the absence or in the presence of Hcy was 

observed by transmission electron microscopy (TEM). When L55P-TTR was incubated 
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with Hcy (Fig.3B) a larger number of small oligomers and monomeric structures were 

present on the formvar dish whereas in the absence of Hcy the sample was composed by 

unstructured aggregates and the monomeric species was not detectable (Fig.3A). After 7 

days of aggregation, the TEM images of L55P-TTRiHcy showed the presence of fibrils 

(Fig.3D), as confirmed by DLS analysis, which revealed a DH around 2,59e+04.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. EM images. TEM micrographs of L55P-TTR, alone (A-C) and Hcy treated (D-F) at different 

times of incubation.  

 

The L55P-TTR samples obtained at different incubation times at pH 7.0 with or without 

Hcy were analyzed by a conformational antibody (A11) specific for amyloid oligomeric 

structure; in particular A11 recognizes generic epitopes that do not depend on a 

particular amino acid sequence but on the presence of the amyloid signature (Kayed et 

al. 2007). Figure 4A showed that the sample incubated in the presence of Hcy was 

recognized by A11 antibodies with higher affinity with respect to untreated L55P-TTR, 

suggesting that the presence of Hcy resulted in a higher amount of amyloid species . In 

addition, the resveratrol binding assay confirmed a L55P-TTR destabilization induced 

by Hcy (Fig.4B). In fact, incubation with Hcy during mutant aggregation resulted in a 

reduced ability to bind resveratrol, thus confirming protein destabilization.  
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Figure 4. DOT-BLOT and Resveratrol Binding Assay. A) L55P in presence and absence of Hcy 

labeled by anti-TTR and anti-conformational antibodies, A11. B,C and D) Resveratrol binding assay of 

L55P treated with Hcy at different times. 
 

Cytotoxicity. All the structures formed in the presence or in the absence of Hcy were 

screened for cytotoxicity by the MTT Assay. It is known that L55P-TTR amyloid 

aggregates are cytotoxic to human HL-1 cells; therefore, aliquots of proteins solutions 

were withdrawn at different times to test their cytotoxicity to HL-1 cells. The cells were 

treated for 24h with 5µM L55P-TTR incubated at different times in the presence or in 

the absence of Hcy under physiological pH. After 96h of incubation with Hcy, the 

L55P-TTR showed a significant toxicity and it induced a 35% of cell sufferance 

(Fig.5A), whereas the same L55P-TTR species grown in the absence of Hcy were much 

less toxic, in fact the cell sufferance was completely abrogated. After 7d of aggregation, 

cell sufferance was the same upon cell treatment with both  protein samples confirming 

the toxicity induced by L55P-TTR and L55P-TTRiHcy fibrils; interestingly, the latter 

were less toxic than the pre-fibrillar forms, probably the  covalent modification led to a 

transient stabilization and enrichment of the monomeric form which proceeds in any 

case towards the formation of less toxic fibrils. These data confirm that Hcy destabilized 

the L55P-TTR, which assembled into more toxic species, with enrichment of 

monomeric forms.  
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Figure 5. MTT Assay. A) MTT at different time of incubation of L55P with Hcy. B) MTT of L55P/iHcy 

in presence and absence of HypF-N toxic oligomers. Error bars indicate the standard deviation of 

triplicate independent experiments. T student analysis: * p<0.005; ** p<0.001;***p<0.0001. 

 

In 1993 it was reported that amyloid fibril formation in vitro by Aβ40 was inhibited by 

human CSF (Wisniewski et al. 1993); subsequently the protein responsible of this effect 

was found to be TTR, which formed stable complexes with Aβ40. Recently it has been 

observed that TTR is able to suppress the toxicity of extracellularly added oligomers 

formed by two different peptides/proteins, namely Aβ42 and HypF-N (Li et al. 2011). A 

stable monomeric M-TTR engineered by introducing two methionine substitutions 

(F87M and L110M) disrupts the subunit interfaces of the TTR tetramer. (Jiang et al. 

2011). This derivative protects SH-SY5Y neuroblastoma cells and rat primary neurons 

against oligomer-induced cytotoxicity, and the interaction between M-TTR and HypF-

N/Aβ42 oligomers was found to involve further clustering of the oligomers. Based on 

these data we performed an MTT assay to confirm that Hcy induced the formation of 

monomeric structure of TTR. Figure 5B showed that 96 h of incubation of L55P-TTR 

with Hcy resulted in an increase of monomeric structures able to suppress the 

cytotoxicity induced by HypF-N oligomers, similarly to M-TTR. In this case we did not 

observe cell sufferance induced by the sample grown after 96 h of incubation with Hcy 

because the final concentration was reduced 10 times. 
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3. Molecular insights into membrane interaction of a new 

amyloidogenic variant of β2-microglobulin 

 
Characterization of D76N aggregation. After dilution in phospahte buffer, the D76N 

self-assembly process was monitored over time by the ThT fluorescence assay. Since its 

first description in 1959, the fluorescent dye Thioflavin-T (ThT) has become among the 

most widely used "gold standards" for selectively staining and identifying amyloid 

fibrils both in vivo and in vitro. ThT fluorescence of amyloid is typically measured 

using an excitation wavelength of 440 nm, giving an emission maximum at ~482 nm. 

Recent data showed that under physiologic solvent conditions, the D76N variant is 

converted into fibrils displaying the classic amyloid-like properties within 48 h, whereas 

the wt protein does not aggregate at all. Fibril formation by the variant was markedly 

enhanced by shaking the protein solution, a recognized treatment that promotes β-sheet 

aggregation by overexposing the protein to the water–air interface, which mimicks the 

in vivo environment at the interface between polar and non-polar surfaces (Valleix S. et 

al. 2012).  

D76N aggregation was characterized by a time-dependent increase in the ThT 

fluorescence intensity suggesting a transformation of the “native-like” protein into 

aggregates rich in cross-beta structure. A measurable “lag time” of ca. 3 h was observed 

and the ThT fluorescence intensity reached its maximum value by ca. 24 h after which 

there was no significant change in fluorescence intensity (Figure 1A-B). Next, we 

performed a DLS analysis of the same samples for additional characterization of the 

species present in the protein sample. The native D76N sample was composed of 

particles with an apparent hydrodynamic diameter (DH) of about 8 nm (Fig.1C). During 

the aggregation time at physiological pH we observed an increase of DH which 

confirmed aggregation. To ascertain that the aggregates formed by the protein display 

cross-beta structure, we used the well-established Congo red binding assay (CR). 

Amyloid aggregates with cross-beta conformation exhibit a characteristic red shift in 

their absorption spectrum upon binding to Congo red. Free Congo red solution and 

native D76N at pH 7.0 exhibited absorption spectra with absorption maxima at 490 nm. 

After 48 h of aggregation, D76N showed an absorption maximum at higher wavelength. 

The absorption shift was even more evident from the difference spectrum (bound CR 

minus free CR) which exhibit an absorption maximum at 550 nm (Fig.1D). These 

results are consistent with the presence of cross-beta structures in the aggregates formed 
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by D76N after 48 h of aggregation and with the kinetics of aggregation followed by the 

ThT fluorescence assay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Characterization of D76N aggregates. A,B) Tht fluorescence intensity profile for aggregation 

of D76N. C) DLS analysis of the aggregates. D) CR difference absorbance spectra. 

 

Cytotoxicity of D76N aggregates. Considering the times of aggregation and the 

amyloidogenic species obtained under our aggregation conditions,we decided to assess 

the potential toxicity of these species to SH-SY5Y cells. Human neuroblastoma SH-

SY5Y cells are a dopaminergic neuronal cell line widely used as an in vitro model for 

neurotoxicity experiments. To test the toxicity of aggregated D76N we used 

differentiated SH-SY5Y cells as preliminary data showed that D76N aggregates 

localized preferentially to neurites. SH-SY5Y differentiation was induced after cell 

treatment with 10µM trans-retinoic acid (RA) for four days. Cell differentiation was 

confirmed by showing an extensive outgrowth of neurites in the cell sample. The 

cytotoxicity of D76N aggregates was evaluated by the MTT assay. The aggregates 

obtained after 144 h of aggregation showed the highest cytotoxicity, with a cells 

sufferanche of about 80%. The toxicity was evident also at early times of aggregation 

with a toxicity about 20-30%, in particular when the cells were exposed to D76N 

species obtained after 96 h of aggregation. Next, we investigated the mechanism of cell 

damage after cell exposure to D76N aggregates by measuring the intracellular reactive 
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oxygen species (ROS) and the intracellular free Ca
2+

 levels using the fluorescent probes 

CM-H2DCFDA and Fluo-3-acetoxymethyl ester, respectively. The changes in the 

intracellular redox status and free Ca
2+

 levels in cells exposed to toxic aggregates have 

been described as crucial events in the impairment of cell function by amyloid 

aggregates. Figure 2, showed clearly an increase of ROS levels which depending on the 

aggregation time of D76N (Fig. 2B). The highest ROS induction (3,5-fold increase with 

respect to untreated cells) was obtained after 24 h cell exposure to a protein sample aged 

144 h )144h-aged D76N) which also resulted the most toxic sample according to the 

MTT results. Confocal analysis of Fluo-3AM fluorescence, a dye able to bind the 

intracellular free Ca
2+

, showed that cell exposure to 144 h-aged D76N resulted in a 

significant increase of the intracellular free Ca
2+

 levels. 1h cell treatment with 96h-

D76N and 144h-D76N aggregates induced an increase of fluorescence intensity of 

about 2-fold and 7-fold, respectively. Cell apoptosis and necrosis could both be 

triggered by amyloid aggregate toxicity. We therefore investigated whether the changes 

in ROS production and free calcium levels induced by D76N lead to cell death and, if 

so, whether activation of apoptosis was involved. Early apoptotic cells are characterized 

by translocation to the outer membrane leaflet and exposure of a phospholipid normally 

found in the inner leaflet, whereas necrotic cells undergo membrane rupture. SH-SY5Y 

cells were treated for 24 h with 144-D76N aggregates and labelled with specific dyes: 

fluorescein isothiocyante (FITC)-conjugated annexin V to detect phosphatidylserine 

externalization and propidium iodide (PI) to label the cellular DNA in necrotic cells 

where the cell membrane integrity has been totally compromised. Such a double 

labelling allows to discriminate among early apoptotic cells (annexin V-positive, PI-

negative), necrotic cells (annexin-V positive, PI-positive), and viable cells (annexin V-

negative, PI-negative). Figure 2 shows that cell treatment for 24h with 5µM 

(monomeric protein concentration) 144 h-aged D76N aggregates caused cell death by 

necrosis. In fact, while control cells displayed no annexin V-FITC binding and no IP 

positivity the cells treated with 144h-aged D76N aggregates showed 8.4% cells with 

only IP positivity, confirming necrotic, rather than apoptotic, death (Fig.2D). 
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Figure 2. Cytotoxicity of D76N aggregates. A,B) MTT assay and ROS% production after 24h of 

treatment of SH-SY5Y cells with different kind of aggregates at 5µM concentration. Error bars indicate 

the standard deviation of triplicate independent experiments. T student analysis: * p<0.005; ** 

p<0.001;***p<0.0001.C) Confocal microscopy imaging of intracellular free Ca
2+

 levels in SH-SY5Ycells 

exposed for 1h at 96h and 144h time of aggregation. Near the quantification of Ca
2+

 levels respect to 

untreated cells. D) Gate and cellular percentage stained with Annexin V-FITC, PI, after 24h of incubation 

with 144h aggregates. 

 

Immunolocalization. The toxicity of amyloid-forming proteins has been hypothesized 

to reside in the ability of protein oligomers to interact with, and to disrupt, the cell 

membrane. In order to shed light on the 144h-D76N interaction with the plasma 

membrane of the exposed cells and to understand whether the toxicity of the different 

D76N aggregate species was related to their ability to interact with the plasma 

membrane, we performed confocal microscopy experiments using a polyclonal antibody 

raised against recombinant β2-m, and Alexa 488-conjugated CTX-B, a probe that 

specifically binds the monosialoganglioside GM1, a common lipid raft marker. Previous 

data indicate that cell differentiation increases the presence of GM1, in particular during 

neurite outgrowth (Ledeen et al. 1998). Recent evidence suggests that different amyloid 

oligomers may exert their deleterious effects through binding to, and causing the 

aberrant clustering of, lipid raft proteins. The formation of these pathogenic lipid raft-

based platforms may be critical for the toxic signalling mechanisms with additional 
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deleterious effects upon cell function and integrity. Confocal images showed evidences 

of fibril clustering of 96h- and 144h-D76N at the SH-SY5Y cell membrane 

(Fig.3A,B,C). Interestingly, our evidences suggest that these aggregates interact 

preferentially with cell neurites. In particular, the imaged 144 h-D76N aggregates 

follow the profile of the neurites. Membrane rafts are increasingly recognized to play 

pivotal roles in favouring protein/peptide aggregation as well as aggregate interaction 

with the cell membrane. In Figure 3 has been showed a co-localization of the 

fluorescence signals arising from GM1 and D76N aggregates confirmed also by FRET 

analysis (Fig.3;1a,2a,3a). As commonly accepted, the presence of FRET indicates a 

distance <10 nm between the labelled molecules, which strongly supports the 

occurrence of a direct fibril-GM1 interaction. In addition, a diffused staining of 

fluorescence dots, with low FRET efficiency, was evident in cells treated with the 144 

h-aged aggregates (Fig3,3a). These data suggest that the aberrant localization of these 

fibrils with the cell membrane at the raft level induces a significant lipid reorganization 

within the membrane with impairment of cell physiological functions. In addition, these 

results suggest that the ability of these aggregates to associate with lipids, particularly 

raft components, causes the uptake of the raft components that, in turn, can affect 

aggregate morphology.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Immunolocalization of oligomeric and fibrillar D76N on the plasma membrane. SH-SY5Y 

cells exposed for 24h to 5µM D76N assemblies that form 96h (A) 120h (B) 144h (C). Cells were stained 

with CTX-B Alexa 488-conjugated (green fluorescence); protein aggregates were revealed by incubation 

with anti-β2-m antibodies followed by treatment with Alexa 568-conjugated anti-rabbit secondary 

antibodies (red fluorescence). The FRET efficiency is shown in 1a,2a,3a for 96h.120h and 144h, 

respectively. 
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The importance of GM1 for the aggregate-membrane interaction of. In collaboration 

with the European Laboratory for Non-Linear Spectroscopy (LENS) were carried out 

single particle tracking experiments to enhance the interaction of D76N aggregates and 

GM1 on the plasma membrane of living cells. This tecnique is a sensitive approach to 

tracking the motion of membrane molecules such as lipids and proteins with molecular 

resolution in live cells. It makes use of fluorescent semiconductor nanocrystals, 

quantum dots (QDs), as a probe to detect membrane molecules of interest (Bannai et al. 

2006). Neuroblastoma SH-SY5Y cells were incubated for 20 min with 5µM preformed 

D76N aggregates and labeled with anti-β2m/anti-mouse Alexa 488 and CTX-B/QDs 

655 (Fig.4A). Trajectories of single GM1 molecules moving tangentially onto the 

plasma membrane were extrapolated from recordings acquired at 100 Hz and overlaid 

on thresholded binary images of β2m aggregates. We found that the aggregates did not 

diffuse significantly during the recording sessions of 2.5 s. GM1 molecules were 

subsequently discriminated according to the localization of their trajectories with 

respect to the aggregates (Fig.4B). The linear average mean square displacement (MSD) 

plot of GM1 molecules moving in regions far from D76N aggregates reflected a typical 

Brownian motion behaviour (Fig.4C). By contrast, GM1 molecules co-localizing with 

β2m aggregates displaied a curved average MSD plot that can be ascribed to a confined 

type of motion (Fig.4C). Furthermore, the cumulative distributions of the diffusion 

coefficients (D) of single GM1 molecules moving over and separately from D76N 

aggregates differed substantially (Fig.4D). The median D value of GM1 molecules 

overlapping with D76N aggregates is one order of magnitude lower (Table 4). The 

median D value of freely diffusing GM1 appears to be higher than that found previously 

(1.2 x10
-1

 μm
2
 s

-1
 with respect to 2.9 x10

-2 
µm

2
 s

-
1 and 2.7 x10

-2 
μm

2
 s

-1
) (Bucciantini et 

al. 2012; Calamai et al. 2013). This discrepancy is possibly due to the higher acquisition 

frame rate (100 Hz compared to 3 Hz) used here. Nevertheless, the change in D of GM1 

due to the presence of D76N aggregates is comparable in absolute value to that 

observed in the case of amyloid aggregates of Aβ1-42, amylin and Sup35pNM 

(Bucciantini et al. 2012; Calamai et al. 2013). Overall, these data show that D76N 

aggregates interfere with the mobility of GM1 in living neuroblastoma cells. 
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D76N-β2m amyloid aggregates alter the lateral diffusion of GM1-CTXB on the plasma 

membrane of SH-SY5Y neuroblastoma cells 

Condition n Dmedian (µm
2
 s

-1
) λmax

†
 p

‡
 

GM1-CTXB out β2m 33 1.2 x10
-1

   

GM1-CTXB over β2m 25 2.1 x10
-2

 6.8 x10
-1

 ≤ 10
-4

 

†
Maximum difference in cumulative fraction between GM1-CTXB diffusion over and nearby 

D76N aggregates. 

‡
Kolmogorov-Smirnov test p-value calculated using λmax as statistic. 

 

Table 4. Analysis of GM1 in presence and in absence of D76N aggregates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. D76N aggregates affect the mobility of GM1 molecules in living neuroblastoma cells. A) 

Imaging of single GM1 molecules and β2m aggregate labeled with biotin-ctxb coupled to streptavidin-

QD 655 (magenta) and anti-β2m and secondary Alexa 488 conjugated antibodies (cyan), respectively. 

Scale bar, 2µm. B) Trajectories of the GM1 molecules in the proximity of (magenta) or overlapping to 

(grey) the binary image of the β2m aggregate (cyan). (C and D) Average mean square displacement and 

cumulative probability distributions of diffusion coefficients of GM1molecules classified as over (grey) 

and apart (magenta) from β2m aggregates. The inset in C highlights the confined motion of GM1 

induced by β2m aggregates. 
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Lipid raft disruption following GM1 depletion decreases the toxicity of D76N 

aggregates. Increasing evidence suggests that the interaction of misfolded protein 

oligomers with cell membranes is a primary event resulting in the cytotoxicity 

associated with many protein-misfolding diseases, including neurodegenerative 

disorders. The GM1 content was modulated by cell pre-treatment with PDMP (D-threo-

1-phenyl-2-decanoylamino-3-morpholino-1-propanol(PDMP), a glucosylceramide 

synthase inhibitor that blocks the natural synthesis of GM1 (Tamboli et al. 2005) thus 

reducing about 2-fold the GM1 content (Fig.4F). SH-SY5Y cells depleted of GM1 were 

exposed for 24 h to D76N aggregates grown for 144 h and then stained with CTX-B. It 

was decided to test only the 144 h-D76N because it was the most toxic species. The 

treatment with PDMP affected the D76N fibrils/cells binding (Fig.4C) and  reduced the 

FRET efficiency, confirming the importance of GM1 as binding site for aggregate/cell 

membrane interaction. Moreover, GM1 depletion suppressed cell vulnerability to D76N 

aggregates as showed by MTT assay (Fig.4A), confirming that GM1 is really important 

for the toxicity induced by 144h-D76N aggregates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. GM1 as binding site for amyloid species. (A) MTT assay on SH-SY5Y cells pre-treated for 

72h with PDMP and exposed for 24h to 5µM 144h- D76N assemblies. Error bars indicate the standard 

deviation of triplicate independent experiments. T-student analysis: * p<0.005; ** p<0.001;***p<0.0001. 

(B and C) Immunolocalization and (D and E) FRET efficiency on SH-SY5Y pre-treated for 72h with 

PDMP and treated for 24h with5µM 144h- D76N aggregates. (F) GM1 quantification on SH-SY5Y cells 

undifferentiated, RA differentiated and PDMP treated. 
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1. Oleuropein Aglycone: a natural polyphenol which protects 

against the cytotoxicity associated with Transthyretin 

fibrillogenesis 

 

Recent studies indicate that several small polyphenol molecules have been demonstrated 

to remarkably inhibit the formation of fibrillar assemblies in vitro and their associated 

cytotoxicity (Wu et al. 2006; Bastianetto et al. 2004). Studies with model organisms 

have confirmed such beneficial affects against a number of amyloid diseases, such that 

some of these compounds have been, and presently are being, assayed in several clinical 

trials. In particular, previous studies on the interaction of polyphenols with TTR 

demonstrated that curcumin and NDGA bind to TTR at the T4 binding sites and 

stabilize the tetrameric form of TTR hindering its aggregation into toxic amyloid 

assemblies (Ferreira et al. 2012). OleA is a phenol enriched in the extra virgin olive oil, 

and several studies have convincingly supported its beneficial effects against age-

associated neurodegeneration and other pathologies including type 2 diabetes. However, 

no evidence on possible effects of OleA against TTR aggregation and aggregate 

cytotoxicity has been reported so far. The data in this paper suggest that OleA inhibits 

toxicity associated with TTR aggregation and modulates the appearance of soluble non-

toxic TTR aggregates. Apparently, OleA inhibition of TTR amyloid polymerization 

proceeds through a decrease of the exposure to the solvent of aromatic residues 

uncovered following tetramer disassembly and misfolding of the resulting 

monomers/dimers. The poor interaction between the resulting TTR/OleA complex and 

membrane gangliosides in the lipid rafts of the exposed cells is probably related with 

the loss of amyloid TTR cytotoxicity. Our findings confirmed the higher toxicity of the 

mutant L55P-TTR with respect to the wt-TTR (Yang et al. 2003); in fact, the viability 

of HL-1 cells exposed to L55P-TTR aggregates obtained in the presence of OleA was 

not restored completely as determined by the MTT assay. However, this residual 

toxicity of L55P did not match with CR data. In fact, the typical shift of the absorbance 

peak of Congo red bound to any amyloid assembly was absent both in aggregated 

L55P-TTR and wt-TTR incubated with OleA, suggesting the absence of toxic amyloid 

species also in L55P mutant. On the other hand, this result can be explained by either 

any displacement of CR or by some conformational alteration induced by OleA 

differently on the two proteins. In fact, the FTIR analysis of both L55P- and wt- TTR 

indicated that, for both proteins, misfolding is an irreversible process that is not affected 
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by OleA. From these observations we suggest that OleA interaction with aggregates 

could slightly alter the environment surrounding the CR binding-sites thus inhibiting the 

interaction of the latter with the amyloid structure. The occurrence of chemical 

interaction between OleA and TTR is supported also by the emission spectra analysis of 

its aromatic residues, showing that during the protein aggregation, the decrease of the 

320 nm component observed in the secondary derivative plots is reduced in presence of 

OleA. Of note, the secondary derivative plots of both wt- and L55P- TTR most toxic 

species showed a peculiar minimum at about 335nm. Interestingly, the less toxic 

OleA/fibrils complex did not show this spectral component. Therefore, we suggest that 

incubation of TTR with the phenolic compound affects the potential amyloid TTR 

toxicity by hampering TTR interaction with other molecules. Accordingly, acrylamide 

quenching analysis revealed that in the presence of OleA some alteration of solvent-

exposure of peptide aromatic residues did occur. Moreover, following OleA treatment 

both wt- and L55P-TTR fibrils increased their resistance to Proteinase-K digestion. 

Recent papers suggested that aromatic interactions favour molecular recognition of 

amyloidogenic sequences by enhancing the directionality and orientation needed for the 

ordered self-assembly process and hence fibril assembly kinetics (Pawar et al. 2005).On 

the other hand, it has been reported that several polyphenolic compounds are able to 

interact with amyloidogenic aromatic residues hindering �-system stacking (Porat et al. 

2004; Gazit E 2002) and inhibiting the elongation phase of fibril growth or the assembly 

of large oligomers without interfering with early nucleation events (Sekijima et al. 

2008). Modeling studies have shown that several polyphenols share the ability to adopt 

a specific three-dimensional conformation that might be essential for early amyloid 

binding preventing the growth of typical amyloid fibrils (Porat et al 2006).Emerging 

evidences account for fibrils/membrane interaction as key factor of the cytotoxic 

potential of amyloid aggregates (Shnyrov et al. 2000; Porat et al 2006). Our confocal 

analysis supported the latter hypothesis revealing that exposed cells displayed a lower 

affinity to OleA treated than to OleA-untreated TTR samples. Moreover, TEM results 

were confirmed by a diffused FRET signal in OleA treated sample indicating the 

presence of oligomer-like structures on plasma membrane of exposed cells. In addition, 

the low level efficiency of FRET signal between TTR and GM1 recorded in exposed 

cells linked the cytoprotective effects of OleA with a decreased interaction between 

OleA/TTR complex and plasmamembrane ganglioside with respect to OleA-untreated 

samples. In conclusion, our results suggest that OleA reduced amyloid TTR toxicity. Its 



Discussion 

 

 111 

interaction with the TTR does not hinder its transition to an amyloid structure nor the 

interaction of the latter with the cell membrane. However, OleA interferes with TTR 

fibrillation by stabilizing an oligomer like intermediate that interacts with the plasma 

membrane without altering its integrity. These data suggest that OleA, or its molecular 

scaffold can be a good starting point to design novel therapeutic strategies for 

prevention and therapy of TTR-associated sporadic or familial amyloidoses. 

 

 

2. Wild-type and Leu55Pro Transthyretin Homocysteynilation, 

worsening of cardiomiopathy onset 
 
In intricate diseases such as amyloidosis, both genetic and environmental factors are 

involved in the disease process. The TTR amyloidosis include familial amyloid 

cardiomyopathy (FAC) and familial amyloid polyneuropathy (FAP). FAP is 

characterized by amyloid deposition in various organs; in particular the L55P mutation 

induces a cardiac involvement. Recently data showed how the cysteine 10 (Cys10) of 

monomeric TTR is reactive, it is likely that the thiolic residue of Cys10 through its 

oxidation is involved in the TTR teramer destabilization. Indeed, severe oxidative stress 

were observed in FAP patients (Ando et al. 1997). Hyperhomocysteinemia is an 

independent risk factor for cardiovascular disease and an emerging risk factor for 

cognitive dysfunction and Alzheimer’s disease. Greater than 70% of the homocysteine 

in plasma is disulfide-bonded to protein cysteine residues. Considering that: high level 

of homocysteine can initiate and potentiate atherosclerosi, the cardiac involvement on 

TTR amyloidosis and that TTR undergoes homocysteinylation at its single Cys10 

residue in vitro and in vivo (Lim et al. 2003), we decided to study the 

homocysteinylated TTR in terms of amyloid aggregation and toxicity. The data 

presented in this study establish that: 1) TTR can be homocysteynilated under 

physiological conditions; 2) wt-TTR is stabilized by Hcy in its tetrameric structure; 3) 

Hcy destabilizes L55P-TTR tetramer, inducing the formation of monomeric species. 

Experiments in vitro showed that the modification at pH 7.0 of wt-TTR on Cys10 by 

homocysteine stabilizes the tetrameric form. This data results be very important 

considering that during the process of aggregation the destabilization of tetrameric form 

it is a crux of the aggregation way (Cardoso et al. 2007). Instead on the mutant form 

L55P-TTR the modification on Cys10 promotes a further destabilization of TTR 
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tetramer with the subsequent appearance of monomeric toxic species. The presence of 

these monomeric species has been tested, in this study, by analysing the chaperonic 

ability of the homocysteinylated samples. In fact, recently, TTR was shown to inhibit 

aggregation and amyloid plaque formation of A� both in vitro and in vivo (Schwarzman, 

et al. 1994; Buxbaum et al. 2008). Analyses carried out in vitro have shown that 

monomeric TTR exhibits stronger binding to preformed oligomers formed by two 

different peptides/proteins, namely A�42 and HypF-N, and reduces their toxicity. Taken 

together, our findings suggest that N-homocysteinylation destabilizes L55P-TTR 

structure and favors the appearance of partially unfolded intermediate species with a 

higher tendency to aggregates in well-organized fibrillar structures. Although different 

hypotheses have been proposed to describe the pathological consequences of 

hyperhomocysteinemia in humans, so far the cause of homocysteine toxicity has not 

been understood. It has been suggested that N-Hcy-protein accumulation is an important 

risk factor for cardiovascular and neurodegenerative diseases In this thesis we have 

shown that N-homocysteinylation could promote the further accumulation of L55P-TTR 

that by itself is considered the causative agent in early-onset familial amyloid 

polyneuropathy. The results reported in this article could have pathophysiological 

relevance and could contribute to clarify the mechanisms underlying some pathological 

consequences described in patients affected by hyperhomocysteinemia. 

. 

 
 
3. Molecular insights into membrane interaction of a new 

amyloidogenic variant of �2-microglobulin 

 
�2-m is among the most extensively studied globular protein precursors of human 

amyloid fibrils. The D76N residue substitution allows a fully folded three-dimensional 

structure almost identical to that of the wild type protein that forms amyloid fibrils in 

dialysis-related amyloidosis. However, dissection of the mechanism of D76N 

fibrillogenesis established paradigm that the amyloidogenicity of monomeric globular 

proteins is intimately connected to destabilization of the native fold (Booth et al. 1997). 

Our data offer an elucidation about the mechanism of the highly amyloidogenic D76N 

variant cytotoxicity. The D76N resulted be most aggressive than wt �2-m, because this 

protein is able to aggregate under physiological conditions. 
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The mechanism of the toxicity has been studied extensively from both the experimental 

and theoretical perspectives: activation of inflammatory effects by interacting directly 

with the membrane (Verdier et al. 2004; Kourie and Henry, 2002 ; Kourie, 2001)) 

induction of oxidative stress and alteration of ionic homeostasis (Milhavet and Lehmann 

2002; Wyttenbach et al. 2002), disruption of membrane receptors’ function by intimate 

binding (Wang et al. 2004), lipid composition, especially the presence of negatively 

charged lipids in the membrane, appears as one of the primary factors that determine the 

extent of membrane-mediated aggregation (Sparr et al. 2004; Zhao et al. 2004).  

Differently from the wild-type �2-m amyloid systems, but in line with other reported 

data on amyloid fibrils, aged D76N aggregates displayed higher cytotoxicity than their 

earlier precursor assemblies. We therefore investigated in detail the molecular and 

mechanistic ways of fibril cytotoxicity using differentiated SH-SY5Y cell line. We 

found that the fibrils bound to the cell membrane without penetrating inside the cells 

and that their cytotoxicity was associated to some modification of membrane 

permeability, suggesting that our fibrillar aggregates did heavily dismantle the 

phospholipid bilayer of the exposed cells. Yet, the apoptotic cascade was not triggered 

in the exposed cells, but only in presence of 144h-D76N aggregates was observed the 

presence of nectrotic cells. Membrane rafts are increasingly recognized to play pivotal 

roles in favouring protein/peptide aggregation as well as aggregate interaction with the 

cell membrane (Rushwort et al. 2010), even though these data refer mainly to 

oligomeric amyloid assemblies rather than to mature fibrils. Actually, our colocalization 

and FRET experiments showed that the interaction with the cell membrane of aged 

D76N aggregates occurred at the raft level and involved the GM1 ganglioside, a key raft 

component, particularly its sialic acid moiety. We here report that a clear interaction of 

amyloid fibrils with membrane rafts did occur and that GM1 was primarily involved in 

such interaction, favouring membrane permeabilization and impairment of cell viability. 

This finding can be related to previous data showing that Sup35p fibrils induced a GM1 

clustering (Bucciantini et al. 2012). In conclusion, our data support the idea that GM1 is 

a key site of interaction of most preformed amyloid species with the cell membrane, 

further stressing the role of lipid rafts as fundamental mediators of amyloid toxicity and 

also give an explanation about the way of cytotoxicity induction by D76N aggregates.  
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