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DEFORMATIONS OF COISOTROPIC SUBMANIFOLDS

IN ABSTRACT JACOBI MANIFOLDS

HÔNG VÂN LÊ, YONG-GEUN OH, ALFONSO G. TORTORELLA, AND LUCA VITAGLIANO

Abstract. In this paper, using the Atiyah algebroid and first order multi-differential calculus on
non-trivial line bundles, we attach an L∞-algebra to any coisotropic submanifold S in an abstract (or
Kirillov’s) Jacobi manifold. Our construction generalizes and unifies analogous constructions in [32]
(symplectic case), [4] (Poisson case), [25] (locally conformal symplectic case). As a new special case,
we attach an L∞-algebra to any coisotropic submanifold in a contact manifold, including Legendrian
submanifolds. The L∞-algebra of a coisotropic submanifold S governs the (formal) deformation
problem of S.
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1. Introduction

Jacobi structures were independently introduced by Lichnerowicz [27] and Kirillov [22], and they
are a combined generalization of symplectic or Poisson structures and contact structures. Note that
Kirillov local Lie algebras with one dimensional fiber [22] are slightly more general than Lichnerowicz
Jacobi manifolds. In particular, the former encompass non-coorientable contact manifolds, while the
latter does not. In this note we adopt Kirillov’s approach. To make it clear the distinction with the
more popular Lichnerowicz’s approach we speak about abstract Jacobi manifolds (see also [7]). On
the other hand we sometimes call “standard” Jacobi manifolds in the sense of Lichenowicz. Many
constructions in standard Jacobi geometry have an “abstract version” and (generically, non-trivial)
line-bundles play a distinguished role in the “abstract setting”.
Coisotropic submanifolds in (standard) Jacobi manifolds have been first studied by Ibáñez-de León-

Marrero-Mart́ın de Diego [16]. They showed that these submanifolds play a similar role as coisotropic
submanifolds in Poisson manifolds. For instance, the graph of a conformal Jacobi morphism f :
M1 → M2 between Jacobi manifolds is a coisotropic submanifold in M1 × M2 × R equipped with
an appropriate Jacobi structure (note that this remark has an “abstract version”). Other important
examples of coisotropic submanifolds in a Jacobi manifold M are closed leaves of the characteristic
distribution of M , which have been intensively studied by many authors. Since the property of being
coisotropic does not change in the same conformal class of a standard Jacobi manifold (see Remark
2.22 and Lemma 3.1), it seems to us that we should not restrict the study of coisotropic submanifolds
to those inside Poisson manifolds, and, even more, we should in fact consider the general case of
coisotropic submanifolds in abstract Jacobi manifolds.
One purpose of the present article is to extend the construction of an L∞-algebra attached to a

coisotropic submanifold S in a Jacobi manifold, generalizing analogous constructions in [32] (symplectic
case), [4] (Poisson case), [25] (locally conformal symplectic case). Our construction encompasses all
the known cases as special cases and reveals the prominent role of the Atiyah algebroid derL of a line
bundle L. In all previous cases L is a trivial line bundle while it is not necessarily so for general Jacobi
manifolds. As a new special case, our construction canonically applies to coisotropic submanifolds in
any (not necessarily co-orientable) contact manifold. We also provide a global tensorial description of
our L∞-algebra, in the spirit of [4], originally given in the language of (formal) Q-manifolds [1] for the
symplectic case (see [32, Appendix]).
The L∞-algebra of a coisotropic submanifold S governs the formal deformation problem of S. In this

respect, another purpose of the present article is to present necessary and sufficient conditions under
which the L∞-algebra of S governs the non-formal deformation problem as well. Our Proposition
4.15 extends - even in the Poisson setting - the sufficient condition given by Schätz and Zambon
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in [36] to a necessary and sufficient condition. We also discuss the relation between Hamiltonian
equivalence of coisotropic sections and gauge equivalence of Maurer-Cartan elements. We obtain a
satisfactory description of this relations (Proposition 4.21) and discuss its consequences (Theorem 4.23
and Corollary 4.22)
Note that Jacobi manifolds can be understood as Poisson manifolds (of a special kind) via the “Pois-

sonization trick” (see Appendix C). However, not all coisotropic submanifolds in the Poissonization
come from coisotropic submanifolds in the original Jacobi manifold. On the other hand, if we regard
a Poisson manifold as a Jacobi manifold, all its coisotropic submanifolds are coisotropic in the Jacobi
sense as well. In particular, the deformation problem of a coisotropic submanifold in a Jacobi manifold
is genuinely more general than its analogue in the Poisson setting.
Our paper is organised as follows. In Section 2 we attach important algebraic and geometric struc-

tures to an abstract Jacobi manifold (see therein for a definition of abstract Jacobi manifold). Our
approach, via Atiyah algebroids and first order multi-differential calculus on non-trivial line bundles,
unifies and simplifies previous, analogous constructions for Poisson manifolds and locally conformal
symplectic manifolds. In Section 3, using results in Section 2, we attach an L∞-algebra to any closed
coisotropic submanifold in an abstract Jacobi manifold. In Section 4 we study the deformation prob-
lem of coisotropic submanifolds. In particular we discuss the relation between smooth coisotropic
deformations and formal coisotropic deformations as well as the moduli problem under Hamiltonian
equivalence. In Sections 5 and 6 we apply the theory to the contact case, which is, in a sense, analo-
gous to the symplectic case analysed by Oh-Park [32], and interpret the results obtained (Remark 6.3,
Corollary 6.5).
Finally, the paper contains four appendices. The first two collect some facts about Atiyah algebroids

and abstract Gersternhaber-Jacobi algebras that are needed in the main body of the paper. The
third one discusses the “Poissonization” of the L∞-algebra of a coisotropic submanifold in an abstract
Jacobi manifold. The fourth one provides a complete proof of the expected result that Catteneo-Felder
L∞-algebra [4] reduces to Oh-Park one [32] in the symplectic case.

2. Abstract Jacobi manifolds and associated algebraic and geometric structures

In this section we recall the definition of Jacobi manifolds and present important examples (Definition
2.1, Examples 2.3) of them. Our primary sources are [22], [27], [30], [13], and the recent paper by Crainic
and Salazar [7] whose philosophy/approach á la Kirillov we adopt. Accordingly, we will speak about
abstract Jacobi manifolds, retaining the term (standard) Jacobi manifolds for Jacobi manifolds in the
sense of Lichnerowicz. Generically non-trivial line bundles and first order multi-differential calculus on
them (see Appendix B) play a prominent role in abstract Jacobi geometry. We also associate important
algebraic and geometric structures with abstract Jacobi manifolds. Namely, we recall the notion of
Jacobi algebroid (see [13] and [17] for the equivalent notion of Lie algebroid with a 1-cocycle), but we
adopt a slightly more general approach in the same spirit as that of abstract Jacobi manifolds and
abstract Gerstenhaber-Jacobi algebras (see Appendix B). Accordingly, we will speak about abstract
Jacobi algebroids. In particular, we discuss the existence of an abstract Jacobi algebroid structure on
the first jet bundle J1L of the Jacobi bundle of an abstract Jacobi manifold (M,L, {−,−}) (Example
2.10), first discovered by Kerbat and Souci-Behammadi in the special case L = M × R [20] (see [7]
for the general case). We also present an abstract version of the Iglesias-Marrero [17] construction
of a fiber-wise linear Jacobi structure on the dual bundle E∗ of a Jacobi algebroid E (Proposition
2.15). This construction provides a natural lifting of an abstract Jacobi structure (L, {−,−}) on
M to an abstract Jacobi structure on the total space of the Atiyah algebroid derL of L (Example
2.17, see Appendix A for a definition of the Atiyah algebroid of a vector bundle and its relation with
differential operators). Finally, we discuss the notion of morphisms of Jacobi manifolds. We explain the
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relation between certain geometric properties of an abstract Jacobi manifold (M,L, {−,−}) involving
morphisms and cohomological invariants of the associated Jacobi algebroid (Proposition 2.24).

2.1. Abstract Jacobi manifolds and their canonical bi-linear forms. Let M be a smooth
manifold.

Definition 2.1. An abstract Jacobi structure onM is a pair (L, {−,−}) where L→M is a (generically
non-trivial) line bundle, and {−,−} : Γ(L)× Γ(L)→ Γ(L) is a Lie bracket which, moreover, is a first
order differential operator on both entries. An abstract Jacobi manifold is a manifold equipped with
an abstract Jacobi structure. The bundle L and the bracket {−,−} will be referred to as the Jacobi
bundle and the Jacobi bracket respectively.

Remark 2.2. One can recover the standard definition [27] by letting L be the trivial line bundle
RM := M × R. Indeed, in this case a Jacobi bracket {−,−} on Γ(L) = C∞(M) is the same as a pair
(Λ,Γ), where Λ is a bi-vector field and Γ is a vector field satisfying the following equations [13] (see
Remark 2.12):

[Γ,Λ]SN = LΓΛ = 0 and [Λ,Λ]SN = −2Γ ∧ Λ, (2.1)

where [−,−]SN is the Schouten-Nijenhuis bracket on multi-vector fields. Accordingly, a standard Jacobi
manifold is a smooth manifold M equipped with a pair (Λ,Γ) as above. The corresponding Jacobi
bracket {−,−} identifies with the bi-differential operator Λ + Γ ∧ id, where id denotes the identity
map. Namely, for f, g ∈ C∞(M)

{f, g} := (Λ − Γ ∧ id)(f, g) = Λ(df, dg) + f · Γ(g)− g · Γ(f). (2.2)

On the other hand, since every line bundle is locally trivial, abstract Jacobi manifolds look locally
like standard Jacobi manifolds.

Let {−,−} be a Jacobi bracket. When we want to stress that {−,−} is a bi-differential operator,
we also denote it by J . We collect basic facts, including our notations and conventions, about (multi-
)differential operators in Appendix A and Appendix B. In the following, we will often refer to them
for details.

Example 2.3.

(1) Any (possibly non-coorientable) contact manifold (M,C) is naturally equipped with an ab-
stract Jacobi structure, with Jacobi bundle given by the (possibly non-trivial) line bundle
TM/C (see Section 5).

(2) Recall that a locally conformal symplectic (l.c.s.) manifold is naturally equipped with a stan-
dard Jacobi structure sometimes called the associated locally conformal Poisson structure.
There is a slight generalization of a l.c.s. manifold in the same spirit as abstract Jacobi manifolds
(see Appendix A of [38]). Call it an abstract l.c.s. manifold. Then, any abstract l.c.s. manifold
is naturally equipped with an abstract Jacobi structure [38].

(3) Let {ωt}t∈I be a smooth l.c.s. deformation of a l.c.s. form ω0 on a manifold M , where I
is an open interval in R containing 0. Denote by Jt the standard Jacobi structure on M
associated with ωt, and let J̃ : C∞(M × I) × C∞(M × I) → C∞(M × I) be defined by

J̃(g̃, f̃)(x, t) := Jt(f̃(−, t), g̃(−, t))(x). Then it is not hard to verify that (M × I, J̃) is a
standard Jacobi manifold.

Let (M,L, J = {−,−}) be an abstract Jacobi manifold and λ ∈ Γ(L). Then ∆λ := {λ,−} is a first
order differential operator, hence a derivation of L. The (scalar) symbol of ∆λ (see Appendix A) will
be denoted by Xλ.
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Remark 2.4. By definition, a Jacobi bracket {−,−} on sections of a line bundle L→M satisfies the
following generalized Leibniz rule

{λ, fµ} = f{λ, µ}+Xλ(f)µ, (2.3)

λ, µ ∈ Γ(L), f ∈ C∞(M). In the standard case, Γ(L) = C∞(M) is what is called a Jacobi algebra [12].

Denote by J1L the bundle of 1-jets of section of L and let j1 : Γ(L) → Γ(J1L) be the first jet
prolongation (see Appendix A for more details). The bi-differential operator J can be also interpreted

as an L-valued, skew-symmetric, bi-linear form Λ̂J : ∧2J1L→ L. Namely, Λ̂J is uniquely determined
by

Λ̂J(j
1λ, j1µ) = {λ, µ},

for all λ, µ ∈ Γ(L). Denote by derL = Hom(J1L,L) the Atiyah algebroid of the line bundle L (see

Appendix A for details). Then, the bi-linear form Λ̂J determines an obvious morphism of vector

bundles Λ̂#
J : J1L → derL, defined by Λ̂#

J (α)λ := Λ̂J(α, j
1λ), where α ∈ Γ(J1L) and λ ∈ Γ(L). The

bi-symbol ΛJ of Λ̂J will be also useful. It is defined as follows: ΛJ : ∧2(T ∗M ⊗L)→ L is the bi-linear

form obtained by restriction of Λ̂J to the module Ω1(M,L) of L-valued one forms on M , regarded as
a submodule in Γ(J1L) via the co-symbol γ : Ω1(M,L)→ Γ(J1L) (see Appendix A). Namely,

ΛJ(η, θ) := Λ̂J (γ(η), γ(θ)),

for all η, θ ∈ Ω1(M,L). It immediately follows from the definition that

ΛJ(df ⊗ λ, dg ⊗ µ) = {fλ, gµ} − fg{λ, µ} − fXλ(g)µ+ gXµ(f)λ = (Xfλ(g)− fXλ(g))µ, (2.4)

where f, g ∈ C∞(M), and λ, µ ∈ Γ(L).

Remark 2.5. When L = RM , then J is the same as a standard Jacobi structure, i.e. a pair (Λ,Γ) as
in Remark 2.2, and ΛJ is just a bi-vector fields. Actually, we have ΛJ = Λ.

The skew-symmetric form ΛJ determines an obvious morphism of vector bundles Λ#
J : T ∗M ⊗ L→

TM , implicitly defined by 〈Λ#
J (η ⊗ λ), θ〉µ := ΛJ(η ⊗ λ, θ ⊗ µ), where η, θ ∈ Ω1(M), λ, µ ∈ Γ(L), and

〈−,−〉 is the duality pairing. In other words,

Λ#
J (df ⊗ λ) = Xfλ − fXλ, (2.5)

f ∈ C∞(M), λ ∈ Γ(L). Morphism Λ#
J can be alternatively defined as follows. Recall that derL

projects onto TM via the symbol σ. It is easy to see that diagram

T ∗M ⊗ L
Λ#

J //

γ

��

TM

J1L
Λ̂#

J // derL

σ

OO

commutes, i.e. Λ#
J = σ ◦ Λ̂#

J ◦ γ, which can be used as an alternative definition of Λ#
J . Finally, note

that

(Λ̂#
J ◦ γ)(df ⊗ λ) = ∆fλ − f∆λ.

2.2. Abstract Jacobi algebroid associated with an abstract Jacobi manifold.

Definition 2.6. An abstract Jacobi algebroid is a pair (A,L) where A → M is a Lie algebroid, and
L→M is a line bundle equipped with a representation of A.
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Let A be a Lie algebroid with anchor ρ and Lie bracket [−,−]A. Recall that a representation of A
in a vector bundle E →M is a flat A-connection in E, i.e. a Lie algebroid morphism ∇ : A→ derE,
written α 7→ ∇α, with values in the Atiyah algebroid derE of L. In other words ∇ is an R-linear map
Γ(A)→ Diff1(E,E), where Diff1(E,E) is the module of first order differential operators Γ(E)→ Γ(E),
such that

∇fαe = f∇αe,

∇α(fe) = ρ(α)(f)e + f∇αe,

[∇α,∇β ]e = ∇[α,β]Ae,

where α, β ∈ Γ(A), f ∈ C∞(M), and e ∈ Γ(E).
Let (Γ(∧•A∗), dA) be the de Rham complex of the Lie algebroid A. A representation ∇ of A in E

defines a degree one differential on sections of ∧•A∗ ⊗ E, denoted by dA,E , and uniquely determined
by

dA,Eλ = ∇λ,

dA,E(ω ∧Ω) = dAω ∧ Ω+ (−)|ω|ω ∧ dA,EΩ,
(2.6)

where λ ∈ Γ(L), ω ∈ Γ(∧∗A∗), Ω ∈ Γ(∧•A∗ ⊗ E) and we used the obvious Γ(∧•A∗)-module structure
on Γ(∧•A∗ ⊗ E). Complex (Γ(∧•A∗ ⊗ E), dA,E) is called de Rham complex of A with values in E. Its
cohomology is denoted by H(A,E) and called de Rham cohomology of A with values in E.

Remark 2.7. In the case L = RM , a representation of A in L is the same as a 1-cocycle in the de
Rham complex (Γ(∧•A∗), dA) of A. Namely, in this case Γ(∧•A∗ ⊗ L) = Γ(∧•A∗) and, in view of
(2.6) ∇ is completely determined by ω∇ := dA,L1 ∈ Γ(A∗). It is easy to see that ω∇ is a dA-cocycle,
i.e. dAω∇ = 0. Conversely, a dA-cocycle ω ∈ Γ(A∗) determines a unique representation ∇ in L = RM
such that dA,L1 = ω. This shows that, in the case L = RM , Definition 2.6 recovers the definition of
Lie algebroid with a 1-cocycle proposed in [17], which is in turn equivalent to the definition of Jacobi
algebroid proposed in [13].

Let A → M be a vector bundle, and let L → M be a line bundle. Consider vector bundle
AL := A ⊗ L∗. The parallel between Lie algebroid structures on A and Gerstenhaber brackets on
the associated Grassmann algebra Γ(∧•A) is well-known (see e.g. [23], [13, Theorem 3]). There is an
analogous parallel between abstract Jacobi algebroid structures on (A,L) and abstract Gerstenhaber-
Jacobi algebra structures on (Γ(∧•AL),Γ(∧

•AL ⊗ L)[1]) (see Appendix B about Gerstenhaber-Jacobi
algebras, moreover, see Example 2.10 about the relevance of Gerstenhaber-Jacobi structures for Jacobi
geometry). Proposition 2.8 below clarifies this parallel.

Proposition 2.8. (see also [13, Theorem 5]) There is a one-to-one correspondence between ab-
stract Jacobi algebroid structures on (A,L) and abstract Gerstenhaber-Jacobi algebra structures on
(Γ(∧•AL),Γ(∧

•AL ⊗ L)[1]).

Proof. Note preliminarily that an abstract Gerstenhaber-Jacobi structure on (Γ(∧•AL),Γ(∧
•AL ⊗

L)[1]) is completely determined by

(1) the action of degree zero elements of Γ(∧•AL ⊗ L)[1] on degree zero elements of Γ(∧•AL),
(2) the Lie bracket between degree zero elements of Γ(∧•AL ⊗ L)[1], and
(3) the Lie bracket between degree zero elements and degree −1 elements of Γ(∧•AL ⊗ L)[1].

Now, let (Γ(∧•AL),Γ(∧
•AL⊗L)[1]) possess the structure of an abstract Gerstenhaber-Jacobi struc-

ture, with graded Lie bracket [−,−] and action of Γ(∧•AL⊗L)[1] on Γ(∧•AL) written α 7→ Xα. Define
an anchor, a Lie bracket, and a flat connection by putting

ρ(α)(f) = Xα(f),

[α, β]A = [α, β],

∇αλ = [α, λ],

(2.7)
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where α, β ∈ Γ(A) = Γ(∧1AL ⊗ L), f ∈ C∞(M) = Γ(∧0AL), and λ ∈ Γ(L) = Γ(∧0AL ⊗ L). It
is easy to see that the above operations form a well-defined abstract Jacobi algebroid structure on
(A,L). Conversely, let (A,L) be an abstract Jacobi algebroid with anchor ρ, Lie bracket [−,−]A, and
representation ∇. Read Equations (2.7) from the right to the left to define an abstract Gerstenhaber-
Jacobi structure on (Γ(∧•AL),Γ(∧

•AL ⊗ L)[1]). �

Now, let M be a manifold and let L → M be a line bundle. Denote by J1L the dual bundle of
J1L. Sections of J1L are first order differential operators Γ(L) → C∞(M), i.e. J1L := diff1(L,RM ).
Moreover, denote by Der•L = Γ(∧•J1L⊗L) the space of multi-differential operators Γ(L)×· · ·×Γ(L)→
Γ(L) (see Appendix B for more details).

Example 2.9. (cf. [13, (26)]) The Atiyah algebroid derL of L is equipped with the tautological rep-
resentation idderL in L. Accordingly, (derL,L) is an abstract Jacobi algebroid. It follows from Propo-
sition 2.8 that there is an abstract Gerstenhaber-Jacobi algebra structure on (Γ(∧•J1L), (Der•L)[1]).
The Lie bracket on (Der•L)[1] will be also called the Schouten-Jacobi bracket and denoted by [−,−]SJ .
See Appendix B for explicit formulas.

Example 2.10. (cf. [20, Theorem 1], [18, (2.7)], [13, Theorem 13]) Let (M,L, J = {−,−}) be an
abstract Jacobi manifold. It is not hard to see (see, e.g., [7]) that there is a unique Jacobi algebroid
structure on (J1L,L) with anchor ρJ , Lie bracket [−,−]J , and representation ∇J such that

ρJ(j
1λ) = Xλ,

[j1λ, j1µ]J = j1{λ, µ}, (2.8)

∇Jj1λµ = {λ, µ},

for all λ, µ ∈ Γ(L). Using the fact that every section α of J1L can be uniquely written as

α = j1λ+ γ(η), λ ∈ Γ(L), η ∈ Γ(T ∗M ⊗ L) (2.9)

where, we recall, γ is the co-symbol (see Appendix A), explicit formulas for the structure maps ρJ ,
[−,−]J and ∇J can be found. Namely, use decomposition Γ(J1L) = Γ(L) ⊕ Ω1(M,L) to identify
α, β ∈ Γ(J1L) with pairs (λ, η), (µ, θ) ∈ Γ(L) ⊕ Ω1(M,L), and let ν ∈ Γ(L). A straightforward
computation shows that

ρJ(α) = Xλ + Λ#
J (η), (2.10)

[α, β]J = j1
(
{λ, µ}+ iΛ#

J
(η)θ

)
+ γ

(
L∆λ+Λ̂#

J
(η)θ − L∆µ+Λ̂#

J
(θ)η

)
, (2.11)

∇Jα = ∆λ + Λ̂#
J (η).

In Formula (2.11) it appears the Lie derivative of an L-valued form on M along a derivation of L. See
Appendix A for details about the main definitions and formulas in vector valued Cartan calculus.

Lemma 2.11. Let J ∈ Der2L be an alternating, first order bi-differential operator J : Γ(L)×Γ(L)→
Γ(L). Then

(1) for all λ, µ ∈ Γ(L),

J(λ, µ) = −[[J, λ]SJ , µ]SJ . (2.12)

(2) (cf. [13, Theorem 1.b, (28), (29)]) J is a Jacobi bracket, i.e. it defines a Lie algebra structure
on Γ(L) iff

[J, J ]SJ = 0, (2.13)

Proof. The first assertion is a consequence of the explicit form of the Schouten-Jacobi bracket (see
Appendix B). The second assertion is a particular case of Theorem 3.3 in [26]. �
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Remark 2.12. Denote by X•(M) =
⊕

k X
k(M) the space of (skew-symmetric) multi-vector fields on

M . When L = RM , the space Derk+1L of alternating first order multi-differential operators on Γ(L)
with k + 1 entries, identifies with Xk+1(M)⊕ Xk(M) (see Appendix B). In particular, an alternating,
first order bi-differential operator J identifies with a pair (Λ,Γ) where Λ is a bi-vector field and Γ is a
vector field on M . In this case, Equation (2.13) is equivalent to (2.1).

Remark 2.13. Let (M,Λ) be a Poisson manifold, with Poisson bi-vector Λ, and Poisson bracket
{−,−}Λ. Differential d∗ := [Λ,−]SN : X•(M) → X•(M), where [−,−]SN is the Schouten-Nijenhuis
bracket on multi-vectors, has been introduced by Lichnerowicz to define what is known as the
Lichnerowicz-Poisson cohomology of (M,Λ). Note that complex (X•(M), d∗) can be seen as a sub-
complex of the Chevalley-Eilenberg complex associated with the Lie algebra (C∞(M), {−,−}Λ) and
its adjoint representation. For more general abstract Jacobi manifolds (M,L, J = {−,−}) it is natural
to replace multi-vector fields, with a suitable subcomplex of the Chevalley-Eilenberg complex associ-
ated with the Lie algebra (Γ(L), {−,−}) and its adjoint representation, specifically, the subcomplex of
first order, multi-differential operators, i.e. elements of Der•L. In particular, the Lichnerowicz-Poisson
differential is replaced with the differential dJ∗ := [J,−]SJ . The resultant cohomology is called the
Chevalley-Eilenberg cohomology of (M,L, {−,−}), and we denote it by HCE(M,L, J) [14, 27]. Further-
more, for a general abstract Jacobi manifold (M,L, J = {−,−}), the action of (Der•L)[1] on Γ(∧•J1L)
gives rise to another cohomology, namely cohomology of the complex (Γ(∧•J1L), XJ) (see Appendix
B for a definition of XJ), also called the Lichnerowicz-Jacobi (LJ-)cohomology of (M,L, {−,−}) (see,
e.g., [8]). It is easy to see that the complex (Γ(∧•J1L), XJ) is nothing but the de Rham complex
of the Lie algebroid (J1L, ρJ , [−,−]J). Similarly, complex (Der•L, dJ∗ ) is the de Rham complex of
(J1L, ρJ , [−,−]J) with values in L.

Remark 2.14. Many properties of Poisson manifolds have analogues for Jacobi manifolds, and ab-
stract Jacobi manifolds. Sometimes these analogues can be found using the “Poissonization trick”
which consists in the remark that Jacobi brackets on a line bundle L → M are in one-to-one corre-
spondence with homogeneous Poisson brackets on the principal R×-bundle L∗r0, where 0 is the (image
of the) zero section of L∗ (see Appendix C). For instance, using the Poissonization trick, Iglesias and
Marrero established a one-to-one correspondence between Jacobi structures and Jacobi bialgebroids
[18, Theorem 3.9]. In our paper we prefer to adopt an intrinsic approach to abstract Jacobi structures
in the spirit of [7] (see Remarks 2.13, 2.25, and Proposition 3.6 in this paper). We only use the Pois-
sonization trick in one case (Theorem 5.27) as a technical tool to avoid lengthy computations and get
a quick proof.

2.3. The fiber-wise linear abstract Jacobi structure on the adjoint bundle of an abstract

Jacobi algebroid. LetM be a smooth manifold. It is well known that, if A is a Lie algebroid overM ,
then the total space of the dual bundle A∗ is equipped with a fiber-wise linear Poisson structure ΛA,
see e.g. [3, §16.5] or [9, §8.2]. Namely, fiber-wise constant functions on A∗ are the same as functions
on M . Moreover, fiber-wise linear functions on A∗ are the same as sections of A. Then ΛA is uniquely
determined by

ΛA(dα, df) = ρ(α)(f),

ΛA(dα, dβ) = [α, β]A,

where α, β ∈ Γ(A) are also interpreted as fiber-wise linear functions and f ∈ C∞(M) is also interpreted
as a fiber-wise constant function on A∗.
A similar result holds for Jacobi algebroids [17, Theorems 1,2]. Here, we provide its abstract version.

Thus, let A→M be a vector bundle, and let L→M be a line bundle. Vector bundle A∗ ⊗ L = AL
∗

will be called the L-adjoint bundle of A (or simply the adjoint bundle). Now, assume (A,L) is a Jacobi
algebroid, with anchor ρ, Lie bracket [−,−]A and representation ∇ in L as usual. Let π : AL

∗ → M
be the projection and consider the line bundle π∗L→ AL

∗.
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Proposition 2.15. ([17, Theorems 1,2]) The adjoint bundle AL
∗ is equipped with a fiber-wise linear

abstract Jacobi structure {−,−}(A,L).

Before sketching the proof of Proposition 2.15, let us specify better what we mean by fiber-wise linear
abstract Jacobi structure on a vector bundle. Thus, let π : E →M be a vector bundle, L→M a line
bundle and π∗L→ E the induced line bundle. There is a natural isomorphism Γ(π∗L) ≃ C∞(E)⊗Γ(L)
(where the tensor product is over C∞(M)). Accordingly,

(1) Sections λ of L→M identify with pull-back sections π∗λ of π∗L, and we call them fiber-wise
constant.

(2) sections of the L-adjoint bundle EL
∗ = E∗ ⊗ L identify with certain sections of π∗L and we

call them fiber-wise linear.

Now, an abstract Jacobi structure (π∗L, {−,−}) is fiber-wise linear if it preserves fiber-wise linear
sections, i.e. the Jacobi bracket between two fiber-wise linear sections of π∗L is fiber-wise linear as
well.

Proof of Proposition 2.15: a sketch. Let π : AL
∗ → M be the projection and let π∗L → AL

∗ be the
induced line bundle. Fiber-wise constant sections of π∗L are the same as sections of L. Moreover, fiber-
wise linear sections of π∗ are the same as sections of (AL

∗)L
∗ = A. It is easy to see that {−,−}(A,L)

is uniquely determined by
{α, λ}(A,L) := ∇αλ,

{α, β}(A,L) := [α, β]A,

where α, β ∈ Γ(A) are also interpreted as fiber-wise linear sections, and λ ∈ Γ(L) is also interpreted
as a fiber-wise constant section of π∗L→ AL

∗. �

Example 2.16. Let L → M be a line bundle and let derL be its Atiyah algebroid. Since (derL,L)
is a Jacobi algebroid, Proposition 2.15 provides a fiber-wise linear abstract Jacobi structure on the
L-adjoint bundle of derL, which is J1L. This is nothing but the abstract Jacobi structure determined
by the canonical contact structure on J1L (see Example 5.5).

Example 2.17. (cf. [17, Theorem 1, §3 Example 5]) Let (M,L, {−,−}) be an abstract Jacobi manifold.
Since (J1L,L) is a Jacobi algebroid, there is a fiber-wise linear abstract Jacobi structure on the L-
adjoint bundle of J1L which is derL.

2.4. Morphisms of abstract Jacobi manifolds.

Definition 2.18. A morphism of Jacobi manifolds, or a Jacobi map,

(M,L, {−,−})→ (M ′, L′, {−,−}′)

is a vector bundle morphism φ : L → L′, covering a smooth map φ : M → M ′, such that φ is an

isomorphism on fibers, and φ∗{λ, µ}′ = {φ∗λ, φ∗µ} for all λ, µ ∈ Γ(L′).

Definition 2.19. An infinitesimal automorphism of a Jacobi manifold (M,L, {−,−}), or a Jacobi
derivation, is a derivation ∆ of the line bundle L, equivalently, a section of the Atiyah algebroid derL
of L, such that ∆ generates a flow of automorphisms of (M,L, {−,−}) (see Appendix A). A Jacobi
vector field is the (scalar-type) symbol of a Jacobi derivation.

Remark 2.20. Let ∆ be a derivation of L, {ϕt} be its flow, and let � be a first order multi-differential

operator on L with k entries, i.e. � ∈ DerkL. Since L is a line bundle, a derivation ∆ of L is the same
as a first order differential operator on Γ(L), i.e. an element of DerL = Der1L. It is easy to see that
(similarly as for vector fields)

d

dt

∣∣∣∣
t=0

(ϕt)∗� = [�,∆]SJ (2.14)
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where we denoted by ϕ∗� the push forward of � along a line bundle isomorphism ϕ : L→ L′, defined
by (ϕ∗�)(λ′1, . . . , λ

′
k) := (ϕ−1)∗(�(ϕ∗λ1, . . . , ϕ

∗λk)), for all λ′1, . . . , λ
′
k ∈ Γ(L′) (see also Appendix A

about pushing forward derivations along vector bundle morphisms). In particular, ∆ is an infinitesimal
automorphism of (M,L, {−,−}) iff [J,∆]SJ = 0. Since

[J,∆]SJ(λ, µ) = {∆λ, µ}+ {λ,∆µ} −∆{λ, µ}, (2.15)

we conclude that ∆ is an infinitesimal automorphism of (M,L, {−,−}) iff

∆{λ, µ} = {∆λ, µ}+ {λ,∆µ} (2.16)

for all λ, µ ∈ Γ(L). In other words ∆ is a derivation of the Jacobi bracket.

Remark 2.21. More generally, let {∆t} be a one parameter family of derivations of L, generating the
one parameter family of automorphisms {ϕt}, and let � ∈ Der•L. Then

d

dt
(ϕt)∗� = [(ϕt)∗�,∆t]

SJ . (2.17)

Remark 2.22. Definitions 2.18 and 2.19 encompass the notions of conformal morphisms and infinites-
imal conformal automorphisms of standard Jacobi manifolds, respectively. In particular two standard
Jacobi structures are conformally equivalent iff they are isomorphic as abstract Jacobi structures.

Example 2.23. Let (M,L, {−,−}) be an abstract Jacobi manifold. The values of all Hamiltonian
vector fields generate a distribution K ⊂ TM which is, generically, non-constant-dimensional. Distri-
bution K is called the characteristic distribution of (M,L, {−,−}). The Jacobi manifold (M,L, {−,−})
is said to be transitive if its characteristic distribution K is the whole tangent bundle TM . Identity
(2.19) implies that K is involutive. Moreover, it is easy to see that K is constant-dimensional along
the flow lines of a Hamiltonian vector field. Hence, it is completely integrable in the sense of Stefan
and Sussmann. In particular, it defines a (singular) foliation K on M . Each leaf C of K, is called a
characteristic leaf and possesses a unique transitive abstract Jacobi structure defined by the restriction
of the Jacobi bracket to L|C , see Corollary 3.3.2 for a precise expression. In other words, the inclusion
L|C →֒ L is a Jacobi map. Moreover, a transitive Jacobi manifold (M,L, {−,−}) is either an abstract
l.c.s. manifold (if dimM is even) or a contact manifold (if dimM is odd) [22].

Let (M,L, J = {−,−}) be an abstract Jacobi manifold and λ ∈ Γ(L). Note that

∆λ = {λ,−} = −[J, λ]SJ . (2.18)

The Jacobi identity for the Jacobi bracket immediately implies that not only ∆λ is a derivation of L,
but even more, it is an infinitesimal automorphism of (M,L, {−,−}), called the Hamiltonian derivation
associated with the section λ. Similarly, the scalar symbol Xλ of ∆λ will be called the Hamiltonian
vector field associated with λ. Clearly we have

[∆λ,∆µ] = ∆{λ,µ}, and [Xλ, Xµ] = X{λ,µ}, (2.19)

for all λ, µ ∈ Γ(L). Jacobi automorphisms L→ L generated by Hamiltonian derivations will be called
Hamiltonian automorphisms. Similarly, diffeomorphisms M → M generated by Hamiltonian vector
fields will be called Hamiltonian diffeomorphisms.
Recall that an infinitesimal automorphism of (M,L, {−,−}) is, in particular, an element of DerL =

Der1L. Hamiltonian derivations are interpreted as inner infinitesimal automorphisms. The follow-
ing proposition provides a geometric interpretation of the first and the second Chevalley-Einlenberg
cohomologies of (M,L, {−,−}).

Proposition 2.24.
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(1) A derivation ∆ : Γ(L) → Γ(L) of L is an infinitesimal automorphism of (M,L, {−,−})
iff dJ∗∆ = 0, hence the set of outer infinitesimal automorphisms of (M,L, {−,−}) is
H1
CE(M,L, J).

(2) An infinitesimal deformation J̄ of J is a Jacobi deformation, if and only if dJ∗ J̄ = 0, hence
the set of infinitesimal Jacobi deformations of J modulo infinitesimal automorphisms of the
bundle L is H2

CE(M,L, J).

Proof.

(1) The first part of the assertion follows from Remark 2.20. Using this and taking into account
(2.18), which interprets inner infinitesimal automorphisms as degree one co-boundaries, we
immediately obtain the second part.

(2) The first part of the assertion follows from Lemma 2.11.(2). To prove the second part it
suffices to show that the trivial infinitesimal deformation of J induced by an infinitesimal
automorphism Y ∈ DerL is of the form [J, Y ]SN . Clearly (2.14) proves what we need and this
completes the proof.

�

Remark 2.25. Proposition 2.24 generalizes a known interpretation of Lichnerowicz-Poisson coho-
mology, see e.g. [9, §2.1.2], and fits into deformation theory of Lie algebras, since any infinitesimal
Jacobi deformation J̄ of a Jacobi bracket J is also an infinitesimal deformation of the Lie algebra
(Γ(L), {−,−}) and, therefore, J̄ is closed in the Chevalley-Eilenberg complex (see also [31]).

3. Coisotropic submanifolds in abstract Jacobi manifolds and their invariants

In this section we propose some equivalent characterizations of coisotropic submanifolds S in an
abstract Jacobi manifold (M,L, {−,−}) (Lemma 3.1, Corollary 3.3.(3)). Then we establish a one-to-
one correspondence between coisotropic submanifolds and certain Jacobi subalgebroids of the Jacobi
algebroid (J1L,L) (Proposition 3.6). In particular, this yields a natural L∞-isomorphism class of
L∞-algebras associated with each coisotropic submanifold (Proposition 3.12 and Proposition 3.18).

3.1. Differential geometry of a coisotropic submanifold. Let (M,L, J = {−,−}) be an abstract
Jacobi manifold, and let x ∈ M . A subspace T ⊂ TxM is said to be coisotropic (wrt the abstract

Jacobi structure (L, J = {−,−}), if Λ#
J (T

0 ⊗ L) ⊂ T , where T 0 ⊂ T ∗xM denotes the annihilator of T
(cf. [16, Definition 4.1]). Equivalently, T 0 ⊗ L is isotropic wrt the L-valued bi-linear form ΛJ .
A submanifold S ⊂M is called coisotropic (wrt the abstract Jacobi structure (L, J = {−,−}), if its

tangent space TxS is coisotropic for all x ∈ S.

Lemma 3.1. Let S ⊂M be a submanifold, and let ΓS denote the set of sections λ of the Jacobi bundle
such that λ|S = 0. The following three conditions are equivalent:

(1) S is a coisotropic submanifold,
(2) ΓS is a Lie subalgebra in Γ(L),
(3) Xλ is tangent to S, for all λ ∈ ΓS.

Proof. Let S ⊂ M be a submanifold. We may assume, without loss of generality, that L is trivial.
Then ΓS = I(S) · Γ(L), where I(S) denotes the ideal in C∞(M) consisting of functions that vanish
on S. In particular, if λ is a generator of Γ(L), then every section in ΓS is of the form fλ for some
f ∈ I(S). Now, let f, g ∈ I(S). Putting µ = λ in (2.4) restricting to S, we find

{fλ, gλ}|S = 〈Λ#
J (df ⊗ λ), dg〉λ|S .

This shows that (1) ⇐⇒ (2). The equivalence (2) ⇐⇒ (3) follows from the identity Xλ(f)µ|S =
{λ, fµ}|S, for all λ ∈ ΓS , µ ∈ Γ(L), and f ∈ I(S). �
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A version of Lemma 3.1 for Poisson manifold is well known [4, §2]. (See also [32, Lemma 13.3] for
the symplectic case.)
Now, let S ⊂ M be a coisotropic submanifold and let T 0S ⊂ T ∗M |S be the annihilator of TS.

The (generically non constant-dimensional) distribution KS := Λ#
J (T

0S ⊗ L) ⊂ TS on S is called the
characteristic distribution of S.

Remark 3.2. In view of (2.5), KS is generated by the (restrictions to S of) the Hamiltonian vector
fields of the kind Xλ, with λ ∈ ΓS . In particular, if S = M , then KS = K is the characteristic
distribution of (M,L, {−,−}) as defined in Section 2.1.

From Lemma 3.1 we derive the following

Corollary 3.3.

(1) (cf. [4, §2]) The characteristic distribution KS of any coisotropic submanifold S is integrable
(hence, it determines a foliation on S, called the characteristic foliation of S).

(2) (cf. [22]) Every characteristic leaf C, i.e. any leaf of the characteristic distribution K = KM
has an induced Jacobi structure (L|C , {−,−}C) well-determined by {λ|C , µ|C}C = {λ, µ}|C, for
all λ, µ ∈ Γ(L). The induced Jacobi structure is transitive.

(3) A submanifold S ⊂M is coisotropic, iff TS ∩ TC is coisotropic in the tangent bundle TC, for
all characteristic leaves C intersecting S, where C is equipped with the induced Jacobi structure.

Proof.
(1) Recall that, for λ, µ ∈ ΓS , Xλ, Xµ are in KS and their commutator

[Xλ, Xµ] = X{λ,µ} (3.1)

is in KS as well in view of Lemma 3.1.2. Since the Xλ’s are the symbols of infinitesimal automorphisms
{λ,−} of J , the Stefan-Sussmann theorem applies and we obtain the required assertion.
(2) To prove the first assertion it suffices to show that if λ|C = 0, then {λ, µ}|C = 0 for all µ ∈ Γ(L),

i.e. the subspace ΓC of sections of L vanishing on C is also an ideal of the Lie algebra (Γ(L), {−,−}).
Similarly as in the proof of Lemma 3.1, we may assume, without loss of generality, that L is trivial.
Thus, let λ be a generator of Γ(L) and f ∈ I(C), the ideal of functions vanishing on C. Then, putting
λ = µ in (2.4), and restricting to C, one gets

{fλ, gλ}|C = (Xfλ(g)− gXλ(f))λ|C .

The claim follows taking into account skew-symmetry in f, g, and noting that Xgλ is tangent to C for all
g. Now, let JC = {−,−}C be the induced Jacobi bracket on Γ(L|C). The transitivity of (C, L|C, {−,−}C)

is equivalent to the surjectivity of the map Λ#
JC
, which follows from the identities

〈Λ#
JC
(d f |C ⊗ µ|C), d g|C〉ν|C = ΛJC

(d f |C ⊗ µ|C , d g|C ⊗ ν|C) = ΛJ(df ⊗ µ, dg ⊗ ν)|C ,

for f, g ∈ C∞(M), and µ, ν ∈ Γ(L).
(3) For V ⊂ TC let V 0C denote the annihilator of V in T ∗C. Noting that C is coisotropic, the

transitivity of (C, L|C , {−,−}C) and (3.1) imply that the restriction to C of an Hamiltonian vector field
on M is an Hamiltonian vector field. Denote by i : C →֒ M the inclusion. Then for any ξ ∈ T ∗M ,
λ ∈ L and for any submanifold S in M we have

Λ#
JC
(i∗ξ ⊗ λ) = Λ#

J (ξ ⊗ λ) and (TS ∩ TC)0C ⊗ L|C = i∗(T 0S)⊗ L|C . (3.2)

Hence, if S is coisotropic, we have

Λ#
JC
((TS ∩ TC)0C ⊗ L|C) ⊂ TS ∩ TC,
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i.e. TS∩TC is coisotropic in TC. Conversely, assume that TS∩TC is coisotropic in TC, i.e. Λ#
JC
((TS∩

TC)0C ⊗ L|C) ⊂ TS ∩ TC. Using (3.2) we obtain immediately

Λ#(T 0S ⊗ L |C) = Λ#
JC
(i∗(T 0S)⊗ L|C) = Λ#

JC
((TS ∩ TC)0C ⊗ L|C) ⊂ TS ∩ TC.

�

Example 3.4.

(1) Any coisotropic submanifold (in particular a Legendrian submanifold) in a contact manifold
is a coisotropic submanifold wrt the associated abstract Jacobi structure (see Section 5.1 for
details).

(2) Let S be a coisotropic submanifold of the abstract Jacobi manifold (M,L, {−,−}), and let
X ∈ X(M) be a Jacobi vector field such that Xx /∈ TxS, for all x ∈ S. Then T , the flowout of
S along Xµ, is a coisotropic submanifold as well. Indeed, let {φt} be the flow of X . Clearly,
whenever defined, φt(S) is a coisotropic submanifold, and the claim immediately follows from
Lemma 3.1.

3.2. Jacobi subalgebroid associated with a closed coisotropic submanifold. We are interested
in deformations of a closed coisotropic submanifold, so, from now on, we assume that S is a closed
submanifold in a smooth manifold M . Let A → M be a Lie algebroid. Recall that a subalgebroid of
A over S is a vector subbundle B → S, with embeddings j : B →֒ A and j : S →֒ M , such that the
anchor ρ : A→ TM descends to a (necessarily unique) vector bundle morphism ρB : B → TS, making
diagram

B
j //

ρB

��

A

ρ

��
TS

dj
// TM

commutative and, moreover, for all β, β′ ∈ Γ(B) there exists a (necessarily unique) section [β, β′]B ∈
Γ(B) such that whenever α, α′ ∈ Γ(A) are j-related to β, β′ (i.e. j ◦ β = α ◦ j, in other words α|S = β,

and similarly for β′, α′) then [α, α′]A is j-related to [β, β′]B. In this case B, equipped with ρB and
[−,−]B, is a Lie algebroid itself. One can also give a notion of Jacobi subalgebroid as follows.
Let (A,L) be a Jacobi algebroid with representation ∇.

Definition 3.5. A Jacobi subalgebroid of (A,L) over S is a pair (B, ℓ), where B → S is a Lie
subalgebroid of A over S ⊂ M , and ℓ := L|S → S is the pull-back line subbundle of L, such that ∇
descends to a (necessarily unique) vector bundle morphism ∇|ℓ making diagram

B
j //

∇|ℓ

��

A

∇

��
der ℓ

der jℓ // derL

commutative (see Appendix A for the definition of morphism der jℓ).

If (B, ℓ) is a Jacobi subalgebroid, then the restriction ∇|ℓ is a representation so that (B, ℓ), equipped
with ∇|ℓ, is a Jacobi algebroid itself.
Now, let (M,L, J = {−,−}) be a Jacobi manifold, and let S be a submanifold. In what follows, we

denote by

• ℓ := L|S the restricted line bundle,
• NS := TM |S/TS the normal bundle of S in M ,
• N∗S := (NS)∗ ≃ T 0S ⊂ T ∗M the conormal bundle of S in M ,
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• NℓS := NS ⊗ ℓ∗, and by
• Nℓ

∗S := (NℓS)
∗ = N∗S ⊗ ℓ the ℓ-adjoint bundle of NS.

Vector bundle Nℓ
∗S will be also regarded as a vector subbundle of (J1L)|S via the vector bundle

embedding

Nℓ
∗S −֒→ (T ∗M ⊗ L)|S

γ
−→ J1L|S ,

where γ is the co-symbol. If λ ∈ Γ(L), we have that (j1λ)|S ∈ Γ(Nℓ
∗S) if and only if λ|S = 0,

i.e. λ ∈ ΓS .
The following Proposition establishes a one-to-one correspondence between coisotropic submanifolds

and certain Lie subalgebroids of J1L.

Proposition 3.6. (cf. [19, Proposition 5.2]) The submanifold S ⊂ M is coisotropic iff (Nℓ
∗S, ℓ) is a

Jacobi subalgebroid of (J1L,L).

Proof. Let S ⊂M be a coisotropic submanifold. We want to show that Nℓ
∗S is a Jacobi subalgebroid

of J1L. We propose a proof which is shorter than the one in [19]. Since S is coisotropic, we have

ρJ(Nℓ
∗S) ⊂ TS, (3.3)

and similarly
∇J (Nℓ

∗S) ⊂ der ℓ. (3.4)

Next we shall show that for any α, β ∈ Γ(J1L) such that α|S , β|S ∈ Γ(Nℓ
∗S) we have

[α, β]J |S ∈ Γ(Nℓ
∗S). (3.5)

First we note that if α|S ∈ Γ(Nℓ
∗S) then α =

∑
fj1λ for some λ ∈ ΓS . Using the Leibniz properties

of the Jacobi bracket we can restrict to the case α, β ∈ j1ΓS . The latter case can be handled taking
into account (2.8) and Lemma 3.1. Moreover, using (2.11), we easily check that

[α, β]J |S = 0 if α|S = 0 and β|S ∈ Γ(Nℓ
∗S).

This completes the “only if part” of the proof.
To prove the “if part” it suffices to note that condition (3.3), regarded as a condition on the image

of the anchor map of the Lie subalgebroid Nℓ
∗S, implies, in view of (2.10), that S is a coisotropic

submanifold. �

Remark 3.7. Different versions of Proposition 3.6 were proved for the Poisson case [40, Proposition
3.1.3], [5, Proposition 5.1], [29, Theorem 10.4.2].

3.3. L∞-algebra associated with a coisotropic submanifold. LetM be as above, and let S ⊂M
be a closed submanifold. Let

P0 : Γ(J1L) −→ Γ(NℓS)

be the projection adjoint to the embedding γ : Nℓ
∗S →֒ J1L, i.e. 〈P0(∆)x, αx〉 = 〈∆x, γ(αx)〉, where

∆ ∈ Γ(J1L), α ∈ Γ(Nℓ
∗S), and x ∈M . Tensorizing by Γ(L) we also get a projection

P : DerL −→ Γ(NS).

It is not hard to see that P coincides with the

DerL
σ
−→ X(M) −→ Γ(TM |S) −→ Γ(NS), (3.6)

where the second arrow is the restriction, and the last arrow is the canonical projection. Projection
P0 extends uniquely to a (degree zero) morphism of graded algebras Γ(∧•J1L)→ Γ(∧•NℓS) which we
denote again by P0. Similarly, P extends uniquely to a (degree zero) morphism of graded modules
(Der•L)[1]→ Γ(∧•NℓS⊗ ℓ)[1] which we denote again by P . As in the Poisson case (see, e.g., [6]), pro-
jection P : (Der•L)[1]→ Γ(∧•NℓS ⊗ ℓ)[1] allows to formulate a further characterization of coisotropic
submanifolds.
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Proposition 3.8. Submanifold S is coisotropic iff P (J) = 0.

Remark 3.9. Let S ⊂ M be any submanifold, then P (J) does only depend on the bi-symbol ΛJ of
J . To see this, note, first of all, that the symbol σ : DerL → X(M) induces an obvious projection
(Der•L)→ Γ(∧•(TM⊗L∗)⊗L). Moreover, in view of its very definition, P : (Der•L)[1]→ Γ(∧•NℓS⊗
ℓ)[1] descends to an obvious projection

Γ(∧•(TM ⊗ L∗)⊗ L)[1] −→ Γ(∧•NℓS ⊗ ℓ)[1],

which, abusing the notation, we denote again by P . Now, recall that ΛJ ∈ Γ(∧2(TM ⊗ L∗) ⊗ L). It
immediately follows from the definition of P that, actually,

P (J) = P (ΛJ).

In particular S is coisotropic iff P (ΛJ) = 0.

From now on we assume that S is coisotropic. In this case, the Jacobi algebroid structure on (Nℓ
∗S, ℓ)

(Proposition 3.6) turns the graded space Γ(∧•NℓS⊗ ℓ) into the de Rham complex of Nℓ
∗S, with values

in ℓ. To express the differential dNℓ
∗S,ℓ in terms of the differential dJ∗ = [J,−]SJ on Der•P it suffices to

find a right inverse I : Γ(∧•NℓS⊗ ℓ)[1]→ (Der•L)[1] of P . However, there is no natural way to do this
unless further structure is available. In what follows we use a fat tubular neighborhood as an additional
structure. Before giving a definition, recall that a tubular neighborhood of S is an embedding of the
normal bundle NS intoM which identifies the zero section 0 of NS → S with the inclusion i : S →֒M .
Denote by π : NS → S the projection and consider the pull-back line bundle LNS := π∗ℓ = NS ×S ℓ
over NS. Moreover, let iL : ℓ →֒ L be the inclusion.

Definition 3.10. A fat tubular neighborhood of ℓ → S in L → M over a tubular neighborhood
τ : NS →֒M is an embedding τ : LNS →֒ L of vector bundles over τ : NS →֒M such that diagram

LNS = π∗ℓ
τ //

��

L

��

ℓ

ff▲▲▲▲▲▲▲▲▲▲ iL

==
④④④④④④④④

��

NS
π

&&▼▼
▼▼

▼▼
▼▼

▼▼
τ // M

S
0

ff▼▼▼▼▼▼▼▼▼▼ i

==
③
③
③
③
③③

③

commutes.

In particular, it follows from the above definition that τ is an isomorphism when restricted to fibers.
A fat tubular neighborhood can be understood as a “tubular neighborhood in the category of line
bundles”. In the following we regard S as a submanifold of NS identifying it with the image of the
zero section 0 : S → NS.

Lemma 3.11. There exist fat tubular neighborhoods of ℓ in L.

Proof. Since fibers of NS → S are contractible, for every vector bundle V → NS over NS there is
a, generically non-canonical, isomorphism of line bundle NS ×S V |S ≃ V over the identity of NS.
Now, let τ : NS →֒M be a tubular neighborhood of S. According to the above remark, the pull-back
bundle τ∗L → NS is (non-canonically) isomorphic to LNS. Pick any isomorphism φ : LNS → τ∗L.
Then the composition

LNS
φ
−→ τ∗L −→ L,

where the second arrow is the canonical map, is a fat tubular neighborhood of ℓ over τ . �
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Choose once for all a fat tubular neighborhood τ : LNS →֒ L of ℓ over a tubular neighborhood
τ : NS →֒ M of S. We identify NS with the open neighborhood τ(NS) of S in M . Similarly, we
identify LNS with L|τ(NS). In particular NS inherits from τ(NS) a Jacobi structure with Jacobi
bundle given by LNS . Abusing the notation we denote by J again the Jacobi bracket on Γ(LNS).
Moreover, in view of Proposition 3.8, there is a projection P : (Der•LNS)[1] → Γ(∧•NℓS ⊗ ℓ)[1] such
that P (J) = 0.
Now, regard the vertical bundle V (NS) := ker dπ as a Lie algebroid and note preliminarily that

(1) There is a natural splitting T (NS)|S = TS ⊕ NS: projection T (NS)|S → TS is dπ, while
projection T (NS)|S → NS is the natural one. In particular, sections of NS can be understood
as vector fields on NS along the submanifold S and vertical wrt π.

(2) Since π : NS → S is a vector bundle, the vertical bundle V (NS) identifies canonically with
the induced bundle π∗NS → NS. In particular, there is an embedding π∗ : Γ(NS) →֒ X(NS)
that takes a section ν of NS to the unique vertical vector field π∗ν on NS, which is constant
along the fibers of π, and agrees with ν on S.

(3) Since LNS = π∗ℓ = NS×S ℓ, there is a natural flat connection D in L, along the Lie algebroid
V (NS), uniquely determined by DXπ

∗λ = 0, for all vertical vector fields X on NS, and all
fiber-wise constant sections π∗λ of LNS, λ ∈ Γ(ℓ).

With these preliminary remarks we are finally ready to define a right inverse I : Γ(∧•NℓS ⊗ ℓ)[1]→
(Der•LNS)[1] of P : (Der•LNS)[1]→ Γ(∧•NℓS ⊗ ℓ)[1]. First of all, let

I : Γ(NS) →֒ DerLNS

be the embedding given by I(ν) := Dπ∗ν . Tensorizing it by Γ(L∗NS) we also get an embedding

I0 : Γ(NℓS) →֒ Γ(J1LNS).

Inclusion I0 extends uniquely to a (degree zero) morphism of graded algebras Γ(∧•NℓS)→ Γ(∧•J1LNS)
which we denote again by I0. Similarly, I extends uniquely to a (degree zero) morphism of graded
modules Γ(∧•NℓS ⊗ ℓ)[1]→ (Der•LNS)[1] which we denote again by I. It is straightforward to check
that

P0 ◦ I0 = id and P ◦ I = id .

Using I and the explicit expression for the Schouten-Jacobi bracket, one can check that

dNℓ
∗S,ℓα = (P ◦ dJ∗ ◦ I)(α) = P [J, I(α)]SJ (3.7)

for all α ∈ Γ(∧•NℓS ⊗ ℓ)[1].
The rightmost hand side of (3.7) reminds us of the Voronov construction of L∞-algebras via derived

brackets. We refer the reader to [39] for details. Our conventions about L∞-algebras are the same
as those in [39]. In particular, multi-brackets in L∞-algebras in this paper will always be (graded)
symmetric. Now, using the derived bracket construction, we are going to define an L∞-algebra structure
{mk} on Γ(∧•NℓS ⊗ ℓ)[1] whose first (unary) bracket m1 coincides with the differential dNℓ

∗S,ℓ. The
following Proposition is an analogue of Lemma 2.2 in [10], see also [4] and [32, Appendix].

Proposition 3.12. Let I : Γ(∧•NℓS⊗ ℓ)[1] →֒ (Der•LNS)[1] be the embedding defined above. There is
an L∞-algebra structure on Γ(∧•NℓS ⊗ ℓ)[1] given by the following family of graded multi-linear maps
mk : Γ(∧•NℓS ⊗ ℓ)[1]

⊗k → Γ(∧•NℓS ⊗ ℓ)[1]

mk(ξ1, · · · , ξk) := P [· · · [[J, I(ξ1)]
SJ , I(ξ2)]

SJ · · · , I(ξl)]
SJ . (3.8)

Proof. First, we observe that the image of I is an abelian subalgebra of the graded Lie algebra
((Der•LNS)[1], [−,−]

SJ), or equivalently, the Schouten-Jacobi bracket [I(α), I(β)]SJ vanishes for any
two sections α, β ∈ Γ(∧•NℓS ⊗ ℓ)[1]. The last assertion is a consequence of the (generalized) Leibniz
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property (B.1) for the Schouten-Jacobi bracket, and the fact that if α and β are sections of NS then
derivations I(α) and I(β) commute.
Next, we will show that the kernel of the projection P is a graded Lie subalgebra of (Der•LNS)[1].

Clearly, kerP is the Γ(∧•J1LNS)-submodule generated by those sections of derLNS whose symbol is
tangent to S. Since such sections are preserved by the Schouten-Jacobi bracket, it is easy to check
that kerP is also preserved, using the generalized Leibniz property (B.1) again.
Finally, recall that J ∈ kerP . It follows that ((Der•LNS)[1], im I, P, J) are V -data [39, Theorem 1,

Corollary 1]. See also [10, §1.2, Lemma 2.2] and [6] where the terminology V-data has been introduced
for the first time. This completes the proof. �

Remark 3.13.

(1) In view of (3.7), differential m1 coincides with the Jacobi algebroid differential dNℓ
∗S,ℓ.

(2) If (M,ω) is a l.c.s. manifold and S is a coisotropic submanifold inM , then m1 can be identified,
via Λ#, with a deformation of the foliation differential of the characteristic foliation of S [25].

3.4. Coordinate formulas for the multi-brackets. In this subsection we propose some more effi-
cient formulas for the multi-brackets in the L∞-algebra of a coisotropic submanifold. Let (M,L, J =
{−,−}) be a Jacobi manifold and let S ⊂M be a coisotropic submanifold. Moreover, as in the previous
subsection, we equip S with a fat tubular neighborhood τ : LNS →֒ L.

Remark 3.14. By their very definition, the mk’s satisfy the following properties:

(a) mk is a graded R-linear map of degree one,
(b) mk is a first order differential operator with scalar-type symbol in each entry separately.

Because of (b) the mk’s are completely determined by their action on all λ ∈ Γ(ℓ) = Γ(∧0NℓS ⊗ ℓ),
and on all s ∈ Γ(NS) = Γ(∧1NℓS⊗ ℓ). Moreover (a) implies that, if ξ1, . . . , ξk ∈ Γ(∧•NℓS⊗ ℓ)[1] have
non-positive degrees, then mk(ξ1, . . . , ξk) = 0 whenever more than two arguments have degree −1.

From now on, in this section, we identify

• a section λ ∈ Γ(ℓ), with its pull-back π∗λ ∈ Γ(LNS),
• a section s ∈ Γ(NS), with the corresponding vertical vector field π∗s ∈ Γ(π∗NS) ≃ Γ(V (NS)),
• a section ϕ ∈ Γ(Nℓ

∗S) of the ℓ-adjoint bundle Nℓ
∗S = N∗S ⊗ ℓ with the corresponding fiber-

wise linear section of LNS.

Moreover, we denote by 〈−,−〉 : NS ⊗Nℓ
∗S → ℓ the obvious (ℓ-twisted) duality pairing.

Proposition 3.15. The multi-bracket mk+1 is completely determined by

mk+1(s1, . . . , sk−1, λ, ν) = (−)kDs1 · · ·Dsk−1
{λ, ν}|S (3.9)

〈mk+1(s1, . . . , sk, λ), ϕ〉 = −(−)
k

(
Ds1 · · ·Dsk{λ, ϕ} −

∑

i

Ds1 · · · D̂si · · ·Dsk{λ, 〈si, ϕ〉}

)∣∣∣∣∣
S
(3.10)

〈mk+1(s1, . . . , sk+1), ϕ⊗ ψ〉 = −(−)
k

(
Ds1 · · ·Dsk+1

{ϕ, ψ}

k+1∑

i=1

+
∑

i<j

Ds1 · · · D̂si · · · D̂sj · · ·Dsk+1
({〈si, ϕ〉, 〈sj , ψ〉}+ {〈sj , ϕ〉, 〈si, ψ〉})

−
∑

i

Ds1 · · · D̂si · · ·Dsk+1
({〈si, ϕ〉, ψ} + {ϕ, 〈si, ψ〉})

)∣∣∣∣∣
S

, (3.11)

where λ, ν ∈ Γ(ℓ), s1, . . . , sk+1 ∈ Γ(NS), ϕ, ψ ∈ Γ(Nℓ
∗S), and a hat “−̂” denotes omission.
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Proof. Equation (3.9) immediately follows from (3.8), (2.12), and the easy remark that [∆, λ]SJ = ∆(λ)
for all ∆ ∈ DerLNS = Der1LNS, and λ ∈ Γ(LNS) = Der0LNS . Equation (3.10) follows from (3.8),
(2.15), and the obvious remark that 〈s, ϕ〉 = Dsϕ, hence Ds1Ds2ϕ = 0, for all s, s1, s2 ∈ Γ(NS), and
ϕ ∈ Γ(Nℓ

∗S). Equation (3.11) can be proved in a similar way. �

Let zα be local coordinates on M , and let µ be a local generator of Γ(L). Define local sections µ∗

and ∇α of J1L by putting

µ∗(fµ) = f, ∇α(fµ) = ∂αf,

where f ∈ C∞(M), and ∂α = ∂/∂zα. Then Γ(∧•J1L) is locally generated, as a C∞(M)-module, by

∇α1 ∧ . . . ∧ ∇αk
, ∇α1 ∧ . . . ∧ ∇αk−1

∧ µ∗, k > 0,

with α1 < . . . < αk. In particular, any ∆ ∈ Γ(∧•J1L) is locally expressed as

∆ = Xα1...αk∇α1 ∧ . . . ∧ ∇αk
+ gα1...αk−1∇α1 ∧ . . . ∧ ∇αk−1

∧ µ∗,

where Xα1...αk , gα1...αk−1 ∈ C∞(M). Here and in what follows, we adopt the Einstein summation
convention over pair of upper-lower repeated indexes. Hence, (Der•L)[1] is locally generated, as a
C∞(M)-module, by

∇α1 ∧ . . . ∧ ∇αk
⊗ µ, ∇α1 ∧ . . . ∧ ∇αk−1

∧ id, k > 0,

with α1 < . . . < αk, and any � ∈ (Der•L)[1] is locally expressed as

� = Xα1...αk∇α1 ∧ . . . ∧ ∇αk
⊗ µ+ gα1...αk−1∇α1 ∧ . . . ∧ ∇αk−1

∧ id .

Remark 3.16. Let J ∈ Der2L. Locally,

J = Jαβ∇α ∧ ∇β ⊗ µ+ Jα∇α ∧ id, (3.12)

for some local functions Jαβ , Jα.

Now, identify LNS with its image in L under τ and assume that

• Coordinates zα are fibered, i.e. zα = (xi, ya), with xi coordinates on S, and ya linear coordi-
nates along the fibers of π : NS → S,
• local generator µ is fiber-wise constant so that, locally, Γ(ℓ) ⊂ Γ(LNS) consists exactly of
sections λ which are vertical, i.e. ∇aλ = 0.

In particular, local expression (3.12) for J expands as

J =
(
Jab∇a ∧∇b + 2Jai∇a ∧ ∇i + J ij∇i ∧ ∇j

)
⊗ µ+

(
Ja∇a + J i∇i

)
∧ id . (3.13)

We have the following

Corollary 3.17. Locally, the multi-bracket mk+1 is uniquely determined by

mk+1

(
∂a1 , . . . , ∂ak−1

, fµ, gµ
)
= (−)k∂a1 · · · ∂ak−1

[
2J ij∂if∂ig + J i(f∂ig − g∂if)

]∣∣
S
µ,

mk+1 (∂a1 , . . . , ∂ak , fµ) = (−)k∂a1 · · · ∂ak
(
2Jai∂if + Jaf

)∣∣
S
∂a,

mk+1

(
∂a1 , . . . , ∂ak+1

)
= −(−)k ∂a1 · · · ∂ak+1

Jab
∣∣
S
δa ∧ δb ⊗ µ,

where f, g ∈ C∞(S), and δa := ∂a ⊗ µ
∗.
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3.5. Independence of the tubular embedding. Now we show that, as already in the symplectic
[32, Appendix], the Poisson [6], and the l.c.s. [25, Theorem 9.5] cases, the L∞-algebra in Proposition
3.12 does not really depend on the choice of a fat tubular neighborhood, in the sense clarified by
Proposition 3.18 below. As a consequence, its L∞-isomorphism class is an invariant of the coisotropic
submanifold.

Proposition 3.18. Let S be a coisotropic submanifold of the Jacobi manifold (M,L, J = {−,−}).
Then the L∞-algebra structures on Γ(∧•NℓS ⊗ ℓ) associated to different choices of the fat tubular
neighborhood LNS →֒ L of ℓ in L are L∞-isomorphic.

The proof is just an adaptation of the one given by Cattaneo and Schätz in the Poisson setting (see
Subsections 4.1 and 4.2 of [6]) and it is based on Theorem 3.2 of [6] and the fact that any two fat
tubular neighborhoods are isotopic (in the sense of Lemma 3.20 below). Before proving Proposition
3.18, let us recall Cattaneo-Schätz Theorem. We will present a “minimal version” of it, adapted to our
purposes. The main ingredients are the following.
We work in a category of real topological vector spaces. Let (h, a, P,∆0) and (h, a, P,∆1) be V -data

[10]. We identify a with the target space of P . Note that (h, a, P,∆0) and (h, a, P,∆1) differ for the
last entry only. Voronov construction associates L∞-algebras to (h, a, P,∆0) and (h, a, P,∆1). Denote
them a0 and a1 respectively. Cattaneo and Schätz main idea is proving that when

• ∆0 and ∆1 are gauge equivalent elements of the graded Lie algebra h, and
• they are intertwined by a gauge transformation preserving kerP ,

then a0 and a1 are L∞-isomorphic. Specifically, ∆0 and ∆1 are gauge equivalent if they are interpolated
by a smooth family {∆t}t∈[0,1] of elements ∆t ∈ h, and there exists a smooth family {ξt}t∈[0,1] of degree
zero elements ξt ∈ h such that the following evolutionary differential equation is satisfied:

d

dt
∆t = [ξt,∆t]. (3.14)

One usually assumes that the family {ξt}t∈[0,1] integrates to a family {φt}t∈[0,1] of automorphisms
φt : h→ h of the Lie algebra h, i.e. {φt}t∈[0,1] is a solution of the Cauchy problem





d

dt
φt(−) = [φt(−), ξt]

φ0 = id
. (3.15)

Finally we say that ∆0 and ∆1 are intertwined by a gauge transformation preserving kerP if family
{ξt}t∈[0,1] above satisfies the following conditions:

(1) the only solution {at}t∈[0,1], where at ∈ a, of the Cauchy problem




d

dt
at = P [at, ξt]

a0 = 0
(3.16)

is the trivial one: at = 0 for all t ∈ [0, 1],
(2) [ξt, kerP ] ⊂ kerP for all t ∈ [0, 1].

Theorem 3.19 (Cattaneo & Schätz, cf. [6, Theorem 3.2]). Let (h, a, P,∆0) and (h, a, P,∆1) be V -
data, and let a0 and a1 be the associated L∞-algebras. If ∆0 and ∆1 are gauge equivalent and they are
intertwined by a gauge transformation preserving kerP , then a0 and a1 are L∞-isomorphic.

The last ingredient needed to prove Proposition 3.18 is provided by the following

Lemma 3.20. Any two fat tubular neighborhoods τ0 and τ1 of S are isotopic, i.e. there is a smooth
one parameter family of fat tubular neighborhoods T t of ℓ in L, and an automorphism ψ : LNS → LNS
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of LNS covering an automorphism ψ : NS → NS of NS over the identity, such that T0 = τ0, and
T1 = τ1 ◦ ψ.

Proof. In view of the tubular neighborhood Theorem [15, Theorem 5.3], there is a smooth one param-
eter family of tubular neighborhoods T t : NS →֒M of S in M , and an automorphism ψ : NS → NS
over the identity such that T 0 = τ0, and T 1 = τ1 ◦ψ. Denote by T : NS× [0, 1]→M the map defined

by T (ν, t) = T t(ν) and consider the line bundle

p : L∗NS ⊗NS T
∗L −→ NS × [0, 1].

Note that

(1) fibers of NS × [0, 1] over S × [0, 1] are contractible,
(2) L∗NS ⊗NS T

∗L reduces to End ℓ × [0, 1] = RS×[0,1] over S × [0, 1].

It follows from (1) and (2) that L∗NS ⊗NS T
∗L is isomorphic to the pull-back over NS × [0, 1] of the

trivial line bundle RS×[0,1] over S × [0, 1]. In particular, p is a trivial bundle. Moreover, p admits a
nowhere zero section υ defined on (S × [0, 1]) ∪ (NS × {0, 1}) and given by idℓ on S × [0, 1], by T0 on
NS × {0} and by T1 on NS × {1}. By triviality, υ can be extended to a nowhere zero section Υ on
the whole NS× [0, 1]. Section Υ is the same as a one parameter family of vector bundle isomorphisms
Υt : LNS → T

∗
tL over the identity of NS. Denote by Tt : LNS → L the composition

LNS
Υt−→ T ∗tL −֒→ L,

where the second arrow is the natural inclusion. By construction, the Tt’s are line bundle embedding
covering the T t’s. Finally, there exists a unique automorphism ψ : LNS → LNS over ψ such that
T1 = τ1 ◦ ψ. We conclude that the Tt’s and ψ possess all the required properties. �

Proof of Proposition 3.18. Let τ0, τ1 : LNS →֒ L be fat tubular neighborhoods over tubular neigh-
borhoods τ0, τ1 : NS →֒ M . Denote by J0 and J1 the Jacobi brackets induced on Γ(LNS) by τ0
and τ1 respectively, i.e. J0 = (τ−10 )∗J , and J1 = (τ−11 )∗J (see Remark 2.20 about pushing forward a
multi-differential operator along a line bundle isomorphism). In view of Lemma 3.20 it is enough to
consider the following two cases:
Case I: τ1 = τ0 ◦ ψ for some automorphism ψ : LNS → LNS covering an automorphism ψ :

NS → NS of NS over the identity. Obviously, ψ identify the V -data ((Der•LNS)[1], Im I, P, J0) and
((Der•LNS)[1], Im I, P, J1). As an immediate consequence, the L∞-algebra structures on Γ(∧•NℓS ⊗
ℓ)[1] determined by τ0 and τ1 are (strictly) L∞-isomorphic.
Case II: τ0 and τ1 are interpolated by a smooth one parameter family of fat tubular neighborhoods

τt. Consider φt := τ−1t ◦ τ0. It is a local automorphism of LNS covering a local automorphism
ϕt = τ−1t ◦ τ0 over id, well defined in a suitable neighborhood of S in NS, and such that ϕ0 = id.
Let ξt be infinitesimal generators of the family {ϕt}. They are derivations of LNS well defined around
S. Our strategy is using ξt and ϕt to prove that J0 and J1 are gauge equivalent Maurer-Cartan
elements of (Der•LNS)[1] intertwined by a gauge transformation preserving kerP , and then applying
Theorem 3.19. However, the ϕt’s are well-defined only around S in NS. In order to remedy this
minor drawback, we slightly change the graded space Der•LNS underlying our V -data, passing to the
graded space Der•forLNS of alternating, first order, multi-differential operators on LNS in a formal
neighborhood of S in NS. The space Der•forLNS is defined as the inverse limit

lim
←−

Der•LNS/I(S)
nDer•LNS ,

where I(S) ⊂ C∞(S) is the ideal of functions vanishing on S, and consists of “Taylor series nor-
mal to S” of multi-differential operators. V -data ((Der•LNS)[1], Im I, P, J) induce obvious V -data
((Der•forLNS)[1], Im Ifor, Pfor, Jfor). In particular, Ifor : Γ(∧

•NℓS ⊗ ℓ)[1] →֒ (Der•forLNS)[1] is the nat-
ural embedding, and Jfor is the class of J in (Der•forLNS)[1]. Moreover, in view of Corollary 3.17,
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the L∞-algebra determined by ((Der•LNS)[1], Im I, P, J) does only depend on Jfor. Therefore, V -data
((Der•forLNS)[1], Im Ifor, Pfor, Jfor) determine the same L∞-algebra as ((Der•LNS)[1], Im I, P, J).
Now, being well defined around S, the ϕt’s determine well-defined automorphisms φt := (ϕt)∗ :

(Der•forLNS)[1] such that φ0 = id. Similarly the ξt’s descend to zero degree elements of (Der•forLNS)[1]
which we denote by ξt again. Clearly, family {φt(J0)for} interpolates between (J0)for and (J1)for and,
in view of Equation (2.17), the φt’s satisfy Cauchy problem (3.15). Finally,

(1) from uniqueness of the one parameter family of automorphisms ϕt generated by the one param-
eter family of derivation ξt, it follows that Cauchy problem (3.16) possesses a unique solution,

(2) ϕt|ℓ = id so that the ξt’s vanish on S, hence [ξt, kerP ] ⊂ kerP for all t.

The above considerations show that (J0)for and (J1)for are gauge equivalent and they are intertwined
by a gauge transformation preserving kerP . Hence, from Theorem 3.19, the L∞-algebra structures on
Γ(∧•NℓS⊗ ℓ)[1] associated to the two choices τ0 and τ1 of the fat tubular neighborhood LNS →֒ L are
actually L∞-isomorphic. �

Remark 3.21. In the contact case, as already in the l.c.s. one, there exists a tubular neighborhood
theorem for coisotropic submanifolds. As a consequence, the proof of Proposition 3.18 simplifies. In
particular, it does not require using any formal neighborhood technique.

4. Deformations of coisotropic submanifolds in Jacobi manifolds

In this section, using the Baker-Campbell-Hausdorff formula, we introduce the notion of formal
coisotropic deformation of a coisotropic submanifold (Definition 4.6). We prove that formal coisotropic
deformations are in one-to-one correspondence with (degree 0) Maurer-Cartan elements of the associ-
ated L∞-algebra (Proposition 4.9). We also give a necessary and sufficient condition for the convergence
of the Maurer-Cartan series MC(s) for any smooth section s (Proposition 4.15), extending a previous
sufficient condition given by Schätz and Zambon in [36]. Analysing the notion of Hamiltonian equiv-
alence of coisotropic deformations (Proposition 4.19) leads to a definition of Hamiltonian equivalence
of formal deformations (Definition 4.20). We show that Hamiltonian equivalence of formal coisotropic
deformations coincides with gauge equivalence of the corresponding Maurer-Cartan elements (Propo-
sition 4.21) and derive consequences of this fact (Theorem 4.23, Corollary 4.22). Finally we compare
our results with related results obtained earlier (Remark 4.25).

4.1. Smooth coisotropic deformations. Let (M,L, J = {−,−}) be an abstract Jacobi manifold
and let S ⊂ M be a closed coisotropic submanifold. We equip S with a fat tubular neighborhood
τ : LNS →֒ L and use it to identify LNS with its image. Accordingly, and similarly as above, from
now on in this section, we abuse the notation and denote by (L, J = {−,−}) (instead of (LNS, τ

−1
∗ J))

the Jacobi structure on NS (unless otherwise specified). It is well known that a C1-small deformation
of S in NS can be identified with a sections S → NS of NS. We say that a section s : S → NS is
coisotropic if its image s(S) is a coisotropic submanifold in (NS,L, J).

Definition 4.1. A smooth one parameter family of smooth sections of NS → S starting from the
zero section is a smooth coisotropic deformation of S if each section in the family is coisotropic. A
section s of NS → S is an infinitesimal coisotropic deformation of S if εs is a coisotropic section up
to infinitesimals O(ε2), where ε is a formal parameter.

Remark 4.2. Let {st} be a smooth coisotropic deformation of S. Then

d

dt

∣∣∣∣
t=0

st

is an infinitesimal coisotropic deformation.
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Recall that a section s : N → NS is mapped, via I : Γ(∧•NℓS ⊗ ℓ)[1]→ (Der•L)[1], to a derivation
I(s) := Dπ∗s of L, where π : NS → S is the projection. Let {Φt} be the one parameter group of
automorphisms of L generated by I(s) and denote exp I(s) := Φ1. Clearly exp I(s)(ν, λ) = (ν+s(x), λ),
for all (ν, λ) ∈ L = NS ×S ℓ, x = π(ν). Further, let pr : J1L → NS be the projection, denote by
j1 exp I(s) : J1L→ J1L the first jet prolongation of exp I(s), and consider the following commutative
diagram

Nℓ
∗S

��

γ // J1L

��

j1 exp I(s) // J1L

��
S

0 //
NS

π
oo

exp I(s) //
NS

exp I(−s)
oo

where 0 is the zero section. Note that s = exp I(s) ◦ 0.

Proposition 4.3. Let s : S → NS be a section of π. The following three conditions are equivalent

(1) s is coisotropic,
(2) P (exp I(−s)∗J) = 0 (cf. [36]),
(3) vector bundle pr ◦ j1 exp I(s) ◦ γ : Nℓ

∗S → s(N) is a Jacobi subalgebroid of J1L.

Proof.
(1) ⇐⇒ (2). Let P s : DerL→ NS be composition

DerL
σ
−→ X(M) −→ Γ(TM |s(S)),−→ Γ(NS),

where second arrow is the restriction, and last arrow is the canonical projection (cf. (3.6)). Surjection
P s extends to a surjection of graded modules (Der•L)[1] → Γ(∧•NℓS ⊗ ℓ)[1] which we denote again
by P s (and is defined analogously as P : (Der•L)[1] → Γ(∧•NℓS ⊗ ℓ)[1]). By Proposition 3.8, s is
coisotropic iff P s(J) = 0. Since

der ℓ = exp I(−s)∗derL|s(S) and exp I(−s)∗NS = NS,

we obtain

P s = P ◦ exp I(−s)∗. (4.1)

In particular, P s(J) = P (exp I(−s)∗J) = 0 iff s is coisotropic.
(1) ⇐⇒ (3). Note that pr ◦ j1 exp I(s) ◦ γ : Nℓ

∗S → s(N) is the ℓ-adjoint bundle of the normal
bundle of s(S) in NS. Now the claim follows immediately from Proposition 3.6. �

Remark 4.4. Let s be a section of NS. In view of Remark 3.9, P s(J) = P s(ΛJ), where, in the
rhs, P s denotes the extension Γ(∧•(T (NS) ⊗ L∗) ⊗ L) → Γ(∧•NℓS ⊗ ℓ) of composition T (NS) →
T (NS)|s(S) → NS defined analogously as P : (Der•L)[1]→ Γ(∧•NℓS⊗ ℓ)[1]. Moreover, it is clear that

Λexp I(−s)∗J = exp I(−s)∗ΛJ ,

where Λexp I(−s)∗J is the bi-symbol of exp I(−s)∗J , and, in the rhs, exp I(−s)∗ : Γ(∧
•(T (NS)⊗L∗)⊗

L) → Γ(∧•(T (NS) ⊗ L∗) ⊗ L) denotes the isomorphism induced by the line bundle automorphism
exp I(−s). It immediately follows that s is coisotropic iff P (exp I(−s)∗ΛJ) = 0.

4.2. Formal coisotropic deformations. Let ε be a formal parameter.

Definition 4.5. A formal series s(ε) =
∑∞

i=0 ε
isi ∈ Γ(NS)[[ε]], si ∈ Γ(NS), such that s0 = 0, is

called a formal deformation of S.
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Formal series I(s(ε)) :=
∑∞

i=0 ε
iI(si) ∈ (DerL)[[ε]] is a formal derivation of L. It is easy to see

that the space (DerL)[[ε]] of formal derivations of L is a Lie algebra, which has a linear representation
in the space (Der•L)[[ε]] of formal first order multi-differential operators on L via the following Lie
derivative:

Lξ(ε)∆(ε) ≡ [ξ(ε),∆(ε)]SJ :=

∞∑

k=0

εk
∑

i+j=k

[ξi,∆j ]
SJ , (4.2)

for ξ(ε) =
∑∞
i=0 ε

iξi, ξi ∈ DerL, and ∆(ε) =
∑∞
i=0 ε

i∆i, ∆i ∈ Der•L.
Using the Baker-Campbell-Hausdorff formula we define the exponential of the Lie derivative Lξ(ε)

as the following formal power series

expLξ(ε) =
∞∑

n=0

1

n!
Lnξ(ε). (4.3)

Proposition 4.3 motivates the following

Definition 4.6. A formal deformation s(ε) of S is said coisotropic, if P (expLI(s(ε))J) = 0.

Remark 4.7. Let ξ(ε) ∈ (DerL)[[ε]]. Define a Lie derivative

Lξ(ε) : Γ(∧
•(T (NS)⊗ L∗)⊗ L)[[ε]]→ Γ(∧•(T (NS)⊗ L∗)⊗ L)[[ε]],

in the obvious way. It is easy to see that

P (expLI(s(ε))J) = P (expLI(s(ε))ΛJ), (4.4)

for all formal deformations s(ε) of S (cf. Remarks 3.9 and 4.4). In particular, s(ε) is coisotropic iff
P (expLI(s(ε))ΛJ) = 0.

Remark 4.8 (Formal deformation problem). The formal deformation problem for a coisotropic sub-
manifold S consists in finding formal coisotropic deformations of S. Let s(ε) =

∑∞
i=0 ε

isi be a formal
coisotropic deformation of S. Then s1 is an infinitesimal coisotropic deformation. On the other hand,
in general, not all infinitesimal coisotropic deformations can be “prolonged” to a formal coisotropic
deformation. If this is the case, one says that the formal deformation problem is unobstructed. Other-
wise, the formal deformation problem is obstructed. The formal deformation problem of S is governed
by the L∞-algebra (Γ(∧•NℓS ⊗ ℓ)[1], {mk}) in the sense clarified by the following proposition.

Proposition 4.9. A formal deformation s(ε) of S is coisotropic iff −s(ε) is a solution of the (formal)
Maurer-Cartan equation

MC(−s(ε)) :=

∞∑

k=1

1

k!
mk(−s(ε), · · · ,−s(ε)) = 0. (4.5)

Proof. The expression MC(−s(ε)) should be interpreted as an element of Γ(∧•NℓS ⊗ ℓ)[[ε]]. The
proposition is then a consequence of (4.3), P (J) = 0, and the following identities

P (LkI(ξ)J) = mk(−ξ, · · · ,−ξ), k ≥ 1, (4.6)

for ξ ∈ Γ(NS), which immediately follow from the definition of mk. �

Let s be a section of NS. The Maurer-Cartan series of s is the series

MC(−s) :=

∞∑

k=1

1

k!
mk(−s, . . . ,−s).

In general, MC(−s) does not converge, not even for a coisotropic s. However, we have the obvious
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Corollary 4.10. Let s be a section of NS such that the Maurer-Cartan series MC(−s) converges.
Then s is a coisotropic deformation of S iff MC(−s) = 0.

Corollary 4.11. A section s of NS is an infinitesimal coisotropic deformation of S iff

m1(s) = 0. (4.7)

By Remark 3.13.(1), m1 coincides with the Jacobi algebroid de Rham differential dNℓ
∗S,ℓ. Hence, a

similar argument as in the proof of Theorem 11.2 in [32] yields

Corollary 4.12. Assume that the second cohomology group H2(Nℓ
∗S, ℓ) of the Jacobi subalgebroid

Nℓ
∗S ⊂ J1L with values in ℓ is zero. Then every infinitesimal coisotropic deformation can be prolonged

to a formal coisotropic deformation, i.e. for any given class α ∈ H1(Nℓ
∗S, ℓ) Equation (4.5) has a

solution s(ε) =
∑∞

i=i ε
isi such that m1(s1) = 0 and [s1] = α. In other words, the formal deformation

problem is unobstructed.

There is also a simple criterion for non-prolongability of an infinitesimal coisotropic deformation to
a formal coisotropic deformation based on the Kuranishi map:

Kr : H1(Nℓ
∗S, ℓ) −→ H2(Nℓ

∗S, ℓ), [s] 7−→ [m2(s, s)].

Since m1 is a derivation of the binary bracket m2, the Kuranishi map is well-defined. Moreover,
similarly as in [32] (Theorem 11.4) we have the following

Proposition 4.13. Let α = [s] ∈ H1(Nℓ
∗S, ℓ), where s ∈ Γ(NS) is an infinitesimal coisotropic

deformation, i.e. dNℓ
∗S,ℓs = m1s = 0. If Kr(α) 6= 0, then s cannot be prolonged to a formal coisotropic

deformation. In particular, the formal deformation problem is obstructed.

We also have

Corollary 4.14. Let α = [s] be as in the above proposition. If mk = 0 for all k > 2, then s can be
prolonged to a formal coisotropic deformation iff Kr(α) = 0.

4.3. Formal deformations and smooth deformations. In this subsection we establish a con-
nection between formal coisotropic deformations and smooth coisotropic deformations. We do this
introducing the notion of fiber-wise entire bi-symbol, which is a slight generalization of the notion of
fiber-wise entire Poisson structure introduced by Schätz and Zambon in [36], and is motivated by the
Taylor expansion of the bi-linear form P (exp I(−s)∗ΛJ) (Proposition 4.15).
Let E → S be a vector bundle. Recall that a smooth function on E is called fiber-wise entire if its

restriction to each fiber of E is entire, i.e. it is real analytic on the whole fiber. Now, let ℓ→ S be a line
bundle, and L := E ×S ℓ. A section of L is called fiber-wise entire if it is a linear combination of fiber-
wise constant sections, with coefficients being fiber-wise entire functions. Let Θ ∈ Γ(∧k(TE⊗L∗)⊗L).
We regard Θ as a multi-linear map

Θ : ∧k(T ∗E ⊗ L) −→ L.

The multi-linear map Θ is called fiber-wise entire if

Θ(df1 ⊗ λ1, . . . , dfk ⊗ λk)

is fiber-wise entire, whenever f1, . . . , fk ∈ C
∞(M) and λ1, . . . , λk are fiber-wise linear. Equivalently Θ

is fiber-wise entire if its components in some (and therefore any) system of vector bundle coordinates
are fiber-wise entire functions (cf. [36, Lemmas 1.4, 1.7]).
Now, let S and (NS,L, J = {−,−}) be as in Subsection 4.1. The following proposition generalizes

the main result of [36] establishing a necessary and sufficient condition for the convergence of the
Maurer-Cartan series MC(−s) of a generic section s ∈ Γ(NS).
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Proposition 4.15. The bi-symbol ΛJ of the Jacobi bi-differential operator J is fiber-wise entire iff
the Maurer-Cartan series MC(−s) of any smooth section s ∈ Γ(NS) converges to P (exp I(s)∗J) =
P (exp I(s)∗ΛJ).

Proof. Let zα = (xi, ya) be vector bundle coordinates on NS, with xi coordinates on S, and ya linear
coordinates along the fibers of NS. Moreover, let µ be a fiber-wise constant local generator of Γ(L).
The Jacobi bi-differential operator J is locally given by Equation (3.12), or, equivalently, Equation
(3.13)

J = Jαβ∇α ∧ ∇β ⊗ µ+ Jα∇α ∧ id

=
(
Jab∇a ∧∇b + 2Jai∇a ∧ ∇i + J ij∇i ∧ ∇j

)
⊗ µ+

(
Ja∇a + J i∇i

)
∧ id .

Accordingly, the bi-symbol ΛJ is locally given by

ΛJ = Jαβδα ∧ δβ ⊗ µ

=
(
Jabδa ∧ δb + 2Jaiδa ∧ δi + J ijδi ∧ δj

)
⊗ µ

where δα := ∂α⊗µ
∗. In particular, ΛJ is fiber-wise entire iff its components Jab, Jai, J ij are fiber-wise

entire functions. Now, let s ∈ Γ(NS) and denote by {Φt} the one parameter group of automorphisms
of L generated by I(s). Then, from P (J) = P (ΛJ) = 0, Equations (4.6), (4.4), and the very definition
of the Lie derivative, we get

MC(−s) = P
∞∑

k=0

∂k(Φ−t1−···−tk)∗ΛJ
∂t1 · · ·∂tk

∣∣∣∣
t1=···=tk=0

= P
∞∑

k=0

1

k!

dk

dtk

∣∣∣∣
t=0

(Φ−t)∗ΛJ .

Let (x, y, λ) ∈ L, x ∈ S, y ∈ NxS, λ ∈ Lx. Then Φ−t(x, y, λ) = (x, y − ts(x), λ) and

(Φ−t)∗ΛJ

=
[
(Jab ◦ Φt)δa ∧ δb + 2(Jai ◦ Φt)δa ∧ (δi − ts

b
iδb) + (J ij ◦ Φt)(δi − ts

a
i δa) ∧ (δj − ts

b
jδb)

]
⊗ µ,

where sai denotes the partial derivative wrt xi of the a-th local component of s in the local basis (∂a)
of Γ(NS). Hence

MC(−s) =
∞∑

k=0

1

k!

dk

dtk

∣∣∣∣
t=0

[
Jab ◦ ts− 2tsbi(J

ai ◦ ts) + t2sai s
b
j(J

ij ◦ ts)
]
δa ∧ δb ⊗ µ. (4.8)

Assume that ΛJ is fiber-wise entire. Then the Taylor expansions in t, around t = 0, of Jab ◦ ts, Jai ◦ ts,
and J ij ◦ ts converge for all t’s, in particular for t = 1. It immediately follows that the series in the
rhs of (4.8) converges as well. This proves the “only if” part of the proposition (cf. the proof of the
analogous proposition in [36]).
For the “if part” of the proposition assume that the series in the rhs of (4.8) converges for all s.

First of all, locally, we can choose s to be “constant” wrt coordinates (xi, ya). Then sai = 0 and (4.8)
reduces to

MC(−s) =

∞∑

k=0

1

k!

dk

dtk

∣∣∣∣
t=0

(
Jab ◦ ts

)
δa ∧ δb ⊗ µ. (4.9)

Since s is arbitrary, (4.9) shows that the Jab’s are entire on any straight line through the origin in
the fibers of NS. Since the Taylor series of the restriction to such a straight line is the same as the
restriction of the Taylor series, we conclude that the Jab’s are fiber-wise entire. Now, fix values i0, a0
for the indexes i, a respectively, and choose s so that sai = δi0i δ

a
a0 to see that the Jai0 ’s are fiber-wise

entire for all a, i0. One can prove that the J ij ’s are fiber-wise entire in a similar way. This concludes
the proof. �
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Corollary 4.16. Let (M,L, J = {−,−}) be a Jacobi manifold, and let S ⊂ M be a coisotropic
submanifold equipped with a fat tubular neighborhood τ : LNS →֒ L. If τ−1∗ ΛJ is fiber-wise entire, then
a section s : S → NS of NS is coisotropic iff the Maurer-Cartan series MC(−s) converges to zero.

4.4. Moduli of coisotropic sections. Jacobi diffeomorphisms, in particular Hamiltonian diffeomor-
phisms, preserve coisotropic submanifolds. Two coisotropic submanifolds are Hamiltonian equivalent
if there is an Hamiltonian isotopy (i.e. a one parameter family of Hamiltonian diffeomorphisms) inter-
polating them. With this definition at hand one can define a moduli space of coisotropic submanifolds
under Hamiltonian equivalence. Now, let S be a coisotropic submanifold. In this section we adapt the
definition of Hamiltonian equivalence to the case of coisotropic sections of NS → S [25, Definition
6.3]. In this way we define a local version of the moduli space under Hamiltonian equivalence.

Definition 4.17. (cf. [25, Definition 10.2]).

(1) Two coisotropic sections s0, s1 ∈ Γ(NS) are called Hamiltonian equivalent if they are inter-
polated by a smooth family of sections st ∈ Γ(NS) and there exists a family of Hamiltonian
diffeomorphisms ψt : NS → NS of (NS,L, J = {−,−}) (i.e. the family {ψt} is generated by a
family {Xλt

} of Hamiltonian vector fields, where the λt’s depend smoothly on t) and a family
of diffeomorphisms gt : S → S, t ∈ [0, 1], such that g0 = idS , ψ0 = idNS and st = ψt ◦ s0 ◦ g

−1
t .

A coisotropic deformation of S is trivial if it is Hamiltonian equivalent to the zero section.
(2) Two coisotropic sections s0, s1 ∈ Γ(NS) are called infinitesimally Hamiltonian equivalent if

s1 − s0 is the vertical component along S of an Hamiltonian vector field. An infinitesimal
coisotropic deformation is trivial if it is infinitesimally Hamiltonian equivalent to the zero
section.

Note that both Hamiltonian equivalence and infinitesimal Hamiltonian equivalence are equivalence
relations. The notion of infinitesimal Hamiltonian equivalence is motivated by the following remark.

Remark 4.18. Let s0, s1 be Hamiltonian equivalent coisotropic sections, and let st be the family of
sections interpolating them as in Definition 4.17.(1). Then st is obviously a coisotropic section for all
t. Moreover, s0 and

s0 +
d

dt

∣∣∣∣
t=0

st

are infinitesimally Hamiltonian equivalent coisotropic sections.

Proposition 4.19. Two coisotropic sections s0, s1 ∈ Γ(NS) are Hamiltonian equivalent iff they are
interpolated by a smooth family of sections st ∈ Γ(NS) and there exists a smooth family of sections λt
of the Jacobi bundle L such that st is a solution of the following evolutionary equation:

d

dt
st = P (exp I(−st)∗∆λt

). (4.10)

Proof. Denote by π : NS → S the projection. First of all, let s0, s1 be Hamiltonian equivalent
coisotropic sections, and let st, ψt, gt be as in Definition 4.17.(1). The gt’s are completely determined
by the ψt’s via gt = π ◦ ψt ◦ s0. In their turn, the ψt’s are generated by a smooth family {Xλt

} of
Hamiltonian vector fields, λt ∈ Γ(L). Differentiating the identity st = ψt ◦ s0 ◦ g

−1
t with respect to t,

one finds
d

dt
st = P st(∆λt

), (4.11)

where, for a generic section s ∈ Γ(NS), the projection P s : (Der•L)[1] → Γ(∧•NℓS ⊗ ℓ)[1] is defined
as in the proof of Proposition 4.3. To see this, interpret the st’s as smooth maps, and consider their
pull-backs s∗t : C∞(NS) → C∞(S). Then s∗t = (g−1t )∗ ◦ s∗0 ◦ ψ

∗
t and a straightforward computation

shows that
d

dt
s∗t = s∗t ◦Xλt

◦ (id−π∗ ◦ s∗t ).
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which is equivalent to 4.11. Equation (4.10) now follows from (4.1).
Conversely, let st be a solution of Equation (4.10) interpolating s0 and s1, and let {ψt} be the one

parameter family of Hamiltonian diffeomorphisms NS → NS generated by {Xλt
}. In view of (4.1)

again, st is the (unique) solution of (4.11) starting at s0. In particular, ψt maps diffeomorphically
the image of s0 to the image of st. Hence, the map gt = π ◦ ψt ◦ s0 is a diffeomorphism and st =
ψt ◦ s0 ◦ g

−1
t . �

Note that if {st} is a solution of (4.10) interpolating coisotropic sections s0, s1, then st is a coisotropic
section for all t. Proposition 4.19 motivates the following

Definition 4.20. Two formal coisotropic deformations s0(ε), s1(ε) ∈ Γ(NS)[[ε]] are called Hamil-
tonian equivalent if they are interpolated by a smooth family of formal coisotropic deformations
st(ε) ∈ Γ(NS)[[ε]] (i.e. st(ε) =

∑
i st,iε

i and the st,i’s depend smoothly on t) and there exists a
smooth family of formal sections λt(ε) ∈ Γ(L)[[ε]] of the Jacobi bundle such that

d

dt
st(ε) = P (expLI(st(ε))∆λt(ε)).

We now show that formal coisotropic deformations s0(ε), s1(ε) are Hamiltonian equivalent iff
−s0(ε),−s1(ε) are gauge equivalent solutions of the Maurer-Cartan equation MC(ξ(ε)) = 0. Two
solutions ξ0(ε), ξ1(ε) of the Maurer-Cartan equation are gauge equivalent if, by definition, they are
interpolated by a smooth family of formal sections ξt(ε) ∈ Γ(NS)[[ε]] = Γ(∧1NℓS ⊗ ℓ)[[ε]] and there
exists a smooth family of formal sections λt(ε) ∈ Γ(ℓ)[[ε]] = Γ(∧0NℓS ⊗ ℓ)[[ε]] such that

d

dt
ξt(ε) =

∞∑

k=0

1

k!
mk+1(ξt(ε), . . . , ξt(ε), λt(ε)). (4.12)

Gauge equivalence is an equivalence relation. Moreover, it follows from Equation (4.12) that the ξt(ε)
is a solution of the Maurer-Cartan equation for any t.

Proposition 4.21. Two formal coisotropic deformations s0(ε), s1(ε) ∈ Γ(NS)[[ε]] are Hamiltonian
equivalent iff they are gauge equivalent solutions of the Maurer-Cartan equation.

Proof. Recall that kerP ⊂ (Der•L)[1] is a Lie subalgebra. As Voronov notes [39], this can be rephrased
as:

P [�1,�2]
SJ = P [IP�1,�2]

SJ + P [�1, IP�2]
SJ , (4.13)

�1,�2 ∈ (Der•L)[1]. Now, let {st(ε)} be a family of formal coisotropic deformations, and let {λt(ε)}
be a family of formal sections of L. Put

Jk(ε) := [· · · [J, I(−s(ε))]SJ · · · , I(−s(ε))]SJ︸ ︷︷ ︸
k times

,
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In particular, PJk(ε) = mk(−s(ε), . . . ,−s(ε)). Compute

P (expLI(st(ε))∆λt(ε)) = −

∞∑

k=0

1

k!
P [· · · [[J, λt(ε)]

SJ , I(−s(ε))]SJ · · · , I(−s(ε))]SJ

= −
∞∑

k=0

1

k!
P [Jk(ε), λt(ε)]

SJ

= −

∞∑

k=0

1

k!
P [IPJk(ε), λt(ε)]

SJ −

∞∑

k=0

1

k!
P [Jk(ε), IPλt(ε)]

SJ

= −P [I(MC(−st(ε))), λt(ε)]
SJ −

∞∑

k=0

1

k!
P [Jk(ε), I(λt(ε)|S)]

SJ

= −

∞∑

k=0

1

k!
mk+1(−s(ε), · · · ,−s(ε), λt(ε)|S),

where we used (4.13), and the fact that MC(−st(ε)) = 0 for all t. This concludes the proof. �

Corollary 4.22. Two solutions of Equation (4.7) are infinitesimal Hamiltonian equivalent iff they
are cohomologous as element in the complex (Γ(∧•NℓS ⊗ ℓ)[1],m1). Hence, the moduli space (i.e. the
set of infinitesimal Hamiltonian equivalence classes) of infinitesimal coisotropic deformations of S is
H0(Γ(∧•NℓS ⊗ ℓ)[1],m1) = H1(Nℓ

∗S, ℓ).

Now, we establish necessary and sufficient conditions for the convergence of both the Maurer-Cartan
series MC(−s) and the series

δλMC(−s) :=
∞∑

k=0

1

k!
mk+1(−s, . . . ,−s, λ) (4.14)

for generic sections s ∈ Γ(NS) and λ ∈ Γ(ℓ). In this way, we can describe moduli of coisotropic sections
in terms of gauge equivalence classes of non-formal solutions of the Maurer-Cartan equation. First of
all, let E and L be as in the beginning of Section 4.3. A multi-differential operator ∆ ∈ (Der•L)[1]
is fiber-wise entire if it maps linear sections (of L) to fiber-wise entire sections. Equivalently, ∆ is
fiber-wise entire if its component in vector bundle coordinates are fiber-wise entire.

Theorem 4.23. The Jacobi bi-differential operator J is fiber-wise entire iff the Maurer-Cartan series
MC(−s) converges to P (exp I(s)∗J), and the series δλ|SMC(−s) (4.14) converges to P (exp I(s)∗∆λ),
for all smooth sections s ∈ Γ(NS), and λ ∈ Γ(L).

Proof. We already know that the bi-linear form ΛJ is fiber-wise entire iff MC(−s) converges for all
s. Now, it is easy to see that P (expLI(s)∆λ) = P (expLI(s)Xλ) for all s ∈ Γ(NS), and λ ∈ Γ(L)
(cf. (4.4)). Moreover, from the proof of Proposition 4.21, we get

δλ|SMC(−s) = −P (expLI(s)∆λ) = −P (expLI(s)Xλ).

Therefore, similarly as in the proof of Proposition 4.15, we find

δλ|SMC(−s) = −P

∞∑

k=0

1

k!

dk

dtk

∣∣∣∣
t=0

(Φ−t)∗Xλ.

The bi-differential operator J is locally given by (3.13), hence a straightforward computation shows
that

δλ|SMC(−s) =
∞∑

k=0

1

k!

dk

dtk

∣∣∣∣
t=0

[
2∂ig(J

ai ◦ ts) + g(Ja ◦ ts)− tsai g(J
i ◦ s)

]
∂a,
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where we used the same notations as in the proof of Proposition 4.21, and g is the component of λ|S
in the basis µ. The assertion now follows in a very similar way as in the proof of Proposition 4.21. �

Corollary 4.24. Let (M,L, J = {−,−}) be a Jacobi manifold, and let S ⊂ M be a coisotropic
submanifold equipped with a fat tubular neighborhood τ : ℓ →֒ L. If τ−1∗ J is fiber-wise entire, then two
solutions s0, s1 : S → NS of the (well-defined) Maurer-Cartan equation MC(−s) = 0 are Hamiltonian
equivalent iff they are interpolated by a smooth family of sections st ∈ Γ(NS) and there exists a smooth
family of sections λt of ℓ such that st is a solution of the following well-defined evolutionary equation:

d

dt
st = δλt

MC(−st).

Remark 4.25. Corollary 4.22 generalizes [25, Lemma 6.6], which has been proved by a different
method.

5. The contact case

Contact manifolds form a distinguished class of (transitive) abstract Jacobi manifolds. In this section
we consider in some details (regular) coisotropic submanifolds in a contact manifold (M,C). A normal
form theorem is available in this case. As a consequence, the L∞-algebra of a regular coisotropic
submanifold S in (M,C) does only depend on the intrinsic pre-contact geometry of S. In particular,
we get rather efficient formulas (from a computational point of view) for the multibrackets, analogous
to those of Oh and Park in the symplectic case [32, Equation (9.17)].

5.1. Coisotropic submanifolds in contact manifolds. Let C be an hyperplane distribution on
a smooth manifold M . Denote by L the quotient line bundle TM/C, and by θ : TM → L, X 7→
θ(X) := XmodC the projection. We will often interpret θ as an L-valued differential 1-form, and call
it the structure form of C. The curvature form of (M,C) is the vector bundle morphism ω : ∧2C → L
well-defined by ω(X,Y ) = θ([X,Y ]), with X,Y ∈ Γ(C). Consider also the vector bundle morphism
ω♭ : C → C∗⊗L, X 7→ ω♭(X) := ω(X,−). The characteristic distribution of (M,C), is the (generically
singular) distribution kerω♭ = C⊥ω , where we denoted by V ⊥ω the ω-orthogonal complement of a
subbundle V ⊂ C. Note that the definition of curvature form works verbatim for distribution of
arbitrary codimension (See also [32, section 4] for a detailed exposition on the curvature form).

Remark 5.1. The characteristic distribution of an hyperplane distribution C is involutive.

Definition 5.2. A pre-contact structure on a smooth manifold M is an hyperplane distribution C
on M such that its characteristic distribution kerω♭ has constant dimension. A pre-contact manifold
(M,C) is a smooth manifold M equipped with a pre-contact structure C. The integral foliation of
kerω♭ is called the characteristic foliation of C and will be denoted by F .

See [33, Section 5] where essentially the same definition was given in terms of the one-form generating
the hyperplane distribution in relation to the study of normal forms of the contact form of Morse-Bott
type.

Remark 5.3. The curvature form ω of (M,C) measures how far is C from being integrable. Indeed, C
is integrable iff ω = 0, or, equivalently, ω♭ = 0. Accordingly, C is said to be maximally non-integrable
when ω is non degenerate, or, equivalently, kerω♭ = 0. If C is maximally non-integrable, then C is
even-dimensional, M is odd-dimensional, and ω♭ is a vector bundle isomorphism, whose inverse will
be denoted by ω# : C∗ ⊗ L→ C.

Definition 5.4. A contact structure on a smooth manifoldM is a maximally non-integrable hyperplane
distribution C on M . A contact manifold is a smooth manifold M equipped with a contact structure
C.
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Example 5.5. Let L → M be a line bundle. There is a canonical contact structure C on J1L,
sometimes called the Cartan distribution and defined as follows. Let π : J1L→M , and pr : J1L→ L
be canonical projections. Consider the pull-back line bundle π∗L → J1L. There is a canonical π∗L-
valued one form θ on J1L given by

θ(ξα) := (dpr − dλ ◦ dπ)(ξα), ξα ∈ TαJ
1L,

where α = (j1λ)(x) ∈ J1L, and x = π(α), λ ∈ Γ(L). The Cartan distribution is then defined as the
kernel of θ. In particular, the line bundle T (J1L)/C identifies canonically with π∗L.

Remark 5.6. Let (M,C) be a contact manifold. There exists a natural one-to-one correspondence
between

(1) local trivializations (or nowhere zero local sections) of the line bundle L→M and
(2) local contact forms of (M,C), i.e. 1-forms α ∈ Ω1(U), with U open inM , such that C|U = kerα.

Let (M,C) and (M ′, C′) be contact manifolds. A contactomorphism from (M,C) to (M ′, C′) is a
diffeomorphism φ :M →M ′ such that

(dφ)C = C′.

An infinitesimal contactomorphism (or contact vector field) of a contact manifold (M,C) is a vector
field X ∈ X(M) whose flow consists of local contactomorphisms. Equivalently, X ∈ X(M) is a contact
vector field if [X,Γ(C)] ⊂ Γ(C). Contact vector fields of (M,C) form a Lie subalgebra of X(M) which
will be denoted by XC (see e.g. [33, Proposition 2.3]).

Proposition 5.7 (cf. [7], [33, Proposition 2.3]). Let (M,C) be a contact manifold. There is a natural
direct sum decomposition of R-vector spaces: X(M) = XC ⊕ Γ(C).

Proof. For X ∈ X(M), let φX ∈ Γ(C∗ ⊗ L) be defined by φX(Y ) = θ([X,Y ]), Y ∈ Γ(C). The first
order differential operator φ : X(M)→ Γ(C∗ ⊗L), X 7→ φX , sits in a short exact sequence of R-linear
maps

0 −→ XC −֒→ X(M)
φ
−→ Γ(C∗ ⊗ L) −→ 0, (5.1)

where the second arrow is the inclusion. Now the C∞(M)-linear map Γ(C∗ ⊗ L) → X(M) given by
the composition

Γ(C∗ ⊗ L)
ω#

−→ Γ(C) −→ X(M)

splits sequence (5.1). �

In what follows, for λ ∈ Γ(L), we denote by Xλ the unique contact vector field such that θ(Xλ) = λ.

Proposition 5.8. A contact structure C induces a canonical Jacobi structure (L, {−,−}), where the
Lie bracket {−,−} on Γ(L) is uniquely determined by X{λ,µ} = [Xλ, Xµ]. The symbol of the first order
differential operator ∆λ := {λ,−} ∈ DerL is Xλ.

Now, let (M,C) be a contact manifold, and let S ⊂ M be a submanifold. The intersection CS :=
C ∩TS is a generically singular distribution on S. More precisely S is the union of two disjoint subsets
S0, S1 defined by

• p ∈ S0 iff dim(CS)p = dimS,
• p ∈ S1 iff dim(CS)p = dimS − 1.

If S = S0 then S is said to be an isotropic submanifold of (M,C). In other words, an isotropic
submanifold of (M,C) is an integral manifold of the contact distribution C. Locally maximal isotropic,
or, equivalently, locally maximal integral submanifolds of C are Legendrian submanifolds.

Proposition 5.9. Let S = S1. The following conditions are equivalent:

(1) CS is a pre-contact structure on S, with characteristic distribution given by (CS)
⊥ω ⊂ C|S,
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(2) (CS)p is a coisotropic subspace in the symplectic vector space (Cp, ωp), i.e. (CS)
⊥ω
p ⊂ (CS)p,

for all p ∈ S,
(3) S is a coisotropic submanifold of the associated Jacobi manifold (M,L, J = {−,−}).

Proof. The equivalence 1)⇐⇒ 2) amounts to a standard argument in symplectic linear algebra. The
equivalence 2) ⇐⇒ 3) is based on the following facts. Let (L, J = {−,−}) be the Jacobi structure

associated to (M,C). For λ ∈ Γ(L), and f ∈ C∞(M) put Yf,λ := Λ#
J (df ⊗ λ) = Xfλ − fXλ. We have

the following:

• Yf,λ ∈ Γ(C).
• Let I(S) ⊂ C∞(M) be the ideal of functions vanishing on S. Then Yf,λ is tangent to S iff Xfλ

is tangent to S, for all f ∈ I(S), and λ ∈ Γ(L).
• ω(Yf,λ, X) = X(f)λ, for all f ∈ C∞(M), λ ∈ Γ(L), and X ∈ Γ(C).
• Let ΓS ⊂ Γ(L) be the submodule consisting of sections vanishing on S. Then ΓS = I(S) ·Γ(L).

Now it is easy to see that (CS)
⊥ω ⊂ CS if and only if S is coisotropic in (M,L, {−,−}). �

Definition 5.10. If equivalent conditions (1)-(3) in Proposition 5.9 are satisfied, then S is said to be
a regular coisotropic submanifold of (M,C).

Remark 5.11. Differently from equivalence (1) ⇐⇒ (2), in Proposition 5.9, equivalence (2) ⇐⇒ (3)
continues to hold also without assuming that S = S1.

Remark 5.12. Let (M,L, {−,−}) be a Jacobi manifold. Then (L, {−,−}) is the Jacobi structure

induced by a (necessarily unique) contact structure iff the associated bi-linear form Λ̂J : ∧2J1L→ L is
non-degenerate. In particular, Hamiltonian derivations of a contact manifold, exhaust all infinitesimal
Jacobi automorphisms, and Hamiltonian vector fields exhaust all Jacobi vector fields.

5.2. Coisotropic embeddings and L∞-algebras from pre-contact manifolds. From now till
the end of this section we consider only closed regular coisotropic submanifolds. The intrinsic pre-
contact geometry of a regular coisotropic submanifold S in a contact manifold M , contains a full
information about the coisotropic embedding of S into M , at least locally around S. This is an
immediate consequence of the Tubular Neighborhood Theorem in contact geometry (see [28], [33, Section
6], see also [11] for the analogous result in symplectic geometry).
Let (S,CS) be a pre-contact manifold, with characteristic foliation F .

Definition 5.13. A coisotropic embedding of (S,CS) into a contact manifold (M,C) is an embedding

i : S →֒M such that (di)CS = C|i(S), and (di)TF = C|⊥ω

i(S), where ω is the curvature form of (M,C).

Remark 5.14. Clearly, in view of Proposition 5.9, if i : S →֒M is a coisotropic embedding of (S,CS)
into (M,C), then i(S) is a coisotropic submanifold of (M,C).

Let i1 and i2 be coisotropic embeddings of (S,CS) into contact manifolds (M1, C1) and (M2, C2),
respectively.

Definition 5.15. Coisotropic embeddings i1 and i2 are said to be locally equivalent if there exist open
neighborhoods Uj of Im ij in Mj, j = 1, 2, and a contactomorphism φ : (U1, C1)→ (U2, C2) such that
φ ◦ i1 = i2.

Theorem 5.16 (Coisotropic embedding of pre-contact manifolds: existence and uniqueness). Every
pre-contact manifold admits a coisotropic embedding. Additionally, any two coisotropic embeddings of
a given pre-contact manifold are locally equivalent.

Theorem 5.16 is a special case of Theorem 3 in [28]. We do not repeat the “uniqueness part” of the
proof here. The “existence part” can be proved constructively via contact thickening. This is done for
later purposes in the next subsection.



32 HÔNG VÂN LÊ, YONG-GEUN OH, ALFONSO G. TORTORELLA, AND LUCA VITAGLIANO

Corollary 5.17 (L∞-algebra of a pre-contact manifold). Every pre-contact manifold determines a
natural isomorphism class of L∞-algebras.

Proof. The “existence part” of Theorem 5.16 and Proposition 3.12 guarantee that a pre-contact
manifold (S,CS) determines a unique L∞-algebra up to the choice of a coisotropic embedding
(S,CS) ⊂ (M,C), a fat tubular neighborhood τ : NS ×S ℓ →֒ L of ℓ in L, where ℓ = TS/CS
and L is the Jacobi bundle of (M,C). Any two such L∞-algebras are L∞-isomorphic because of
Proposition 3.18 and the “uniqueness part” of Theorem 5.16 �

5.3. Contact thickening. We now show that every pre-contact manifold (S,CS) admits a coisotropic
embedding into a suitable contact manifold uniquely determined by (S,CS) up to the choice of a
complementary distribution to the characteristic distribution. Thus, let (S,CS) be a pre-contact
manifold, F its characteristic foliation, ℓ = TS/CS the quotient line bundle, and let θ : TS → ℓ be the
structure form. Theorem 5.16 is a “contact version” of a theorem by Gotay [11] and can be proved
by a similar technique as the symplectic thickening of [32]. Accordingly, we will speak about contact
thickening. See also [33] for a relevant discussion on contact thickening in a different context.
Pick a distribution G on S complementary to TF , and let pTF ;G : TS → TF be the projection

determined by the splitting TS = G⊕TF . Put Tℓ
∗F := T ∗F ⊗ ℓ, and let τ : Tℓ

∗F → S be the natural
projection map. We equip the manifold E := Tℓ

∗F with the line bundle L := τ∗ℓ. The ℓ-valued 1-form
θ can be pulled-back via τ to an L-valued 1-form τ∗θ on Tℓ

∗F . There is also another L-valued 1-form
θG on Tℓ

∗F . It is defined as follows: for α ∈ Tℓ
∗F , and ξ ∈ Tα(Tℓ

∗F)

(θG)α(ξ) := (α ◦ pTF ;G ◦ dτ)(ξ) ∈ ℓx = Lα, x := τ(α),

where α is interpreted as a linear map TxF → Lx. By definition, θG depends on the choice of splitting
G.

Proposition 5.18. Distribution C := ker(θG + τ∗θ) is a contact structure on a neighborhood U of
im0, the image of the zero section 0 of τ . Additionally 0 is a coisotropic embedding of (S,CS) into
the contact manifold (U,C|U ).

Proof. First of all, there is a local frame X1, . . . , Xd, Y1, . . . , Y2n, Z on S such that, locally

Γ(TF) = 〈X1, . . . , Xd〉 , Γ(CS) = 〈X1, . . . , Xd, Y1, . . . , Y2n〉 ,

[Xi, Xj] = [Xi, Ya] = 0, (1 ≤ i ≤ j ≤ d, 1 ≤ a ≤ 2n).

Let α1, . . . , αd, β1, . . . , β2n, γ be the dual co-frame. Then λ := θ(Z) is a local generator of Γ(ℓ).
Moreover θ is locally given by θ = γ ⊗ λ, and the curvature form ωS of CS is locally given by

ωS =
1

2
ωabβ

a ∧ βb ⊗ λ,

for some local functions ωab. In particular, the skew-symmetric matrix W := (ωab) is non-degenerate.
We will use the following local frame on S adapted to both CS and G:

X1, . . . , Xd, V1, . . . , V2n,W,

where Va := (id− pTF ;G)(Ya), and W := (id− pTF ;G)(Z). Denote by

ǫ1, . . . , ǫd, β1, . . . , β2n, γ.

the dual co-frame. Now, let p = (p1, . . . , pd) be linear coordinates along the fibers of τ : Tℓ
∗F → S

associated with the local frame ǫ1 ⊗ λ, . . . , ǫd ⊗ λ. Then X1, . . . , Xd, V1, . . . , V2n,W,
∂
∂p1

, . . . , ∂
∂pd

is a

local frame on Tℓ
∗F . It is easy to check that locally

Γ(C) =

〈
X ′1, . . . , X

′
d, V1, . . . , V2n,

∂

∂p1
, . . . ,

∂

∂pd

〉
,
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where X ′i := Xi − piW, (1 ≤ i ≤ d). Finally, the representative matrix of the curvature of C wrt the
local frames X ′1, . . . , X

′
d, V1, . . . , V2n,

∂
∂p1

, . . . , ∂
∂pd

of C and W modC′ of T (Tℓ
∗F)/C = L is

X ′ V ∂/∂p
X ′ O O I

V O W O up to infinitesimals O(p)
∂/∂p −I O O

(5.2)

This shows that C is maximally non-integrable around the zero section of Tℓ
∗F . Moreover, it immedi-

ately follows from (5.2) that the zero section of Tℓ
∗F is a coisotropic embedding (transversal to fibers

of τ). This concludes the proof. �

The contact manifold (U,C|U ) is called a contact thickening of (S,CS). Now, let NS be the normal
bundle of S in U . Clearly NS = Tℓ

∗F , hence NℓS = T ∗F . According to the proof of Corollary 5.17 the
choice of the complementary distribution G determines an L∞-algebra structure on Γ(∧•NℓS⊗ ℓ)[1] =
Γ(∧•T ∗F ⊗ ℓ)[1]. Moreover, such L∞-structure is actually independent on the choice of G up to L∞-
isomorphisms. Sections of ∧•T ∗F ⊗ ℓ are ℓ-valued leaf-wise differential forms on S and we also denote
them by Ω•(F , ℓ) (see below).

5.4. The transversal geometry of the characteristic foliation. Similarly as in the symplectic
case (cf. [32, Section 9.3]), the multi-brackets in the L∞-algebra of a pre-contact manifold can be
expressed in terms of the “geometry transversal to the characteristic foliation”. To write down this
expression, the relevant transversal geometry needs to be described. Let (S,CS) be a pre-contact
manifold, with characteristic foliation F . Denote by NF := TS/TF the normal bundle to F , and by
N∗F = (NF)∗ = T 0F ⊂ T ∗S the conormal bundle of F .
Recall that TF is a Lie algebroid. The standard Lie algebroid differential in Ω•(F) := Γ(∧•T ∗F)

will be denoted by dF and called the leaf-wise de Rham differential. There is a flat TF -connection ∇
in N∗F well-defined by

∇Xη := LXη, X ∈ Γ(TF), η ∈ Γ(N∗F).

Remark 5.19. Connection ∇ is “dual to the Bott connection” in NF .

As usual, ∇ determines a differential in Ω•(F , N∗F) := Γ(∧•T ∗F ⊗ N∗F) denoted again by dF .
There exists also a flat TF -connection in ℓ, denoted again by ∇, and defined by

∇Xθ(Y ) := θ([X,Y ]), X ∈ Γ(TF), Y ∈ X(M).

The corresponding differential in Ω•(F , ℓ) := Γ(∧•T ∗F ⊗ ℓ) will be also denoted by dF . Now, let J
1
⊥ℓ

be the vector subbundle of J1ℓ given by the kernel of the vector bundle epimorphism

ϕ∇ : J1ℓ −→ T ∗F ⊗ ℓ, j1xλ 7−→ (dFλ)x.

Sections of J1
⊥ℓ will be interpreted as sections of J1ℓ “transversal to F”. Note also that the Spencer

sequence 0→ T ∗S ⊗ ℓ→ J1ℓ→ ℓ→ 0 restricts to a “transversal Spencer sequence” 0→ N∗F ⊗ ℓ→
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J1
⊥ℓ→ ℓ→ 0 and the two fit in the following exact commutative diagram of vector bundle morphisms

0

��

0

��

0

��
0 // N∗F ⊗ ℓ //

��

J1
⊥ℓ

//

��

ℓ // 0

0 // T ∗S ⊗ ℓ //

��

J1ℓ //

ϕ∇

��

ℓ

��

// 0

0 // T ∗F ⊗ ℓ

��

T ∗F ⊗ ℓ //

��

0

0 0

.

In what follows embeddings γ : T ∗S ⊗ ℓ →֒ J1ℓ and N∗F ⊗ ℓ →֒ J1
⊥ℓ will be understood, and we

will identify df ⊗ λ with j1(fλ) − fj1λ, for any f ∈ C∞(S), and λ ∈ Γ(ℓ). Recall that an arbitrary
α ∈ Γ(J1ℓ) can be uniquely decomposed as α = j1λ+ η, with λ ∈ Γ(ℓ), and η ∈ Γ(T ∗S ⊗ ℓ). Then, by
definition, for p ∈ S, αp is in J1

⊥ℓ iff ϕ∇(ηp) = −(dFλ)p. Finally, there is a flat TF -connection in J1
⊥ℓ,

also denoted by ∇, well-defined as follows. For X ∈ Γ(TF) and α = j1λ+ η ∈ Γ(J1
⊥ℓ), with λ ∈ Γ(ℓ),

η ∈ Ω1(S, ℓ) such that ϕ∇(η) = −dFλ, put

∇X(j1λ+ η) = j1(∇Xλ) + L∇X
η, (5.3)

where L∇X
is the Lie derivative of ℓ-valued forms on S along derivation ∇X ∈ Der ℓ. Accordingly,

there is a differential in Ω•(F , J1
⊥ℓ) := Γ(∧•T ∗F ⊗ J1

⊥ℓ) which we also denote by dF .
Now, note that the curvature form of (S,CS), ωS : ∧2CS → ℓ, descends to a(n ℓ-valued) symplectic

form ω⊥ : ∧2(CS/TF)→ ℓ. In particular, it determines a vector bundle isomorphism ω♭⊥ : CS/TF →
(CS/TF)

∗ ⊗ ℓ (cf. Section 5.1).

Remark 5.20. Let p ∈ S, X ∈ X(S), and λ = θ(X). Recall that φX ∈ Γ(C∗S ⊗ ℓ) is defined
by φX(Y ) = θ([X,Y ]), for all Y ∈ Γ(CS) (cf. Section 5.1). Then we have that j1pλ ∈ J1

⊥ℓ iff

(φX)p ∈ (CS/TF)
∗⊗ ℓ. Furthermore it is easy to check that j1pλ = 0 if and only if the following holds:

(1) Xp ∈ (CS)p, and
(2) ω(Xp, Yp) = θ([X,Y ]p), for all Y ∈ X(S) with Yp ∈ (CS)p.

Therefore, if j1pλ = 0, then XpmodTpF = (ω♭⊥)
−1(φX)p, and the following definition is well-posed.

Definition 5.21. Let σΛ̂#
⊥ : J1

⊥ℓ→ NF be the vector bundle morphism uniquely determined by:

σΛ̂#
⊥(j

1
pλ) = XpmodTpF − (ω♭⊥)

−1(φX)p, (5.4)

where p ∈M , λ ∈ Γ(ℓ), and X ∈ X(S), such that j1pλ ∈ J
1
⊥L, and λ = θ(X).

Proposition 5.22. There exists a vector bundle morphism Λ̂⊥ : ∧2J1
⊥ℓ → ℓ uniquely determined by

putting

Λ̂⊥(α, α
′) = θ([Y, Y ′]p),

where p ∈ M , α, α′ ∈ (J1
⊥ℓ)p, and Y, Y

′ ∈ X(S) are such that σΛ̂#
⊥(α) = YpmodTpF and σΛ̂#

⊥(α
′) =

Y ′p modTpF .
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Proof. Let α = j1pλ ∈ (J1
⊥ℓ)p, p ∈ S, and let Y be as in the statement. Equation (5.4) implies that

θ(Yp) = λp and Y can be chosen so that θ(Y ) = λ globally. Thus, from (5.4) again, we get (φY )p = 0.

Now, let α′ = 0. Then Y ′p ∈ TpF ⊂ (CS)p and θ([Y, Y ′]p) = (φY )p(Y
′
p) = 0. This shows that Λ̂⊥ is

well-defined. �

Vector bundle morphism Λ̂⊥ : ∧2J1
⊥ℓ → ℓ will be interpreted as the transversal version of the

bi-linear form Λ̂J associated to a Jacobi bi-differential operator J .

5.5. An explicit formula for the multi-brackets. Retaining notations from previous subsection,
choose a distribution G on S which is complementary to TF , i.e. TS = G⊕TF . There is a dual splitting
T ∗S ≃ T ∗F ⊕ N∗F and there are identifications NF ≃ G, T ∗F ≃ G0. Furthermore the induced
splitting of 0→ N∗F⊗ℓ→ T ∗S⊗ℓ→ T ∗F⊗ℓ→ 0 lifts to a splitting of 0→ J1

⊥ℓ→ J1ℓ→ T ∗F⊗ℓ→ 0.
Hence J1ℓ ≃ J1

⊥ℓ⊕ (T ∗F ⊗ ℓ). Let F ∈ Γ(∧2G∗ ⊗ TS/G) be the curvature form of G. The curvature
F will be also understood as an element F ∈ Γ(∧2N∗F ⊗ TF) ⊂ Γ(∧2(J1

⊥ℓ ⊗ ℓ
∗) ⊗ TF), where we

used embedding N∗F ⊗ ℓ →֒ J1
⊥ℓ.

Let dG : C∞(S) → Γ(N∗F) be the composition of the de Rham differential d : C∞(S) → Ω1(S)
followed by the projection Ω1(S) → Γ(N∗F) determined by decomposition T ∗S = T ∗F ⊕ N∗F .
Then dG is a Γ(N∗F)-valued derivation of C∞(S) and will be interpreted as “transversal de Rham
differential”.

Proposition 5.23. There exists a unique degree zero, graded R-linear map ε : Ω(F) → Ω(F , N∗F)
such that

(1) ε|C∞(S) = dG,
(2) [ε, dF ] = 0, and
(3) the following identity holds

ε(τ ∧ τ ′) = τ ∧ ε(τ ′) + (−)|τ ||τ
′|τ ′ ∧ ε(τ),

for all homogeneous τ, τ ′ ∈ Ω(F).

In order to prove Proposition 5.23, the following Lemma will be useful:

Lemma 5.24. Let f be a leaf-wise constant local function on S, i.e. dFf = 0, then dFdGf = 0 as
well.

Proof. Let f be as in the statement. First of all, note that df takes values in N∗F , so that dGf = df .
Now recall that dFdGf = 0 iff 0 = 〈dFdGf,X〉 = ∇XdGf = LXdGf for all X ∈ Γ(TF), where ∇ is the
canonical TF -connection in N∗F . But LXdGf = LXdf = d(Xf) = 0. This completes the proof. �

Proof of Proposition 5.23. The graded algebra Ω(F) is generated in degree 0 and 1. In order to define
ε, we first define it on the degree one piece Ω1(F) of Ω(F). Thus, note that Ω1(F) is generated, as a
C∞(S)-module, by leaf-wise de Rham differentials dFf ∈ Ω1(F) of functions f ∈ C∞(S). The only
relations among these generators are the following

dF (f + g) = dFf + dFg,

dF (fg) = fdFg + gdFf,

dFf = 0 on every open domain where f is leaf-wise constant,

(5.5)

where f, g ∈ C∞(S), and U ⊂ S is an open subset. Now define ε : Ω1(F)→ Ω1(F , N∗F) on generators
by putting

εf := dGf and εdFf := dFdGf,

and extend it to the whole Ω1(S) by prescribing R-linearity and the following Leibniz rule:

ε(fσ) = fε(σ) + σ ⊗ dGf, (5.6)
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for all f ∈ C∞(S), and σ ∈ Ω1(S). In order to see that ε is well defined it suffices to check that it
preserves relations (5.5). Compatibility with the first two relations can be checked by a straightforward
computation that we omit. Compatibility with the third relation immediately follows from Lemma
5.24. Finally, in view of Leibniz rule (5.6), dG and ε combine and extend to a well-defined derivation
Ω(F) → Ω(F , N∗F). By construction, the extension satisfies all required properties. Uniqueness is
obvious. �

The graded differential operator ε will be also denoted by dG.
Similarly, there is a “transversal version of the first jet prolongation j1”. Namely, let j1G : Γ(ℓ) →

Γ(J1
⊥ℓ) be the composition of the first jet prolongation j1 : Γ(ℓ) → Γ(J1ℓ) followed by the projection

Γ(J1ℓ) → Γ(J1
⊥ℓ) determined by decomposition J1ℓ = J1

⊥ℓ ⊕ (N∗F ⊗ ℓ). Then j1G is a first order
differential operator from Γ(ℓ) to Γ(J1

⊥ℓ) such that

j1G(fλ) = fj1Gλ+ (dGf)⊗ λ, (5.7)

λ ∈ Γ(ℓ) and f ∈ C∞(S), where, similarly as above, we understood the embedding N∗F ⊗ ℓ →֒ J1
⊥ℓ.

As announced, the operator j1G will be interpreted as “transversal first jet prolongation”.

Proposition 5.25. There exists a unique degree zero graded R-linear map δ : Ω(F , ℓ) → Ω(F , J1
⊥ℓ)

such that

(1) δ|Γ(ℓ) = j1G,
(2) [δ, dF ] = 0, and
(3) the following identity holds

δ(τ ∧ Ω) = τ ∧ δ(Ω) + dGτ ⊗ Ω,

for all τ ∈ Ω(F), and Ω ∈ Ω(F , ℓ), where the tensor product is over Ω(F), and we understood
both the isomorphism

Ω(F , N∗F) ⊗
Ω(F)

Ω(F , ℓ) ≃ Ω(F , N∗F ⊗ ℓ) (5.8)

and embedding N∗F ⊗ ℓ →֒ J1
⊥ℓ.

In order to prove Proposition 5.25, the following Lemma will be useful:

Lemma 5.26. Let µ be a leaf-wise constant local section of ℓ, i.e. dFµ = 0, then dF j
1
Gµ = 0 as well.

Proof. Let µ be as in the statement. First of all note that, by the very definition of J1
⊥ℓ, j

1µ takes
values in J1

⊥ℓ so that j1Gµ = j1µ. Now recall that dFj
1
Gµ = 0 iff 0 = 〈dF j

1
Gµ,X〉 = ∇Xj

1
Gµ for all

X ∈ Γ(TF), where ∇ is the canonical TF -connection in J1
⊥ℓ. But ∇Xj

1
Gµ = ∇Xj

1µ = j1∇Xµ = 0,
where we used (5.3). This completes the proof. �

Proof of Proposition 5.25. In this proof a tensor product ⊗ will be over C∞(S) unless otherwise stated.
We can regard Ω(F , ℓ) = Ω(F)⊗ Γ(ℓ) as a quotient of Ω(F)⊗R Γ(ℓ) in the obvious way. Our strategy
is defining an operator δ′ : Ω(F) ⊗R Γ(ℓ) → Ω(F , J1

⊥ℓ) and prove that it descends to an operator
δ : Ω(F , ℓ)→ Ω(F , J1

⊥ℓ) with the required properties. Thus, for σ ∈ Ω(F) and λ ∈ Γ(ℓ) put

δ′(σ ⊗R λ) := σ ⊗ j1Gλ+ dGσ ⊗Ω(F) λ ∈ Ω(F , J1
⊥ℓ), (5.9)

where, in the second summand, we understood both isomorphism (5.8) and embedding N∗F⊗ℓ →֒ J1
⊥ℓ

(just as in the statement of the proposition). In order to prove that δ′ descends to an operator δ on
Ω(F , ℓ) it suffices to check that δ′(fσ ⊗R λ) = δ′(σ ⊗R fλ) for all σ, λ as above, and all f ∈ C∞(S).
This can be easily obtained using the derivation property of dG and (5.7). Now, Properties (1) and (3)
immediately follows from (5.9). In order to prove Property (2), it suffices to check that δdFλ = dF j

1
Gλ
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for all λ ∈ Γ(ℓ) (and then use Property (3)). It is enough to work locally. Thus, let µ be a local
generator of Γ(ℓ) with the further property that dFµ = 0. Moreover, let f ∈ C∞(S), and compute

δdF (fµ) = δ(dFf ⊗ µ) = dFf ⊗ j
1
Gµ+ dGdFf ⊗ µ = dFf ⊗ j

1
Gµ+ dFdGf ⊗ µ

= dF (fj
1
Gµ+ dGf ⊗ µ) = dF (j

1
Gfµ),

where we used dFµ = 0, Proposition 5.23, Lemma 5.26, and (5.7). Uniqueness of δ is obvious.
�

The graded differential operator δ will be also denoted by j1G.

Now, interpret Λ̂⊥ ∈ Γ(∧2(J1
⊥ℓ)
∗ ⊗ ℓ) as a section # ∈ Γ((J1

⊥ℓ ⊗ ℓ
∗)∗ ⊗ J1

⊥ℓ). The interior product
of # and F ∈ Γ(∧2(J1

⊥ℓ⊗ ℓ
∗)⊗ TF) is a section F# ∈ Γ(End(J1

⊥ℓ)⊗ TF ⊗ ℓ
∗). For any µ ∈ Ω(F , ℓ),

the interior product of F# and µ is a section iF#µ ∈ Ω(F ,End J1
⊥ℓ). Now, we extend

(1) the bi-linear map Λ̂⊥ : ∧2J1
⊥ℓ→ ℓ to a degree −1, Ω(F)-bilinear, symmetric form

〈−,−〉C : Ω(F , J1
⊥ℓ)[1]× Ω(F , J1

⊥ℓ)[1] −→ Ω(F , ℓ)[1]

(2) the natural bilinear map ◦ : End J1
⊥ℓ⊗EndJ1

⊥ℓ→ EndJ1
⊥ℓ to a degree −1, Ω(F)-bilinear map

Ω(F ,End J1
⊥ℓ)[1]× Ω(F ,EndJ1

⊥ℓ)[1] −→ Ω(F ,EndJ1
⊥ℓ)[1],

also denoted by ◦, and
(3) the tautological action End J1

⊥ℓ⊗ J
1
⊥ℓ→ J1

⊥ℓ to a degree −1, Ω(F)-linear action

Ω(F ,End J1
⊥ℓ)[1]× Ω(F , J1

⊥ℓ)[1] −→ Ω(F , J1
⊥ℓ)[1].

Theorem 5.27. The first (unary) bracket in the L∞-algebra structure on Ω(F , ℓ)[1] is −dF . Moreover,
for k > 1, the k-th multi-bracket is given by

mk(µ1, . . . , µk) =
1

2

∑

σ∈Sk

ǫ(σ,µ)
〈
j1Gµσ(1), (iF#µσ(2) ◦ · · · ◦ iF#µσ(k−1))j

1
Gµσ(k)

〉
C
, (5.10)

for all µ1 . . . , µk ∈ Ω(F , ℓ)[1], where ǫ(σ,µ) is the Koszul sign prescribed by the permutations of the
µ’s.

Proof. See Appendix C. �

Remark 5.28. The explicit form of the contact thickening (see Subsection 5.3) shows that the Jacobi
bracket is actually fiber-wise entire. In particular Corollaries 4.16 and 4.24 always apply to the contact
case.

6. Toy examples

In this short section we briefly discuss the formal deformation problem for the “simplest possible”
coisotropic submanifolds, namely Legendrian submanifolds in a contact manifold, and their flowout
along a Jacobi vector field (or, which is the same in this case, a contact vector field). Recall that the
flowout along a Jacobi vector field of a coisotropic submanifold is again coisotropic (Example 3.4.(2)).
Now, let (M,C) be a contact manifold, and let (L, J = {−,−}) be the associated Jacobi structure.

In particular, dimM = 2n + 1 for some n > 0. Recall that a Legendrian submanifold of (M,C) is a
locally maximal, hence n-dimensional, integral submanifold of the contact distribution. Equivalently,
a Legendrian submanifold is as isotropic submanifold, which is additionally coisotropic wrt the Jacobi
structure (L, {−,−}). Let S ⊂ M be a Legendrian submanifold, ℓ = L|S, and let µ ∈ Γ(L) be such
that µx 6= 0, hence (Xµ)x /∈ TxS, for all x ∈ S. In what follows, we denote by T the flowout of S along
the Hamiltonian vector field Xµ.
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Remark 6.1. There exists a canonical vector bundle isomorphism J1ℓ→ NS (over the identity) given
by j1λ|S 7→ Xλ|S modTS, for λ ∈ Γ(L). Accordingly, there are canonical vector bundle isomorphisms
N∗S ≃ J1ℓ and Nℓ

∗S ≃ der ℓ.

Recall that J1ℓ is equipped with a canonical contact structure (see Example 5.5). The Legendrian
tubular neighborhood theorem [28] asserts that there is a tubular neighborhood NS →֒M of S in M
such that composition J1ℓ→ NS →M is a contactomorphism onto its image. Since we are interested
in C1-small coisotropic deformations of S, we can assume thatM = J1ℓ and identify S with the image
of the zero section of the natural projection J1ℓ→ S.

Proposition 6.2. Let {mk} be the L∞-algebra structure on Γ(∧•NℓS⊗ℓ)[1] = (Der•ℓ)[1] associated to
the coisotropic submanifold S in the contact manifold J1ℓ. Then mk = 0 for k > 1, and m1 = −dder ℓ,ℓ,
the opposite of the de Rham differential of the Atiyah algebroid der ℓ with values in its tautological
representation on ℓ.

Proof. Recall that the Jacobi structure on J1ℓ is fiber-wise linear (Example 2.16). Accordingly, the
Jacobi bracket between

• fiber-wise constant sections is trivial,
• a fiber-wise constant and a fiber-wise linear section is fiber-wise constant,
• fiber-wise linear sections is fiber-wise linear.

Now, the assertion immediately follows from Equations (3.9), (3.10), (3.11). �

Remark 6.3. As a consequence of the above proposition, the formal deformation problem for Leg-
endrian submanifolds is unobstructed. Even more, one can exhibit a canonical contracting homotopy
for the complex (Der•ℓ, dder ℓ,ℓ) (see, for instance [34]). Hence, m1 is acyclic and, as known to experts,
all coisotropic, hence Lengendrian, sections of J1ℓ → S are actually trivial, i.e. they are Hamilton-
ian equivalent to S. In other words the moduli space of coisotropic deformations of a Legendrian
submanifold is zero dimensional.

Proposition 6.4. Let {mk} be the L∞-algebra structure on Γ(∧•(NT ⊗L|∗T )⊗L|T ) associated to the
coisotropic submanifold T in the contact manifold J1ℓ. Then mk = 0 for k > 2.

Proof. The characteristic foliation F of T is one-co-dimensional. Accordingly, any distribution G
complementary to TF is one-dimensional and, therefore, involutive. In particular, its curvature F
vanishes. Now the assertion immediately follows from Theorem 5.27.

�

Corollary 6.5 (from Corollary 4.14). Let α = [s] ∈ H1(N∗T ⊗ L|T , L|T ), where s ∈ Γ(NT ) is
an infinitesimal coisotropic deformation of T , i.e. m1s = 0. Then s can be prolonged to a formal
coisotropic deformation iff Kr(α) = 0.

Remark 6.6. Let µ ∈ Γ(L) be as above. Since µx 6= 0 for all x ∈ S, local contactomorphism J1ℓ→M
can be chosen in such a way that µ identifies with a no-where zero, fiber-wise constant section of the
Jacobi bundle on J1ℓ. In particular, J1ℓ ≃ J1(M) := J1RM and Xµ identifies with the Reeb vector
field on J1(M). It follows that Propositions 6.2 and 6.4 can be also proved from Proposition 3.17 and
the explicit form of the Jacobi structure on J1(M) in jet coordinates (see, for instance, [2, Exercise
2.7]).

Appendix A. Derivations and infinitesimal automorphisms of vector bundles

Let M be a smooth manifold and let E,F be vector bundles over M . Recall that a (linear) k-th
order differential operator from E to F is an R-linear map ∆ : Γ(E)→ Γ(F ) such that

[[· · · [[∆, a0], a1] · · · ], ak] = 0
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for all a0, a1, · · · , ak ∈ C∞(M), where we interpret the functions ai as operators (multiplica-
tion by ai). There is a natural isomorphism between the C∞(M)-module Diffk(E,F ) of k-th or-
der differential operators from E to F and the C∞(M)-module of sections of the vector bundle
diffk(E,F ) := Hom(JkE,F ), where JkE is the vector bundle of k-jets of sections of E. The iso-
morphism Γ(Hom(JkE,F )) ≃ Diffk(E,F ) is given by φ 7→ φ ◦ jk, where φ : Γ(JkE) → Γ(F ) is a
C∞(M)-linear map, and jk : Γ(E)→ Γ(JkE) is the k-th jet prolongation. In particular diffk(E,RM )
is the dual bundle of JkE. In this paper we often denote J1E := diff1(E,RM ) = (J1E)∗.
Let ∆ : Γ(E)→ Γ(F ) be a k-th order differential operator. The correspondence

(a1, . . . , ak) 7−→ [[· · · [∆, a1] · · · ], ak],

a1, . . . , ak ∈ C∞(M), is a well-defined symmetric, k-multi-derivation of the algebra C∞(M) with
values in C∞(M)-linear maps Γ(E) → Γ(F ). In other words, it is a section of the vector bundle
SkTM ⊗Hom(E,F ), called the symbol of ∆ and denoted by σ∆. The symbol map σ : ∆ 7→ σ∆ sits in
a short exact sequence

0 −→ Diffk−1(E,F ) −→ Diffk(E,F )
σ
−→ Γ(SkTM ⊗Hom(E,F )) −→ 0, (A.1)

of C∞(M)-modules. Note that Sequence (A.1) can be also obtained applying the contravariant functor
Hom(−,Γ(F)) to the Spencer sequence

0←− Γ(Jk−1E)←− Γ(JkE)
γ
←− Γ(SkT ∗M ⊗ E)←− 0,

where the inclusion γ, sometimes called the co-symbol, is given by

da1 · · · · · dak ⊗ e 7−→ [[· · · [jk, a1] · · · ], ak]e,

a1, . . . , ak ∈ C
∞(M), and e ∈ Γ(E).

Now we focus on first order differential operators. In general, there is no natural C∞(M)-linear
splitting of the Spencer sequence

0←− Γ(E)←− Γ(J1E)
γ
←− Γ(T ∗M ⊗ E)←− 0. (A.2)

However, Sequence (A.2) splits via the first order differential operator j1 : Γ(E) → Γ(J1E). In
particular, Γ(J1E) = Γ(E) ⊕ Γ(T ∗M ⊗ E), and any section α of J1E can be uniquely written as
α = j1λ+ γ(η), for some λ ∈ Γ(E), and η ∈ Γ(T ∗M ⊗ E).
Now, let ∆ : Γ(E)→ Γ(E) be a first order differential operator. The symbol of ∆ is scalar-type if it is

of the kindX⊗idΓ(E) for some (necessarily unique) vector fieldX . In other words ∆(fe) = X(f)e+f∆e
for all f ∈ C∞(M), and e ∈ Γ(E). In this case we identify σ(∆) with X , and call ∆ a derivation of the
vector bundle E (over the vector field X). The space of derivations of E will be denoted by DerE. It
is the space of section of a (transitive) Lie algebroid derE →M over M , sometimes called the Atiyah
algebroid of E, whose Lie-bracket is the commutator of derivations, and whose anchor is the symbol
σ : derE → TM (see, e.g., [24, Theorem 1.4] for details).

Remark A.1. If E is a line bundle, then every first order differential operator Γ(E) → Γ(E) is a
derivation of E. Consider the line bundle RM := M × R. Then Γ(RM ) = C∞(M). First order
differential operators Γ(RM ) → Γ(RM ) or, equivalently, derivations of RM , are the operators of the
form X + a : C∞(M)→ C∞(M), where X is a vector field on M and a ∈ C∞(M) is interpreted as an
operator (multiplication by a). Accordingly, in this case, there is a natural direct sum decomposition
DerE = X(M)⊕ C∞(M), the projection DerE → C∞(M) being given by ∆ 7→ ∆1.

The construction of the Atiyah algebroid of a vector bundle is functorial, in the following sense. Let
φ : E → F be a morphism of vector bundles E → M , F → N , over a smooth map φ : M → N . We
assume that φ is regular, in the sense that it is an isomorphism when restricted to fibers. In particular,
there is a morphism φ∨ : E∗ → F ∗ of dual vector bundles over the same map φ. Morphism φ gives
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also rise to a morphism derφ : derE → derF of the associated Atiyah algebroids (over the same map
φ) which is uniquely defined by the property that diagram

0 // EndE //

φ∨⊗φ

��

derE
σ //

derφ

��

TM //

dφ

��

0

0 // EndF // derF
σ // TN // 0

commutes. We also denote φ∗ := derφ.
Derivations of a vector bundle E can be also understood as infinitesimal automorphisms of E as

follows. First of all, a derivation ∆ of E determines a derivation ∆∗ of the dual bundle E∗, with the
same symbol as ∆. Derivation ∆∗ is defined by ∆∗ϕ := σ(∆) ◦ ϕ− ϕ ◦∆, where ϕ : Γ(E)→ C∞(M)
is a C∞(M)-linear form, i.e. a section of E∗. Now, recall that an automorphism of E is a fiber-
wise linear, bijective bundle map φ : E → E. In particular, φ covers a (unique) diffeomorphism
φ : M →M . One can pull-back sections of E along an automorphism φ: the pull-back of section e is

φ∗e := φ−1 ◦ e ◦ φ. An infinitesimal automorphism of E is a vector field Y on E whose flow consists of
(local) automorphisms. In particular, Y projects onto a (unique) vector field Y ∈ X(M). Note that one
parameter families of infinitesimal automorphisms generate one parameter families of automorphisms
and vice-versa, and one parameter family of automorphisms is generated by a one parameter family
of infinitesimal automorphisms. Infinitesimal automorphisms of E are sections of a (transitive) Lie
algebroid over M , whose Lie-bracket is the commutator of vector fields on E, and whose anchor is
Y 7→ Y . It can be proved that a vector field Y on E is an infinitesimal automorphism iff it preserves
fiber-wise linear functions on E, i.e. sections of the dual bundle E∗. Finally, note that the restriction of
an infinitesimal automorphism to fiber-wise linear functions Y |Γ(E∗) : Γ(E

∗) → Γ(E∗) is a derivation
of E∗, and the correspondence Y 7→ Y |∗Γ(E∗) is a well-defined isomorphism between the Lie algebroid

of infinitesimal automorphisms and the Atiyah algebroid of E.
If ∆ is a derivation of E, Y is the corresponding infinitesimal automorphism, and {φt} is its flow,

then we will also say that ∆ generates the flow of automorphisms {φt}. We have

d

dt

∣∣∣∣
t=0

φ∗t e = ∆e,

for all e ∈ Γ(E). Similarly, if {∆t} is a smooth one parameter family of derivations of E, {Yt} is the
corresponding one parameter family of infinitesimal automorphisms, and {ψt} is the associated one
parameter family of automorphisms, then we will say that {∆t} generates {ψt}. We have

d

dt
ψ∗t e = (ψ∗t ◦∆t)e.

A.1. Vector valued Cartan calculus. There is a vector bundle valued version of the standard
Cartan calculus which is useful when dealing with abstract Jacobi manifolds. The following material
can be presented in terms of Cartan calculus on Atiyah algebroids. Here we propose the simplest
presentation for the purposes of this paper.
Let E → M be a vector bundle. A section of the graded bundle ∧•T ∗M ⊗ E is called an E-valued

differential form on M . Differential forms with values in E form a graded Ω(M)-module which we
denote by Ω(M,E). Note that vector fields on M can be contracted with E-valued differential forms
in an obvious way. For X ∈ X(M) we denote by iX : Ω(M,E) → Ω(M,E) the contraction operator.
It is a degree −1 operator. On the other hand, in general there is no natural way how to define the
Lie derivative of an E-valued form along X . Nonetheless, there is a natural notion of Lie derivative
of an E-valued form along a derivation of E. Namely, let ∆ ∈ DerE be a derivation of E. There is a
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unique degree zero operator L∆ : Ω(M,E)→ Ω(M,E) such that

L∆e = ∆e

L∆(ω ∧ Ω) = Lσ(∆)ω ∧Ω + ω ∧ L∆Ω,

for e ∈ Γ(E) a zero degree E-valued form, ω ∈ Ω(M), and Ω ∈ Ω(M,E). Contractions with vector
fields and Lie derivatives along derivations form a vector valued Cartan calculus in the sense that the
following identities hold:

[iX , iY ] = 0, [L∆, iX ] = i[σ(∆),X], [L∆,L∇] = L[∆,∇],

where X,Y ∈ X(M), ∆,∇ ∈ DerE, and the bracket [−,−] denotes the graded commutator. Moreover

Lf∆ = fL∆ + df ∧ iσ(∆)

for all f ∈ C∞(M), and ∆ ∈ DerE.

Appendix B. Gerstenhaber-Jacobi algebras

In this Appendix we recall the notion of a Gerstenhaber-Jacobi algebra [13]. We mainly follow
Ref. [13]. However, we adopt a slightly more general approach in the same spirit as that of abstract
Jacobi manifolds of Section 2. Accordingly, we will speak about abstract Gerstenhaber-Jacobi algebras.

Definition B.1. An abstract Gerstenhaber-Jacobi algebra is given by a graded commutative, (asso-
ciative) unital algebra A, a graded A-module L, and, moreover, a graded Lie bracket [−,−] on L and
an action by derivations, λ 7→ Xλ, of L on A such that

[λ, aµ] = Xλ(a)µ+ (−)|λ||a|a[λ, µ], a ∈ A, λ, µ ∈ L. (B.1)

In particular [λ,−] is a degree |λ| graded first order differential operator with scalar-type symbol Xλ.

Remark B.2. In the case L = A[1] we recover the notion of Gerstenhaber-Jacobi algebra as defined
in [13].

Remark B.3. If AnnA L = 0, then condition X[λ,µ] = [Xλ, Xµ], for any λ, µ ∈ L, in Definition B.1,
is redundant.

Remark B.4. Abstract Gerstenhaber-Jacobi algebras encompass several well known notions. Namely

• an abstract Jacobi structure (L, {−,−}) on a manifold M is the same as an abstract
Gerstenhaber-Jacobi algebra with A = C∞(M), and L = Γ(L),
• a (graded) Jacobi algebra is the same as a Gerstenhaber–Jacobi algebra with L = A,
• a Gerstenhaber algebra is the same as a Gerstenhaber–Jacobi algebra with L = A[1] and
Xa = [a,−], for all a ∈ A,
• a graded Lie–Rinehart algebra is the same as a Gerstenhaber–Jacobi algebra such that λ 7→ Xλ

is A-linear.

We now describe the main Gerstenhaber-Jacobi algebra of interest in this paper. Given a smooth
manifold M , a vector bundle A→M , and a line bundle L→M , we consider:

• the vector bundle AL := A⊗ L∗,
• the graded algebra Γ(∧•AL) of sections of the exterior bundle ∧•AL,
• the graded Γ(∧•AL)-module Γ(∧•AL ⊗ L)[1] (note the shift in the degree).

The main reason why considering such objects is that a Jacobi algebroid structure on (A,L) is equivalent
to a Gerstenhaber-Jacobi algebra structure on (Γ(∧•AL),Γ(∧

•AL ⊗ L)[1]) (Proposition 2.8).
In particular, let A = derL be the Atiyah algebroid of L, and note that derL⊗ L∗ = diff1(L,RM ).

In the paper we often adopt the following notation: J1L := diff1(L,RM ). In this case, Γ(∧•AL) =
Γ(∧•J1L) and it consists of alternating, first order multi-differential operators from Γ(L) to C∞(M),
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i.e. R-multi-linear maps which are first order differential operators on each entry separately. Let
∆ ∈ Γ(∧kJ1L), and ∆′ ∈ Γ(∧k

′

J1L). If we interpret ∆ and ∆′ as multi-differential operators, then
their exterior product is given by

(∆ ∧∆′)(λ1, . . . , λk+k′ ) =
∑

σ∈Sk,k′

(−)σ∆(λσ(1), . . . , λσ(k))∆
′(λσ(k+1), . . . , λσ(k+k′)) (B.2)

where λ1, . . . , λk+k′ ∈ Γ(L), and Sk,k′ denotes (k, k
′)-unshuffles. Similarly, Γ(∧•AL⊗L) = Γ(∧•J1L⊗

L) and it consists of alternating, first order multi-differential operators from Γ(L) to itself. For this
reason we often denote Der•L := Γ(∧•J1L ⊗ L), where Der0L := Γ(L). Beware that an element

of DerkL is a multi-differential operator with k-entries but its degree in (Der•L)[1] is k − 1. The
Γ(∧•J1L)-module structure on (Der•L)[1] is given by the same formula (B.2) as above.

Remark B.5. A Jacobi bracket {−,−} on L (see Section 2) will be also interpreted as an element J
of Der2L.

Proposition B.6. For any line bundle L, there is a natural Gerstenhaber–Jacobi algebra structure on
(Γ(∧•J1L), (Der•L)[1]).

Proof. Since the Atiyah algebroid of a line bundle is a Jacobi algebroid (Example 2.9), the proposition
is an immediate corollary of Proposition 2.8. �

Finally, we describe explicitly the Gerstenhaber-Jacobi structure on (Γ(∧•J1L), (Der•L)[1]). The
Lie bracket on (Der•L)[1] is a “Jacobi version” of the Schouten bracket between multi-vector fields,
therefore we call it the Schouten-Jacobi bracket and denote it by [−,−]SJ . It is easy to see that

[�,�′]SJ := (−)kk
′

� ◦�′ −�
′ ◦�,

where � ∈ Derk+1L, �′ ∈ Derk
′+1L, and � ◦�′ is given by the following “Gerstenhaber formula”:

(� ◦�′)(λ1, . . . , λk+k′+1) =
∑

τ∈Sk′+1,k

(−)τ�(�′(λτ(1), . . . , λτ(k′+1)), λτ(k′+2), . . . , λτ(k+k′+1)),

where λ1, . . . , λk+k′+1 ∈ Γ(L).
A direct computation shows that the action � 7→ X� of (Der•L)[1] on Γ(∧•J1L) is defined as

follows. For � ∈ Derk+1L, the symbol of �, denoted by σ� ∈ Γ(TM ⊗ ∧kJ1L), is, by definition, the
∧kJ1L-valued vector field on M implicitly defined by:

σ�(f)(λ1, . . . , λk)λ := �(fλ, λ1, . . . , λk)− f�(λ, λ1, . . . , λk),

where f ∈ C∞(M). Finally, for any ∆ ∈ Γ(∧lJ1L), and � ∈ Derk+1L, section X�(∆) ∈ Γ(∧k+lJ1L)
is given by

X�(∆)(λ1, . . . , λk+l) := (−)k(l−1)
∑

τ∈Sl,k

(−)τσ�(∆(λτ(1), . . . , λτ(l)))(λτ(l+1), . . . , λτ(k+l))

−
∑

τ∈Sk+1,l−1

(−)τ∆(�(λτ(1), . . . , λτ(k+1)), λτ(k+2), . . . , λτ(k+l)).
(B.3)

Remark B.7. Denote by X•(M) = Γ(∧•TM) the Gerstehaber algebra of (skew-symmetric) multi-

vector fields on M . When L = RM , then DerkL = Γ(∧kJ1L). Moreover, there is a canonical direct

sum decomposition Derk+1L = Xk+1(M) ⊕ Xk(M), where projection Derk+1L → Xk(M) is given by
� 7→ �(1,−, . . . ,−). In particular, the Schouten-Jacobi bracket on (Der•L)[1] can be expressed in
terms of the Schouten-Nijenhuis bracket on multi-vector fields (see [13] for more details).
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Appendix C. Poissonization and pre-symplectization

C.1. Poissonization of Jacobi manifolds. The category of Poisson manifolds can be regarded as a
(non-full) subcategory of the category of abstract Jacobi manifolds. Interestingly enough, the converse
is also true: the category of abstract Jacobi manifolds can be regarded as a (non-full) subcategory
of the category of Poisson manifolds. Specifically, an abstract Jacobi manifold can be regarded as an
homogeneous Poisson manifold. Recall that an homogeneous Poisson manifold is a principal R×-bundle
P → M equipped with an homogeneous Poisson bivector ΠP , i.e., [ΠP , E ]

SN = ΠP , where [−,−]SN

is the Schouten-Nijenhuis bracket and E is the Euler vector field on P , that is the fundamental vector
field corresponding to the canonical generator 1 in the Lie algebra R of the structure group R× of P .
The correspondence (actually a faithful but not full functor)

{abstract Jacobi manifolds} −→ {homogeneous Poisson manifolds}

can be described as follows. Let L be a line bundle on a smooth manifold M and let L∗ → M
be the dual line bundle of L → M . Consider M̃ := L∗ r 0, where 0 is the (image of) the zero

section of L∗. For later purposes, denote by pr : M̃ → M the projection. Note that M̃ → M
is a principal R×-bundle and every principal R×-bundle is actually of this kind. The Euler vector

field on L∗ restricts to the Euler vector field E on M̃ and a function f ∈ C∞(M̃) is homogeneous
if E(f) = f . Clearly, sections of L are in one-to-one correspondence with homogeneous functions

on M̃ . Denote by λ̃ ∈ C∞(M̃) the homogeneous function corresponding to λ ∈ Γ(L). Finally, let
{−,−} : Γ(L) × Γ(L) → Γ(L) be a Jacobi bracket. It is easy to see that there exists a unique

homogeneous Poisson bracket {−,−}
M̃

: C∞(M̃)× C∞(M̃)→ C∞(M̃) such that

{λ̃, µ̃}
M̃

= {̃λ, µ}.

The Poisson manifold (M̃, {−,−}
M̃
) is, by definition, the Poissonization of the abstract Jacobi mani-

fold (M,L, {−,−}). Note that if S is a coisotropic submanifold of (M,L, {−,−}), then S̃ := pr−1(S)

is a coisotropic submanifold of (M̃, {−,−}
M̃
).

C.2. Poissonization and L∞-algebras from coisotropic submanifolds. Let (M̃,Π = {−,−}
M̃
)

be a Poisson manifold, where Π is the Poisson bi-vector and {−,−}
M̃

is the Poisson bracket. We

can regard M̃ as an abstract Jacobi manifold with Jacobi bundle R
M̃

= M̃ × R and Jacobi bracket

{−,−}
M̃
. For simplicity we assume that M̃ → S̃ is a vector bundle over a manifold S̃, and that S̃

is a coisotropic submanifold. In particular we can construct an L∞-algebra structure on Γ(∧•NS̃)[1],
applying the Voronov derived bracket construction [39] to the V-data ((Der•R

M̃
)[1], Im I, P, {−,−}

M̃
).

However, in this case, Cattaneo and Felder [4] indicate a slightly simpler way how to get the L∞-

algebra of S̃. Namely, consider the graded Lie algebra (X•(M̃)[1], [−,−]SÑ) of multi-vector fields on

M̃ , where [−,−]SN is the Schouten-Nijenhuis bracket. The Poisson bi-vector Π is a (degree one)

Maurer-Cartan element in X•(M̃)[1], i.e., [Π,Π]SN = 0. There are V-data (X•(M̃)[1], Im Ĩ , P̃ ,Π)

determining the same L∞-algebra structure on Γ(∧•NS̃)[1] as above. Namely, P̃ : X•(M̃)[1] →

Γ(∧•NS̃)[1] is the composition of “restriction to S” and “projection over the normal part”, while

Ĩ : Γ(∧•NS̃)[1] → X•(M̃)[1] is the “vertical lift” (we refer to [4] for more details). In the case when

(M̃, {−,−}
M̃
) is the Poissonization of a Jacobi manifold (M,L, J = {−,−}) and S̃ = pr−1(S) for some

coisotropic submanifold S in M , then the L∞-algebra structure on Γ(∧•NS̃)[1] can be understood as
the Poissonization of the L∞-algebra structure on Γ(∧•NℓS ⊗ ℓ)[1] in the sense explained below.

Let (M,L, J = {−,−}) be an abstract Jacobi manifold, and let (M̃,Π = {−,−}
M̃
) be its Poissoniza-

tion. Moreover, let S ⊂M be a coisotropic submanifold. For simplicity, we assume, additionally, that
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there is a vector bundle structure M → S (such that S identifies with the image of the zero section),
and an isomorphism of line bundles L :=M ×S ℓ→M , where ℓ = L|S . Note, for later purposes, that

S̃ := pr−1(S) = ℓ∗ r 0.

Theorem C.1 (“Poissonization” of the L∞-algebra of a coisotropic submanifold).

(1) There exists a unique degree zero graded Lie algebra embedding (Der•L)[1] →֒ X•(M̃)[1], � 7→

�̃ such that

�̃(λ̃1, . . . , λ̃k) = ˜�(λ1, . . . , λk),

for all � ∈ DerkL, and λ1, . . . , λk ∈ Γ(L). In particular, Π = J̃ .
(2) There exists a unique degree zero embedding of graded vector spaces j : Γ(∧•NℓS ⊗ ℓ)[1] →֒

Γ(∧•NS̃)[1] such that diagrams

(Der•L)[1] // X•(Ũ)[1]

Γ(∧•NℓS ⊗ ℓ)[1]

I

OO

j // Γ(∧•NS̃)[1]

Ĩ

OO

and

(Der•L)[1] //

P

��

X•(Ũ)[1]

P̃

��
Γ(∧•NℓS ⊗ ℓ)[1]

j // Γ(∧•NS̃)[1]

commute. In particular, j is a strict L∞-algebra monomorphism.

The above theorem can be easily proved, e.g. in local coordinates, and we leave details to the reader.

C.3. Pre-symplectization. Not only one can “Poissonize an abstract Jacobi manifold”, one can also
“pre-symplectize a pre-contact manifold”. In the contact case, the two constructions agree. Some
details follow.
Let (S,CS) be a pre-contact manifold, F its characteristic foliation, and ℓ := TS/CS. Recall that

there is a canonical flat TF -connection ∇ in ℓ (see subsection 5.4). Accordingly, there is a flat TF -

connection in L∗, the dual connection. Geometrically this corresponds to a foliation F̃ in L∗, such

that T F̃ projects fiber-wise isomorphically onto TF via the bundle map ℓ∗ → S, and, moreover, F̃ is

linear in a suitable sense. Restrict F̃ to the open submanifold M̃ := L∗ r 0, and denote again by F̃

the restriction. Since L∗ identifies canonically with the annihilator of CS in T ∗S, M̃ can be regarded

as a submanifold in the symplectic manifold T ∗S. Denote by ω̃ the pull-back to S̃ of the canonical

2-form on T ∗S (which we assume to be minus the tautological, Liouville, one form). The pair (M̃, ω̃)

is a pre-symplectic manifold with characteristic distribution given by (TM̃)⊥ω̃ = T F̃ (see, e.g., [37,

Theorem 15, case n = 1]). The pair (S̃, ω̃) is the pre-symplectization of (S,CS).

Remark C.2. Since T F̃ projects fiber-wise isomorphically onto TF via the projection pr : S̃ → S,

then sections of TF can be canonically lifted to sections of T F̃ . We denote by X 7→ X̂ this lifting.

Now, the pull-back pr∗η of a 1-form η ∈ Γ(T 0F) = Γ(N∗F) clearly belongs to Γ(T 0F̃) = Γ(N∗F̃).

As a consequence, Ω(F̃) = C∞(S̃) ⊗ Ω(F) (where the tensor product is over C∞(S)), and there is a

unique well-defined morphism of DG algebras pr∗ : Ω(F)→ Ω(F̃), σ 7→ pr∗σ such that

(pr∗σ)(X̂1, . . . , X̂k) = pr∗(σ(X1, . . . , Xk))

for all X1, . . . , Xk ∈ Γ(TF), σ ∈ Ωk(F). Equivalently, pr∗σ = 1⊗σ, where 1 is the unit function on S̃.

Our next aim is threefold:

(1) showing that the “symplectization trick” intertwines the “transversal geometries” of F and F̃ ,
(2) showing that the symplectization of the contact thickening of (S,CS) identifies with the sym-

plectic thickening of (S̃, ω̃) (see below, se also [32] for details about the symplectic thickening),
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(3) using the above two points to regard the L∞-algebra of (S,CS) as a strict L∞-subalgebra of the

L∞-algebra of (S̃, ω̃) (see [32] for details about the L∞-algebra of a pre-symplectic manifold).

As a corollary we will obtain a simple proof of Theorem 5.27 from the analogous result by Oh & Park
in the symplectic case [32, Formula (9.17)]. In what follows, we only sketch the main proofs and leave
obvious details and easy computations to the reader.
As in Subsection 5.5, choose a distribution G on S complementary to TF . Obviously, the distribution

G̃ := (dpr)−1(G) on S̃ is complementary to T F̃ . The main ingredients in Oh & Park formulas for the

multi-brackets in the L∞-algebra of (S̃, ω̃) are

• the transversal Poisson bivector Π⊥ ∈ Γ(∧2N F̃),

• the associated graded symmetric Ω(F̃)-bilinear form

〈−,−〉ω̃ : Ω(F̃ , N∗F̃)[1]× Ω(F̃ , N∗F̃)[1] −→ Ω(F̃)[1],

• the transversal de Rham differential dG̃ : Ω(F̃)→ Ω(F̃ , N∗F̃),

• the curvature form F̃ of G̃.

We now show that the above items are uniquely determined by their contact analogues:

• the transversal bi-linear form Λ̂⊥ ∈ Γ(∧2(J1
⊥ℓ)
∗ ⊗ ℓ),

• the associated graded symmetric Ω(F)-bilinear form

〈−,−〉C : Ω(F , J1
⊥ℓ)[1]× Ω(F , J1

⊥ℓ)[1] −→ Ω(F , ℓ)[1],

• the transversal jet prolongation j1G : Ω(F̃ , ℓ)→ Ω(F̃ , J1
⊥ℓ),

• the curvature form F of G,

respectively. The first two items are actually independent of G. We start from them. Recall that

sections of ℓ identify with homogeneous functions on M̃ and we denote by λ 7→ λ̃ the identification.

Moreover, (Der•ℓ)[1] embeds into X•(S̃)[1] (Theorem C.1.(1)), and we denote by� 7→ �̃ the embedding.
We want to show that there is a “transversal version” of the latter embedding. Thus, denote Der•⊥ℓ :=

Γ(∧•(J1
⊥ℓ)
∗ ⊗ ℓ), and X•⊥ := Γ(∧•N F̃).

Lemma C.3. There is a canonical embedding (Der•⊥ℓ)[1] →֒ X•⊥[1], � 7→ �̃.

Proof. Note that Der•⊥ℓ (resp. X•⊥) is a quotient of Der•ℓ (resp. X•(S̃)). Namely Der•⊥ℓ = Der•ℓ/I,
where I is the Γ(∧•J1ℓ)-submodule generated by covariant derivatives along ∇, the TF -connection in

ℓ. Similarly X•⊥ = X•(S̃)/Ĩ, where Ĩ is the (associative) ideal generated by Γ(T F̃). It is easy to see,

for instance using local coordinates, that ∇̃X ∈ Ĩ for all X ∈ Γ(TF). This shows that embedding

Der•ℓ[1] →֒ X•(S̃)[1] descends to a well-defined map (Der•⊥ℓ)[1] −→ X•⊥[1]. Moreover, the latter is
injective (again, use, for instance, local coordinates). �

There is a transversal version of the Poisson bi-vector defined as follows. The pre-symplectic form ω̃

descends to a non-degenerate two-form ω̃ ∈ Γ(∧2N∗F̃), whose inverse we denote by Π⊥ ∈ Γ(∧2N F̃) =

X2
⊥ and interpret as transversal Poisson bi-vector. it is easy to see that, if Λ̂⊥ ∈ Der2⊥ℓ is the bi-linear

form associated to (S,CS). Then

Π⊥ =
˜̂
Λ⊥. (C.1)

Our next aim is relating 〈−,−〉ω̃ and 〈−,−〉C . Pairing 〈−,−〉ω̃ : Ω(F̃ , N∗F̃)[1] × Ω(F̃ , N∗F̃)[1] →

Ω(F̃)[1] is the unique degree one, Ω(F̃)-bilinear, symmetric form extending Π⊥ : ∧2N∗F̃ → R
M̃
.

In order to relate it to 〈−,−〉C we have to relate Ω(F̃ , N∗F̃) and Ω(F , J1
⊥L) first. Thus, note that

embedding Γ(ℓ) →֒ C∞(S̃) uniquely extends to an Ω(F)-linear embedding Ω(F , ℓ) →֒ Ω(F̃), σ 7→ σ̃.
The latter does actually coincides with the embedding j of Proposition C.1, up to understanding S as
a coisotropic submanifold in its contact thickening (see Proposition C.5.(2)).
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Lemma C.4. There is a canonical embedding Γ(J1
⊥L) →֒ Γ(N∗F̃), ψ 7→ ψ̃ such that

〈�̃, ψ̃〉 = 〈̃�, ψ〉, � ∈ Γ((J1
⊥ℓ)
∗), ψ ∈ Γ(J1

⊥ℓ). (C.2)

Proof. First of all note that

dF̃ λ̃ = d̃Fλ (C.3)

for all λ ∈ Γ(ℓ). Now, correspondence Γ(ℓ) → Ω1(S̃), λ 7→ dλ̃, is a well-defined first order differential

operator between C∞(S)-modules. Therefore, it determines a C∞(S)-linear map Γ(J1ℓ) → Ω1(S̃),

which restricts to a well-defined C∞(S)-linear map Γ(J1
⊥ℓ)→ Γ(N∗F̃). Indeed, diagram

Ω1(S̃) // Ω1(F̃)

Γ(J1ℓ)

OO

// Ω1(F , ℓ)

OO

commutes in view of Equation (C.3). Finally, Equation (C.2) can be easily checked, for instance, in
local coordinates. �

Extend the embedding Γ(J1
⊥ℓ) →֒ Γ(N∗F̃) to an Ω(F)-linear embedding Ω(F , J1

⊥ℓ) →֒ Ω(F̃ , N∗F̃),
also denoted σ 7→ σ̃. It immediately follows from (C.1) that

〈σ̃, τ̃〉ω̃ = 〈̃σ, τ〉C (C.4)

for all σ, τ ∈ Ω(F , J1
⊥ℓ).

Now, let G and G̃ be as above. Define dG̃ in the same way as dG, and note that

dG̃σ̃ = j̃1Gσ. (C.5)

It remains to relate the curvatures F and F̃ of G and G̃. Recall that F is a section of ∧2G∗ ⊗ G0,
but G∗ ≃ N∗F , and G0 ≃ TF . Thus, F can be regarded as a section of ∧2N∗F ⊗ TF . Similarly,

F̃ is a section of ∧2N∗F̃ ⊗ T F̃ . Obviously, there is a well-defined map pr∗ : Γ(∧•N∗F ⊗ TF) →

Γ(∧•N∗F̃ ⊗T F̃), η⊗X 7−→ pr∗(η)⊗ X̂ , and it is easy to see that curvatures F and F̃ are related via

F̃ = pr∗F. (C.6)

Now, we have to show that the symplectization of the contact thickening of (S,CS) coincides with

the symplectic thickening of (S̃, ω̃), which is defined as follows (see [32] for more details). Take the

cotangent bundle T ∗F̃ to F̃ , and let τ̃ : T ∗F̃ → S̃ be the projection. The 2-form ω̃ can be pulled-back

to T ∗F̃ via τ̃ . There is also another 2-form ω̃G on T ∗F̃ , defined as follows. First, define a 1-form

θ̃G ∈ Ω1(T ∗F̃) by putting, for α ∈ T ∗F̃ , and ξ ∈ Tα(T
∗F̃)

(θ̃G)α(ξ) := (α ◦ pT F̃;G̃ ◦ dτ̃ )(ξ), x := τ̃ (α),

where pT F̃;G̃ : T S̃ → T F̃ is the projection induced by the splitting T S̃ = G̃ ⊕ T F̃ . Finally, put

ω̃G := −dθG. The 2-form Ω̃ := ω̃G + τ̃∗ω is obviously closed. Moreover, it is non-degenerate in a

neighborhood of the zero section of τ̃ called the symplectic thickening of (S̃, ω̃), and the zero section

of τ̃ is a coisotropic embedding of the pre-symplectic manifold (S̃, ω̃).

Proposition C.5.

(1) Symplectization and thickening commute, i.e., there is a canonical symplectomorphism ψ be-
tween the symplectization of the contact thickening and the symplectic thickening of the pre-
symplectization of (S,CS).
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(2) Regard S as a coisotropic submanifold in its contact thickening so that Ω(F , ℓ) ≃ Γ(∧•NℓS⊗ℓ).

Moreover, regard S̃ as a coisotropic submanifold in its symplectic thickening so that Ω(F̃) ≃

Γ(∧•NS̃). Then, symplectomorphism ψ identifies the canonical embedding Ω(F , ℓ)[1] →֒

Ω(F̃)[1] with embedding j : Γ(∧•NℓS ⊗ ℓ) →֒ Γ(∧•NS̃) of Theorem C.1.(2).

Proof. The contact thickening is an open neighborhood of the zero section of τ : T ∗F ⊗ ℓ → S. The
manifold T ∗F ⊗ ℓ is equipped with the hyper-plane distribution ker(θG + τ∗θ) (see Subsection 5.3).
The Jacobi bundle T (T ∗F⊗ℓ)/ ker(θG+τ∗θ) identifies with the pull-back bundle τ∗ℓ = (T ∗F⊗ℓ)×S ℓ.
Hence, the symplectization of the contact thickening is an open submanifold in

τ∗ℓ∗ r 0 = (T ∗F ⊗ ℓ)×S (ℓ∗ r 0) = (T ∗F ⊗ ℓ)×S S̃

As usual, we understand τ∗ℓ∗r0 as a submanifold in T ∗(T ∗F⊗ℓ), identifying τ∗ℓ∗ with the annihilator
of ker(θG + τ∗θ). In particular, τ∗ℓ∗ r 0 is equipped with a 2-form Ω′ given by the pull-back of the
canonical 2-form on T ∗(T ∗F ⊗ ℓ). Notice that Ω′ is non-degenerate at a point p iff the curvature of
ker(θG + τ∗θ) is non-degenerate at the projection of p down to T ∗F ⊗ ℓ. We want to show that there
is a canonical diffeomorphism

ψ : τ∗ℓ∗ r 0→ T ∗F̃

making the following diagram commutative

T ∗F̃

��

τ∗ℓ∗ r 0 //ψoo T ∗F ⊗ ℓ

�� ��
S̃ // S

, (C.7)

and such that ψ∗Ω̃ = Ω′. In order to define ψ recall that T F̃ projects fiber-wise isomorphically to TF ,

hence T F̃ = S̃ ×S TF and T ∗F̃ = S̃ ×S T
∗F . Now, for (α, ϕ) ∈ τ∗ℓ∗ r 0 = (T ∗F ⊗ ℓ)×S S̃, put

ψ(α, ϕ) = (ϕ, ϕ ◦ α),

where, in the second entry of the rhs, we interpret α as a linear map TF → ℓ. A direct check shows

that diagram (C.7) does actually commute. Moreover, ψ is invertible, its inverse ψ−1 : T ∗F̃ → τ∗ℓ∗r0

being given by

ψ−1(ϕ, p) = (p⊗ ϕ∗, ϕ),

for all (ϕ, p) ∈ T ∗F̃ = S̃ ×S T
∗F , where we interpret ϕ as a basis in a fiber of ℓ∗, and ϕ∗ ∈ ℓ is its

dual basis. One can easily check that ψ∗Ω̃ = Ω′ in local coordinates. Finally, an easy check in local
coordinates proves (2). Details are left to the reader. �

With this preparation, we are finally ready to prove Theorem 5.27.

Proof of Theorem 5.27. Denote by m̃k the multi-brackets in the L∞-algebra of (S̃, ω̃) (determined by

G̃). According to Propositions C.5 and C.1, the mk’s can be obtained by restricting the m̃k’s to forms

in the image of embedding j : Ω(F , ℓ)[1] →֒ Ω(F̃)[1]. Now, the m̃k’s are given by Oh-Park formula [32,
Formula (9.17)] up to a global normalization factor (See Appendix D). Specifically

m̃k(̟1, . . . , ̟k) =
1

2

∑

σ∈Sk

ǫ(σ,̟)
〈
dG̟σ(1), (iF̃ ♯̟σ(2) ◦ · · · ◦ iF̃ ♯̟σ(k−1)) dG̟σ(k)

〉
C
, (C.8)

̟1, . . . , ̟k ∈ Ω(F̃), where we extended the natural bilinear map ◦ : EndNS̃ ⊗EndNS̃ → EndNS̃ to

a degree −1, Ω(F̃)-bilinear map

Ω(F̃ ,EndNS̃)[1]× Ω(F̃ ,EndNS̃)[1] −→ Ω(F̃ ,EndNS̃)[1],
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also denoted by ◦, and the tautological action EndNS̃⊗NS̃ → NS̃ to a degree −1, Ω(F)-linear action

Ω(F̃ ,EndNS̃)[1]× Ω(F̃ , NS̃)[1] −→ Ω(F̃ , NS̃)[1].

To conclude the proof, it is enough to set ̟i = µ̃i and then using Equations (C.4), (C.5) and (C.6),
and Lemma C.6 below. �

Lemma C.6. For all µ ∈ Ω(F , ℓ) and η ∈ Ω(F , J1
⊥ℓ),

˜(iF ♯µ)η = (iF̃ ♯ µ̃)η̃.

Proof. Let µ and η be as in the statement. Note that iF ♯µ belongs to Ω(F ,End J1
⊥ℓ) and it acts on

η giving an element (iF ♯µ)η in Ω(F , J1
⊥ℓ). In its turn, (iF ♯µ)η can be “lifted” to an element ˜(iF ♯µ)η

in Ω(F̃ , N∗F̃). Similarly, (iF̃ ♯ µ̃)η̃ belongs to Ω(F̃ , N∗F̃). The assertion can now be checked easily in
local coordinates. �

Appendix D. The L∞-algebra of a pre-symplectic manifold

In [32] the second named author and Park attach an L∞-algebra to any coisotropic submanifold in
a symplectic manifold (in fact, to any pre-symplectic manifold). They define the multi-brackets first
[32, Formula (9.17)] and then prove the higher Jacobi identities. On another hand, in [4] Cattaneo and
Felder use the Voronov construction [39] to attach an L∞-algebra to any coisotropic submanifold in a
Poisson manifold. Despite, in some paper [4, 35, 21, 36], it is implicitly stated that Cattaneo-Felder
L∞-algebra gives back Oh-Park L∞-algebra in the symplectic case, a proof has not yet been provided.
We provide such a proof in this section.

Let (S̃, ω̃) be a pre-symplectic manifold, with characteristic foliation F̃ , and let G̃ be a complementary

distribution to T F̃ , i.e., T S̃ = G̃ ⊕ T F̃ . The bundle T ∗F̃ is then equipped with a 2-form Ω̃ which

is non-degenerate in a neighborhood of the zero section 0, called the symplectic thickening of (S̃, ω̃).
Moreover 0 is a coisotropic embedding and, therefore, every pre-symplectic manifold is a coisotropic
submanifold in its symplectic thickening (see Subsection C.3 of previous Appendix for details). In

particular, in view of Proposition 3.12, there is an L∞-algebra (Γ(∧•NS̃)[1], {m̃k}) attached to (S̃, ω̃).

Notice that, in this case, NS̃ = T ∗F̃ , so that Γ(∧•NS̃) = Ω(F). In what follows we will understand
the latter identification. We will show below that the multi-brackets m̃k are given precisely by formula
(C.8) which is precisely Oh-Park formula (see [32, Formula (9.17)]) up to a global normalization factor
1/2. We will do this in local coordinates, using Corollary 3.17. From now on, we freely use notations
and conventions from Subsection C.3 of previous Appendix.

Let (xi, ua) be local coordinates on S̃ adapted to F̃ , i.e. T F̃ is spanned by coordinate vector fields

∂/∂xi. Distribution G̃ is then spanned by vector fields of the form

Ga =
∂

∂ua
+Gia

∂

∂xi
.

The pre-symplectic form ω̃ is locally given by

ω̃ =
1

2
ωabdu

a ∧ dub.

Let pi be linear coordinates along the fibers of T ∗F̃ corresponding to the local frame (∂/∂xi) of TF . It
is shown in [32] that the symplectic form on the symplectic thickening is locally given by [32, Formula
(6.8)]

Ω̃ =
1

2

(
ωab + piF

i
ab

)
dua ∧ dub −

(
dpi + pk

∂Gka
∂xi

dua
)
∧
(
dxi −Gibdu

b
)

where F iab := Ga(G
i
b)−Gb(G

i
a) are components of the curvature F̃ of G̃. More precisely,

F̃ =
1

2
F iabdu

a ∧ dub ⊗
∂

∂xi
.
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Accordingly, the Poisson structure is

Π = −
1

2
ω̃abXa ∧Xb −

∂

∂pi
∧

∂

∂xi
,

where (ω̃ab) is the inverse matrix of (ω̃ab), ω̃ab := ωab + piF
i
ab, and

Xa := Ga − pj
∂Gja
∂xi

∂

∂pi
.

The m̃k are graded first order multi-differential operators. In particular, they are completely determined

by their action on (local) generators of Ω(F̃), i.e. on smooth functions f ∈ C∞(S̃), and leaf-wise
differentials dF̃x

i. The rhs of Equation (C.8) is also a graded first order multi-differential operator in
its arguments. We conclude that Equation (C.8) is satisfied, provided only it is satisfied for ̟1, . . . , ̟k

being generators of the above mentioned kind.
An easy computation in local coordinates shows that m̃1 = −dF . Moreover, from Corollary 3.17 we

easily find

m̃k+1

(
dF̃x

i1 , . . . , dF̃x
ik−1 , f, g

)
= −(−)k

∂k−1ω̃ab

∂pi1 · · · ∂pik−1

∣∣∣∣
p=0

(Gaf) (Gbg),

m̃k+1

(
dF̃x

i1 , . . . , dF̃x
ik , f

)
= (−)k

∑

r

∂k−1ω̃ab

∂pi1 · · · ∂̂pir · · · ∂pik

∣∣∣∣∣
p=0

∂Gira
∂xi

Gbf
∂

∂pi
,

m̃k+1

(
dF̃x

i1 , . . . , dF̃x
ik+1

)
= (−)k

1

2

∑

r,s

∂k−1ω̃ab

∂pi1 · · · ∂̂pir · · · ∂̂pis · · · ∂pik+1

∣∣∣∣∣
p=0

∂Gira
∂xi

∂Gisb
∂xj

∂

∂pi
∧

∂

∂pj
,

(D.1)

for all f, g ∈ C∞(S̃), k > 0. Now, we compute partial derivatives of (ω̃ab). Denote W := (ωab),

Fi := (F iab), and W̃ = (ω̃ab), so that W̃ = W + piF
i, and W̃−1 = (ω̃ab). Moreover, W̃|p=0 = W, and

∂W̃/∂pi = Fi. Hence, it follows by induction on m that

∂kW̃−1

∂pi1 . . . ∂pim

∣∣∣∣∣
p=0

= (−)m
∑

σ∈Sk

W−1Fiσ(1)W−1 · · ·Fiσ(m)W−1,

which, used in (D.1), gives

m̃k+1

(
dF̃x

i1 , . . . , dF̃x
ik−1 , f, g

)
=

∑

σ∈Sk−1

(
W−1Fiσ(1)W−1 · · ·Fiσ(k−1)W−1

)
ab(Gaf) (Gbg),

m̃k+1

(
dF̃x

i1 , . . . , dF̃x
ik , f

)
= −

∑

σ∈Sk

(
W−1Fiσ(1)W−1 · · ·Fiσ(k−1)W−1

)
ab ∂G

iσ(k)
a

∂xi
Gbf

∂

∂pi
,

m̃k+1

(
dF̃x

i1 , . . . , dF̃x
ik+1

)
= −

1

2

∑

σ∈Sk+1

(
W−1Fiσ(1)W−1 · · ·Fiσ(k−1)W−1

)
ab ∂G

iσ(k)
a

∂xi
∂G

iσ(k+1)

b

∂xj
∂

∂pi
∧

∂

∂pj
.

(D.2)
Finally, from the easy remark that

dG̃f = Gafdu
a, and dG̃dF̃x

i = dF̃dG̃x
i =

∂Gia
∂xj

dF̃x
j ⊗ dua,

it follows, after a straightforward computation, that the rhs of (D.2) agrees with Equation (C.8) which
is, therefore, correct.
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[16] R. Ibáñez, M. de León, J.C. Marrero and D. Mart́ın de Diego, Co-isotropic and Legendre-Lagrangian

submanifolds and conformal Jacobi morphisms, J. Phys. A: Math. Gen. 30 (1997) 5427–5444.
[17] D. Iglesias-Ponte and J.C. Marrero, Some linear Jacobi structures on vector bundles, C.R. Acad. Sci. Paris

331 (2000) 125–130.
[18] D. Iglesias-Ponte and J.C. Marrero, Generalized Lie bialgeboids and Jacobi structures, J. Geom. Phys. 40

(2001) 176–199.
[19] D. Iglesias-Ponte and J.C. Marrero, Jacobi groupoids and generalized Lie bialgebroids, J. Geom. Phys. 48

(2003) 385–425.
[20] Y. Kerbat and Z. Souci-Behammadi, Variétés de Jacobi et groupoides de contact, C.R. Acad. Sci. Paris 317

(1993) 81–86.
[21] N. Kieserman, The Liouviulle phenomenon in the deformation of coisotropic submanifolds, Diff. Geom. Appl. 28

(2010) 121–130.
[22] A. Kirillov, Local Lie algebras, Russian Math. Surveys 31 (1976) no. 4, 57–76.
[23] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgeboids, Acta Appl. Math. 41 (1995)

153–165.
[24] Y. Kosmann-Schwarzbach and K.C.H. Mackenzie, Differential operators and actions of Lie algebroids, in:

Quantization, Poisson Brackets and Beyond (T. Voronov, ed.), Contemp. Math. vol. 315, AMS, Providence, RI,
2002, pp. 213–233.
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