Exopolysaccharides (EPSs) are an important class of biopolymers with great ecological importance. In natural environments, they are a common feature of microbial biofilms, where they play key protective and structural roles. As the primary colonizers of constrained environments, such as desert soils and lithic and exposed substrates, cyanobacteria are the first contributors to the synthesis of the EPSs constituting the extracellular polymeric matrix that favors the formation of microbial associations with varying levels of complexity called biofilms. Cyanobacterial colonization represents the first step for the formation of biofilms with different levels of complexity. In all of the possible systems in which cyanobacteria are involved, the synthesis of EPSs contributes a structurally-stable and hydrated microenvironment, as well as chemical/physical protection against biotic and abiotic stress factors. Notwithstanding the important roles of cyanobacterial EPSs, many aspects related to their roles and the relative elicited biotic and abiotic factors have still to be clarified. The aim of this survey is to outline the state-of-the-art of the importance of the cyanobacterial EPS excretion, both for the producing cells and for the microbial associations in which cyanobacteria are a key component.

Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats / Rossi, Federico; De Philippis, Roberto. - In: LIFE. - ISSN 2075-1729. - STAMPA. - 5:(2015), pp. 1218-1238. [10.3390/life5021218]

Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats

ROSSI, FEDERICO;DE PHILIPPIS, ROBERTO
2015

Abstract

Exopolysaccharides (EPSs) are an important class of biopolymers with great ecological importance. In natural environments, they are a common feature of microbial biofilms, where they play key protective and structural roles. As the primary colonizers of constrained environments, such as desert soils and lithic and exposed substrates, cyanobacteria are the first contributors to the synthesis of the EPSs constituting the extracellular polymeric matrix that favors the formation of microbial associations with varying levels of complexity called biofilms. Cyanobacterial colonization represents the first step for the formation of biofilms with different levels of complexity. In all of the possible systems in which cyanobacteria are involved, the synthesis of EPSs contributes a structurally-stable and hydrated microenvironment, as well as chemical/physical protection against biotic and abiotic stress factors. Notwithstanding the important roles of cyanobacterial EPSs, many aspects related to their roles and the relative elicited biotic and abiotic factors have still to be clarified. The aim of this survey is to outline the state-of-the-art of the importance of the cyanobacterial EPS excretion, both for the producing cells and for the microbial associations in which cyanobacteria are a key component.
2015
5
1218
1238
Rossi, Federico; De Philippis, Roberto
File in questo prodotto:
File Dimensione Formato  
life-05-01218-Review.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1050332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 278
  • ???jsp.display-item.citation.isi??? ND
social impact