Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios.

An evaluation of three commercially available metal artifact reduction methods for CT imaging / Huang, Jessie Y.; Kerns, James R.; Nute, Jessica L.; Liu, Xinming; Balter, Peter A.; Stingo, Francesco C.; Followill, David S.; Mirkovic, Dragan; Howell, Rebecca M.; Kry, Stephen F.. - In: PHYSICS IN MEDICINE AND BIOLOGY. - ISSN 0031-9155. - STAMPA. - 60:(2015), pp. 1047-1067. [10.1088/0031-9155/60/3/1047]

An evaluation of three commercially available metal artifact reduction methods for CT imaging

STINGO, FRANCESCO CLAUDIO;
2015

Abstract

Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios.
2015
60
1047
1067
Huang, Jessie Y.; Kerns, James R.; Nute, Jessica L.; Liu, Xinming; Balter, Peter A.; Stingo, Francesco C.; Followill, David S.; Mirkovic, Dragan; Howell, Rebecca M.; Kry, Stephen F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1054866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 175
  • ???jsp.display-item.citation.isi??? 156
social impact