Magnetic reconnection is thought to be the dynamical mechanism underlying many explosive phenomena observed both in space and in the laboratory, although the question of how fast magnetic reconnection is triggered in such high Lundquist (S) number plasmas has remained elusive. It has been well established that reconnection can develop over time scales faster than those predicted traditionally once kinetic scales are reached. It has also been shown that, within the framework of resistive magnetohydrodynamics (MHD), fast reconnection is achieved for thin enough sheets via the onset of the so-called plasmoid instability. The latter was discovered in studies specifically devoted to the Sweet-Parker current sheet, either as an initial condition or an apparent transient state developing in nonlinear studies. On the other hand, a fast tearing instability can grow on an ideal, i.e. -independent, time scale (dubbed `ideal' tearing) within current sheets whose aspect ratio scales with the macroscopic Lundquist number as L/a ~ S^(1/3) - much smaller than the Sweet-Parker one - suggesting a new way to approach to the initiation of fast reconnection in collapsing current configurations. Here we present an overview of what we have called `ideal' tearing in resistive MHD, and discuss how the same reasoning can be extended to other plasma models commonly used that include electron inertia and kinetic effects. We then discuss a scenario for the onset of `ideal' fast reconnection via collapsing current sheets and describe a quantitative model for the interpretation of the nonlinear evolution of `ideally' unstable sheets in two dimensions.

‘Ideally’ unstable current sheets and the triggering of fast magnetic reconnection / Tenerani, A.; Velli, M.; Pucci, F.; Landi, S.; Rappazzo, A. F.. - In: JOURNAL OF PLASMA PHYSICS. - ISSN 0022-3778. - ELETTRONICO. - 82:(2016), pp. 0-0. [10.1017/S002237781600088X]

‘Ideally’ unstable current sheets and the triggering of fast magnetic reconnection

VELLI, MARCO;LANDI, SIMONE;
2016

Abstract

Magnetic reconnection is thought to be the dynamical mechanism underlying many explosive phenomena observed both in space and in the laboratory, although the question of how fast magnetic reconnection is triggered in such high Lundquist (S) number plasmas has remained elusive. It has been well established that reconnection can develop over time scales faster than those predicted traditionally once kinetic scales are reached. It has also been shown that, within the framework of resistive magnetohydrodynamics (MHD), fast reconnection is achieved for thin enough sheets via the onset of the so-called plasmoid instability. The latter was discovered in studies specifically devoted to the Sweet-Parker current sheet, either as an initial condition or an apparent transient state developing in nonlinear studies. On the other hand, a fast tearing instability can grow on an ideal, i.e. -independent, time scale (dubbed `ideal' tearing) within current sheets whose aspect ratio scales with the macroscopic Lundquist number as L/a ~ S^(1/3) - much smaller than the Sweet-Parker one - suggesting a new way to approach to the initiation of fast reconnection in collapsing current configurations. Here we present an overview of what we have called `ideal' tearing in resistive MHD, and discuss how the same reasoning can be extended to other plasma models commonly used that include electron inertia and kinetic effects. We then discuss a scenario for the onset of `ideal' fast reconnection via collapsing current sheets and describe a quantitative model for the interpretation of the nonlinear evolution of `ideally' unstable sheets in two dimensions.
2016
82
0
0
Tenerani, A.; Velli, M.; Pucci, F.; Landi, S.; Rappazzo, A. F.
File in questo prodotto:
File Dimensione Formato  
S002237781600088X.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 8.53 MB
Formato Adobe PDF
8.53 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1069947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 36
social impact