Up-regulation of brain-derived neurotrophic factor (BDNF)synthesis is an important mechanism of peripheralnerveregenerationafterinjury.However, the cellular and molecular mechanisms underlying this process are not fully understood. This study examines the role of BDNF in the spared nerve injury (SNI) mice model. Protein expression and cellular localization were investigated in the dorsal root ganglia (DRG) and spinal cord by western blotting and immunofluorescence experiments respectively. BDNF protein was markedly increased 3 and 7 days post-injury in the spinal cord and DRG. Following nerve injury sensory neurons produce molecules to promote regeneration, such as growth-associated protein 43 (GAP-43) and cytoskeletal proteins. Our results show that the expression of GAP-43 was increased in the DRG and spinal cord while, an increased of p-NFH content was detected in the spinal cord, with no modification in the DRG. Both events were counteracted by the administration of an anti-BDNF antibody. In DRG of SNI mice we also detected an increase of HuD expression, a RNA-binding protein known to stabilize BDNF and GAP-43 mRNA. Silencing of HuD prevented the nerve injury-induced BDNF and GAP-43 enhanced expression in the DRG. HuD-mediated BDNF synthesis in the primary sensory neurons, is followed by an anterograde transport of the neurotrophin to the central terminals of the primary afferents in the spinal dorsal horn, to modulate GAP-43 and NFH activation. Our data suggest that BDNF, GAP-43 and p-NFH proteins increase are linked events required for the enhanced regeneration after nerve injury.

HuD-mediated distinct BDNF regulatory pathways promote regeneration after nerve injury / Sanna, Maria Domenica; Ghelardini, Carla; Galeotti, Nicoletta. - In: BRAIN RESEARCH. - ISSN 1872-6240. - STAMPA. - 1659:(2017), pp. 55-63. [10.1016/j.brainres.2017.01.019]

HuD-mediated distinct BDNF regulatory pathways promote regeneration after nerve injury

SANNA, MARIA DOMENICA;GHELARDINI, CARLA;GALEOTTI, NICOLETTA
2017

Abstract

Up-regulation of brain-derived neurotrophic factor (BDNF)synthesis is an important mechanism of peripheralnerveregenerationafterinjury.However, the cellular and molecular mechanisms underlying this process are not fully understood. This study examines the role of BDNF in the spared nerve injury (SNI) mice model. Protein expression and cellular localization were investigated in the dorsal root ganglia (DRG) and spinal cord by western blotting and immunofluorescence experiments respectively. BDNF protein was markedly increased 3 and 7 days post-injury in the spinal cord and DRG. Following nerve injury sensory neurons produce molecules to promote regeneration, such as growth-associated protein 43 (GAP-43) and cytoskeletal proteins. Our results show that the expression of GAP-43 was increased in the DRG and spinal cord while, an increased of p-NFH content was detected in the spinal cord, with no modification in the DRG. Both events were counteracted by the administration of an anti-BDNF antibody. In DRG of SNI mice we also detected an increase of HuD expression, a RNA-binding protein known to stabilize BDNF and GAP-43 mRNA. Silencing of HuD prevented the nerve injury-induced BDNF and GAP-43 enhanced expression in the DRG. HuD-mediated BDNF synthesis in the primary sensory neurons, is followed by an anterograde transport of the neurotrophin to the central terminals of the primary afferents in the spinal dorsal horn, to modulate GAP-43 and NFH activation. Our data suggest that BDNF, GAP-43 and p-NFH proteins increase are linked events required for the enhanced regeneration after nerve injury.
2017
1659
55
63
Sanna, Maria Domenica; Ghelardini, Carla; Galeotti, Nicoletta
File in questo prodotto:
File Dimensione Formato  
167.Hud-BDNF.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1074900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact