In recent years, there has been increasing interest in plant microbiota; however, despite medicinal plant relevance, very little is known about their highly complex endophytic communities. In this work, we report on the genomic and phenotypic characterization of the antimicrobial compound producer Rheinheimera sp. EpRS3, a bacterial strain isolated from the rhizospheric soil of the medicinal plant Echinacea purpurea. In particular, EpRS3 is able to inhibit growth of different bacterial pathogens (Bcc, Acinetobacter baumannii, and Klebsiella pneumoniae) which might be related to the presence of gene clusters involved in the biosynthesis of different types of secondary metabolites. The outcomes presented in this work highlight the fact that the strain possesses huge biotechnological potential; indeed, it also shows antimicrobial effects upon well-described multidrug-resistant (MDR) human pathogens, and it affects plant root elongation and morphology, mimicking indole acetic acid (IAA) action.

Phenotypic and genomic characterization of the antimicrobial producer Rheinheimera sp. EpRS3 isolated from the medicinal plant Echinacea purpurea: insights into its biotechnological relevance / Presta, L.; Bosi, E.; Fondi, M.; Maida, I.; Perrin, E.; Miceli, E.; Maggini, V.; Bogani, P.; Firenzuoli, F.; Di Pilato, V.; Rossolini, G.M.; Mengoni, A.; Fani, R.. - In: RESEARCH IN MICROBIOLOGY. - ISSN 0923-2508. - STAMPA. - 168:(2017), pp. 293-305.

Phenotypic and genomic characterization of the antimicrobial producer Rheinheimera sp. EpRS3 isolated from the medicinal plant Echinacea purpurea: insights into its biotechnological relevance

PRESTA, LUANA;BOSI, EMANUELE;FONDI, MARCO;MAIDA, ISABEL;PERRIN, ELENA;MICELI, ELISANGELA;MAGGINI, VALENTINA;BOGANI, PATRIZIA;FIRENZUOLI, FABIO;DI PILATO, VINCENZO;ROSSOLINI, GIAN MARIA;MENGONI, ALESSIO;FANI, RENATO
2017

Abstract

In recent years, there has been increasing interest in plant microbiota; however, despite medicinal plant relevance, very little is known about their highly complex endophytic communities. In this work, we report on the genomic and phenotypic characterization of the antimicrobial compound producer Rheinheimera sp. EpRS3, a bacterial strain isolated from the rhizospheric soil of the medicinal plant Echinacea purpurea. In particular, EpRS3 is able to inhibit growth of different bacterial pathogens (Bcc, Acinetobacter baumannii, and Klebsiella pneumoniae) which might be related to the presence of gene clusters involved in the biosynthesis of different types of secondary metabolites. The outcomes presented in this work highlight the fact that the strain possesses huge biotechnological potential; indeed, it also shows antimicrobial effects upon well-described multidrug-resistant (MDR) human pathogens, and it affects plant root elongation and morphology, mimicking indole acetic acid (IAA) action.
2017
168
293
305
Presta, L.; Bosi, E.; Fondi, M.; Maida, I.; Perrin, E.; Miceli, E.; Maggini, V.; Bogani, P.; Firenzuoli, F.; Di Pilato, V.; Rossolini, G.M.; Mengoni, A.; Fani, R.
File in questo prodotto:
File Dimensione Formato  
Presta et al 2017 - Research in Microbiology - Rheinheimera RS3.pdf

Accesso chiuso

Descrizione: Presta et al - Res in Microbiology 2017
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1077621
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact