Quercus ilex L (holm oak) constitutively emits foliar monoterpenes in an isoprene-like fashion via the methyl erythritol phosphate (MEP) pathway located in chloroplasts. Isoprene-emitting plants are known to exhibit post-illumination isoprene burst, a transient emission of isoprene in darkness. An analogous post-illumination monoterpene burst (PiMB) had remained elusive and is reported here for the first time in Q. ilex. Using 13CO2 labelling, we show that PiMB is made from freshly fixed carbon. PiMB is rare at ambient (20%) O2, absent at high (50%) O2, and becomes consistent in leaves exposed to low (2%) O2. PiMB is stronger and occurs earlier at higher temperatures. We also show that primary and secondary post-illumination CO2bursts (PiCO2B) are sensitive to O2 in Q. ilex. The primary photorespiratory PiCO2B is absent under both ambient and low O2, but is induced under high (>50%) O2, while the secondary PiCO2B (of unknown origin) is absent under ambient, but present at low and high O2. We propose that post-illumination recycling of photorespired CO2 competes with the MEP pathway for photosynthetic carbon and energy, making PiMB rare under ambient O2 and absent at high O2. PiMB becomes consistent when photorespiration is suppressed in Q. ilex.

De novo post-illumination monoterpene burst in Quercus ilex (holm oak) / Srikanta Dani, K.G.; Marino, Giovanni; Taiti, Cosimo; Mancuso, Stefano; Atwell, Brian J.; Loreto, Francesco; Centritto, Mauro. - In: PLANTA. - ISSN 0032-0935. - STAMPA. - 245:(2017), pp. 459-465. [10.1007/s00425-016-2636-x]

De novo post-illumination monoterpene burst in Quercus ilex (holm oak)

TAITI, COSIMO;MANCUSO, STEFANO;
2017

Abstract

Quercus ilex L (holm oak) constitutively emits foliar monoterpenes in an isoprene-like fashion via the methyl erythritol phosphate (MEP) pathway located in chloroplasts. Isoprene-emitting plants are known to exhibit post-illumination isoprene burst, a transient emission of isoprene in darkness. An analogous post-illumination monoterpene burst (PiMB) had remained elusive and is reported here for the first time in Q. ilex. Using 13CO2 labelling, we show that PiMB is made from freshly fixed carbon. PiMB is rare at ambient (20%) O2, absent at high (50%) O2, and becomes consistent in leaves exposed to low (2%) O2. PiMB is stronger and occurs earlier at higher temperatures. We also show that primary and secondary post-illumination CO2bursts (PiCO2B) are sensitive to O2 in Q. ilex. The primary photorespiratory PiCO2B is absent under both ambient and low O2, but is induced under high (>50%) O2, while the secondary PiCO2B (of unknown origin) is absent under ambient, but present at low and high O2. We propose that post-illumination recycling of photorespired CO2 competes with the MEP pathway for photosynthetic carbon and energy, making PiMB rare under ambient O2 and absent at high O2. PiMB becomes consistent when photorespiration is suppressed in Q. ilex.
2017
245
459
465
Srikanta Dani, K.G.; Marino, Giovanni; Taiti, Cosimo; Mancuso, Stefano; Atwell, Brian J.; Loreto, Francesco; Centritto, Mauro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1081372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact