DNP-enhanced solid-state NMR spectroscopy under magic angle spinning (MAS) is rapidly developing into a powerful analytical tool to investigate the structure of a wide range of solid materials, because it provides unsurpassed sensitivity gains. Most developments and applications of DNP MAS NMR were so far reported at moderate spinning frequencies (up to 14 kHz using 3.2 mm rotors). Here, using a 1.3 mm MAS DNP probe operating at 18.8 inverted perpendicular and similar to 100 K, we show that signal amplification factors can be increased by up to a factor two when using smaller volume rotors as compared to 3.2 mm rotors, and report enhancements of around 60 over a range of sample spinning rates from 10 to 40 kHz. Spinning at 40 kHz is also shown to increase Si-29 coherence lifetimes by a factor three as compared to 10 kHz, substantially increasing sensitivity in CPMG type experiments. The contribution of quenching effects to the overall sensitivity gain at very fast MAS is evaluated, and applications are reported on a functionalised mesostructured organic-inorganic material.

Dynamic nuclear polarization at 40 kHz magic angle spinning / Chaudhari, Sachin R.; Berruyer, Pierrick; Gajan, David; Reiter, Christian; Engelke, Frank; Silverio, Daniel L.; Copéret, Christophe; Lelli, Moreno; Lesage, Anne; Emsley, Lyndon. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - STAMPA. - 18:(2016), pp. 10616-10622. [10.1039/c6cp00839a]

Dynamic nuclear polarization at 40 kHz magic angle spinning

LELLI, MORENO
Data Curation
;
2016

Abstract

DNP-enhanced solid-state NMR spectroscopy under magic angle spinning (MAS) is rapidly developing into a powerful analytical tool to investigate the structure of a wide range of solid materials, because it provides unsurpassed sensitivity gains. Most developments and applications of DNP MAS NMR were so far reported at moderate spinning frequencies (up to 14 kHz using 3.2 mm rotors). Here, using a 1.3 mm MAS DNP probe operating at 18.8 inverted perpendicular and similar to 100 K, we show that signal amplification factors can be increased by up to a factor two when using smaller volume rotors as compared to 3.2 mm rotors, and report enhancements of around 60 over a range of sample spinning rates from 10 to 40 kHz. Spinning at 40 kHz is also shown to increase Si-29 coherence lifetimes by a factor three as compared to 10 kHz, substantially increasing sensitivity in CPMG type experiments. The contribution of quenching effects to the overall sensitivity gain at very fast MAS is evaluated, and applications are reported on a functionalised mesostructured organic-inorganic material.
2016
18
10616
10622
Goal 7: Affordable and clean energy
Chaudhari, Sachin R.; Berruyer, Pierrick; Gajan, David; Reiter, Christian; Engelke, Frank; Silverio, Daniel L.; Copéret, Christophe; Lelli, Moreno; Lesage, Anne; Emsley, Lyndon
File in questo prodotto:
File Dimensione Formato  
c6cp00839a(1).pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Richiedi una copia
Manuscript_FASTMAS_submit.pdf

accesso aperto

Descrizione: pre-print autore
Tipologia: Altro
Licenza: Open Access
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1086246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 69
social impact