Investigations on animal models demonstrated that changes of sialic acid (SA) expression, particularly the polymeric form, in the skeletal muscle during embryonic and post-natal development seem to be related to muscle differentiation and functionality onset. The aim of this study was to evaluate the monomeric and polymeric SA expression in human skeletal muscle during early stages of fetal development, when important morphofunctional events occur. Specimens of fetal skeletal muscle from limb, between 9 and 12 weeks of gestation (wg), were obtained from 19 pregnant women. To investigate some morphofunctional features occurring during this development period, haematoxylin-eosin staining, tunel assay and immunohistochemistry for connexin-43 (Cx43) and parvalbumin were performed. SA expression and characterization was evaluated using lectin histochemistry (MAA, SNA, PNA, SBA, DBA), associated with enzymatic and chemical treatments. Polysialic acid (PSA) expression was also evaluated using immunohistochemistry. The results showed apoptotic myotubes between 9 and 10.5 wg, disappearing from 11 wg; Cx43 was more abundant in myotubes/myoblasts between 9 and 9.5 wg, decreasing and/or disappearing from 10 wg and parvalbumin was present in myotubes between 10 and 10.5 wg. PSA was revealed in myotubes/myoblasts from 9 to 10.5 wg; from 11 wg it was reduced or disappeared. Monomeric SA appeared in myotubes/myoblasts from 10 wg, increasing successively; acetylated SA was present from 11 wg. These findings demonstrated that changes in expression of various types of SA, occurring in human fetal skeletal muscle during early development, seem to be related to some morphofunctional aspects distinctive of this organogenesis crucial period.

Sialic acid expression in human fetal skeletal muscle during limb early myogenesis / Mirca, Marini; Erica, Sarchielli; Donata, Zappoli Thyrion Giorgia; Stefano, Ambrosini; Eleonora, Sgambati. - In: HISTOLOGY AND HISTOPATHOLOGY. - ISSN 0213-3911. - STAMPA. - 32:(2017), pp. 1207-1221. [10.14670/HH-11-901]

Sialic acid expression in human fetal skeletal muscle during limb early myogenesis.

MARINI, MIRCA;SARCHIELLI, ERICA;
2017

Abstract

Investigations on animal models demonstrated that changes of sialic acid (SA) expression, particularly the polymeric form, in the skeletal muscle during embryonic and post-natal development seem to be related to muscle differentiation and functionality onset. The aim of this study was to evaluate the monomeric and polymeric SA expression in human skeletal muscle during early stages of fetal development, when important morphofunctional events occur. Specimens of fetal skeletal muscle from limb, between 9 and 12 weeks of gestation (wg), were obtained from 19 pregnant women. To investigate some morphofunctional features occurring during this development period, haematoxylin-eosin staining, tunel assay and immunohistochemistry for connexin-43 (Cx43) and parvalbumin were performed. SA expression and characterization was evaluated using lectin histochemistry (MAA, SNA, PNA, SBA, DBA), associated with enzymatic and chemical treatments. Polysialic acid (PSA) expression was also evaluated using immunohistochemistry. The results showed apoptotic myotubes between 9 and 10.5 wg, disappearing from 11 wg; Cx43 was more abundant in myotubes/myoblasts between 9 and 9.5 wg, decreasing and/or disappearing from 10 wg and parvalbumin was present in myotubes between 10 and 10.5 wg. PSA was revealed in myotubes/myoblasts from 9 to 10.5 wg; from 11 wg it was reduced or disappeared. Monomeric SA appeared in myotubes/myoblasts from 10 wg, increasing successively; acetylated SA was present from 11 wg. These findings demonstrated that changes in expression of various types of SA, occurring in human fetal skeletal muscle during early development, seem to be related to some morphofunctional aspects distinctive of this organogenesis crucial period.
2017
32
1207
1221
Mirca, Marini; Erica, Sarchielli; Donata, Zappoli Thyrion Giorgia; Stefano, Ambrosini; Eleonora, Sgambati
File in questo prodotto:
File Dimensione Formato  
Histol Histopathol 2017.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1087637
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact