Here we investigate the evolution of a MilkyWay (MW)-like galaxy with the aim of predicting the properties of its progenitors all the way from z similar to 20 to z = 0. We apply GAMESH to a highresolution N-body simulation following the formation of a MW-type halo and we investigate its properties at z similar to 0 and its progenitors in 0 < z < 4. Our model predicts the observed galaxy main sequence, the mass-metallicity and the Fundamental Plane of metallicity relations in 0 < z < 4. It also reproduces the stellar mass evolution of candidate MW progenitors in 0 less than or similar to z less than or similar to 2.5, although the star formation rate and gas fraction of the simulated galaxies follow a shallower redshift dependence. We find that while the MW star formation and chemical enrichment are dominated by the contribution of galaxies hosted in Lyman a cooling haloes, at z > 6 the contribution of star-forming minihaloes is comparable to the star formation rate along the MW merger tree. These systems might then provide an important contribution in the early phases of reionization. A large number of minihaloes with old stellar populations, possibly Population III stars, are dragged into the MW or survive in the Local Group. At low redshift dynamical effects, such as halo mergers, tidal stripping and halo disruption redistribute the baryonic properties among halo families. These results are critically discussed in light of future improvements including a more sophisticated treatment of radiative feedback and inhomogeneous metal enrichment.

The history of the dark and luminous side of Milky Way-like progenitors / Graziani, L.; de Bennassuti, M.; Schneider, R.; Kawata, D.; Salvadori, S.. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - STAMPA. - 469:(2017), pp. 1101-1116. [10.1093/mnras/stx900]

The history of the dark and luminous side of Milky Way-like progenitors

SALVADORI, STEFANIA
2017

Abstract

Here we investigate the evolution of a MilkyWay (MW)-like galaxy with the aim of predicting the properties of its progenitors all the way from z similar to 20 to z = 0. We apply GAMESH to a highresolution N-body simulation following the formation of a MW-type halo and we investigate its properties at z similar to 0 and its progenitors in 0 < z < 4. Our model predicts the observed galaxy main sequence, the mass-metallicity and the Fundamental Plane of metallicity relations in 0 < z < 4. It also reproduces the stellar mass evolution of candidate MW progenitors in 0 less than or similar to z less than or similar to 2.5, although the star formation rate and gas fraction of the simulated galaxies follow a shallower redshift dependence. We find that while the MW star formation and chemical enrichment are dominated by the contribution of galaxies hosted in Lyman a cooling haloes, at z > 6 the contribution of star-forming minihaloes is comparable to the star formation rate along the MW merger tree. These systems might then provide an important contribution in the early phases of reionization. A large number of minihaloes with old stellar populations, possibly Population III stars, are dragged into the MW or survive in the Local Group. At low redshift dynamical effects, such as halo mergers, tidal stripping and halo disruption redistribute the baryonic properties among halo families. These results are critically discussed in light of future improvements including a more sophisticated treatment of radiative feedback and inhomogeneous metal enrichment.
2017
469
1101
1116
Graziani, L.; de Bennassuti, M.; Schneider, R.; Kawata, D.; Salvadori, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1088588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact