Green nanostructured heterogeneous catalysts were prepared via a bottom up strategy. Designed ligands were synthesized joining covalently an electrondeficient pyrimidine residue and a scorpiand azamacrocycle. The desired molecular properties were easily transferred to nanostructured materials in two steps: first, exploiting their spontaneous chemisorption onto multi-walled carbon nanotubes (MWCNTs) via the pyrimidinic moiety in water at room temperature, then, taking advantage of the easy coordination of Pd(II) to the azamacrocycle in the same conditions. An evenly distribution of catalytic centres was obtained on the MWCNTs surface. Catalytic properties of these materials were assessed towards the Cu-free Sonogashira cross coupling, leading to significant improvements in terms of yields and reaction conditions, especially when considering the possibility to maintain yields of 90%, or above, in a feasible amount of time (2h), while working under green conditions (water, 50 °C, aerobic atmosphere). The catalysts proved to be reusable for several cycles with good yields.

Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complexes of azamacrocycles / Savastano, Matteo; Arranz-Mascaros, Paloma; Bazzicalupi, Carla; Clares, Maria Paz; Godino-Salido, Maria Luz; Gutierrez-Valero, Maria Dolores; Inclain, Mario; Bianchi, Antonio; Garci­a-España, Enrique; Lopez-Garzon, Rafael. - In: JOURNAL OF CATALYSIS. - ISSN 0021-9517. - STAMPA. - 353:(2017), pp. 239-249. [10.1016/j.jcat.2017.07.023]

Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complexes of azamacrocycles

SAVASTANO, MATTEO;BAZZICALUPI, CARLA;BIANCHI, ANTONIO;
2017

Abstract

Green nanostructured heterogeneous catalysts were prepared via a bottom up strategy. Designed ligands were synthesized joining covalently an electrondeficient pyrimidine residue and a scorpiand azamacrocycle. The desired molecular properties were easily transferred to nanostructured materials in two steps: first, exploiting their spontaneous chemisorption onto multi-walled carbon nanotubes (MWCNTs) via the pyrimidinic moiety in water at room temperature, then, taking advantage of the easy coordination of Pd(II) to the azamacrocycle in the same conditions. An evenly distribution of catalytic centres was obtained on the MWCNTs surface. Catalytic properties of these materials were assessed towards the Cu-free Sonogashira cross coupling, leading to significant improvements in terms of yields and reaction conditions, especially when considering the possibility to maintain yields of 90%, or above, in a feasible amount of time (2h), while working under green conditions (water, 50 °C, aerobic atmosphere). The catalysts proved to be reusable for several cycles with good yields.
2017
353
239
249
Savastano, Matteo; Arranz-Mascaros, Paloma; Bazzicalupi, Carla; Clares, Maria Paz; Godino-Salido, Maria Luz; Gutierrez-Valero, Maria Dolores; Inclain, Mario; Bianchi, Antonio; Garci­a-España, Enrique; Lopez-Garzon, Rafael
File in questo prodotto:
File Dimensione Formato  
J. Catalysis 2017.pdf

Accesso chiuso

Descrizione: article
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Richiedi una copia
JCAT Manuscript.pdf

accesso aperto

Descrizione: Preprint autore
Tipologia: Altro
Licenza: Open Access
Dimensione 738.28 kB
Formato Adobe PDF
738.28 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1093963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact