Pharmaceutical antibiotics are frequently used in the livestock and poultry industries to control infectious diseases. Due to the lack of proper guidance for use, the majority of administrated antibiotics and their metabolites are excreted to the soil environment through urine and feces. In the present study, we used chlortetracycline and sulfapyridine antibiotics to screen out their effects on dehydrogenase, alkaline phosphatase and urease activity. Factorial experiments were conducted with different concentrations of antibiotic (0, 10, 25 and 100 mg kg-1 of soil) mixed with soil samples, and the enzyme activity was measured at intervals of 1, 4 and 21 days. The results show that the chlortetracycline and sulfapyridine antibiotics negatively affect the dehydrogenase activity, but the effect of sulfapyridine decreases with time of incubation. Indeed, sulfapyridine antibiotic significantly affect the alkaline phosphatase activity for the entire three-time interval, while chlortetracycline seems to inhibit its activity within 1 and 4 days of incubation. The effects of chlortetracycline and sulfapyridine antibiotics on urease activity appear similar, as they both significantly affect the urease activity on day 1 of incubation. The present study concludes that chlortetracycline and sulfapyridine antibiotics have harmful effects on soil microbes, with the extent of effects varying with the duration of incubation and the type of antibiotics used.

Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities / Molaei, Ali; Lakzian, Amir; Datta, Rahul; Haghnia, Gholamhosain; Astaraei, Alireza; Rasouli-sadaghiani, Mirhassan; Ceccherini, Maria Teresa;. - In: INTERNATIONAL AGROPHYSICS. - ISSN 0236-8722. - ELETTRONICO. - 31:(2017), pp. 499-505.

Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities.

CECCHERINI, MARIA TERESA
2017

Abstract

Pharmaceutical antibiotics are frequently used in the livestock and poultry industries to control infectious diseases. Due to the lack of proper guidance for use, the majority of administrated antibiotics and their metabolites are excreted to the soil environment through urine and feces. In the present study, we used chlortetracycline and sulfapyridine antibiotics to screen out their effects on dehydrogenase, alkaline phosphatase and urease activity. Factorial experiments were conducted with different concentrations of antibiotic (0, 10, 25 and 100 mg kg-1 of soil) mixed with soil samples, and the enzyme activity was measured at intervals of 1, 4 and 21 days. The results show that the chlortetracycline and sulfapyridine antibiotics negatively affect the dehydrogenase activity, but the effect of sulfapyridine decreases with time of incubation. Indeed, sulfapyridine antibiotic significantly affect the alkaline phosphatase activity for the entire three-time interval, while chlortetracycline seems to inhibit its activity within 1 and 4 days of incubation. The effects of chlortetracycline and sulfapyridine antibiotics on urease activity appear similar, as they both significantly affect the urease activity on day 1 of incubation. The present study concludes that chlortetracycline and sulfapyridine antibiotics have harmful effects on soil microbes, with the extent of effects varying with the duration of incubation and the type of antibiotics used.
2017
31
499
505
Molaei, Ali; Lakzian, Amir; Datta, Rahul; Haghnia, Gholamhosain; Astaraei, Alireza; Rasouli-sadaghiani, Mirhassan; Ceccherini, Maria Teresa;
File in questo prodotto:
File Dimensione Formato  
Molaei_Ceccherini_2017_Int_Agrophysics_Antibio_enzymes.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 288.13 kB
Formato Adobe PDF
288.13 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1100571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 26
social impact