Exercising Machine Learning (ML) algorithms to detect intrusions is nowadays the de-facto standard for data-driven detection tasks. This activity requires the expertise of the researchers, practitioners, or employees of companies that also have to gather labeled data to learn and evaluate the model that will then be deployed into a specific system. Reducing the expertise and time required to craft intrusion detectors is a tough challenge, which in turn will have an enormous beneficial impact in the domain. This paper conducts an exploratory study that aims at understanding to which extent it is possible to build an intrusion detector that is general enough to learn the model once and then be applied to different systems with minimal to no effort. Therefore, we recap the issues that may prevent building general detectors and propose software architectures that have the potential to overcome them. Then, we perform an experimental evaluation using several binary ML classifiers and a total of 16 feature learners on 4 public attack datasets. Results show that a model learned on a dataset or a system does not generalize well as is to other datasets or systems, showing poor detection performance. Instead, building a unique model that is then tailored to a specific dataset or system may achieve good classification performance, requiring less data and far less expertise from the final user.

aaaaaaa / Tommaso Zoppi, Andrea Ceccarelli , Andrea Bondavalli. - ELETTRONICO. - (In corso di stampa), pp. 0-0. ((Intervento presentato al convegno MACHINE LEARNING FOR CYBERSECURITY tenutosi a Grenoble, France.

aaaaaaa

Tommaso Zoppi;Andrea Ceccarelli;Andrea Bondavalli
In corso di stampa

Abstract

Exercising Machine Learning (ML) algorithms to detect intrusions is nowadays the de-facto standard for data-driven detection tasks. This activity requires the expertise of the researchers, practitioners, or employees of companies that also have to gather labeled data to learn and evaluate the model that will then be deployed into a specific system. Reducing the expertise and time required to craft intrusion detectors is a tough challenge, which in turn will have an enormous beneficial impact in the domain. This paper conducts an exploratory study that aims at understanding to which extent it is possible to build an intrusion detector that is general enough to learn the model once and then be applied to different systems with minimal to no effort. Therefore, we recap the issues that may prevent building general detectors and propose software architectures that have the potential to overcome them. Then, we perform an experimental evaluation using several binary ML classifiers and a total of 16 feature learners on 4 public attack datasets. Results show that a model learned on a dataset or a system does not generalize well as is to other datasets or systems, showing poor detection performance. Instead, building a unique model that is then tailored to a specific dataset or system may achieve good classification performance, requiring less data and far less expertise from the final user.
In corso di stampa
MLCS 2022
MACHINE LEARNING FOR CYBERSECURITY
Grenoble, France
Tommaso Zoppi, Andrea Ceccarelli , Andrea Bondavalli
File in questo prodotto:
File Dimensione Formato  
MLCS2022ECMLPKDD_paper_11 (1).pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 452.7 kB
Formato Adobe PDF
452.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1281967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact