We define a very general notion of regularity for functions taking values in an alternative real $*$-algebra. Over Clifford numbers, this notion subsumes the well-established notions of monogenic function and slice-monogenic function. Over quaternions, in addition to subsuming the notions of Fueter-regular function and of slice-regular function, it gives rise to an entirely new theory, which we develop in some detail.
A unified notion of regularity in one hypercomplex variable / Riccardo Ghiloni; Caterina Stoppato. - ELETTRONICO. - (2023), pp. 1-16. [10.48550/arXiv.2309.02891]
A unified notion of regularity in one hypercomplex variable
Riccardo Ghiloni;Caterina Stoppato
2023
Abstract
We define a very general notion of regularity for functions taking values in an alternative real $*$-algebra. Over Clifford numbers, this notion subsumes the well-established notions of monogenic function and slice-monogenic function. Over quaternions, in addition to subsuming the notions of Fueter-regular function and of slice-regular function, it gives rise to an entirely new theory, which we develop in some detail.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2309.02891.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
DRM non definito
Dimensione
260.59 kB
Formato
Adobe PDF
|
260.59 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.