Transketolase (TK; EC 2.2.1.1) is a key pentose phosphate shunt enzyme that plays an important role in the production of reducing equivalents and pentose sugars. TK activity declines in the brains of patients with Alzheimer's disease or Wernicke-Korsakoff syndrome, as well as in thiamine-deficient rats. Understanding the role of TK in the pathophysiology of these neurodegenerative conditions requires knowledge of its regional, cellular, and subcellular distribution within the brain. The current study employed in situ hybridization and immunocytochemistry to examine the distribution of TK mRNA and its encoded protein in adult rat brain. TK mRNA and protein were widely distributed throughout the brain. However, they were enriched in selective perikarya in the piriform cortex, nucleus of the diagonal band, red nucleus, dorsal raphe, pontine nucleus, locus coeruleus, trapezoid, inferior olive, and several cranial nerve nuclei. Lower expression of TK mRNA and protein occurred in layer V of cortex, olfactory tubercle, ventral pallidum, medial septal nucleus, hippocampus, thalamic and hypothalamic nuclei, mammillary body, central gray, and the substantia nigra. TK immunoreactivity also occurred in the nuclei of ubiquitously distributed glial cells, as well as ependymal cells. The heterogeneous distribution of TK may reflect a variety of metabolic activities among different brain regions but does not provide a simple molecular explanation for selective cell death in either thiamine deficiency or other conditions where TK is reduced.

Regional reduction of Transketolase in thiamine-deficient rat brain / SHEU K-FR; CALINGASAN N. Y. Y; DIENEL G. A.; BAKER H.; JUNG E-H; KIM K-S; F. PAOLETTI; GIBSON G. E.. - In: JOURNAL OF NEUROCHEMISTRY. - ISSN 0022-3042. - STAMPA. - 67:(1996), pp. 684-691. [10.1046/j.1471-4159.1995.64031034.x]

Regional reduction of Transketolase in thiamine-deficient rat brain

PAOLETTI, FRANCESCO;
1996

Abstract

Transketolase (TK; EC 2.2.1.1) is a key pentose phosphate shunt enzyme that plays an important role in the production of reducing equivalents and pentose sugars. TK activity declines in the brains of patients with Alzheimer's disease or Wernicke-Korsakoff syndrome, as well as in thiamine-deficient rats. Understanding the role of TK in the pathophysiology of these neurodegenerative conditions requires knowledge of its regional, cellular, and subcellular distribution within the brain. The current study employed in situ hybridization and immunocytochemistry to examine the distribution of TK mRNA and its encoded protein in adult rat brain. TK mRNA and protein were widely distributed throughout the brain. However, they were enriched in selective perikarya in the piriform cortex, nucleus of the diagonal band, red nucleus, dorsal raphe, pontine nucleus, locus coeruleus, trapezoid, inferior olive, and several cranial nerve nuclei. Lower expression of TK mRNA and protein occurred in layer V of cortex, olfactory tubercle, ventral pallidum, medial septal nucleus, hippocampus, thalamic and hypothalamic nuclei, mammillary body, central gray, and the substantia nigra. TK immunoreactivity also occurred in the nuclei of ubiquitously distributed glial cells, as well as ependymal cells. The heterogeneous distribution of TK may reflect a variety of metabolic activities among different brain regions but does not provide a simple molecular explanation for selective cell death in either thiamine deficiency or other conditions where TK is reduced.
1996
67
684
691
SHEU K-FR; CALINGASAN N. Y. Y; DIENEL G. A.; BAKER H.; JUNG E-H; KIM K-S; F. PAOLETTI; GIBSON G. E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/218970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact