The presence of orexins and orexin receptors has been revealed not only in the central nervous system but also in the gastrointestinal tract. The present study was aimed to investigate the influence of orexin A (OXA) on the mechanical activity of fundal and antral strips of the mouse stomach. In the fundus, electrical field stimulation (EFS) elicited tetrodotoxin (TTX)-sensitive, frequency-dependent contractile responses whose amplitude was markedly reduced by OXA and enhanced by the orexin-1 type receptor antagonist SB-334867. In the presence of the NO synthesis inhibitor L-N(G)-nitro arginine (L-NNA), OXA was no longer effective. Methacholine caused a sustained contracture whose amplitude was not influenced by OXA, TTX or L-NNA. In carbachol-precontracted strips, the neurally-induced relaxant responses elicited during EFS were increased in amplitude by OXA. Antral strips showed a spontaneous contractile activity that was unaffected by TTX or L-NNA and transiently depressed by EFS. OXA did not influence either the spontaneous motility or the EFS-induced effects. The results indicate that OXA exerts region-specific effects and that, in the fundus, depresses EFS-induced contractile responses by acting at the nervous level. It is likely that NO is involved in the effects of the peptide.

Influence of orexin A on the mechanical activity of mouse gastric strips / M. Baccari; F. Calamai. - In: REGULATORY PEPTIDES. - ISSN 0167-0115. - STAMPA. - 146:(2008), pp. 67-72. [10.1016/j.regpep.2007.08.004]

Influence of orexin A on the mechanical activity of mouse gastric strips

BACCARI, MARIA CATERINA
;
CALAMAI, FRANCO
2008

Abstract

The presence of orexins and orexin receptors has been revealed not only in the central nervous system but also in the gastrointestinal tract. The present study was aimed to investigate the influence of orexin A (OXA) on the mechanical activity of fundal and antral strips of the mouse stomach. In the fundus, electrical field stimulation (EFS) elicited tetrodotoxin (TTX)-sensitive, frequency-dependent contractile responses whose amplitude was markedly reduced by OXA and enhanced by the orexin-1 type receptor antagonist SB-334867. In the presence of the NO synthesis inhibitor L-N(G)-nitro arginine (L-NNA), OXA was no longer effective. Methacholine caused a sustained contracture whose amplitude was not influenced by OXA, TTX or L-NNA. In carbachol-precontracted strips, the neurally-induced relaxant responses elicited during EFS were increased in amplitude by OXA. Antral strips showed a spontaneous contractile activity that was unaffected by TTX or L-NNA and transiently depressed by EFS. OXA did not influence either the spontaneous motility or the EFS-induced effects. The results indicate that OXA exerts region-specific effects and that, in the fundus, depresses EFS-induced contractile responses by acting at the nervous level. It is likely that NO is involved in the effects of the peptide.
2008
146
67
72
Goal 3: Good health and well-being for people
M. Baccari; F. Calamai
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/250051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact