Conservative numerical schemes for general relativistic magnetohydrodynamics (GRMHD) require a method for transforming between ``conserved'' variables such as momentum and energy density and ``primitive'' variables such as rest-mass density, internal energy, and components of the four-velocity. The forward transformation (primitive to conserved) has a closed-form solution, but the inverse transformation (conserved to primitive) requires the solution of a set of five nonlinear equations. Here we discuss the mathematical properties of the inverse transformation and present six numerical methods for performing the inversion. The first method solves the full set of five nonlinear equations directly using a Newton-Raphson scheme and a guess from the previous time step. The other methods reduce the five nonlinear equations to either one or two nonlinear equations that are solved numerically. Comparisons between the methods are made using a survey over phase space, a two-dimensional explosion problem, and a general relativistic MHD accretion disk simulation. The run time of the methods is also examined. Code implementing the schemes is available with the electronic edition of the article.

Primitive variable solvers for conservative general relativistic magnetohydrodynamics / S. NOBLE; C. GAMMIE; J. MCKINNEY; L. DEL ZANNA. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - STAMPA. - 641:(2006), pp. 626-637. [10.1086/500349]

Primitive variable solvers for conservative general relativistic magnetohydrodynamics

DEL ZANNA, LUCA
2006

Abstract

Conservative numerical schemes for general relativistic magnetohydrodynamics (GRMHD) require a method for transforming between ``conserved'' variables such as momentum and energy density and ``primitive'' variables such as rest-mass density, internal energy, and components of the four-velocity. The forward transformation (primitive to conserved) has a closed-form solution, but the inverse transformation (conserved to primitive) requires the solution of a set of five nonlinear equations. Here we discuss the mathematical properties of the inverse transformation and present six numerical methods for performing the inversion. The first method solves the full set of five nonlinear equations directly using a Newton-Raphson scheme and a guess from the previous time step. The other methods reduce the five nonlinear equations to either one or two nonlinear equations that are solved numerically. Comparisons between the methods are made using a survey over phase space, a two-dimensional explosion problem, and a general relativistic MHD accretion disk simulation. The run time of the methods is also examined. Code implementing the schemes is available with the electronic edition of the article.
2006
641
626
637
S. NOBLE; C. GAMMIE; J. MCKINNEY; L. DEL ZANNA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/251870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 216
  • ???jsp.display-item.citation.isi??? 210
social impact